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Abstract

In this paper, we aim to learn discriminative representa-

tion for facial action unit (AU) detection from large amount

of videos without manual annotations. Inspired by the

fact that facial actions are the movements of facial mus-

cles, we depict the movements as the transformation be-

tween two face images in different frames and use it as the

self-supervisory signal to learn the representations. How-

ever, under the uncontrolled condition, the transformation

is caused by both facial actions and head motions. To re-

move the influence by head motions, we propose a Twin-

Cycle Autoencoder (TCAE) that can disentangle the facial

action related movements and the head motion related ones.

Specifically, TCAE is trained to respectively change the fa-

cial actions and head poses of the source face to those of

the target face. Our experiments validate TCAE’s capa-

bility of decoupling the movements. Experimental results

also demonstrate that the learned representation is discrim-

inative for AU detection, where TCAE outperforms or is

comparable with the state-of-the-art self-supervised learn-

ing methods and supervised AU detection methods.

1. Introduction

Facial actions convey varied and nuanced meanings, in-

cluding a person’s intentions, affective and physical states.

To study the facial actions comprehensively, Ekman and

Friesen developed the Facial Action Coding System (FACS)

which defines a unique set of about 40 atomic non-

overlapping facial muscle actions called Action Units (AUs)

[8]. AU detection has drawn significant interest from com-

puter scientists and psychologists over recent decades, as

it holds promise to an abundance of applications, such as

affect analysis, mental health assessment, and human com-

source image target image 

AU-related  
movements 

pose-related  
movements 

AU-changed 

pose-changed 

re-generate 

re-generate 

AU  
feature 

Figure 1. Main idea of the proposed self-supervised learning

framework Twin-Cycle Autoencoder (TCAE). TCAE learns AU

discriminative features by predicting the disentangled movements

that change the AUs and head poses respectively. TCAE ensures

the quality of the discovered movements by transforming the AU-

changed and pose-changed faces back to the source.

puter interaction.

Recently, the development of AU detection is facilitated

by the progress in deep learning [47, 22, 21, 32]. However,

it is data starved to make full use of these supervised meth-

ods, because labelling AUs is time consuming, error prone,

and confusing. It takes 30 minutes or more for an FACS

expert to manually code an AU for a one-minute video [46].

To alleviate the demand for adequate and accurate anno-

tations, we exploit the practically infinite amount of unla-

belled videos to learn discriminative AU representations in

a self-supervised manner. Considering that AUs appear as

the local movements within the face and the movements are

easy be to detected without manual annotations, we propose

to use the movements as the supervisory signals in learning

the AU representations. However, the detected movements
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are always caused by both AUs and head motions. In some

cases, especially in uncontrolled scenarios, head motions

are the dominant contributors to the movements. If we do

not remove the movements of head motions from the super-

visory signals, the learned features would not be discrimi-

native enough for AU detection, because they would encode

more information about head poses than those about AUs.

To address the learning issue from entangled move-

ments, we propose a Twin-Cycle Autoencoder (TCAE)

that self-supervisedly learns two embeddings to encode the

movements of AUs and head motions, respectively. Fig. 1

illustrates the main idea of the proposed TCAE. We sam-

ple two face images (the source image and the target image)

of a subject from a video where he/she is talking and mov-

ing with varied expressions. TCAE is tasked to change the

AUs or head poses of the source frame to those of the target

frame by predicting the AU-related and pose-related move-

ments, respectively. Thus, TCAE distills the information re-

quired to compute the AU- or pose-related movements sepa-

rately into the corresponding embeddings. During the train-

ing, TCAE enforces the generated face images to be realis-

tic because their quality implies how well the movement is

discovered and thus implies how good the representation is.

Since we do not have the real face images that merely AUs

or poses are changed, we introduce a twin-cycle mechanism

to control the quality of the generated face images. In each

cycle, either the predicted AU-changed face or the pose-

changed face is mapped back to the source. Meanwhile,

the AU-related and pose-related movements are combined

to map the source to the target. We show that our proposed

TCAE can disentangle the movements caused by AUs and

head motions.

In summary, our contributions are two folds: 1) We pro-

pose a self-supervised learning framework Twin-Cycle Au-

toencoder (TCAE) to learn AU representations from un-

labelled videos. Experimental results show that TCAE

outperforms or is comparable to the state-of-the-art self-

supervised learning methods and supervised AU detection

methods. 2) TCAE can successfully disentangle the AU-

related movements from the pose-related ones. It indicates

potential applications in editing face images.

2. Related work

Faction unit detection. AU detection has been studied

for decades and various methods have been proposed [24].

To achieve good performance, researchers have designed

different features to represent AU. The features include the

appearance texture of the whole face [44] or near the fa-

cial landmarks [35, 9, 37], or the combination of geometry

shape with texture [10]. Most of these features are based

on general features in computer vision task, such as SIFT,

HOG, LBP, etc. To make the features discriminative for AU,

some works considered that AU is tightly correlated to the

motions within local regions of the face [13] and thus in-

troduced sparsity-induced algorithms [45, 34] to reduce the

influence of uncorrelated facial regions.

Over the last few years, deep learning has become a dom-

inating approach due to their capability and capacity of rep-

resentation learning. These methods [47, 22, 21, 32] learn

rich local features to capture facial deformation. For exam-

ple, Zhao et al. [47] proposed a locally connected convolu-

tional layer that learns region-specific convolutional filters

from sub-areas of the face. JPML [45], EAC-Net [22] and

ROI [21] extracted features around facial landmarks that are

robust with respect to non-rigid shape changes. JAA-Net

[32] proposed to jointly learn AU detection and face align-

ment in a unified framework. These methods have achieved

promising performance on annotated datasets, e.g., CK+

[23], DISFA [25], BP4D [42]. However, these methods de-

pend on accurately labelled images and often overfit on a

specific dataset because of insufficient training data.

To alleviate the dependence of AUs annotations, several

works start to focus on learning model in a semi-supervised

[40, 4], weakly-supervised [46, 31, 43] or self-supervised

manner [38]. The semi-supervised learning methods usu-

ally incorporate both labelled and unlabelled data by assum-

ing the faces to be clustered by AUs, or to have a smooth

label space. The weakly supervised methods exploit noisy,

incomplete AU annotations [46]. They usually learn AU

classifiers from domain knowledge [43], or naturally exist-

ing constraints on AUs [31]. We adopt the self-supervised

learning paradigm because it can learn AU discriminative

features without AU labels and it is regardless of the as-

sumptions on label distribution.

Self-supervised learning. Self-supervised learning

adopts supervisory signals that are inferred from the struc-

ture of the data itself. The signals include image coloriza-

tion [41], order of a set of frames [26, 18, 11], camera trans-

formations between pairs of images [1] etc. A typical self-

supervised method is SplitBrain [41], which consists of two

sub-nets. For the images, each sub-net predicts a subset of

the channels according the other subset. The features ex-

tracted by the two sub-nets are concatenated and serve as

the generic representations.

Since the proposed TCAE is supervised by the disen-

tangled AU-related and pose-related movements, we review

the related self-supervised methods that can adopt the mo-

tion information as the supervisory signal, or can disentan-

gle different factors.

The former learn visual representations from videos with

the help of motion information, e.g., optical flow [36, 29],

pixelwise correspondence [12], egomotion [17, 1], or ap-

pearance flow [38, 39]. The most related work to TCAE

is Fab-Net [38], which is optimized to map a source frame

to a target frame by predicting a flow field between them.

However, the learned embedding of Fab-Net is not a ded-
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Figure 2. The framework of TCAE. Given a source image Is and target image It , TCAE encodes their AU (φs or φt) and pose (ψs or ψt)

embeddings. The two AU embeddings are decoded into the displacements T A reflecting the changing of AUs between Is and It. Similarly,

the two pose embeddings are decoded into the pose-related displacements T p. In target reconstruction, the integrated displacements are

used to transform Is to It. In the two cycles, TCAE generates an AU-changed face image and a pose-changed face image respectively and

then maps them back to the source face image.

icated AU representation. Fab-Net cannot distinguish the

information on AUs from that on poses.

The latter disentangle the representation without annota-

tions as the supervisory singals [7, 19, 3, 33]. For exam-

ple, DRIT [19] factorized an image into the representations

in content and attribute space with cross-cycle consistency

loss. Dr-Net [7] decomposed a video frame into the sta-

tionary component and the temporally varying component

by forcing the latter to carry no information about identity.

For face analysis, Shu et al. [33] introduced Deforming Au-

toencoders (DeformAE) that disentangles shape from ap-

pearance in a self-supervised manner. In DeformAE, the en-

tangled appearance branch contains an aligned face with no

morphing, and the entangled shape branch contains a mor-

phing field that reserve both head pose and facial morphing

information.

3. Twin-Cycle Autoencoder

We propose a symmetric encoder-decoder architecture

called Twin-Cycle Autoencoder (TCAE) to learn AU rep-

resentations in a self-supervised way. Without the manual

annotations, TCAE is trained with pairs of face images of

the same person with different facial actions and head poses.

Each two face images are sampled from a video where a

subject is talking and moving with varied expressions. We

denote the two images as the source Is and the target It.

TCAE is trained to respectively change the source face’s

facial actions or head poses to the ones in the target face.

Fig. 2 illustrates the training framework of TCAE given

the two face images. It consists of four parts: feature dis-

entangling, target reconstruction, cycle with pose changed,

and cycle with AU changed. In feature disentangling,

TCAE learns the features by respectively predicting the

AU-related and pose-related movements between two im-

ages. In target reconstruction, TCAE integrates the sepa-

rated movements and uses it in transforming the source im-

age to the target one, ensuring that the two movements are

sufficient to represent the changing between the two face

images. To make the separated movements realistic, TCAE

introduces two cycles with AU or pose changed. It uses

the AU-/pose- related movements to generate an AU-/pose-

changed face image, which are then transformed back to the

source one. TCAE requires the regenerated source image to

be consistent to the original one. Below, we present details

of the four parts in TCAE.

3.1. Feature disentangling

In order to disentangle the information about AUs and

poses, TCAE has a nearly symmetric structure with two

branches. As can be seen in Fig. 2, TCAE first encodes

both the source and target images using the encoder E and

gets their embeddings [ψs, φs] and [ψt, φt], respectively. ψs

and ψt denote the pose-related features. φs and φt denote
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the AU-related features. Then, TCAE concatenates the two

AU-related features φs and φt and passes them into the AU-

related decoder DA. DA decodes how the facial actions

in the source face is changed to those in the target face,

and where the change happens. Symmetrically, the con-

catenated pose features ψs and ψt are passed to the pose-

related decoder Dp that decodes how and where the pose is

changed. Since the decoders DA and Dp are in symmetrical

branches, we describe one of them in details and the other

is similar. Let us take DA as an example. Since DA takes

the AU-related embeddings of both the source face and tar-

get face as the inputs, it is capable to capture the AU-related

movement between the two faces. The movement caused by

AUs is depicted as the displacements of pixels between the

source face and the AU-changed face. The displacements

are formulated as a matrix of vectors T A ∈ R
W×H×2,

where W and H are the width and height of the images.

TCAE generates the AU-changed face by sampling the pix-

els from the source image. T A
xy = (δx, δy) is the vector at

position (x, y) and it means the offset of the pixel location

(x, y) in the source face. That is, the pixel at location (x, y)
in the source face is moved to the location (x+δx, y+δy) in

the AU-changed face. For the pixels that do not have corre-

sponding ones in the source face, we adopt bilinear interpo-

lation. Therefore, T A serves as an operator T A : Is �→ IA
which transforms the source face Is into the AU-changed

face IA pixel by pixel. Similar to T A, we get the pose-

related displacements T p from the decoder Dp.

To distinguish the displacements caused by the change

of AU and poses, we add the L1 regularization on T A to

keep the AU-related movements sparse and subtle, which is

formulated as:

LA
1 =

∑

x,y

||T A
xy||1, (1)

where x,y enumerate all the locations in the face images.

T A should be sparse because facial actions are the move-

ments of one or a group of muscles and they only lead to

regional changes of the face pixels. Minimizing the L1-

norm of T A also enforces the AU-related movements to be

subtle. Facial actions appears as motions of smaller range

than that of head motions. Therefore, the absolute values of

T A’s elements should be smaller than those in T p.

3.2. Target reconstruction

To ensure that the decoded movements can represent the

changing from the source image to the target, we integrate

the displacements T A and T p, and then use the integrated

displacements to generate a target image from the source.

TCAE integrates T A and T p by linearly combining each

of their elements. Each element of the integrated displace-

ments T at location (x, y) is computed by:

Txy = αA
xyT

A
xy + αp

xyT
p
xy,

where Txy, T
A
xy, T

p
xy ∈ R

2 are vectors denoting the offsets

of the pixel at location (x, y) in the source face. αA
xy and

αp
xy are scalers that weighing the contributions of T A

xy and

T p
xy , respectively. They satisfy that αA

xy + αp
xy = 1. In

the images of size W ×H , the weights for all the locations

compose an attention mask A
A ∈ R

W×H or Ap ∈ R
W×H .

The masks are the outputs of decoder DA and Dp, indicat-

ing where the AU or pose is changing.

The integrated T serves as a transforming operator that

maps the source image Is to the target It. Thus, we require

the reconstructed target image to be similar to the original

one by minimizing their discrepancy. We formulate the re-

construction loss as :

Lrec = ||T (Is)− It||1, (2)

where T (Is) ∈ R
W×H×3 denotes the generated RGB im-

ages from the source face. Is and It are the images of the

source and the target face images, respectively.

3.3. Twin cycles with AU or pose changed

The quality of the generated AU-changed and pose-

changed face images implies how well the movements are

disentangled. Since we have no pixel-wise or label level su-

pervisions for the generated face, we exploit the property

that the transformation should be “cycle consistent” [48].

TCAE includes two symmetric cycles. In one of them,

a face image is generated by changing the facial actions of

the source. Then, the AU-changed face is transformed back

to the source. In the other, we generate a pose-changed face

image and then transform it back to the source.

Fig. 2 illustrates the details in the cycles. Let us take the

cycle with AU changed as the example. After we get the

AU-related displacements T A in the feature disentangling

part, we use them to generate the AU-changed face image

T A(Is) from the source. We extract the AU and pose fea-

tures of the AU-changed face image using the same encoder

E in the feature disentangling part. Then, the AU features

of the source and the AU-changed face images are concate-

nated and fed into the AU-related decoder DA. By DA,

we get the displacements T −A which change the facial ac-

tions in AU-changed face to those in the source. It is noting

that the only differences between the source image Is and

the AU-changed one T A(Is) are the facial actions. If we

change the facial actions of T A(Is) using T −A, the new

image T −A
(

T A(Is)
)

should be similar to Is. Therefore,

we formulate a cycle consistent reconstruction loss to mini-

mize the pixel discrepancy between T −A
(

T A(Is)
)

and Is
as:

LA
cyc = ||T −A

(

T A(Is)
)

− Is||1. (3)

Similarly, in the cycle with pose changed, we get the dis-

placements T −p that change the pose in pose-changed face
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T p(Is) to that in the source. we formulate the cycle consis-

tent reconstruction loss to minimize the pixel discrepancy

between T −p (T p(Is)) and Is as:

Lp
cyc = ||T −p (T p(Is))− Is||1, (4)

where T −p (T p(Is)) is the generated face image from the

pose-changed face using T −p.

Besides the pixel level consistency, we also exploit the

consistency within the embeddings. In the cycle with AU

changed, the AU-changed face image and the source image

are of the same pose. Thus, their pose embeddings should

be similar. Meanwhile, the AU-changed face image and the

target image are of the same facial actions. Thus, their AU

embeddings should be similar. We minimize the discrep-

ancy of the embeddings for AU-changed face image by

LA
emb = ||ψA

s − ψs||
2 + ||φA

s − φt||
2, (5)

where ψA
s and φA

s are the pose embeddings and AU em-

beddings of the AU-changed face image, respectively. ψs is

the pose embeddings of the source image and φt is the AU

embeddings of the target image.

Similarly, in the cycle with pose changed, the pose-

changed face image should have similar AU embeddings

to the source image, and have similar pose embeddings to

the target image. The consistency of the embeddings are

constrained by

Lp
emb = ||φp

s − φs||
2 + ||ψp

s − ψt||
2, (6)

where φp
s and ψp

s are the AU embeddings and pose embed-

dings of the pose-changed face image, respectively. φs is

the AU embeddings of the source image and ψt is the pose

embeddings of the target image.

4. Experimental results

In this section, we validated the effectiveness of the pro-

posed TCAE. First, we compared TCAE with other self-

supervised methods, descriptors, and supervised AU detec-

tion methods on three AU datasets. Then, we analyzed the

generated face images and displacements.

4.1. Implementation details

Detailed structures of the encoder and decoders:

Fig. 3 (a) illustrates the encoder used in our experiments.

It contains a backbone network followed by two parallel

branches. The backbone is shared because the features from

early layers are usually general. The encoder takes an RGB

image in size of 256×256 as the input and outputs two 256-

dimensional embeddings that represent AU and head pose,

respectively. Fig. 3 (b) shows the decoder which contains

eight blocks. In each block, an upsampling layer is placed

before the convolution layer to double the width and height
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(a) Encoder.  In each conv, stride is 2, pad is 1. 

(b) Decoder. In each conv, stride is 1, pad is 1. 
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Figure 3. Structure of the encoder (top) and decoders (bottom) in

TCAE. BN denotes batch normalization.

of the input feature maps. The last block uses tanh as the

activation function. The decoder outputs a three-channel

feature map with in the size of 256× 256× 3. The first two

channels serve as the displacements, and the third serves as

the attention mask. It is noting that the en/de-coder can be

with any suitable blocks (e.g., residual blocks) rather than

the vanilla convolutional blocks in our experiments.

Training of TCAE: TCAE was trained end-to-end by

minimizing the combination of losses in Eq. (1)∼(6). The

full loss is formulated as L = 1

W×H×3
Lrec+

λ1

W×H×2
LA
1 +

λ2

W×H×3
(LA

cyc+Lp
cyc)+

λ3

256
(LA

emb+Lp
emb), where W and

H denote the width and height of the image. The weights

λ1, λ2 and λ3 are set as 0.01, 0.1, 0.1. We implemented

TCAE1 using PyTorch [30] and optimized it by SGD with

an initial learning rate of 0.001, and batch size of 64. It took

around 1000 epochs to reach the convergency.

TCAE was trained on the union of VoxCeleb1 [28] and

VoxCeleb2 [6] datasets. The two datasets consist of videos

of interviews containing around 7,000 subjects. The iden-

tities were randomly split as train/val/test with percentages

of 75/15/10. During training, TCAE was fed with face pairs

that were randomly sampled from a video in the merged

VoxCeleb. The faces were detected by Cadcade-CNN [20]

and aligned according to the facial landmarks[16]. Each

face was cropped to a 256× 256 image.

We adopted the curriculum learning [2] strategy to train

the model with progressively difficult samples, because the

randomly sampled image pairs may contain large devia-

tions, which are too challenging to learn. Given a batch

of image pairs, TCAE executed a forward pass to obtain

the loss for each sample. The samples were sorted by their

losses in an ascending order. Then the loss L was only back-

propagated to the samples ranking in the top 50% within the

batch in the beginning. It was back-propagated to the sam-

ples ranking between top 10% and 60% when L on the val-

idation set saturated, and to the ones ranking between top

20% and 70% when another saturation reached. We kept

1Code available at https://github.com/mysee1989/TCAE
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Table 1. F1 on BP4D dataset.

Methods/AU 1 2 4 6 7 10 12 14 15 17 23 24 ave

Descriptor

Handcrafted [40]* 43.4 40.7 43.3 59.2 61.3 62.1 68.5 52.5 36.7 54.3 39.5 37.8 50.0

ResNet-80 face 39.3 40.6 38.5 64.2 67.5 71.0 65.3 57.2 37.8 51.3 35.1 32.6 49.9

VGG emotion 46.4 36.3 49.6 76.0 77.6 80.2 87.8 60.8 40.4 59.1 43.7 48.2 58.8

Supervised

AlexNet [5]* 40.3 39.0 41.7 62.8 54.2 75.1 78.1 44.7 32.9 47.3 27.3 40.1 48.6

DRML [47]* 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3

EAC-Net [22]* 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9

ROI [21]* 36.2 31.6 43.4 77.1 73.7 85.0 87.0 62.6 45.7 58.0 38.3 37.4 56.4

JAA-Net [32]* 47.2 44.0 54.9 77.5 74.6 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0

Self-
supervised

SplitBrain [41] 39.0 32.0 39.7 72.9 70.6 78.2 83.7 57.8 37.3 53.6 32.3 45.1 53.5

DeformAE [33] 39.5 34.5 40.8 70.5 68.4 76.3 82.9 60.7 23.1 54.1 34.3 43.1 52.3

Fab-Net [38] 43.3 35.7 41.6 72.9 63.0 75.9 83.5 57.7 26.5 48.2 33.6 42.4 52.0

TCAE (ours) 43.1 32.2 44.4 75.1 70.5 80.8 85.5 61.8 34.7 58.5 37.2 48.7 56.1

* means that the values are reported in the original papers.

Table 2. F1 on DISFA dataset.

Methods/AU 1 2 4 6 9 12 25 26 ave

Descriptor
ResNet-80 face 24.9 17.9 49.5 41.2 26.2 48.6 56.4 32.8 37.2

VGG emotion 35.5 25.5 58.1 53.8 32.4 74.4 79.0 55.7 51.8

Supervised

DRML [47]* 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7

EAC-Net [22]* 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5

JAA-Net [32]* 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0

Self-
supervised

SplitBrain [41] 13.1 10.6 35.7 40.2 30.2 57.5 77.4 40.3 38.1

DeformAE [33] 17.6 12.3 46.7 43.5 26.0 62.7 64.8 47.6 40.1

Fab-Net [38] 15.5 16.2 43.2 50.4 23.2 69.6 72.4 42.4 41.6

TCAE (ours) 15.1 15.2 50.5 48.7 23.3 72.1 82.1 52.9 45.0

* means that the values are reported in the original papers.

changing the samples until the max iteration.

Evaluation protocols: After the training process, we

obtained the encoder for AU detection. We trained a lin-

ear AU classifier from the learned embedding. The lin-

ear classifier consists of two layers: a batch-norm layer

followed by a linear fully connected layer with no bias.

The linear classifier was trained with a binary cross entropy

loss for each AU. As all the AU datasets are highly imbal-

anced, the samples from the under-represented categories

were reweighed inversely proportionally to the class fre-

quencies. We adopted F1 score (F1 = 2RP
R+P

) to evaluate

the performance of the method, where R and P denote re-

call and precision, respectively. We also computed the aver-

age over all AUs (ave) to measure the overall performance.

Evaluation datasets: We evaluated the methods on

BP4D [42], GFT [13] and DISFA [25] datasets. BP4D con-

tains 41 participants (23 females and 18 males). There are

about 146000 frames with available AU labels. DISFA con-

sists of 26 participants. The AUs are labelled with intensi-

ties from 0 to 5. The frames with intensities greater than

1 were considered as positive, while others were treated as

negative. We totally obtained about 130,000 AU-labelled

frames. GFT contains 96 participants in 32 three-person

groups. The moderate out-of-plane head motion and occlu-

sion make AU detection challenging. For BP4D and DISFA

dataset, we split the dataset into 3 folds based on subject IDs

and conducted a 3-fold cross-validation. We used 12 AUs

in BP4D dataset and and 8 AUs in DISFA dataset for eval-

uation. For GFT dataset, we followed the original train/test

splits in [13] (about 108000 facial images for training and

24600 images for evaluation) and used totally 10 AUs for

evaluation.

4.2. Comparisons with other methods

We compared TCAE with the state-of-the-art self-

supervised methods, typical descriptors, and supervised AU

detection methods. Table 1, 2, 3 report the F1-score of the

methods on BP4D, DISFA, and GFT datasets.

Comparison with other self-supervised methods:

The TCAE was compared with the state-of-the-art self-

supervised learning methods: SplitBrain [41], Deformin-

gAE [33], Fab-Net [38]. We re-trained the three models on

the merged VoxCeleb dataset using the released codes. In

SplitBrain [41], we used the down-sampled output of conv3
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Table 3. F1 on GFT dataset.

Methods/AU 1 2 4 6 10 12 14 15 23 24 ave

Descriptor
Handcrafted [13]* 38 32 13 67 64 78 15 29 49 44 42.9

ResNet-50 face 24.3 50.7 18.2 39.9 44.7 41.6 17.4 27.8 31.0 25.9 32.2

VGG emotion 23.9 40.6 26.4 73.6 69.3 74.4 21.1 24.9 26.0 20.2 40.0

Supervised

AlexNet [13]* 44 46 2 73 72 82 5 19 43 42 42.8

ResNet-50 23.5 37.8 3.5 79.1 70.1 82.1 20.9 11.7 49.1 40.3 41.8

Self-
supervised

SplitBrain [41] 19.0 40.6 8.7 60.2 66.6 75.4 5.6 26.7 22.9 32.3 35.8

DeformAE [33] 17.3 40.1 4.8 64.1 69.1 72.1 7.8 3.9 8.0 25.2 31.2

Fab-Net [38] 44.4 42.3 9.4 60.6 68.7 70.4 8.7 1.7 5.5 20.8 33.3

TCAE (ours) 43.9 49.5 6.3 71.0 76.2 79.5 10.7 28.5 34.5 41.7 44.2

* means that the values are reported in the original papers.
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source 
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AU displacements AU-changed 

source 

Figure 4. Visualizations of the displacements and the generated face images. The source is transformed to the AU-changed and pose-

changed face images through the AU displacements and pose displacements respectively. AU-changed face image should has the same

AUs as the target and the same pose as the source. Pose-changed face image should has the same pose as the target and the same AUs as

the source. Better viewed in color.

layer as the feature. In DeformAE [33], we changed the in-

put size to 256 × 256 and used the 512 dimensional latent

representation as the feature. In Fab-Net, we followed the

settings in [38]. All the features were used in training an

AU detector as they were used in TCAE.

As shown in table 1, 2, 3, TCAE outperforms other self-

supervised methods in the average F1 score. Because the

decoupled AU representation can better reflect the facial ac-

tions. The advantage of TCAE is the most obvious on GFT

dataset. It suggests that the decoupled AU representation

is robust against head pose variation, while the entangled

representation in [38, 33] is vulnerable to the head pose.

Although TCAE achieved the best average F1 score,

it had inconsistent performance on different AUs. TCAE

failed on AU9 because AU9 is nose wrinkle and it can-

not be generated by moving pixels in the faces without

AU9. TCAE showed its success on AU6 (cheek raiser),

AU7 (lid tightener), AU10 (upper lip raiser), AU12 (lip cor-

ner puller), AU23 (lip tightener), AU24 (lip pressor), AU25

(lips part) etc. It is because these AUs can be easily gener-

ated by moving pixels in the source face.

Comparison with other descriptors: We compared

TCAE with the handcrafted features [40, 13], face and emo-

tion descriptors. The face descriptor was extracted from a

80 layer ResNet [15] trained on MS-Celeb-1M dataset [14]

for face recognition. The emotion descriptor was extracted

from a VGG-16 net trained on AffectNet dataset [27] for

emotion classification.

The TCAE-learned AU representation outperforms the

handcrafted features because the handcrafted features are

general and are not specially designed for AU detection.

TCAE also outperforms the face descriptor because the face
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Figure 5. Histogram of the average length of displacements for AU

and pose displacements.

descriptor was optimized to be expression invariant. On

GFT dataset, TCAE outperforms the emotion descriptor.

But TCAE lags behind the emotion descriptor on BP4D and

DISFA datasets. It is because the emotion descriptor is emo-

tion discriminative and emotions are tightly correlated with

AUs, e.g., activated AU1 (inner brow raiser) often appears

in facial expression images labelled with fear or surprise.

Activated AU4 (brow lower) is a partial indicator of anger

and sadness. Thus, emotion descriptor is also AU discrimi-

native. However, the emotion descriptor depends on a large

amount of labelled data. It is not easy to annotate emotions.

Comparison with supervised methods: We compared

TCAE with the state-of-the-art AU detection methods, in-

cluding DRML [47], EAC-Net [22], ROI [21], JAA-Net

[32]. For a fair comparison, TCAE was evaluated under

the same protocol as the ones in [47, 22, 21, 32]. On GFT

dataset, we trained a 50-layer ResNet [15] from scratch .

TCAE is comparable to supervised methods. It outper-

forms AlexNet [5], DRML [47], EAC-Net [22] on BP4D

dataset, and outperforms DRML [47] on DISFA dataset.

On GFT dataset, TCAE outperforms the supervised meth-

ods [13] with no exceptions. TCAE is comparable with ROI

[21] on BP4D dataset. TCAE lags behind JAA-Net [32] and

EAC-Net [22] on DISFA dataset, which both adopt facial

landmarks to learn region specific representations.

4.3. Analysis

To investigate how well the movements are disentan-

gled, we visualized and analyzed the generated faces and

the learned displacements.

Generated face images: Fig. 4 visualizes the gener-

ated faces and learned displacements during the training of

TCAE. TCAE shows its capability in separating the changes

caused by facial actions and head motions, as it generated

reasonable AU-changed and pose-changed face images. As

can be seen in each sub-figure, the AU-changed face images

preserve the poses in the source but have similar facial ac-

tions to the targets, e.g., the open mouth in (a), the stretched

mouth in (b), the lower lip corner in (c), and the closed eyes

in (d). Meanwhile, the pose-changed face images preserve

the facial actions in the source but have similar poses to the

targets. Despite some defections, the generated target face

images look similar to the real targets. It indicates that the

accumulative effect of the AU and pose displacements com-

pose the changing between the source and the target. All

the generated faces look like real ones, thus TCAE shows

its potential applications in editing faces.

Displacements: We analyse the displacements both

quantitatively and qualitatively. Fig. 4 visualizes the AU

and pose displacements. The pose displacements are in

nearly homogeneous directions while the AU displacements

have diverse directions, because pose displacements reflect

the rigid motion of the head while AU displacements reflect

the non-rigid motion of facial muscles. We randomly sam-

pled 6400 image pairs and calculated the per vector length

in AU displacements as T A
i =

√

(T A
xi
)2 + (T A

yi
)2, where

(T A
xi
, T A

yi
) denotes the AU offset at position (xi, yi). The

AU displacements between a image pair were averaged as

LA
ave = 1

N

∑N

i=1
T A
i , where N = W × H denotes prod-

uct of the image width and height. Lp
ave was calculated in a

similar manner. Fig. 5 plots the histogram of LA
ave and Lp

ave

from the overall image pairs. As can be seen, the AU dis-

placements are shorter in the average length than the pose

displacements. The overall average length of the pose dis-

placements is 0.044. It is five times larger than that of the

AU displacements, which is 0.008. The reason is that AUs

are local movements within the face but head motions are

relatively large and global movements.

5. Conclusion

This paper presented a Twin-Cycle Autoencoder

(TCAE) to learn discriminative representations for AU de-

tection in a self-supervised manner. TCAE successfully dis-

entangled the AU representation from the poses by factoriz-

ing the movement between two faces into the AU-related

and pose-related displacements. The decoupled AU rep-

resentation is discriminative for AU detection. Extensive

experiments demonstrated that TCAE outperformed or was

comparable with the state-of-the-art self-supervised learn-

ing methods and supervised AU detection methods. The

proposed TCAE can be further used in editing face or de-

coupling other factors.
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