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ABSTRACT

In self-supervised learning for speaker recognition, pseudo
labels are useful as the supervision signals. It is a known
fact that a speaker recognition model doesn’t always benefit
from pseudo labels due to their unreliability. In this work, we
observe that a speaker recognition network tends to model
the data with reliable labels faster than those with unreli-
able labels. This motivates us to study a loss-gated learning
(LGL) strategy, which extracts the reliable labels through the
fitting ability of the neural network during training. With
the proposed LGL, our speaker recognition model obtains a
46.3% performance gain over the system without it. Further,
the proposed self-supervised speaker recognition with LGL
trained on the VoxCeleb2 dataset without any labels achieves
an equal error rate of 1.66% on the VoxCeleb1 original test
set. Code has been made available at: https://github.
com/TaoRuijie/Loss-Gated-Learning.

Index Terms— self-supervised speaker recognition,
pseudo label selection, loss-gated learning

1. INTRODUCTION

Speaker recognition aims to recognize persons from their
voices [1–4]. Over the last decade, speaker recognition mod-
els trained via supervised learning have achieved remarkable
performance [5–10]. However, these methods usually require
a large set of data with manually annotated speaker labels.
The creation of such annotated data is not only immensely
costly, but also laborious. Self-supervised learning doesn’t
require such speaker labels [11–13], that opens up the oppor-
tunity to leverage the abundant unlabeled speech resources.

The state-of-the-art self-supervised speaker recognition
system consists of two stages [14, 15]. In Stage I, we solve
the contrastive pretraining task through SimCLR [14, 16]
or MoCo [17, 18], then the speaker encoder can learn the
meaningful speech representation. Meanwhile, various loss
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functions are proposed to set contrastive targets [13, 19–21].
However, the performance at the Stage I is limited due to the
lack of speaker identity information. Recently, an iterative
Stage II [14, 15] is proposed to address this issue, where a
clustering algorithm is applied to generate the pseudo labels
for each utterance based on the learnt representation. With
the pseudo labels, the network is trained with a classifier in a
supervised manner. This process is repeated several times to
improve the speaker encoder.

The state-of-the-art studies take the pseudo labels for fully
supervised classification. Therefore, the quality of classifica-
tion in the Stage II decides the upper bound of self-supervised
speaker recognition [14, 15]. Usually, the pseudo labels in-
clude massive unreliable labels [22]. Such unreliable pseudo
labels will adversely affect the performance of the encoder,
that highlights the importance of having an effective and re-
liable selection of pseudo labels [23], which is similar with
label smoothing [24].

In this work, we hypothesize that neural networks model
the data with reliable labels faster than the those with unre-
liable labels. Specifically, considering one utterance at the
time, if the forward pass yields a low loss value, we can re-
fer its pseudo label to be reliable, whereas in the case of high
loss value, its pseudo label is unreliable. We design a toy ex-
periment to validate our hypothesis. To this end, we propose
a loss-gated learning (LGL) method to effectively select the
data with reliable labels. A threshold is involved to retrain
the data with small loss. Only the filtered data are then used
to update the network. We believe the proposed LGL is ca-
pable of selecting the reliable labels to contribute towards an
improved performance. In summary, we make the following
contributions:

• We confirm that neural networks fit the reliable pseudo
labels faster than the unreliable ones in self-supervised
speaker recognition.

• Based on our finding, a LGL strategy is proposed to
effectively select the reliable pseudo speaker labels. We
compare LGL to the baseline method by experiments.

2. BASELINE: TWO-STAGE ARCHITECTURE

We now describe our baseline two-stage architecture. As
shown in Fig. 1, a contrastive learning task is employed to
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Fig. 1. Framework of self-supervised speaker recognition with loss-gated learning.

train a speaker encoder. Then we obtain the pseudo labels by
clustering and train a classification network iteratively.

2.1. Stage I: Contrastive Learning

In Stage I, we design a self-supervised pretraining task from
the simple contrastive learning (SCL) [14, 16]. For each
mini-batch, we randomly select N unlabelled utterances
x1, · · · , xN . As shown in Fig. 1, we randomly consider
two non-overlapping segments xi,1 and xi,2 with the same
length for each utterance xi. Then for each of these seg-
ments, we apply the stochastic noise augmentation to get the
augmented segments x̃i,1 and x̃i,2. These segments are fed
into the speaker encoder f(·) to obtain the speaker embed-
dings ei,j = f(x̃i,j), where i ∈ {1, · · · , N} and j ∈ {1, 2}.
We assume that each utterance contains only one speaker.
The segments drawn from the same utterance share the same
speaker identity, and therefore they form the positive pairs.
On the other hand, we form negative pairs from the segments
drawn from the different utterances. It is noted that by con-
sidering the batch size and the large number of speakers [20],
the probability of selecting a false-negative pair is very low.
In order to attract the positive pairs and repel the negative
pairs, we define the contrastive loss for each positive pair
against all the negative pairs as [16]:

li,j = − log
exp(cos(ei,1, ei,2))∑N

k=1

∑2
l=1 1k 6=i

j 6=l
exp(cos(ei,j , ek,l))

(1)

The loss function for each mini-batch is then given by:

Lscl =
1

2N

N∑
i=1

2∑
j=1

li,j (2)

Notice that the function cos(·, ·) denotes the cosine similarity
and we do not set the temperature parameter. By minimizing

this loss function, the speaker encoder learns the utterance
representations that discriminate positive pairs against nega-
tive pairs.

2.2. Stage II: Iterative Self-Supervised Learning

Stage II can be viewed from Fig. 1. First, we use the speaker
encoder trained in Stage I as the initial model to extract the
speaker embeddings for each utterance. Based on these em-
beddings, the k-means clustering [25] is performed to pro-
duce pseudo speaker labels. We interpret that the utterances
in the same cluster share the same identity information. Next,
we retrain the speaker encoder using these pseudo labels. The
classification layer contains one fully connected layer. The
additive angular margin softmax (AAM-softmax) loss [26]
is used as the loss function. We repeat both these steps for
several iterations until the system converges. It is noted that
the encoder trained for speaker classification in each iteration
will be used to generate embedding vectors for clustering in
the next iteration.

3. LOSS-GATED LEARNING

First, we make the definition of the reliable and unreliable
pseudo labels in Stage II. We can obtain an optimal one-to-
one mapping between ground-truth speaker labels and clus-
tered pseudo labels through the Hungarian algorithm [27].
If the ground-truth label of the utterance is the same as the
mapped pseudo label, we define this data has the reliable
pseudo label. Otherwise, it has the unreliable pseudo label.
It is noted that we cannot provide these reliability informa-
tion to our self-supervised framework.

Traditionally, the baseline system performs iteratively
training with all pseudo labels in Stage II. So the erroneous
information from those unreliable pseudo labels will also
propagate iteratively, which drops the performance [14, 23].



This prompts us to use the data with reliable pseudo labels
only for training to learn the accurate speaker identity.

The question is how to select the reliable pseudo labels
effectively. The study in [28] shows that some classes were
easier to learn and converge faster than other classes for im-
age classification task. Similarly, the learning ability and con-
vergence speed of data with reliable pseudo speaker labels
should be different from those with unreliable labels. To val-
idate this hypothesis, We evenly select 1,000 utterances from
10 speakers and perform k-means clustering based on the
speaker encoder (k=10) as a toy experiment. The network
is then trained to distinguish these speaker labels.

Fig. 2. The training loss on 1,000 utterances trained by the
pseudo labels.

The average training loss curve is shown in Fig. 2. Al-
though no reliability or unreliability information is provided
to the network during training, we observe the training loss
is pushed faster to lower levels with reliable labels (the red
curve) vs unreliable labels (the blue curve) automatically.
This indicates that fitting reliable labels is easier than fit-
ting unreliable labels. In other words, the model tends to
learn useful information from the reliable labels first and then
extracts misleading information from unreliable labels.

Based on that, we proposed the loss-gated learning (LGL)
strategy. As shown in Fig. 1, after the pseudo label super-
vised learning in Stage II, we propose to select reliable data
via continuing to train the network with LGL, instead of en-
tering the next iteration directly. The LGL trains the encoder
and classifier using the same set of pseudo labels, as in the
original supervised learning, with a slight modification to the
loss function. Specifically, we introduce a threshold τ into the
loss function as follows:

Lspk =

N∑
i=1

li1li<τ (3)

where li is the training loss for a data point. The assumption
is that, after training some epochs, data with a small loss is
more likely to be more reliable compared to these with larger
losses. Thus, LGL only uses the data with a small loss to up-
date the parameters of the network. We train the encoder to-
gether with the classification layer until the system performs

the best. Then we utilize the trained encoder to do the clus-
tering for the next iteration. To summary, both our proposed
and the baseline method have two stages, LGL works on the
Stage II to solve the unreliable pseudo label issue.

4. EXPERIMENTAL SETUP

We use the development set of VoxCeleb2 [29] for training.
Original, Extended and Hard VoxCeleb1 test sets (Vox O,
Vox E and Vox H) [29, 30] are used for evaluation. No
speaker label information is employed. The emphasized
channel attention, propagation and aggregation in time-delay
neural network (ECAPA-TDNN) in [7] is used as a speaker
encoder. The channel size is set at 512. The input is the 80-
dimensional log mel-spectrogram from the speech segments.
On the other hand, the output is the 192-dimensional speaker
embedding.

During the training process, the mini-batch size is set at
256. The network parameters are optimized by Adam opti-
mizer [31]. The MUSAN [32] and RIRs [33] datasets are
used for data augmentation. The test set provides a set number
of pairs for validation and each pair contains two utterances.
The cosine similarity score between the speaker embeddings
of the given utterance pairs is calculated. The performance
metric is the equal error rate (EER).

In the Stage I, the discriminator training in [21] is added to
build a robust encoder. The initial learning rate is 0.001 that
decreases 5% in every 5 epochs. The duration of the input
utterance is 1.8 seconds.

In the Stage II, we employ the k-means algorithms with-
out data augmentation by faiss library1 [22]. Following the
previous work [14,34], we set the number of clusters as 6,000.
Specifically, by calculating the total within-cluster sum of
squares for the clustering outputs with a range of speaker
numbers, the ‘elbow’ of the curve can be set as the number
of the clusters. During training the network with pseudo la-
bels, we set the margin as 0.2 and the scale as 30 in the AAM-
softmax loss and fix the learning rate as 0.001. In addition, the
duration of the input utterance is 3 seconds. In LGL, we set
the hyper-parameter τ as {1, 3, 3, 5, 6} in the five iterations
to guarantee that the number of selected data increases by at
least 10% in each iteration. In the last iteration, we extend the
channel size of the speaker encoder to 1024 to build a robust
system.

5. RESULTS AND ANALYSIS

5.1. Proposed System Comparison to Existing Works

We compare the proposed framework with the existing meth-
ods in Table 1. On Vox O set, we implement the two-stage ar-
chitecture that achieves an EER of 7.36% and 3.09% in Stage
I and Stage II, respectively. This proves the robustness of our

1https://github.com/facebookresearch/faiss



Table 1. Performance of self-supervised speaker recognition
with and without LGL in EER (%). A comparison to other
existing works is shown as well.

Stage Method Vox O Vox E Vox H

I

Nagrani et al. [12] 22.09 - -
Chung et al. [13] 17.52 - -
Inoue et al. [35] 15.26 - -
Huh et al. [21] 8.65 - -

Zhang et al. [20] 8.28 - -
Xia et al. [18] 8.23 - -
Mun et al. [19] 8.01 - -

Ours 7.36 7.90 12.32

II

Cai et al. [14] 3.45 4.02 6.57
Ours w/o LGL 3.09 3.81 6.32

Thienpondt et al. [15] 2.10 - -
Ours with LGL 1.66 2.18 3.76

baseline. Meanwhile, our proposed self-supervised speaker
recognition system with LGL obtains an EER of 1.66% on
Vox O set, which outperforms the best existing method [15]
by 20.95%. It also outperforms the previous work [14] by
45.77% and 42.77% on Vox E and Vox H sets.

5.2. Impact of LGL: Iterative Analysis

We summarize the performance in each iteration with and
without LGL on Vox O set in Table 2. From the table, it
can be observed that LGL can quickly promote the system
performance in each iteration and finally brings 46.3% im-
provement compared with the baseline. In addition, LGL is
found to be more effective in the beginning since there are
more unreliable data.

Table 2. Impact of LGL on performance in EER (%) and
comparison to baseline without LGL on Vox O set in Stage
II.

Iteration-# 1 2 3 4 5
W/o LGL 4.92 4.00 3.68 3.22 3.09
With LGL 3.52 2.41 2.07 1.95 1.66

5.3. Ablation Study

To study the robustness of our LGL and validate our hypothe-
sis, we do the following experiments in Stage II and evaluate
the performance on Vox O set.

5.3.1. Robustness to Number of Clusters

Table 3 reports the performance with different number of
clusters in the Iteration-1. It is observed that the reasonable
setting for the number of clusters will not effect the perfor-
mance too much for both the baseline and our proposed LGL
method. Meanwhile, our LGL can bring significant and stable
improvements for all the given number of clusters.

Table 3. Impact of LGL on performance in EER (%) with
different number of clusters in the Iteration-1.

# Clusters 3,000 4,500 6,000 7,500 9,000
W/o LGL 5.29 4.89 4.92 5.05 5.31
With LGL 3.49 3.35 3.52 3.48 3.71

5.3.2. Robustness to Threshold of LGL

Then we study the robustness to threshold τ of LGL in the
Iteration-1 as reported in Table 4. Compared with the baseline
method without threshold (τ = +∞), all threshold settings
from 1 to 5 can bring significant improvement. This proves
LGL is relatively robust to this hyperparameter.

Table 4. Robustness to threshold in the Iteration-1.

Threshold (τ ) 1 2 3 4 5 +∞
EER 3.52 3.77 3.74 4.10 4.14 4.92

5.3.3. Post-analysis of Clustering Performance

Now we evaluate the clustering performance by normalized
mutual information (NMI). The higher NMI indicates a better
clustering result. First, we compare the NMI in each iteration
with and without LGL in Fig. 3 (a), LGL improves NMI by
a large margin and leads to a better clustering result. Then
for self-supervised speaker recognition system with LGL, in
the Fig. 3 (b), we compare the NMI of all data and the data
selected by threshold only. The selected data has the very high
NMI, proving that our LGL can successfully filter the reliable
pseudo labels. It is noted that we perform this analysis after
we complete all the experiments and do not use it to guide the
self-supervised training process.

Fig. 3. (a) NMI for the system with and without LGL. (b)
NMI of the selected data and all data for the system with LGL.
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