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Figure 1: Segmenting camouflaged animals. Motion plays a critical role in augmenting the capability of our visual system for perceptual

grouping in complex scenes – for example, in these sequences (MoCA dataset [39]), the visual appearance (RGB images) is clearly

uninformative. In this paper, we propose a self-supervised approach to segment objects using only motion, i.e. optical flow. From top to

bottom rows, we show the video frames, optical flow between consecutive frames, and the segmentation produced by our approach.

Abstract

Animals have evolved highly functional visual systems to

understand motion, assisting perception even under com-

plex environments. In this paper, we work towards develop-

ing a computer vision system able to segment objects by ex-

ploiting motion cues, i.e. motion segmentation. To achieve

this, we introduce a simple variant of the Transformer to

segment optical flow frames into primary objects and the

background, which can be trained in a self-supervised man-

ner, i.e. without using any manual annotations. Despite us-

ing only optical flow, and no appearance information, as

input, our approach achieves superior results compared to

previous state-of-the-art self-supervised methods on public

benchmarks (DAVIS2016, SegTrackv2, FBMS59), while be-

ing an order of magnitude faster. On a challenging cam-

ouflage dataset (MoCA), we significantly outperform other

self-supervised approaches, and are competitive with the

top supervised approach, highlighting the importance of

motion cues and the potential bias towards appearance in

existing video segmentation models.

1. Introduction

When looking around the world, we effortlessly perceive

a complex scene as a set of distinct objects. This phe-

nomenon is referred to as perceptual grouping – the pro-

cess of organizing the incoming visual information – and

is usually considered a fundamental cognitive ability that

enables understanding and interacting with the world effi-

ciently. How do we accomplish such a remarkable percep-

tual achievement, given that the visual input is, in a sense,

just a spatial distribution of variously colored individual

points/pixels? In 1923, Wertheimer [80] first introduced the

Gestalt principles with the goal of formulating the underly-

ing causes by which sensory data is organized into groups,

or Gestalten. The principles are much like heuristics with

“a bag of tricks” [58] that the visual system may exploit for

grouping, for example, proximity, similarity, closure, con-

tinuation, common fate, etc.

In computer vision, perceptual grouping is often closely

related to the problem of segmentation, i.e. extracting the

objects with arbitrary shape (pixel-wise labels) from clut-

tered scenes. In the recent literature of semantic or instance
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segmentation, tremendous progress has been made by train-

ing deep neural networks on image or video datasets. While

it is exciting to see machines with the ability to detect, seg-

ment, and classify objects in images or video frames, train-

ing such segmentation models through supervised learning

requires massive human annotation, and consequently lim-

its their scalability. Even more importantly, the assumption

that objects can be well-identified by their appearance alone

in static frames is often an oversimplification – objects are

not always visually distinguishable from their background

environment. For instance when trying to discover cam-

ouflaged animals/objects from the background (Figure 1),

extra cues, such as motion or sound, are usually required.

Among the numerous cues, motion is usually simple to

obtain as it can be generated from unlabeled videos. In this

paper, we aim to exploit such cues for object segmentation

in a self-supervised manner, i.e. zero human annotation is

required for training. At a high level, we aim to exploit the

common fate principle, with the basic assumption being that

elements tend to be perceived as a group if they move in

the same direction at the same rate (have similar opti-

cal flow). Specifically, we tackle the problem by training

a generative model that decomposes the optical flow into

foreground (object) and background layers, describing each

as a homogeneous field, with discontinuities occurring only

between layers. We adopt a variant of the Transformer [72],

with the self-attention being replaced by slot attention [44],

where iterative grouping and binding have been built into

the architecture. With some critical architectural changes,

we show that pixels undergoing similar motion are grouped

together and assigned to the same layer.

To summarize, we make the following contributions:

first, we introduce a simple architecture for video ob-

ject segmentation by exploiting motions, using only opti-

cal flow as input. Second, we propose a self-supervised

proxy task that is used to train the architecture without

any manual supervision. To validate these contributions,

we conduct thorough ablation studies on the components

that are key to the success of our architecture, such as

a consistency loss on optical flow computed from vari-

ous frame gaps. We evaluate the proposed architecture

on public benchmarks (DAVIS2016 [55], SegTrackv2 [40],

and FBMS59 [52]), outperforming previous state-of-the-

art self-supervised models. Moreover, we also evaluate

on a camouflage dataset (MoCA [39]), demonstrating a

significant performance improvement over the other self-

supervised approaches, with comparable performance to the

best supervised approach, highlighting the importance of

motion cues, and the potential bias towards visual appear-

ance in existing video segmentation models.

2. Related Work

Video object segmentation has been a longstanding task

in computer vision, which involves assigning pixels (or

edges) of an image into groups (e.g. objects). In recent

literature [4, 9, 11, 15, 23, 24, 30, 33, 34, 37, 38, 47,

50, 51, 53, 54, 56, 56, 70, 73, 74, 75, 76, 84, 87], two

protocols have attracted increasing interest from the vision

community, namely, semi-supervised video object segmen-

tation (semi-supervised VOS), and unsupervised video

object segmentation (unsupervised VOS). The former

aims to re-localize one or multiple targets that are specified

in the first frame of a video with pixel-wise masks, and

the latter considers automatically segmenting the object of

interest (usually the most salient one) from the background

in a video sequence. Despite being called unsupervised

VOS, in practice, the popular methods to address such

problems extensively rely on supervised training, for exam-

ple, by using two-stream networks [15, 30, 54, 70] trained

on large-scale external datasets. As an alternative, in this

work, we consider a completely unsupervised approach,

where no manual annotation is used for training whatsoever.

Motion segmentation shares some similarity with unsu-

pervised VOS, but focuses on discovering moving objects.

In the literature, [9, 34, 51, 62, 83] consider clustering

the pixels with similar motion patterns; [15, 69, 70] train

deep networks to map the motions to segmentation masks.

Another line of work has tackled the problem by explicitly

leveraging the independence of motion between the moving

object and its background. For instance, [86] proposes an

adversarial setting, where a generator is trained to produce

masks, altering the input flow, such that the inpainter fails

to estimate the missing information. In [5, 6, 39], the

authors propose to highlight the independently moving

object by compensating for the background motion, either

by registering consecutive frames, or explicitly estimating

camera motion. In constrained scenarios, such as au-

tonomous driving, [60] proposes to jointly optimize depth,

camera motion, optical flow and motion segmentation.

Optical flow computation is one of the fundamental

tasks in computer vision. Deep learning methods allow

efficient computation of optical flow, both in training on

synthetic data [67, 68], or learning with photometric loss

in self-supervised [42, 43] setting. In practise, flow has

been useful for a wide range of problems, for example,

pose estimation [18], representation learning [29, 49],

segmentation [9], and occasionally even used in lieu of

appearance cues (RGB images) for tracking [61].

Transformer architectures have proven extremely adept

at modelling long-term relationships within an input

sequence via attention mechanisms. Originally used for

language tasks [8, 17, 72], they have since been adapted

to solve popular computer vision problems such as image

classification [19], generation [13, 59], video under-

standing [3, 26, 79], object detection [12], and zero-shot

classification [57]. In this work, we take inspiration from a
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specific variant of self-attention, namely slot attention [44],

which was demonstrated to be effective for learning object-

centric representations on synthetic data, e.g. CLEVR [31].

Layered representations were originally proposed by

Wang and Adelson [77] to represent a video as a com-

position of layers with simpler motions. Since then,

layered representations have been widely adopted in com-

puter vision [7, 32, 36, 85, 90], often to estimate optical

flow [65, 66, 81, 82]. More recently, deep learning-based

layer decomposition methods have been used to infer depth

for novel view synthesis [64, 88], separate reflections and

other semi-transparent effects [1, 2, 25, 45], or perform

foreground/background estimation [25]. These works

operate on RGB inputs and produce RGB layers, whereas

we propose a layered decomposition of optical flow inputs

for unsupervised moving object discovery.

Object-centric representations interpret scenes with “ob-

jects” as the basic building blocks (instead of individual pix-

els), which is considered an essential step towards human-

level generalization. There is a rich literature on this topic,

for example, IODINE [28] uses iterative variational infer-

ence to infer a set of latent variables recurrently, with each

representing one object in an image. Similarly, MONet [10]

and GENESIS [20] also adopt multiple encoding-decoding

steps. In contrast, [44] proposes Slot Attention, which en-

ables single step encoding-decoding with iterative attention.

However, all works mentioned above have only shown ap-

plications for synthetic datasets, e.g. CLEVR [31]. In this

paper, we are the first to demonstrate its use for object seg-

mentation of realistic videos by exploiting motion, where

the challenging nuances in visual appearance (e.g. the com-

plex background textures) have been removed.

3. Method

Our goal is to take an input optical flow frame and pre-

dict a segment containing the moving object. We propose

to train this model in a self-supervised manner, with an

autoencoder-type framework. Specifically, our model out-

puts two layers: one representing the background, and the

other for one or more moving objects in the foreground, as

well as their oppacity layers (weighted masks). Formally:

tÎitÑt`n, α
i
tÑt`nuNi“1 “ ΦpItÑt`nq (1)

where ItÑt`n refers to the t to t ` n input flow (back-

ward flow when n ă 0), Φp¨q is the parametrized model,

ÎitÑt`n is the ith layer reconstruction, αi
tÑt`n is its mask,

and N “ 2 is the number of layers (foreground and back-

ground). These layers can then be composited linearly to

reconstruct the input image ItÑt`n:

ÎtÑt`n “
N
ÿ

i“1

αi
tÑt`nÎ

i
tÑt`n (2)

3.1. Flow Segmentation Architecture

For simplicity, we first consider the case of a single

flow field as input (depicted in the top part of Figure 2).

The entire model consists of three components: (1) a CNN

encoder to extract a compact feature representation, (2)

an iterative binding module with learnable queries that

plays a similar role as soft clustering, i.e. assigning each

pixel to one of motion groups, and (3) a CNN decoder that

individually decodes each query to full resolution layer

outputs (where thresholding the alpha channel yields the

predicted segment).

CNN encoder. We first pass the precomputed optical flow

between two frames, ItÑt`n P R3ˆH0ˆW0 , to a CNN en-

coder Φenc, which outputs a lower-resolution feature map:

FtÑt`n “ ΦencpItÑt`nq P R
DˆHˆW (3)

where H0,W0 and H,W refer to the spatial dimensions of

the input and output feature maps respectively. Note that,

we convert the flow into a three-channel image using the

traditional method in the optical flow literature [67].

Iterative binding. The iterative binding module Φbind aims

to group image regions into single entities based on their

similarities in motion, i.e. pixels moving in the same direc-

tion at the same rate should be grouped together. Intuitively,

such a binding process requires a data-dependent parameter

updating mechanism, iteratively enriching the model, grad-

ually including more pixels undergoing similar motions.

To accomplish this task, we adopt a simple variant of slot

attention [44], where instead of Gaussian-initialized slots,

we use learnable query vectors. Slot attention has recently

shown remarkable performance for object-centric represen-

tation learning, where the query vectors compete to explain

parts of the inputs via a softmax-based attention mecha-

nism, and the representations of these slots are iteratively

updated with a recurrent update function. In our case of mo-

tion segmentation, ideally, the final representation in each

query vector separately encodes the moving object or the

background, which can then be decoded and combined to

reconstruct the input flow fields.

Formally, our inputs to Φbind are feature maps FtÑt`n

and two learnable queries (representing foreground and

background) Q P RDˆ2. Learnable spatial positional en-

codings are summed with FtÑt`n; with some abuse of no-

tation, we still refer to this sum as FtÑt`n. We use three

different linear transformations to generate the query , key

and value: q P RDˆ2, k, v P RDˆHW ,

q, k, v “ WQ¨Q, WK ¨FtÑt`n, W
V ¨FtÑt`n (4)

where WQ,WK ,WV P RDˆD.
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Figure 2: Pipeline. Our model takes optical flow ItÑt`n as input, and outputs a set of reconstruction and opacity layers. Specifically,

it consists of three components: feature encoding, iterative binding, and decoding to layers, which are combined to reconstruct the input

flow. To resolve motion ambiguities (small motion), or noise in optical flow, consistency between two flow fields computed under different

frame gaps is enforced during training. At inference time, only the top half of the figure is used to predict masks from a single-step flow.

In contrast to the standard Transformer [72], the coef-

ficients in slot attention are normalized over all slots. This

choice of normalization introduces competition between the

slots to explain parts of the input, and ensures each pixel is

assigned to a query vector:

attni,j :“
eMi,j

ř

l e
Mi,l

(5)

M :“ 1?
D
kT ¨q, attn P R

HWˆ2

To aggregate the input values to their assigned query slot, a

weighted mean is used as follows:

U :“ v¨A P R
Dˆ2 (6)

where, Ai,j :“
attni,j

ř

l attnl,j

To maintain a smooth update of the query slots Q, the

aggregated vectors U are fed into a recurrent function,

parametrized with Gated Recurrent Units (GRU),

Q :“ GRUpinputs “ U, states “ Qq (7)

This whole binding process is then iterated T times. The

pseudocode can be found in the Supplementary Material.

CNN decoder. The CNN decoder Φdec individually

decodes each of the slots to outputs of original resolu-

tion (tÎitÑt`n, α
i
tÑt`nu P R4ˆH0ˆW0 ), which includes

an (unnormalized) single-channel alpha mask and the

reconstructed flow fields. Specifically, the input to the

decoder is the slot vector broadcasted onto a 2D grid

augmented with a learnable spatial positional encoding.

Reconstruction. Once each slot has been decoded, we ap-

ply softmax to the alpha masks across the slot dimension,

and use them as mixture weights to obtain the reconstruc-

tion ÎtÑt`n (Eq. 2). Our reconstruction loss is an L2 loss

between the input and reconstructed flow,

Lrecon “ 1

Ω

ÿ

pPΩ

|ItÑt`nppq ´ ÎtÑt`nppq|2 (8)

where p is the pixel index, and Ω is the entire spatial grid.

Entropy regularization. We impose a pixel-wise entropy

regularisation on inferred masks:

Lentr “ 1

Ω

ÿ

pPΩ

p´α1

tÑt`nppq logα1

tÑt`nppq (9)

´α0

tÑt`nppq logα0

tÑt`nppqq

This loss is zero when the alpha channels are one-hot, and

maximum when they are of equal probability. Intuitively,

this helps encourage the masks to be binary, which aligns

with our goal in obtaining segmentation masks.

Instance normalisation. In the case of motion segmen-

tation, objects can only be detected if they undergo an

independent motion from the camera; thus previous work

attempts to compensate for camera motion [5, 39]. We are

inspired by these ideas, but instead of explicitly estimating

homography or camera motion, we take a poor-man’s

approach by simply using Instance Normalisation (IN) [71]
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in the CNN encoder and decoder, which normalizes each

channel of the training sample independently. Intuitively,

the mean activation tends to be dominated by the motions

in the large homogeneous region, which is usually the

background. This normalization, in combination with

ReLU activations, helps gradually separate the background

motion from the foreground motions. This is experimen-

tally shown in Section 5.1

3.2. Selfsupervised Temporal Consistency Loss

The segmentation computed for the current frame should

be identical irrespective of whether the ‘second’ frame is

consecutive, or earlier or later in time. We harness this

constraint to form a self-supervised temporal consistency

loss by first defining a set of ‘second’ frames, and then

requiring consistency between their pairwise predictions.

We describe the set first, followed by the loss.

Multi-step flow. As objects may be static for some

frames, we make our predictions more robust by leveraging

observations from multiple timesteps. We consider the flow

fields computed from various temporal gaps as an input

set, i.e. tItÑt`n1
, ItÑt`n2

u, n1, n2 P t´2,´1, 1, 2u, and

use a permutation invariant consistency loss to encourage

the model to predict the same foreground/background

segmentation for all flow fields in the set.

Consistency loss. We randomly sample two flow fields

from the input set and pass them through the model (Φp¨q),

outputting the flow reconstruction and alpha masks for each.

As the reconstruction loss is commutative, it is not guaran-

teed that the same slot will always output the background

layer; therefore, we use a permutation-invariant consistency

loss, i.e. only backpropagating through the lowest-error per-

mutation:

Lcons “ 1

Ω
minp

ÿ

pPΩ

|α1

tÑt`n1
ppq ´ α1

tÑt`n2
ppq|2,

ÿ

pPΩ

|α1

tÑt`n1
ppq ´ α0

tÑt`n2
ppq|2q

Note that, this consistency enforcement only occurs

during training. At inference time, a single-step flow is

used, as shown in the top half of Figure 2.

Total loss. The total loss for training the architecture is:

Ltotal “ γrLrecon ` γcLcons ` γeLentr (10)

we use γr “ 102, γc “ 10´2 and γe “ 10´2, but we found

the model to be fairly robust to these hyperparameters.

3.3. Discussion

Differences from slot attention. Slot attention was origi-

nally introduced for self-supervised object segmentation for

RGB images [44], and its usefulness was demonstrated on

synthetic data (CLEVR [31]), where objects are made of

primitive shapes with simple textures. However, this as-

sumption is unlikely to hold in the case of natural images

or videos, making it challenging to generalize such object-

centric representations.

In this work, we build on the insight that although objects

in images may not be naturally textureless, their motions

typically are. Hence, we develop the self-supervised object

segmentation model by exploiting their optical flows,

where the nuance in visual appearance is discarded, thus

not restricted to simple synthetic cases. As an initial trial,

we experimented with the same setting as [44], where

query vectors are sampled from a Gaussian distribution;

however, we were unable to train it. Instead, we use

learnable embeddings here, which we highlight as one of

the architectural changes critical to our model’s success.

Other critical changes include instance normalization and

temporal consistency, which we demonstrate in ablations in

Section 5.1.

Why does it work for motion segmentation? The pro-

posed idea can be seen as training a generative model to

segment the flow fields. With the layered formulation, re-

construction is limited to be a simple linear composition of

layer-wise flow, decoded from a single slot vector.

Conceptually, this design has effectively introduced a

representational bottleneck, encouraging each slot vector

to represent minimal information, i.e. homogeneous mo-

tion, and with minimal redundancy (mutual information)

between slots. All these properties make such an architec-

ture well-suited to the task of segmenting objects undergo-

ing independent motions.

4. Experimental Setup

4.1. Datasets

DAVIS2016 [55] contains a total of 50 sequences (30 for

training and 20 for validation), depicting diverse moving

objects such as animals, people, and cars. The dataset

contains 3455 1080p frames with pixel-wise annotations at

480p for the predominantly moving object.

SegTrackv2 [40] contains 14 sequences and 976 annotated

frames. Each sequence contains 1-6 moving objects, and

presents challenges including motion blur, appearance

change, complex deformation, occlusion, slow motion, and

interacting objects.

FBMS59 [52] consists of 59 sequences and 720 annotated

frames (every 20th frame is annotated), which vary greatly

in image resolution. Sequences involve multiple mov-

ing objects, some of which may be static for periods of time.

Moving Camouflaged Animals (MoCA) [39] contains 141

HD video sequences, depicting 67 kinds of camouflaged an-
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imals moving in natural scenes. Both temporal and spa-

tial annotations are provided in the form of tight bounding

boxes for every 5th frame. Using the provided motion la-

bels (locomotion, deformation, static), we filter out videos

with predominantly no locomotion, resulting in 88 video

sequences and 4803 frames.

4.2. Evaluation Metrics

Segmentation (Jaccard). For DAVIS2016, SegTrackv2

and FBMS59, pixelwise segmentation is provided; thus

we report the standard metric, region similarity (J ),

computing the mean over the test set. For FBMS59 and

SegTrackv2, we follow the common practice [30, 86] and

combine multiple objects as one single foreground.

Localization (Jaccard & Success Rate). As the MoCA

dataset provides only bounding box annotations, we eval-

uate for the detection task and report results in the form

of detection success rate [21, 41], for varying IoU thresh-

olds (τ P t0.5, 0.6, 0.7, 0.8, 0.9uq.

4.3. Implementation Details

We evaluate three different approaches for comput-

ing optical flow, namely, PWC-Net [67], RAFT [68] and

ARFlow [42]; the first two are supervised, while the lat-

ter is self-supervised. We extract the optical flow at the

original resolution of the image pairs, with the frame gaps

n P t´2,´1, 1, 2u for all datasets, except for FBMS59,

where we use n P t´6,´3, 3, 6u to compensate for small

motion. To generate inputs to the network for training, the

flows are resized to 128ˆ224 (and scaled accordingly), con-

verted to 3-channel images with the standard visualization

used for optical flow, and normalized to r´1, 1s.
In the iterative binding module (Φbindp¨q), we use two

learnable query vectors (as we consider the case of seg-

menting a single moving object from the background), and

choose T “ 5 iterations (as explained in Section 3.1). We

adopt a simple VGG-style network for the CNN encoder

and decoder with instance normalization. We train with a

batch size of 64 images and use the Adam optimizer [35]

with an initial learning rate of 5 ˆ 10´4, decreasing every

80k iterations. The exact architecture description and train-

ing schedule can be found in the Supplementary Material.

5. Results

In this section, we compare primarily with a top-

performing approach trained without manual annotations –

Contextual Information Separation (CIS [86]). However,

as the architecture, input resolution, modality and post-

processing are all different, we try our best to conduct the

comparison as fairly as possible. Note that benchmarks are

evaluated at full resolution by simply upsampling the pre-

dicted masks.

5.1. Ablation Studies

We conduct all ablation studies on DAVIS2016, and

vary one variable each time, as shown in Table 1.

Choice of optical flow algorithm. With the same flow ex-

traction method (PWC-Net), our proposed model (Ours-A)

outperforms CIS by about 4.5 points on mean Jaccard (J ),

and using improved optical flow (RAFT) provides further

performance gains. We therefore use RAFT from hereon.

Instance normalization and grouping. We observe two

phenomena: first, when holding constant on the number of

grouping iterations T (3 or 5), models trained with instance

normalization perform consistently better; second, iterative

grouping with T “ 5 is better than that trained with T “ 3.

However, at T “ 8, the model did not converge in the same

number of training steps, and thus we do not include it in

the table. For the remainder of the experiments, we use

instance normalization and T “ 5.

Consistency and entropy regularization. While compar-

ing Ours-B and Ours-I, we observe that the performance de-

grades significantly without the temporal consistency loss,

and that the entropy regularization is also important, as

shown by Ours-B and Ours-H.

5.2. Comparison with Stateoftheart

We show our results in Table 2. On DAVIS2016, we

improve upon the state-of-the-art for unsupervised meth-

ods (CIS) by a large margin (`9.1%). As shown in Fig-

ure 3, despite not using any pixel-level annotations during

training, our method is nearing the performance of super-

vised models trained on thousands of images.

In addition, we argue that, motion segmentation in realis-

tic scenarios, e.g. by predator or prey, is likely to require fast

processing. Our model operates on small resolution (po-

tentially sacrificing some accuracy) with over 80fps. Our

method’s efficiency gain mainly comes from two sources:

first, our model is a lightweight VGG-style network with

only 4.77M parameters; second, we disregard any post-

processing used in previous approaches, e.g. averaging the

prediction across multiple flow steps, across multiple crops,

temporal smoothing, or CRFs, which cost over 10s in total.

For SegTrackv2 and FBMS59, they occasionally include

multiple objects in a single video, and only a subset of them

are moving, making it challenging to spot all objects using

flow-only input, but we achieve competitive performance

nonetheless. We discuss this limitation below.

5.3. Camouflage Breaking

In addition, we also benchmark the model on camou-

flaged object detection on MoCA dataset, where visual cues

are often less effective than motion cues. To compare

fairly with CIS [86], we use the code and model released

by the authors, and fine-tune their model on MoCA in a
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Model Flow IN T Le Lc DAVIS (J Ò)

CIS [86] PWC-Net – – – – 59.2

Ours-A PWC-Net ✓ 5 ✓ ✓ 63.7

Ours-B RAFT ✓ 5 ✓ ✓ 68.3

Ours-C ARFlow ✓ 5 ✓ ✓ 53.2

Ours-D RAFT ✓ 3 ✓ ✓ 65.8

Ours-E RAFT ✗ 3 ✓ ✓ 63.3

Ours-F RAFT ✗ 5 ✓ ✓ 64.5

Ours-G RAFT ✓ 5 ✗ ✗ 48.0

Ours-H RAFT ✓ 5 ✗ ✓ 60.3

Ours-I RAFT ✓ 5 ✓ ✗ 51.2

Table 1: Ablation studies on flow extraction methods, instance nor-

malization (IN), grouping iterations (T ), entropy regularization (Le)

and set consistency (Lc).

Figure 3: Comparison on DAVIS2016. Note that, supervised

approaches may use ImageNet pretraining [16], but here we only

count images with pixel-wise annotations.

Model Sup. RGB Flow Res. DAVIS16 (J Ò) STv2 (J Ò) FBMS59 (J Ò) Runtime (sec Ó)

SAGE [78] ✗ ✓ ✓ – 42.6 57.6 61.2 0.9s

NLC [22] ✗ ✓ ✓ – 55.1 67.2 51.5 11s

CUT [34] ✗ ✓ ✓ – 55.2 54.3 57.2 103s

FTS [54] ✗ ✓ ✓ – 55.8 47.8 47.7 0.5s

CIS [86] ✗ ✓ ✓ 192 ˆ 384 59.2 (71.5) 45.6 (62.0) 36.8 (63.5) 0.1s (11s)

Ours ✗ ✗ ✓ 128 ˆ 224 68.3 58.6 53.1 0.012s

SFL [14] ✓ ✓ ✓ 854 ˆ 480 67.4 – – 7.9s

FSEG [30] ✓ ✓ ✓ 854 ˆ 480 70.7 61.4 68.4 –

LVO [70] ✓ ✓ ✓ – 75.9 57.3 65.1 –

ARP [63] ✓ ✓ ✓ – 76.2 57.2 59.8 74.5s

COSNet [46] ✓ ✓ ✗ 473 ˆ 473 80.5 – 75.6 –

MATNet [89] ✓ ✓ ✓ 473 ˆ 473 82.4 – – 0.55s

3DC-Seg [48] ✓ ✓ ✓ 854 ˆ 480 84.3 – – 0.84s

Table 2: Full comparison on moving object segmentation (unsupervised video segmentation). We consider three popular datasets,

DAVIS2016, SegTrack-v2 (STv2), and FBMS59. Models above the horizontal dividing line are trained without using any manual an-

notation, while models below require ground truth annotations at training time. Numbers in parentheses denote the additional usage of

significant post-processing, e.g. multi-step flow, multi-crop, temporal smoothing, CRFs. Runtime excludes optical flow computation.

self-supervised manner. We convert the output segmenta-

tion mask into a bounding box by drawing a bounding box

around the largest connected region in the predicted mask.

We report quantitative results in Table 3 and show qual-

itative results in Figure 4. Our model significantly outper-

forms CIS (14% when allowing no post-processing), pre-

vious supervised approaches e.g. COD [39] (18.5% on Jac-

card), and even COSNet [46] (among the top supervised ap-

proaches on DAVIS). We conjecture that COSNet’s weaker

performance is due to its sole reliance on visual appearance

(which is distracting for the MoCA data) rather than using

motion inputs. This is particularly interesting, as it clearly

indicates that no single information cue is able to do the task

perfectly, echoing the two-stream hypothesis [27] that both

appearance and motion are essential to visual systems.

5.4. Limitations

Despite showing remarkable improvements on motion

segmentation in accuracy and runtime, we note the follow-

ing limitations of the proposed approach (shown in Fig-

ure 4) and treat them as future work: first, the existing

benchmarks are mostly limited to motion segmentation into

foreground and background, thus, we choose to use two

slots in this paper; however, in real scenarios, videos may

contain multiple independently moving objects, which the

current model will assign to a single layer. It may be de-

sirable to further separate these objects into different lay-

ers. Second, we have only explored motion (optical flow)
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Figure 4: Qualitative results. On DAVIS2016 (left), our method is able to segment a variety of challenging objects, often on-par with

top supervised approaches. On MoCA (right), our model is able to accurately segment well-camouflaged objects even when previous

supervised methods fail completely (3rd, 4th columns). We show a failure case (left) where the splash created by the person is incorrectly

included in our predicted segment, and another failure case (right) where the animal is only partially moving and thus partially segmented.

Success Rate

Model Sup. RGB Flow J Ò τ “ 0.5 τ “ 0.6 τ “ 0.7 τ “ 0.8 τ “ 0.9 SRmean

COD [39] ✓ ✗ ✓ 44.9 0.414 0.330 0.235 0.140 0.059 0.236

COD (two-stream) [39] ✓ ✓ ✓ 55.3 0.602 0.523 0.413 0.267 0.088 0.379

COSNet [46] ✓ ✓ ✗ 50.7 0.588 0.534 0.457 0.337 0.167 0.417

MATNet [89] ✓ ✓ ✓ 64.2 0.712 0.670 0.599 0.492 0.246 0.544

CIS ✗ ✓ ✓ 49.4 0.556 0.463 0.329 0.176 0.030 0.311

CIS (post-processing) ✗ ✓ ✓ 54.1 0.631 0.542 0.399 0.210 0.033 0.363

Ours ✗ ✗ ✓ 63.4 0.742 0.654 0.524 0.351 0.147 0.484

Table 3: Comparison results on MoCA dataset. We report the successful localization rate for various thresholds τ (see Section 4.2).

Both CIS and Ours were pre-trained on DAVIS and finetuned on MoCA in a self-supervised manner. Our method achieves comparable

Jaccard (J ) to MATNet (2nd best model on DAVIS), without using RGB inputs and without any manual annotation for training.

as input, which significantly limits the model in segment-

ing objects when flow is uninformative or incomplete (as in

Figure 4, right); however, the self-supervised video object

segmentation objective is applicable also to a two-stream

approach, and so RGB could be incorporated. Third, the

current method may fail when optical flow is noisy or low-

quality (Figure 4, left); jointly optimizing flow and segmen-

tation is a possible way forward in this case.

6. Conclusion

In this paper, we present a self-supervised model for

motion segmentation. The algorithm takes only flow as

input, and is trained without any manual annotation, sur-

passing previous self-supervised methods on public bench-

marks such as DAVIS2016, and narrowing the gap with su-

pervised methods. On the more challenging camouflage

dataset (MoCA), our model actually compares favourably

to the top approaches in video object segmentation that

are trained with heavy supervision. As computation power

grows and more high quality videos become available, we

believe that self-supervised learning algorithms can serve as

a strong competitor to the supervised counterparts for their

scalability and generalizability.
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