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Abstract: To determine the appropriate treatment plan for patients, radiologists must reliably detect
brain tumors. Despite the fact that manual segmentation involves a great deal of knowledge and
ability, it may sometimes be inaccurate. By evaluating the size, location, structure, and grade of the
tumor, automatic tumor segmentation in MRI images aids in a more thorough analysis of pathological
conditions. Due to the intensity differences in MRI images, gliomas may spread out, have low
contrast, and are therefore difficult to detect. As a result, segmenting brain tumors is a challenging
process. In the past, several methods for segmenting brain tumors in MRI scans were created.
However, because of their susceptibility to noise and distortions, the usefulness of these approaches
is limited. Self-Supervised Wavele- based Attention Network (SSW-AN), a new attention module
with adjustable self-supervised activation functions and dynamic weights, is what we suggest as a
way to collect global context information. In particular, this network’s input and labels are made
up of four parameters produced by the two-dimensional (2D) Wavelet transform, which makes
the training process simpler by neatly segmenting the data into low-frequency and high-frequency
channels. To be more precise, we make use of the channel attention and spatial attention modules of
the self-supervised attention block (SSAB). As a result, this method may more easily zero in on crucial
underlying channels and spatial patterns. The suggested SSW-AN has been shown to outperform the
current state-of-the-art algorithms in medical image segmentation tasks, with more accuracy, more
promising dependability, and less unnecessary redundancy.

Keywords: semantic image segmentation; self-supervised wavelet-based attention network (SSW-AN);
attention mechanisms; self-supervised attention block (SSAB); Wavelet transform

1. Introduction

In the field of medical image processing, segmentation has lately gained popularity.
Segmentation is utilized to facilitate diagnosis and treatment planning. Because it labels
every pixel in an image with a category and is therefore more precise and efficient than
other approaches, CNN-based methods for semantic segmentation have recently gained
in popularity. Semantic Broadcast News Networks (CNNs) aim to solve problems with
medical segmentation tasks [1]. Semantic object segmentation, a crucial component of
medical image analysis, has already been widely used to automatically identify regions of
interest in 3D medical images, such as cells, tissues, or organs [2,3]. Convolutional networks’
recent progress has resulted in major developments in medical semantic segmentation, that
provide cutting-edge outcomes in a number of real-world applications. However, medical
segmentation issues are notoriously expensive to resolve, and labelled data are frequently
needed for convolutional neural network training [4]. Segmentation is a critical step in the
image-processing process with numerous potential applications in fields as varied as scene
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understanding, medical imaging analysis, image-guided treatments, radiation protection,
and enhanced radiological diagnostics. A picture is segmented when it is split up into
a number of distinct, non-overlapping areas, the union of which produces the original
image [5]. Medical imaging technologies have developed quickly and been widely used,
which has led to the collection of a lot of data that can be used for analysis [6]. To enable
doctors to accurately understand the diagnosis information included in the images and
treat a large number of patients more effectively, the need for automated processes that can
quickly and impartially evaluate these medical images is growing [7,8].

Alalwan et al. [9] recommended the 3D-DenseUNet-569 system for the segmentation of
tumors and the organ. Experimental results on the manufacturing LiTS dataset validate the
efficiency and usefulness of the 3D-DenseNet-569 model. 3D-DenseUNet-569 has a deeper
network and fewer trainable parameters. Instead of using traditional convolution, DS-Conv
is employed. DS-Conv decreases GPU memory and computational expenses. According to
Fang et al. [10], a difference Minimization Network (DMNet) is the new end-to-end method
provided for semi-supervised semantic segmentation. The approach outperforms super-
vised and semi-supervised baselines in tests on two cancer datasets. To help reduce data
inequalities, Rezaei et al. [11] suggested a novel architecture for adversarial generation. The
generative network’s incorrect positive and negative mask predictions teach the refinement
network how to make accurate predictions. The output from the three networks are the
semantic segmentation masks that are produced. Rezaei et al. [12] proposed RNN-GAN
as a method of overcoming the information imbalance inherent in medical picture feature
extraction, where the amount of object pixels of interest is often significantly less than that
of the surroundings. Models that are biased in favour of healthy data due to unbalanced
data are not suitable for clinical applications. Jiang et al. [13] used CNN to segment medical
images semantically. Recent deep learning developments allow comprehensive image anal-
ysis using fully convolutional neural networks. The convolutional neural network SMILE
was described by Petit et al. [14] and can learn from imperfect input. SMILE recognizes
ambiguous labels during training and ignores them so that misleading or noise information
is not spread. Experimental tests of the proposed semantic segmentation method on pic-
tures of the liver, stomach, and pancreas show that, despite having 70% of its annotations
missing, SMILE achieves results comparable to those of a baseline trained with all of the
ground truth annotations. Karayegen et al. [15] proposed an approach for automatically
segmenting brain tumors from sets of 3D Brain Tumor Segmentation (BraTS) image data cre-
ated using four different imaging modalities. As a consequence, it is possible to accurately
diagnose brain tumors using semantic segmentation measures and 3D imaging. To solve
the problems of failure and anomaly detection for semantic segmentation, Xia et al. [16]
proposed a two-module unified solution. On Cityscapes, pancreatic tumor segmentation
in MSD, and Street Hazard’s anomaly segmentation. Wang et al. [17] suggested using a
technique that integrates Vision Transformer with a semi-supervised strategy for improved
medical image semantic segmentation. There are two primary models in this framework:
one for the instructor and one for the learner. The teacher model imparts its knowledge to
the student model, which then uses the absorbed picture features to further its learning. In
histopathological whole-slide semantic segmentation, to integrate context and specificity,
Van Rijthoven et al. [18] created HookNet, a model that employs numerous branches of
encoder-decoder convolutional neural networks. They made HookNet available to the
general public by releasing its source code1 and hosting its web-based applications on the
grand-challenge.org platform at no cost. The issue of semantic segmentation in prenatal
ultrasound volumes was investigated by Yang et al. [19]. The method has been thoroughly
tested on internal big data sets and shows outstanding segmentation performance, fair
agreement with expert measurements, and strong reproducibility against scanning vari-
ances, making it hopeful for the future of prenatal ultrasound examinations. Ali et al. [20]
proposed combining a 3D CNN with a U-Net segmentation network into an ensemble as
a substantial but simple combinative strategy that yields more precise predictions. On
the BraTS-19 testing data, both models were trained individually and assessed to provide
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segmentation maps that significantly varied from one another in terms of segmented tumor
sub-regions. Kumar et al. [21] implemented a reliable crude k-means algorithm. Sensitivity,
specificity, and accuracy are used to assess how well the given approach performs. The ex-
perimental findings demonstrate that our suggested approach produced superior outcomes
versus earlier research. Wang et al. [22] presented the TransBTS network, a specialized core
network on the encoder-decoder architecture, and used Transformers in 3D CNN for the
first time for MRI brain tumor segmentation. The volume spatial feature maps are extracted
by the encoder using 3D CNN before the local 3D background data are captured. CNNs
are composed of convolution layers with convolutional weights and biases similar to those
found in neurons. The fundamental components of CNNs are the convolutional layer and
the fully connected layer Figure 1.
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Wadhwa et al. [23] discussed a comprehensive analysis of the literature on current
techniques for segmenting brain tumors from brain MRI data. Modern techniques are
used, and their effectiveness and quantitative analysis are included. With the most cur-
rent contributions from several academics, different picture segmentation techniques are
briefly discussed. Zhao et al. [24] examined the various methods used for 3D brain tumor
segmentation using DNN. These approaches for data processing, such as collecting data,
randomized image training, and semi-supervised learning, are divided into three primary
categories; model-building techniques such as architectural design and result fusing, as
well as process-optimization techniques such as heating learning and multi-task learning.
Liu et al. [25] used a heuristic approach to find a mathematical and geometric solution
to this issue in order to enhance the segment of overlapping chromosomes. The issues
that arise and its solutions are provided as graphically depicted interpretable image fea-
tures starting with chromosomal images, which assists in a better comprehension of the
process. Bruno et al. [26] proposed a Deep Learning (DL)-based method for the semantic
segmentation of medical images. Specifically, they employed ASP to encode past medical
knowledge, developing a rule-based model for disabling all permissible classes and correct
place concatenations in medical picture data. The results of an experimental study are
presented to assess the practicability of the approach. Emara et al. [27] suggested LiteSeg,
a compact framework for semantic image segmentation. By using depth-wise separable
convolution, short and long residual connections, and the Atrous Spatial Pyramids Pooling
module (ASPP), they evaluate a faster and more efficient model. To improve the multi-scale
processing capability of neural networks, Qin et al. [28] suggested the autofocus convolu-
tional layer for semantic segmentation. Fang et al. [29] developed a system for multi-modal
brain tumor segmentation that combines hybrid features from several modalities while
using a self-supervised learning approach. The technique uses a fully convolution neural
network as its foundation. Ding et al. [30] proposed a brand-new multi-path adaptive
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fusion network. To reserve and propagate more low-level visual elements more efficiently,
they explicitly apply the concept of skip connection in ResNets to the dense block. The net-
work has achieved a contiguous memory mechanism by implementing directed links from
the state of the previous dense block to all levels of the current dense block. Jiang et al. [31]
proposed the MRF-IUNet multiresolution fusion MRI brain tumor segmentation technique,
which is based on an enhanced inception U-Net (multiresolution fusion inception U-Net).
The breadth and depth of the network are extended by adding inception modules to U-Net
in place of the initial convolution modules. Zhou et al. [32] developed an attention-based
multi-modality fusion network for segmenting brain tumors. The network incorporates
a feature fusion block to combine the four features, four channel-independent encoding
routes to separately extract features from four modalities, and a decoding path to eventually
segment the tumor. Liu et al. [33] used low-level edge information as a precursor job to
help with adaptation as it has a smaller cross-domain gap than semantic segmentation.
So that the semantic adaption may be guided by spatial information, the exact contour is
then given.

This article provides an interference-capable framework for unified picture fusion.
The method is recommended in light of a brand-new issue in self-supervised picture
reconstruction. In particular, it uses discrete wavelet transform to specifically decompose
the image in the spectral domain, and then rebuild it using an encoder–decoder paradigm.
We tested our algorithms on difficult tasks including MRI brain tumor segmentation, and
found it to be very promising.

The article makes the following contributions—

• 1251 patients’ 3D MRI datasets were gathered from the BraTS dataset in the research.
• The Self Supervised Wavelet-based Attention Network (SSW-AN), which splits low-

frequency and high-frequency data into four channels, employs the 2D Wavelet transform.
• We use self-supervised attention channels and spatial attention modules (SSAB).
• We give in-depth analysis of the scientific advancements achieved in the field of

semantic image segmentation for natural and medical images.
• We discuss the literature on the various medical imaging modalities, including both

2D and volumetric images.

This research follows the following structure: The problem under examination is
described in Section 2. Our strategy is described in Section 3. Section 4 provides a thorough
discussion of the results. The final Section 5 offers the conclusion.

2. Problem Statement

Due to the increasing number of variations and the possibility of morphological
changes between them, it can be difficult to identify symptomatic signals for therapeutic
usage. Due to the lack of spatial information for an object’s texture, 2D photographs cannot
help clinical diagnosis. 3D photos with spatial information are more qualified than 2D
images for medical segmentation. 3D image segmentation algorithms are limited [34].
3D medical images are volumetric, making segmentation efficacy and efficiency difficult
to balance.

3. Methodology
3.1. Self-Supervised Wavelet-Based Attention Network

Self-supervised wavelet-based attention network is a well-known classical image-
processing method for image analysis. First, low-pass and high-pass filters are applied to
the image before it is half-down-sampled along columns. Then, two pathways are sent
through “low-pass and high-pass filters in that order. Each of these bands represents a
different type of data extracted from the original image, such as the mean, the verticals, the
horizontals, and the diagonals. Each wavelet domain is half the size of the main band. The
wavelet transform and its inverse are inevitable, ensuring the integrity of the data. Since
the Wavelet transform can be used in reverse, our approach can easily recover the original
residual image. Applying the Wavelet transform on the residual self-supervised image
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allows our model to predict four half-sized channels, or roughly four coefficients. The fact
that our model’s underlying patterns are stored across four channels rather than in a single
huge image greatly accelerates its learning time, as seen in Figure 2.
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2×
c
2×w takes as input the two-dimensional wavelet

transform using four coefficients to the bi-cubic image Fc
bicR

r×c. They are divided into four
channels and shrunk in both the horizontal and vertical dimensions in preparation for
training. In the first step, we utilize a fully connected layer to glean superficial information
from the input:

I0 = Iext
(
Fc

bic
)
= σ

(
W
(
Fc

bic, 5× 5, w
)
,α
)
ε R

r
2×

c
2×4 (1)

where W(Fc
bic) stands for a full connection layer, r is the reduction ratio, c is the fea-

ture vectors, bic is bicubic interpolation, σ denotes a leaky rectified linear unit (ReLU)
layer, w is the convolution layer, with a kernel size of 5 × 5 as well as a channel size of
σ
(
W
(
Fc

bic, 5× 5, w
)
,α
)
, which means a linear unit layer with a leaky rectifier. For non-

linear activation, we employ a leaky version of ReLU since Fc
bic by the Wavelet transform

naturally includes negative 240 pixels. Be aware that bias is left out for concise notations.
Due to the large quantity of data that is linked with digital photographs, the bicubic
interpolation method is employed for higher interpolation quality.

Each of the model’s L consecutive, identical blocks features a cross fully connected
layer, as well as a channel attention module, along with a spatial attention module, which
together form every model’s attention architecture. For faster data transfer, we set up local
skip connections between each block. So, we have arrived at the following:

If+1 = Rf+1(If) = ispa(ichn (If))) + If, f = 0, 1, . . . , T− 1 (2)

where T is successive identical blocks, ichn denotes the multichannel channel attention
function and ispa denotes the spatial attention function. Keep in mind that each block’s
output has the same dimension as its input.

We connect the data from every one of these blocks along the channel dimension to
address the common gradient vanishing problem in neural network-based designs.

Icat = [I1, I2, . . . , IT ]εR
r
2×

c
2×wT (3)

It is possible to successfully back-propagate gradient information to the front of the net-
work by using feature mappings from shallow layers to deep layers in forward computation.
On the basis of empirical data, this paradigm may improve training convergence.

Ic = W(σ (W(Icat, 3× 3, w), α), 3× 3, 4) εR
r
2×

c
2×4 (4)
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The network is trained to produce an output Ic that faithfully simulates the four
Wavelet transform coefficients on the true residual image FRH − Fbic. In the alternative, we
can consider

FRH ' f mCL(Ic) + Fbic, (5)

where f m is inverse discrete, the SSW-AN of the function is denoted by f mCL(Ic). A
sizable Fbic, the model closes with residual connections to ensure that the network is being
trained to identify residual items and not the RH image. This is how we implement global
residual learning. This aids in strength training and quick convergence as standard tactics.

3.2. Channel Attention Module

A higher dimensional space channels network may be thought of as a class-specific
response and different semantic responses are coupled to one another. One may improve the
visual features of certain semantics by highlighting the physical architecture of connectivity
via the dependence between channel graphs. We make channel attention modules that
will directly simulate the dependence between channels by determining the magnitude of
any two channel correlations. Figure 3 depicts the structural arrangement of the channel
attention module. The channel interdependencies that feature maps have been utilized in
this module. The many channels that are essential to the computing process will be the
main topic of this section.
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In order to obtain spatial context information, the input feature Iw
out is compressed

using a maximum pooling operation and compression using an average pooling operation
to generate spatial contextual data. This results in the generation of two vectors:{

Pw
max = V

(
Iw
in,′ max′, axis = [0, 1]

)
εR r

2×
c
2×w

Pw
avg = V

(
Iw
in,′ avg′, axis = [0, 1]

)
εR r

2×
c
2×w (6)

where axis = [0, 1] specifies that pooling occurs along the first two dimensions of the
feature Iw

in, and max and avg stand for maximum and average pooling, respectively. After
that, we feed two input vectors into two fully connected layers that are also connected via
a shared parameter, and out of that we obtain two feature vectors. The elements of a vector
can be thought of as labels for the various signals they represent.Mw

max = C2

(
σ
(

C1(Pw
max, w/h), α), w)εR r

2×
c
2×w

Mw
avg = C2

(
σ
(

C1

(
Pw

avg, w/h
)

, α), w)εR r
2×

c
2×w

(7)

In this instance, C1(.) and C2(.) are shared by the two feature vectors. To reduce
parameter overhead, the hidden layer size is set to w/h, where h is the reduction ratio. This
plan allows for the use of relationships between channels by a simple calculation. Pw

max
and Pw

avg description vectors are combined using an element-wise sum, then a sigmoid
activation layer is applied:

Mw = sig
(

Mw
max + Mw

avg

)
εR

r
2×

c
2×w (8)

Finally, the element-wise product is used to apply the description vector Mw to the
input of this module, where each descriptor multiplies one feature map, denoted as

Iw
out = Mw◦ Iw

inεR
r
2×

c
2×w (9)

where Mw◦ Iw
in stands for the product of the elements individually. Take into account that the

dimensions of both the input and the output are the same. Therefore, it is straightforward
to add this module to the standard Classier.

3.3. Spatial Attention Module

The spatial attention module applies depending on spatial focus to each feature plane
in an effort to increase feature learning for suitable locations. The spatial attention module
develops responsive image features by amplifying significant locations inside each feature
plane, improving the depth of characteristics for mild diseases and the value discrepancy
between diseased and pre regions. Figure 4 shows how the spatial attention module uses
spatial relationships between features to guide focus. When compared to channel attention,
spatial attention narrows in on the different layers that reveal the most useful information.
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Max pooling and average pooling methods squeeze the input feature I4
in in along the

channel axis, producing two 2D attention maps:{
Do

max = V
(

Io
in,′ max′, axis = 2

)
εR r

2×
c
2×1

Do
avg = V

(
Io
in,′ avg′, axis = 2

)
εR r

2×
c
2×1 (10)

After that, a convolutional layer with a 7 × 7 kernel size is applied to combine and
fuse them. The attention map is normalized to [0, 1] and nonlinearity is introduced using
the sigmoid function: {

Do
max = V

(
Io
in,′ max′, axis = 2

)
εR r

2×
c
2×1

Do
avg = V

(
Io
in,′ avg′, axis = 2

)
εR r

2×
c
2×1 (11)

This module’s input is multiplied by the interest image element by element; this
process is analogous to channel attention, in which each image value is used to multiply
the elements at the appropriate locations of all wavelet coefficients.

Io
out = Do Io

inεR
r
2×

c
2×w (12)

Ensure that both the input and the output have the same dimensions. Thus, this
extension can be used in tandem with the standard classifier.

4. Loss Function

The image weight vector loss is the most often used loss function for the process of
segmenting images [35]. A loss function tells the model how close it is to the ideal version
parameters during supervised training. Weight vector loss is the most used loss function.
Medical photographs often only show a tiny portion of the objects, such as the optic disc
and retinal veins. For such applications, the weight vector loss is not the best option. In
the part that follows, comparative tests and discussions are also carried out. When ground
truth is known, segmentation performance is often evaluated using the Dice coefficient as a
measure of overlap, as in Equation (13):

Kdice = 1−
L

∑
l

2ωl ∑P
g n(l, g)i(l, g)

∑P
g n2

(l,g) + ∑P
g i2

(l,g)

(13)

N stands for the pixel number, while the variables n(l,g)ε[0, 1] and i(l,g)ε[0, 1] are the
estimated likelihood and class k’s ground truth label, respectively. The formula ∑l ωl = 1
is the class weight, and K is the class number. In our paper, ωl = 1

l was determined
experimentally. This is the definition of the final loss function. The final loss function is
defined as Equation (14):

Lloss = Ldice + Lreg (14)

Lreg stands for the regularization loss used to prevent overfitting. Medical picture
segmentation problems include cell contour segmentation, lung segmentation, retinal
vascular identification, and optic disc segmentation.

loss = 1−
2×∑P

g=0
((

ngig
))

∑P
g=0 n2

y + ∑P
g=0 I2

y
(15)

Weighting was applied to the ig portion since it correlates to the brain tumor lesion
region, and the ratio of predicted outcomes to real values in the loss function was 1:3. For
the true value distribution, the loss function’s loss coefficient is higher. It can enhance the
network’s characteristic learning of the brain tumor lesion area, weaken the distribution
of the network’s loss value to the non-tumor area, and lessen the interference of the brain
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MRI background image on the characteristic learning of the lesion area, all of which will
increase the network’s detection accuracy.

5. Results and Discussion

In MATLAB/Simulink, the proposed model is activated, and its efficacy is compared
to that of existing models like Deep Convolutional Neural Networks (DCNN), Attention-
Based Semi-Supervised Deep Networks (ASDNet), Deep Neural Networks (DNN), Global
Context Network (GCN) and Nested Dilation Network (NDN) are compared with the pro-
posed method. Accuracy, precision, recall, specificity, sensitivity, and MSE were analyzed
using suggested and existing methods.

5.1. Dataset

The BraTS challenge includes an image-annotated 3D MRI dataset from medical
professionals, enabling the assessment of cutting-edge methods for semantics segmentation
of brain tumors [36].

Figure 5 depicts the typical results of segmentation for all semantic classes. The T2-
FLAIR picture shows the tissue around the cystic/necrotic parts of the core as yellow, while
the active tumor features are seen as light blue on the T1Gd image (green). Combining
the ED, NET, NCR cores, and AT segmentations results in labeling for the distinct tumor
sub-regions in the colors yellow, red, green, and blue (blue). For the BraTS 2021 test training
dataset, 1251 people were included, each with their own 3D MRI of one of four possible
types. All native (T1), post-contrast (T1Gd), T2-weighted (T2), and T2-FLAIR images
are down-sampled to a resolution of 1 mm on a 1 mm grid and undergo skull-stripping,
stiff orientation, and down-sampling. The input image’s dimensions are 240 pixels wide
and 155 pixels high. Different types of MRI scanners were used to procure the data. The
enhancing tumor, the edematous tissue surrounding it, and the necrotic, non-enhancing
core of the tumor all have clear boundaries. Whole tumor (WT), tumor core (TC), and
enhancing tumor (ET) are all terms that were derived from the annotations.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 17 
 

 

MRI background image on the characteristic learning of the lesion area, all of which will 
increase the network’s detection accuracy. 

5. Results and Discussion 
In MATLAB/Simulink, the proposed model is activated, and its efficacy is compared 

to that of existing models like Deep Convolutional Neural Networks (DCNN), Attention-
Based Semi-Supervised Deep Networks (ASDNet), Deep Neural Networks (DNN), Global 
Context Network (GCN) and Nested Dilation Network (NDN) are compared with the 
proposed method. Accuracy, precision, recall, specificity, sensitivity, and MSE were ana-
lyzed using suggested and existing methods.  

5.1. Dataset 
The BraTS challenge includes an image-annotated 3D MRI dataset from medical pro-

fessionals, enabling the assessment of cutting-edge methods for semantics segmentation 
of brain tumors [36]. 

Figure 5 depicts the typical results of segmentation for all semantic classes. The T2-
FLAIR picture shows the tissue around the cystic/necrotic parts of the core as yellow, 
while the active tumor features are seen as light blue on the T1Gd image (green). Combin-
ing the ED, NET, NCR cores, and AT segmentations results in labeling for the distinct 
tumor sub-regions in the colors yellow, red, green, and blue (blue). For the BraTS 2021 test 
training dataset, 1251 people were included, each with their own 3D MRI of one of four 
possible types. All native (T1), post-contrast (T1Gd), T2-weighted (T2), and T2-FLAIR im-
ages are down-sampled to a resolution of 1 mm on a 1 mm grid and undergo skull-strip-
ping, stiff orientation, and down-sampling. The input image’s dimensions are 240 pixels 
wide and 155 pixels high. Different types of MRI scanners were used to procure the data. 
The enhancing tumor, the edematous tissue surrounding it, and the necrotic, non-enhanc-
ing core of the tumor all have clear boundaries. Whole tumor (WT), tumor core (TC), and 
enhancing tumor (ET) are all terms that were derived from the annotations. 

 
Figure 5. 3D MRI brain tumor semantic segmentation. 

Peak signal-to-noise ratio (PSNR) is a popular statistic for assessing the efficacy of 
the reconstructed picture. This is consistent with our belief that bigger, deeper networks 
perform better because they are better equipped to learn. The outcomes of our technique 
for adjusting the number of blocks L and the channel width C are shown in Figure 6. We 
observe that the model performs better when given 385 blocks of L using a rising metric. 
This confirms our intuition that more complex networks are better able to learn and adapt. 
PSNR stabilizes because the performance is not necessarily improved over deep struc-
tures, which are also highly challenging to train. In addition, PSNR gradually rises as 𝑐 
grows bigger. However, increasing the value of 𝑐 will result in a noticeable increase in 
the number of parameters and computing load. To find a good compromise between per-
formance and model size, we settle on 𝑐 =  64, as shown in Table 1. 

Figure 5. 3D MRI brain tumor semantic segmentation.

Peak signal-to-noise ratio (PSNR) is a popular statistic for assessing the efficacy of
the reconstructed picture. This is consistent with our belief that bigger, deeper networks
perform better because they are better equipped to learn. The outcomes of our technique
for adjusting the number of blocks L and the channel width C are shown in Figure 6. We
observe that the model performs better when given 385 blocks of L using a rising metric.
This confirms our intuition that more complex networks are better able to learn and adapt.
PSNR stabilizes because the performance is not necessarily improved over deep structures,
which are also highly challenging to train. In addition, PSNR gradually rises as c grows
bigger. However, increasing the value of c will result in a noticeable increase in the number
of parameters and computing load. To find a good compromise between performance and
model size, we settle on c = 64, as shown in Table 1.
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Table 1. Performances of the metrics.

Method Accuracy Precision Recall Sensitivity Specificity MSE

DCNN [37] 67% 74% 91% 74% 55% 18%
ASDNet [38] 73% 85% 74% 63% 67% 22%

DNN [35] 83% 64% 65% 88% 71% 17%
GCN [39] 77% 57% 83% 59% 78% 24%
NDN [40] 58% 79% 55% 80% 83% 20%
U-Net [41] 93% 27% 60% 92% 22% 64%
SSW-AN

[Proposed] 98% 97% 97% 95% 96% 15%

The degree to which a statement is true can be determined by dividing the total
number of statements by the number of accurate classifications. The accuracy of this
method is dependent on the classifier’s ability to correctly identify normal and pathological
brain states. In statistics, precision means

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

where TP represents the proportion of cases when abnormalities were properly diagnosed;
FP is the total count of abnormal images that were incorrectly classified; TN represents the
percentage of samples that were accurately labeled as normal; FN is that often-abnormal
images were first classified as normal.

Figure 7 depicts the comparison of accuracy. The proposed SSW-AN was revealed to
be more accurate than the existing techniques, including DCNN, ASDNet, DNN, GCN,
and NDN.

Comparison of accuracy is shown in Figure 8. Utilizing the statistic known as positive
predictive value (PPV), precision may also be measured. The number of precise class
predictions from a given sample is a measure of precision. In other words, it compares
actual results to results that were expected. The formula described below can be used to
figure out how precise an observation is:

Precision =
TP

TP + FP
(17)
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Figure 8. Precision of various methods. Current SSW-AN is compared with DCNN [37], ASDNet [38],
DNN [35], GCN [39], NDN [40] and U-Net [41].

The proposed method SSW-AN shows predictions out of a given sample dataset have
more precision than the other existing methods like DCNN, ASDNet, DNN, GCN, and NDN.

Figure 9 shows the comparison of the recall. Recall is a metric used to assess how
well information systems that deal with medical imaging can locate the supporting infor-
mation that a person has needed. The following group of actions has been determined to
be essential:

Recall =
TP

TP + FN
(18)
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It was found that medical imaging technology, which is the suggested approach of
SSW-AN, can track down the supporting data and has a greater recall than the existing
methods such as DCNN, ASDNet, DNN, GCN, and NDN.

The term sensitivity refers to the proportion of test samples that are anticipated to
return positive results from an experiment. It is a reflection of the scenario with positive
samples. The following equation is used to derive the value of sensitivity:

Sensitivity =
TP

TP + FP
(19)

Figure 10 depicts the comparison of the sensitivity. The SSW-AN approach provides a
higher level of specificity compared to existing methods such as DCNN, ASDNet, DNN,
GCN and NDN.

The ability of a classifier to correctly anticipate the real negatives is known as its
specificity. This approach stands out due to its precision in identifying Normal instances.
Mathematically, this can be expressed as,

Specificity =
TN

TP + FP
(20)

The contrast of the specificity can be seen in Figure 11. The proposed SSW-AN is more
specific than other networks, such as DCNN, ASDNet, DNN, GCN and NDN, which are
currently being used.

The mean squared error (MSE) is a statistical measure used to assess the fit of a
regression line to a set of data points. Its worth is proportional to the difference between
the current and the previously expected value of the squared error loss. Specifically, it is a
risk factor.

MSE =
∑(actual − f orecast)2

k
(21)

where:
k = total quantity,
Σ = compilation symbol,
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The comparison of MSE may be seen in Figure 12. The suggested SSW-AN has the
lowest MSE when measured against other methods such as DCNN, ASDNet, DNN, GCN,
and NDN.
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Net [38], DNN [35], GCN [39], NDN [40] and U-Net [41].

5.2. Discussion

Parameters demonstrate the suggested method’s superiority over the status quo,
which suffers from a number of serious flaws. These are just some of the problems with
the current approach. The challenge of the dataset for automatic polyp detection gives us
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the chance to research cross-data generalizability, which is crucial in the medical field [37].
DNN can create better segmentation masks even for difficult images. To tackle the problem
of having too little data to train complicated networks, ASDNet uses fully convolutional
adversarial learning and adopts a semi-supervised loss based on attention to certain regions
of the image [38]. Although medical image segmentation is still a difficult problem to solve,
deep learning applications have shown significant performance gains that may have a
positive impact on clinical practice outcomes such as diagnosis [35]. Segmenting images is
often critical to several image processing uses. We consider it in terms of a dense categoriza-
tion issue [39]. One further issue with dice loss is that it is possible to have a false positive
because the penalty factor for samples tested is higher than for negative ones [40]. Due to
the proposed method’s ability to get over existing method restrictions, we assessed that it is
more effective than the existing techniques. U-Net, a technique for segmenting images, was
developed especially for this purpose. U-Net has been extensively embraced as the primary
tool for segmentation jobs in medical imaging because of its properties, which make it
particularly valuable within the community of medical imaging [41]. Medical images also
demonstrate that a significant quantity of training data is needed for the DCNN to be
effective and that they do not encode the position and orientation of objects. There is no
encoding for object orientation or position. They find it difficult to classify images with
different perspectives. For network-level data, attention-based semi-supervised learning
is not appropriate. The algorithm produces classifications that are less precise than those
produced by conventional supervised techniques. Deep neural networks analyze infor-
mation in complex ways by using sophisticated mathematical modelling, including the
need for many learning algorithms and the DNN’s inability to encode object position and
orientation. Global Context Network has several applications of image processing, often
depending on segmenting pictures. Think about it in terms of a complex classification
problem. Nested Dilation Network dice loss has additional drawbacks, including the
potential for false positive results due to the greater penalty factor for positive samples
than for negative ones. The model’s structure is rigid while training on datasets of various
sizes, and the skip connection has not properly used the encoder structure’s properties.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 17 
 

 

k = total quantity, 
Σ = compilation symbol, 
The comparison of MSE may be seen in Figure 12. The suggested SSW-AN has the 

lowest MSE when measured against other methods such as DCNN, ASDNet, DNN, GCN, 
and NDN.  

 
Figure 12. MSE of various methods. Current SSW-AN is compared with DCNN [37], ASDNet [38], 
DNN [35], GCN [39], NDN [40] and U-Net [41]. 

5.2. Discussion 
Parameters demonstrate the suggested method’s superiority over the status quo, 

which suffers from a number of serious flaws. These are just some of the problems with 
the current approach. The challenge of the dataset for automatic polyp detection gives us 
the chance to research cross-data generalizability, which is crucial in the medical field [37]. 
DNN can create better segmentation masks even for difficult images. To tackle the prob-
lem of having too little data to train complicated networks, ASDNet uses fully convolu-
tional adversarial learning and adopts a semi-supervised loss based on attention to certain 
regions of the image [38]. Although medical image segmentation is still a difficult problem 
to solve, deep learning applications have shown significant performance gains that may 
have a positive impact on clinical practice outcomes such as diagnosis [35]. Segmenting 
images is often critical to several image processing uses. We consider it in terms of a dense 
categorization issue [39]. One further issue with dice loss is that it is possible to have a 
false positive because the penalty factor for samples tested is higher than for negative ones 
[40]. Due to the proposed method’s ability to get over existing method restrictions, we 
assessed that it is more effective than the existing techniques. U-Net, a technique for seg-
menting images, was developed especially for this purpose. U-Net has been extensively 
embraced as the primary tool for segmentation jobs in medical imaging because of its 
properties, which make it particularly valuable within the community of medical imaging 
[41]. Medical images also demonstrate that a significant quantity of training data is needed 
for the DCNN to be effective and that they do not encode the position and orientation of 
objects. There is no encoding for object orientation or position. They find it difficult to 
classify images with different perspectives. For network-level data, attention-based semi-
supervised learning is not appropriate. The algorithm produces classifications that are less 
precise than those produced by conventional supervised techniques. Deep neural net-
works analyze information in complex ways by using sophisticated mathematical model-
ling, including the need for many learning algorithms and the DNN’s inability to encode 

Figure 12. MSE of various methods. Current SSW-AN is compared with DCNN [37], ASDNet [38],
DNN [35], GCN [39], NDN [40] and U-Net [41].



Sensors 2023, 23, 2719 15 of 17

6. Conclusions

This research proposed an SSW-AN for semantic picture segmentation. The 2-D
wavelet transform, which separates information into low- and high-frequency channels,
generates four input and output parameters for the network. This simplifies the teaching
process. We use the self-supervised attention module spatial and channel attention subsys-
tems. As a result, the method may be better able to zero in on crucial underlying patterns
throughout the channel and the space. Accuracy, precision, recall, sensitivity, and specificity
MSE were some of the metrics tested in this experiment. An SSW-AN was proposed, and
its results were 98% for accuracy, 97% for precision, 97% for recall, 95% for sensitivity,
96% specificity, and 15% for MSE. The proposed method outperforms the state-of-the-art
alternatives. Assessing people with increasingly severe cognitive impairment using the
human sickness dataset would remain challenging, given the image’s sensitivity to body
movements. Future research should put more emphasis on creating architectures that
are still capable of having fewer parameters. As we investigate the feasibility of using a
single model for a wide range of applications in medical picture segmentation, we intend
to soon simplify the structure without compromising its capacity to create high-quality
segmentation masks.
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