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Self-Sustainable Communications with RF Energy

Harvesting: Ginibre Point Process Modeling and

Analysis
Xiao Lu, Ian Flint, Dusit Niyato, Senior Member, IEEE, Nicolas Privault, Ping Wang, Senior Member, IEEE

Abstract—RF-enabled wireless power transfer and energy
harvesting has recently emerged as a promising technique to
provision perpetual energy replenishment for low-power wireless
networks. The network devices are replenished by the RF energy
harvested from the transmission of ambient RF transmitters,
which offers a practical and promising solution to enable self-
sustainable communications. This paper adopts a stochastic
geometry framework based on the Ginibre model to analyze the
performance of self-sustainable communications over cellular net-
works with general fading channels. Specifically, we consider the
point-to-point downlink transmission between an access point and
a battery-free device in the cellular networks, where the ambient
RF transmitters are randomly distributed following a repulsive
point process, called Ginibre α-determinantal point process
(DPP). Two practical RF energy harvesting receiver architectures,
namely time-switching and power-splitting, are investigated. We
perform an analytical study on the RF-powered device and derive
the expectation of the RF energy harvesting rate, the energy
outage probability and the transmission outage probability over
Nakagami-m fading channels. These are expressed in terms of
so-called Fredholm determinants, which we compute efficiently
with modern techniques from numerical analysis. Our analytical
results are corroborated by the numerical simulations, and the
efficiency of our approximations is demonstrated. In practice,
the accurate simulation of any of the Fredholm determinant
appearing in the manuscript is a matter of seconds. An interesting
finding is that a smaller value of α (corresponding to larger
repulsion) yields a better transmission outage performance when
the density of the ambient RF transmitters is small. However,
it yields a lower transmission outage probability when the
density of the ambient RF transmitters is large. We also show
analytically that the power-splitting architecture outperforms the
time-switching architecture in terms of transmission outage per-
formances. Lastly, our analysis provides guidelines for setting the
time-switching and power-splitting coefficients at their optimal
values.
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I. INTRODUCTION

Wireless communication powered by energy harvested

from the natural environment, e.g., wind and tide, or power

sources such as wireless energy transmitters has enabled self-

sustainable communications maintaining and operating in an

autonomous manner, without human intervention [1]. Self-

sustainable communications, understood to integrate various

technologies including signal processing, circuit design, power

scavenging and management, etc., is envisioned to be the next

momentous development in the green mobile ecosystem. The

technologies will pave the way towards emerging paradigms

such as Internet of things (IoTs) [2], machine-type communi-

cations (MTC) [3], and autonomous sensor networking [4].

Energy efficiency and perpetual maintenance are two critical

issues in self-sustainable communications. Accordingly, si-

multaneous wireless information and power transfer (SWIPT)

and RF energy harvesting techniques [5]–[7] have recently

emerged as a practical and effective solution. On one hand,

energy efficiency is significantly improved by recycling the

ambient RF signals that are not captured by the intended

receivers. On the other hand, extracting energy from RF

signals that pervasively exists in wireless communication

systems renders perpetual maintenance and even battery-free

implementation for low-power energy-constrained electrical

equipments [8], such as IoT sensors and radio frequency

identification (RFID) tags. Moreover, as the wireless energy

is carried by the same RF signals that delivers wireless infor-

mation, RF energy harvesting becomes a particularly suitable

alternative technique for replenishing wireless communication

devices [9], [10].

Recently, SWIPT has drawn great research attention and

been intensively investigated, e.g., in point-to-point chan-

nels [11], broadcast channels [12], relay channels [13], multi-

antenna channels [14], [15], OFDMA channels [16], op-

portunistic channels [17] and wiretap channels [18]. More-

over, cooperative SWIPT in distributed systems have been

investigated in [19]. There has also been a growing interest

in exploring SWIPT with full-duplex techniques [20], [21].

For hardware implementation, as reviewed in [22], various

prototype platforms have been demonstrated for ambient RF

energy harvesting, e.g., from cellular networks and digital

TV signals, which indicates the practicality of self-sustainable

operation of real devices by optimizing their duty cycle. For

example, a recent measurement in [23] reported that an RF-to-

DC conversion efficiency of 40% and an output dc voltage of
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224 mV can be achieved by a dual-band RF energy harvester

for GSM-1800 and UMTS-2100 bands. The emerging self-

sustainable communications with RF energy harvesting has

found its applications in low-power wireless systems, such as

RFID systems [24], [25], wireless renewable sensor networks

[22], body area networks [26], [27], and backscatter commu-

nication systems [28]–[30]. RF-powered communications is

also expected to have a profound impact on the development

of IoT [31] and machine-to-machine communications [32].

The readers are referred to the recent survey in [33] for

detailed overview of existing applications of RF-powered

communications and envisioned future applications.

A. Related Work

Recently, there have been growing interests from academia,

industry, and standardization bodies on investigating RF en-

ergy harvesting. The existing efforts have primarily focused on

the hardware circuit design to improve the energy harvesting

efficiency as well as the resource allocation and performance

analysis in wireless networks with RF energy harvesting. An

up-to-date survey on the advance of RF powered communica-

tion networks can be found in [34].

For statistical modeling of large-scale RF energy harvesting

networks, stochastic geometry is a suitable tool that models

random spatial patterns by a point process. Poisson point

processes (PPPs) have been widely adopted to model the

spatial configuration of various types of wireless networks with

RF energy harvesting. The existing literature has primarily

focused on cellular networks and relay networks. The authors

in [35] characterized the tradeoffs among transmit power

and density of mobile devices and wireless power beacons.

The distributions of mobile devices and power beacons are

modeled as two homogeneous PPPs. In [36], the authors

investigated the transmission probability and the coverage

probability of the uplink transmission in a multiple-tier cellular

network. As for relay networks, the authors in [37] analyzed

the outage performance and the average harvested energy for a

large-scale network with transmitter-receiver pairs distributed

as a PPP. A random relay selection scheme was analyzed

for randomly located relay nodes distributed following an

independent PPP. In [38], the authors derived the probability

of successful data exchange and the network lifetime gain in

a two-way network coding enabled relay network modeled by

PPPs, where the relay node is powered by the RF information

sources. The authors in [39] applied PPP modeling to analyze

relay strategies in a randomly located network. The outage

probability and diversity gain have been characterized for three

different relay strategies to facilitate a comparison of their

performance.

Moreover, the research efforts have also investigated RF

energy harvesting in cognitive radio network [40] and device-

to-device (D2D) networks [41]. Reference [40] considered

the scenario wherein a secondary cognitive sensor network

opportunistically harvests energy from the transmissions of

the primary network. The authors optimized the maximum

throughput of the secondary network under the constraints of

an outage probability for both networks, which were modeled

as two independent PPPs. The study in [41] investigated

D2D communication powered by the RF energy from the

overlying cellular networks. By modeling the cellular base

stations, mobiles, and D2D devices as three independent PPPs,

the authors derived the network performance in terms of the

transmission probability and outage probabilities for both D2D

transmitters and cellular mobiles. In addition, reference [42]

studied a generic RF-powered network, where the wireless

nodes and the access points are distributed as two independent

PPPs. Given a successful information transmission probability

constraint, the authors maximized the spatial throughput for

wireless nodes in both battery-free and battery-deployment

cases.

Though the PPP offers a simple modeling framework with

analytical tractability, it fails to characterize the correlation

among the locations of the network agents. The weakness of

PPP modeling lies in the fact that the spatial points may be

located too close to each other due to their independence [43].

In real-world network scenarios, the distribution of network

components may exhibit repulsive behaviors. This repulsion

is indeed a common phenomenon in wireless systems, e.g.,

sensor networks [44]. An instance in real network design is

that RF transmitters such as cellular base stations, access

points, relay nodes and data sinks, are not deployed too

close to each other [45], [46], which is evidence of repulsive

behavior.

Recently, the Ginibre point process (GPP) [47], which is a

type of repulsive point process, has been advocated to model

random phenomena where repulsion is observed, e.g., in [48]

and [49]. Existing studies have applied the GPP [50], the α-

GPP [51], and the β-GPP [48], [52] to model locations of base

stations in conventional wireless networks. Our previous work

in [49], [53] utilized a Ginibre determinantal point process

to model the distribution of ambient RF transmitters in a

wireless powered sensor network with deterministic propaga-

tion channels. However, the closed form expressions of the

considered performance metrics are not available. Instead, we

were able to provide the lower bounds of the performance

metrics which were interpreted as the worst-case performance.

In this work, we consider a cellular network with general

fading channels and, using a conditioning technique inspired

by the seminal work of [43], we analyze the general-case

network performance and provide good approximations of the

performance metrics.

B. Motivations and Contributions

For self-sustainable communications, interference from am-

bient RF transmitters impairs the capacity of communications.

However, the interference is also instrumental for an RF-

powered device, as it can be converted to useful energy.

To understand the role of the interference, it is critical to

analyze how the RF signals from randomly-located ambient

RF transmitters, e.g., cellular mobiles, impact the overall

performance of self-sustainable communications. Moreover,

most of the existing literature only considers either SWIPT

(e.g., in [11] and [12]) or ambient RF energy harvesting (e.g.,

in [41] and [49]). However, in real networks, it is not practical



3

to perform only SWIPT from a dedicated RF energy source

without the consideration of ambient RF transmitters. This

is because an RF energy harvester is designed to work on

certain frequency band(s), e.g., 900MHz or 1800MHz. Any

received RF signal within the range of the target frequency of

the energy harvester will be converted into energy, as long as

the input power density exceeds the sensitivity of the rectifier.

Therefore, we aim to study a realistic network scenario,

where a decided energy source performs SWIPT coexists

with ambient RF energy transmitters to be energy sources

of an RF-powered device. Additionally, the distribution of

ambient RF transmitters may demonstrate various patterns in

different environments. It is interesting to investigate how

the distribution of the ambient transmitters influences the

performance of an RF-powered device. To this end, we adopt a

novel repulsive point process called Ginibre α-determinantal

point process (DPP) to model the network distribution. The

factor α is able to capture different degrees of repulsion among

points, and also covers the Poisson point process (PPP) when

α = 0. These are the main motivations behind our study in

this work.

In this paper, we investigate the performance of self-

sustainable communications with RF energy harvesting over

cellular networks. Specifically, we consider the point-to-point

downlink transmission from a base station or an access point to

a battery-free network device, which is powered by the energy

harvested from randomly-located ambient RF transmitters. Our

main contributions are summarized below.

• First, we derive the closed-form expectation of the aggre-

gated energy harvesting rate of the RF-powered device as

a function of the density of ambient transmitters. Numer-

ical results corroborate our closed-form expressions.

• Next, we analyze the energy outage probability, i.e. the

probability that the RF-powered device experiences a

blackout due to insufficient energy. Our derivation pro-

vides semi-closed form expressions for the energy outage

probability. By this we mean that the error committed in

the approximation is well-controlled and can be quanti-

fied mathematically, cf. e.g. Theorem 2. It is confirmed

by simulation that the expressions provide very accurate

estimation of the energy outage probability. The analysis

further shows that a larger repulsion among the ambient

transmitters reduces the energy outage probability.

• Furthermore, we study the quality of service (QoS) met-

ric, namely, the transmission outage probability, which is

defined as the probability that the RF-powered device is

unable to meet its information throughput requirement,

due to an insufficient transmit power and/or interference.

We again derive an expression for the transmission out-

age probability in semi-closed form, which matches the

simulation results. Our analysis shows that there exists

a tradeoff between the interference signal received by

the information receiver and the RF energy harvested

by the energy harvester. This tradeoff is significantly

influenced by the density of ambient RF transmitters and

the minimum throughput requirement.

Our mathematical contributions rely heavily on Lemma 1.

Fig. 1. A network model of downlink transmission for an RF-powered device
over a cellular network.

This powerful lemma allows us to give precise approximations

of the performance metrics in terms of Fredholm determinants,

which will be defined later in Section II-B1. To the best of our

knowledge, the computation of performance metrics by means

of Fredholm determinants is a novel technique, and is shown

to be an efficient way to compute the relevant quantities. The

algorithms used in this paper for the numerical computation

of Fredholm determinants of general operators improve the

state of the art. We obtain fast and reliable estimations of the

Fredholm determinants involved in our main results, compared

with the alternative of computing the performance metrics by

Monte Carlo estimation.

The remainder of this paper is organized as follows. Section

II describes the system model, the stochastic geometry model,

and the performance metrics. Section III estimates the perfor-

mance metrics of the RF-powered device over a cellular net-

work with randomly-located ambient RF transmitters modeled

as a Ginibre α-DPP. Section IV demonstrates the performance

evaluation results. Finally, Section V concludes our work.

Notations: Throughout the paper, we use E[X] to denote

the probabilistic expectation of a random variable X , P(A) to

denote the probability of an event A. Moreover, we use ||x||
to represent the Euclidean distance between the coordinate x

and the central point of the plane.

II. SYSTEM MODEL

A. Network Model

We consider an RF-powered device powered solely by the

energy harvested from the RF signals transmitted by ambient

RF transmitters. We assume that the ambient RF transmitters

are distributed as a general class of point processes, which

will be specified in detail in Section II-B.

It is further assumed that the RF-powered device is battery-

less. In other words, the device utilizes the instantaneously

harvested RF energy to supply its operations. We investigate

two co-located receiver architectures, namely, time-switching

and power-splitting [34], as shown in Fig 1. These two co-

located receiver architectures allow an energy harvester and
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(a) Time Switching Achitecture

(b) Power Splitting Achitecture

an information decoder to share the same antenna, and both

of them observe the same channel condition.

• Time-Switching Architecture: The time-switching archi-

tecture, shown in Fig. 2a, operates on a time-slot based

manner. That is, either the information receiver or the RF

energy harvester is connected to the antenna at a given

time. Specifically, this architecture first uses τ portion of

time to harvest energy. Then during the remaining 1− τ
portion of time, the RF-powered device uses the energy

reserved from the capacitor to decode information.

• Power-Splitting Architecture: In the power-splitting ar-

chitecture, shown in Fig. 2b, the received RF signals are

divided into two streams with different power levels for

the information decoder and RF energy harvester. The

power splitter is able to adjust the power ratio between

two streams. We denote the portion of RF signals flowed

to the energy harvester by ρ, and that to the information

receiver by 1− ρ.

In this work, we consider downlink SWIPT from the base

station or access point to the RF-powered device. For the

time-switching architecture, the device alternately performs

energy harvesting and information decoding. For the power-

splitting architecture, the device performs energy harvesting

and information decoding simultaneously. We assume that the

capacitors of the both architectures are lossless.

1) Time-switching Architecture: The RF energy harvesting

rate (in watts) by the device from the RF transmitter k in a

fading channel P k
H is given by [54]:

P k
H =

τβPShk

(dk)γ
, (1)

where β is the RF-to-DC power conversion efficiency of the

device, PS is the transmit power of the RF transmitter k, γ >
0 is the path-loss exponent, and hk represents the channel

power gain from the RF transmitter k to the device. For RF

propagation, we consider a general channel power gain model

following the gamma distribution with shape parameter δ and

rate parameter θ. In other words, hk are assumed to be i.i.d.

random variables verifying

hk ∼ Γ(δ, θ), δ, θ > 0.

Note that δ = 1 recovers the case hk ∼ Exp(θ). Lastly,

dk is the distance between the transmit antenna of an RF

transmitter k to the receiver antenna of the RF-powered device.

Let xk ∈ R
2 be the coordinates of the RF transmitter k in a

referential centered at the RF-powered device. In our model,

dk = ǫ + ‖xk‖, where ǫ is a fixed (small) parameter which

ensures that the associated harvested RF power is finite in

expectation. Physically, ǫ is the closest distance that the RF

transmitters can be to the device.

Then, the aggregated RF energy harvesting rate by the

device equipped with time-switching architecture is modeled

as follows:

PTS
H =

F

1 + F

∑

k∈K
P k
H =

Fτβ

1 + F

(

∑

k∈K

PShk

(dk)γ
+

PAhA

dγA

A

)

,

(2)

where K is a random set consisting of all RF transmitters,

PA is the transmit power of the access point, dA represents

the distance between the transmit antenna of the access point

and the receive antenna of the RF-powered device, hA denotes

the channel gain between the transmit antenna of the access

point and the receive antenna of the RF-powered device, and

it is assumed that hA ∼ Exp(λA) for λA > 0. Here, F is

a random variable independent of K and hk, k ∈ K. It is

further assumed that F ∼ Exp(µ) for some constant µ > 0.

The coefficient F is chosen so that this random noise has an

expectation of 1. Namely, we set F := (−µ eµ Ei(−µ))
−1

so

that by the change of variable u ≡ µ(x+ 1),

E

[

F

1 + F

]

= F

∫ ∞

0

µ

1 + x
e−µx dx

= Fµ eµ
∫ ∞

µ

1

u
e−u du = 1, (3)

where here Ei is the exponential integral special function

defined by

Ei(x) := −
∫ ∞

−x

1

u
e−u du, x 6= 0.

Let us note that the coefficient F/(1+F ) is unusual; it can be

understood as a random noise (e.g. electrical or in the channel)

in the detection of the actual harvested energy. We assume that

K is a point process [55] independent of the hk.

The maximum transmission rate of the access point is

evaluated according to the following model1:

CTS =

{

(1− τ)W log2

(

1 + hAPA/‖xA‖γA

σ2+ξITS

)

if PTS
H ≥ PC,

0 if PTS
H < PC,

(4)

where W is the transmission bandwidth, σ2 is a nonnegative

constant which represents the power of additive white Gaus-

sian noise (AWGN). By analogy, xA represents the coordinates

1Note that state-of-the-art wireless information receivers are not yet able
to achieve this rate upper bound due to additional processing noise such as
the RF band to baseband conversion noise.
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of the access point in the referential centered at the RF-

powered device, PA denotes the transmit power of the access

point, and γA > 0 is the path-loss exponent between the

transmit antenna of the access point and the receive antenna

of the RF-powered device. The device consumes a base circuit

power, denoted by PC. Following practical models [56], the

circuit power consumption of the device is assumed to be

fixed. Here, ITS denotes the interference from ambient RF

transmitters at the transmission link of the access point, for

the case of time-switching, and can be evaluated as follows:

ITS =
∑

k∈K

PShk

(dk)γ
. (5)

Lastly, ξ ∈ [0, 1] is an interference coefficient, which repre-

sents the fraction of the total interference RF transmitters that

impacts the transmission rate. Specifically ξ = 0 corresponds

the case without interference and ξ = 1 is the worst case

wherein it is assumed that all RF sources contribute fully to

the interference at the access point.

2) Power-splitting Architecture: Analogously, the aggre-

gated RF energy harvesting rate by the RF-powered device

equipped in the power-splitting architecture in a unit time is

modeled as

PPS
H =

F̄ ρβ

1 + F

(

∑

k∈K

PShk

(dk)γ
+

PAhA

dγA

)

. (6)

In the power-splitting architecture, the downlink information

rate can be computed as [54]:

CPS =

{

W log2

(

1 + (1−ρ)hAPA/‖xA‖γA

σ2
SP

+(1−ρ)σ2+ξIPS

)

if PPS
H ≥ PC,

0 if PPS
H < PC,

(7)

where σSP is the signal processing noise power. Here, IPS

denotes the interference from the ambient RF transmitter after

power splitting, which is modeled as

IPS = (1− ρ)
∑

k∈K

PShk

(dk)γ
. (8)

The main notations used in this paper are summarized in

Table I.

B. Geometric DPP Modeling of Ambient RF Transmitters

As an extension of the Poisson setting, we model the

locations of RF transmitters using a point process K on an

observation window O ⊂ R
2 such that 0 < |O| < +∞. here

|O| denotes the Lebesgue measure of O. In other terms, K
is an almost surely finite random collection of points inside

O. We refer to [55] and [57] for the general theory of point

processes. In the aforementioned references are defined the

correlation functions ζ(n) of K w.r.t. the Lebesgue measure

on R
2, and which verify

E

[

n
∏

i=1

K(Bi)

]

=

∫

B1×···×Bn

ζ(n)(x1, . . . , xn) dx1 · · · dxn,

(9)

for any family of mutually disjoint bounded subsets

B1, . . . , Bn of R
2, n ≥ 1. Heuristically, ζ(1) is the spa-

tial particle density, and ζ(n)(x1, . . . , xn) dx1 · · · dxn is the

probability of finding a point of the point process in the

vicinity of each xi, i = 1, . . . , n. The correlation functions

are thus a generalization of the concept of the probability

density function to the framework of point processes. The

correlation functions play an important role in the definition

and interpretation of a general α-DPP.

1) General α-determinantal point process: We let α =
−1/j for an integer j > 0, and we define a general α-DPP in

the following. Let us introduce a map K : L2(R2) 7→ L2(R2),
where L2(R2) is the space of square integrable functions on

R
2. We assume in the following that K satisfies Condition A

from [58], recalled below.

Hypothesis 1. Assume that the map K is a Hilbert-Schmidt

operator from L2(R2) into L2(R2) which satisfies the follow-

ing conditions:

1) K is a bounded symmetric integral operator on L2(R2),
with kernel still denoted by K(·, ·);

2) The spectrum of K is included in [0, −1/α];
3) The map K is locally of trace-class (see [59] for a

proper definition).

The map K is called the kernel of the α-DPP. It represents

the interaction force between the different points of the point

process. A locally finite and simple point process on R
2 is

called an α-DPP if its correlation functions w.r.t. the Lebesgue

measure on R
2 (defined in (9)) exist and satisfy

ζ(n)(x1, . . . ,xn) = detα(K(xi,xj))1≤i,j≤n, (10)

for any n ≥ 1 and x1, . . . ,xn ∈ R
2, where the α-determinant

of a matrix M = (Mij)1≤i,j≤n is defined as

detα M =
∑

z∈Sn

αn−ν(z)
n
∏

i=1

Miz(i), (11)

where Sn stands for the n-th symmetric group and ν(z) is the

number of cycles in the permutation z ∈ Sn. We note that (11)

generalizes the usual definition of the determinant (obtained

for α = −1) and was initially introduced in [60].

Let us now give some basic properties of the α-DPP to

emphasize the role played by the kernel K. We start by

a proposition exhibiting the repulsion properties of the α-

DPP. Its proof follows from the definition of the correlation

functions (9).

Proposition 1 (Repulsion of the α-DPP). The covariance of

an α-DPP of kernel K is given by

Cov(K(A),K(B)) = α

∫

A×B

|K(x,y)|2 dxdy,

where K(A) and K(B) denote the random number of point

process points located within the disjoint bounded sets A ⊂ R
2

and B ⊂ R
2, respectively.

Since α < 0, K(A) and K(B) are negatively correlated and

the associated α-DPP is known to be locally Gibbsian, see,

e.g., [61], therefore it is a type of repulsive point process. As

α → 0, K(A) and K(B) tend not to be correlated, and in fact

it can be shown that the corresponding point process converges

weakly to the PPP, cf. [58].
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TABLE I
NOTATIONS.

Symbol Definition

α Repulsion factor
β RF-to-DC power conversion efficiency of the RF-powered device
dk The distance between the transmit antenna of RF transmitter k and the receiver antenna of the RF-powered device
γ Pass-loss exponent
hA The channel gain between the access point and RF-powered device
hk The channel gain between the ambient RF transmitter k and RF-powered device
κ Minimum information throughput requirement
PC The circuit power consumption of the RF-powered device
PA The transmit power of the access point

Pk

S
The transmit power of RF transmitter k ∈ K

PTS

H
, PPS

H
The RF energy harvesting rate of the time-switching and power-splitting architecture, respectively

ρ The portion of RF signals harvested by a power-splitting architecture

σ2 The power density of AWGN

σ2

SP
The power density of signal processing noise

τ The portion of time a time-switching receiver working on energy harvesting mode
xi The coordinates of the RF-powered device
xk The coordinates of the RF transmitter k
W The bandwidth of the channel between the access point and RF-powered device
ξ Interference coefficient
ζ The spatial density of ambient RF transmitters

Next, we recall from [62] the following proposition which

gives the hole probabilities of the α-DPP. Proposition 2 allows

us to compute the quantities known as hole probabilities.

Proposition 2 (Hole probability of the α-DPP). For every

bounded set B ⊂ R
2 we have

P(K ∩B = ∅) = Det(Id + αKB)
−1/α, (12)

where KB(x,y) , 1B(x)K(x,y)1B(y), and 1B denotes

the indicator function of a set B. Here, Id is the identity

operator on L2(B) and for any trace class integral operator

K, Det (Id + αK) is the Fredholm determinant of Id + αK
which is defined as

Det(Id− αK)−1/α

=
∑

n≥0

1

n!

∫

detα(K(xi, xj))1≤i,j≤n dx1 · · · dxn, (13)

as long as |α| ≤ 1. (13) was obtained in Theorem 2.4 of [58],

see also [59] for more details on the Fredholm determinant.

Lastly, we recall from [58] the following proposition which

gives the Laplace transform of the α-DPP.

Proposition 3 (Laplace transform of the α-DPP). For any

ϕ : R2 → [0,+∞),

E

[

exp

(

−
∑

k∈K
ϕ(xk)

)]

= Det(Id + αKϕ)
−1/α, (14)

where Kϕ is the Hilbert-Schmidt operator with kernel
√

1− e−ϕ(x)K(x,y)
√

1− e−ϕ(y), x,y ∈ R
2.

2) The Ginibre point process: In the rest of the paper, we

focus on the Ginibre α-DPP, which is a particular α-DPP well-

suited for applications. The Ginibre process is a type of α-

DPP that is invariant with respect to rotations. Therefore, it is

fruitful for computational convenience to restrict our attention

to the choice of observation window O = B(0, R), defined as

a disc centered around 0 and of radius R > 0.

The Ginibre process is defined by the so-called Ginibre

kernel given by

K(x,y) = ζ eπζxȳe−
πζ
2 (|x|2+|y|2),

x,y ∈ O = B(0, R), (15)

where ζ > 0 is a fixed parameter called spatial density of the

point process. This kernel is that of the usual Ginibre process

defined, e.g., in [47], to which we have applied a homothety

of parameter
√
πζ > 0: x 7→ x/(

√
πζ). The associated α-

DPP exists since the kernel (15) satisfies Condition A from

[58]. We begin by recalling a few key features of the Ginibre

process.

• The intensity function of the Ginibre process is given by

ζ(1)(x) = K(x,x) = ζ, (16)

cf. [58]. This means that the average number of points in a

bounded set B ⊂ B(0, R) is ζ |B|. Note that the intensity

function of a homogeneous PPP is also a constant, so ζ
is interpreted as the intensity of the corresponding PPP.

• The Ginibre α-DPP is stationary and isotropic in the

sense that its distribution is invariant with respect to trans-

lations and rotations, cf. [47]. Hence, the Ginibre point

process models a situation where the RF transmitters are

distributed homogeneously in the plane.

We note that the constant intensity (16) and the invariance

with respect to rotations might in some cases not be practical.

However, these hypotheses may be lifted. Namely, the kernel

(15) may be modified in order to account for an inhomoge-

neous spatial density, and all the main results of this paper

may be written in terms of the eigenvalues of the modified

kernel.

Next, we mention that the Ginibre α-DPP used here is

different from the so-called β-Ginibre process introduced in

[63] and used as a model for wireless networks in [48].

The Ginibre α-DPP (−1 ≤ α < 0) is a superposition of

−1/α independent copies of a Ginibre DPP with an intensity
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multiplied by
√−α, while the β-Ginibre (0 < β < 1)

is obtained by deleting the points of a Ginibre DPP inde-

pendently and with probability 1 − β and by applying a

homothety of ratio
√
β to the remaining points (cf. [63]).

Both classes offer a (different) parametrization of a range of

point processes between the Ginibre process and the PPP. We

also note that our calculations can be extended to the class

of β-Ginibre processes with no major technical difficulties.

Different variations of the Ginibre point process have been

successfully applied to model phenomena from wireless com-

munication, cf. [48], [50]–[52] among others. We choose here

the α-GPP instead of its alternatives since its construction

by superposition of independent repulsive processes yields a

natural physical interpretation of the repulsion as happening

on distinct independent layers, e.g. on 2 different frequency

bands for the (−1/2)-DPP. Additionally, we remark there is no

additional complexity involved in this choice and most results

will be expressed in terms of the Fredholm either way.

We write K ∼ Gin(α, ζ) when K is an α-DPP with the

Ginibre kernel defined in (15) and spatial density ζ. Since

K is a Hermitian compact operator, the spectral theorem for

Hermitian and compact operators yields the decomposition

K(x,y) =
∑

n≥0 λnϕn(x)ϕn(y), where (ϕi)i≥0 is a basis

of eigenvectors of L2(O), and (λi)i≥0 are the corresponding

eigenvalues. In, e.g., [47], it is shown that the eigenvalues of

the Ginibre point process on O = B(0, R) are given by

λn =
Γ(n+ 1, πζR2)

n!
, n ∈ N, (17)

where

Γ(z, a) ,

∫ a

0

e−ttz−1 dt, z ∈ C, a ≥ 0, (18)

is the lower incomplete Gamma function. Furthermore,

the eigenvectors of K are given by ϕn(z) ,
1√
λn

√
ζ√
n!
e−

πζ
2 |z|2(

√
πζz)n, for n ∈ N and z ∈ O. We

refer to [47] for further mathematical details on the Ginibre

point process.

Remark. Combining the contents of Section II-B1 and Sec-

tion II-B2, we summarize the main characteristics of the

Ginibre α-DPP, where α ∈ [−1, 0].

• The intensity function of the Ginibre α-DPP is ζ, cf. (16).

In other words the average number of points in a bounded

set B ⊂ B(0, R) is ζ |B|.
• The Ginibre α-DPP is stationary and isotropic.

• Letting A,B ⊂ R
2 be two disjoint bounded sets, we have

Cov(K(A),K(B)) = αζ

∫

A×B

e−πζ‖x−y‖2

dxdy ≤ 0,

by Proposition 1, which contrasts with the PPP wherein

the above covariance is zero.

C. Performance Metrics

We define the performance metrics of the RF-powered

device as the expectation of RF energy harvesting rate, average

energy outage probability, and average transmission outage

probability. The mathematical quantities of interest are then

defined in the following.

The expectation of the RF energy harvesting rate is defined

as EPH , E [PH] . Energy outage occurs when the RF-

powered device cannot harvest sufficient RF energy from the

ambiance to operate the circuit. The energy outage probability

is defined as Peo , P (PH < PC) . Moreover, we are interested

in the QoS metric defined as a transmission outage probability.

Let κ ≥ 0 denote the minimum information throughput

requirement. If the RF-powered device fails to obtain enough

throughput, it incurs a transmission outage. Note that the trans-

mission outage occurs in two cases, namely when there is an

energy outage, and when the decoded information throughput

is less than the minimum requirement under the condition that

there is enough harvested power. Therefore, the transmission

outage probability can be calculated as

Pto , P (PH < PC) + P (C < κ, PH ≥ PC) . (19)

The computation of the key performance metrics involve the

so-called Fredholm determinant introduced in Proposition 2.

The numerical computation of the Fredholm determinant is

a largely unexplored area, see the excellent survey [64].

The Fredholm determinants appearing in this paper (cf. for

example Theorem 2 and Theorem 3) involve 2-dimensional

Hilbert-Schimidt operators, whereby an adapted version of

the main (1-dimensional) algorithm of [64] is required. It

should be noted that the numerical evaluation of Fredholm

determinants is orders of magnitude faster than the alternative

Monte-Carlo techniques, cf. the rate of convergence obtained

in Theorem 6.2. of [64]. This heuristic is observed in the

algorithm that we used; the Monte-Carlo simulations were

much more time-consuming.

III. ANALYTICAL FORMULAS

In this section we estimate the metrics defined in Sec-

tion II-C when K ∼ Gin(α, ζ) is the Ginibre α-DPP with

parameter α = −1/j (for some positive integer j), and density

ζ > 0.

The performance metrics defined in the previous section

might be estimated by Monte Carlo simulation of the under-

lying α-DPP. Simulation of α-DPPs when α < 0 is done by

using the Schmidt orthogonalization algorithm developed in

full generality in [65], and specifically in [47] for the Ginibre

point process. The simple generalization of the algorithm to

α < 0 can be found in the survey [66], and additional details

on DPP can be found in [67].

The results from this section are primarily based on the

following lemma which is a generalization of the ideas from

[43] to the context of α-determinantal point processes.

Lemma 1. Let K ∼ Gin(α, ζ) and (hk)k∈N a sequence

of mutually independent and identically distributed random

variables, independent of K, and with moment generating

function denoted by

Mh(t) := E
[

eth1
]

, t ≤ 0,

defined on the nonpositive reals. Then for any nonnegative

ϕ : R2 → [0,+∞),

E

[

exp

(

−
∑

k∈K
hkϕ(xk)

)]

= Det (Id + αA)
−1/α

,
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where Det denotes the Fredholm determinant, A is the integral

operator with kernel,

A(x,y) =
√

1−Mh(−ϕ(x))K(x,y)
√

1−Mh(−ϕ(y)),

x,y ∈ R
2, (20)

and K is defined in (15).

For brevity, the proof of Lemma 1 is presented in Appendix

I.

The Monte Carlo methods used to compute the quantities

in Section II-C can be time-consuming in practice, especially

when Monte Carlo estimation is repeatedly applied to multiple

values of the parameters. Thus, in many applications, it is

of major interest to have some (semi-)closed forms for the

performance metrics, which we now present. We will study

in more detail the time-switching architecture as well as the

power-splitting architecture in the following subsections.

A. Time-Switching Architecture

We start with the time-switching architecture. The expecta-

tion of RF energy harvesting rate is evaluated in the following

theorem, which is similar to Theorem 1 in [49]. Although there

is a slight overlap with our results in [49], we write here all

the details since the context is different and we proceed in a

different manner.

Theorem 1. The expectation of RF energy harvesting rate

in the time-switching architecture is explicitly computed as

follows:

E
[

PTS
H

]

= τβ

(

PA

θA‖xA‖γA
+

2πζPSδ

θ

∫ R

0

r

(r + ǫ)γ
dr

)

.

(21)

Furthermore, the integral appearing in (21) has a closed form

given by

∫ R

0

r

(r + ǫ)γ
dr =















(ǫ2−γ−(R+ǫ)1−γ(ǫ+(γ−1)R))
(γ−2)(γ−1) if γ 6= 1 and γ 6= 2,

R− ǫ ln (1 +R/ǫ) if γ = 1,

ln (1 +R/ǫ)− R
R+ǫ if γ = 2.

(22)

The proof of Theorem 1 is shown in Appendix II.

We now give an expression of approximation energy outage

probability in the case of the time-switching architecture.

Note that the computation of the energy outage probability

is equivalent to that of the probability density function of

RF energy harvesting rate, computed at PC. Recall that in

Theorem 2, PTS
H is given by (2).

Theorem 2. The energy outage probability is in the following

interval:

P
(

PTS
H < PC

)

∈
[

(

1 +
µτβPAF

θAPC‖xA‖γA

)−1

Det (Id + αA)
−1/α

,

(

1 +
µτβPAF

θAPC‖xA‖γA

)−1

Det (Id + αA)
−1/α

+
(

1− e−µ
)

]

,

(23)

where Det denotes the Fredholm determinant, A is the integral

operator with kernel

A(x,y) =

√

1−
(

1 +
µτβPSF

θPC(‖x‖+ ǫ)γ

)−δ

×K(x,y)

√

1−
(

1 +
µτβPSF

θPC(‖y‖+ ǫ)γ

)−δ

,

x,y ∈ R
2, (24)

and where K is the kernel of the Ginibre determinantal point

process defined in (15).

We note that Theorem 2 implies the approximation

P
(

PTS
H < PC

)

≃
(

1 +
µτβPAF

θAPC‖xA‖γA

)−1

×Det (Id + αA)
−1/α

,

and the error is less than or equal to 1− e−µ which in turn is

bounded by µ.

The readers are refered to Appendix III for the proof of

Theorem 2.

Furthermore, we derive the transmission outage probability

in the setting of the time-switching architecture based on (4).

Theorem 3. The transmission outage probability of the time-

switching architecture may be approximated by (25), where

Am and Bm is given by (26) and (27), respectively, and K is

defined in (15).

Although the result of Theorem 3 is an approximation

of the transmission outage probability, it will be shown in

Section IV that the approximation is in practice very close to

the actual value. For brevity, the proof of Theorem 3 is shown

in Appendix IV.

B. Power-splitting Architecture

We now study the power-splitting architecture. From a

mathematical point of view, these two architectures merely

differ by a shift of the constants. Thus, the proofs in this

section will be corollaries of those of Section III-A and we

skip some details.

As in Section III-A, we begin by computing the expectation

of the RF energy harvesting rate, based on (6).
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P
(

CTS < κ
)

≃ 1− exp

(

−θAσ
2‖xA‖γA

PA

(

2κ/(W (1−τ)) − 1
)

)

(

Det (Id + αAm)
−1/α −

(

1 +
µτβPAF

PC‖xA‖γAθA

)−1

Det (Id + αBm)
−1/α

)

,

(25)

Am(x,y) =

√

√

√

√1−
(

1 +
θA‖xA‖γAPS ξ

(

2κ/(W (1−τ)) − 1
)

θPA(‖x‖+ ǫ)γ

)−δ

K(x,y)

√

√

√

√1−
(

1 +
θA‖xA‖γAPS ξ

(

2κ/(W (1−τ)) − 1
)

θPA(‖y‖+ ǫ)γ

)−δ

,

(26)

Bm(x,y) =

√

√

√

√1−
(

1 +
θA‖xA‖γAPSPC ξ

(

2κ/(W (1−τ)) − 1
)

+ µτβPSPAF

θPAPC‖(x‖+ ǫ)γ

)−δ

×K(x,y)

√

√

√

√1−
(

1 +
θA‖xA‖γAPSPC ξ

(

2κ/(W (1−τ)) − 1
)

+ µτβPSPAF

θPAPC(‖y‖+ ǫ)γ

)−δ

, (27)

Theorem 4. The expectation of RF energy harvesting rate in

the power-splitting architecture is explicitly computed as

E
[

PPS
H

]

= ρβ

(

PA

θA‖xA‖γA
+

2πρPSδ

θ

∫ R

0

r

(r + ǫ)γ
dr

)

,

(28)

where the integral appearing in (28) has a closed form given

by (22).

Proof of Theorem 4. We simply note that the expression of

PPS
H given in (6) is simply PTS

H with τ replaced by ρ. Hence

Theorem 1 directly yields the result.

Next, we give an expression of the energy outage probability

in the case of a power-splitting architecture.

Theorem 5. The energy outage probability is in the following

interval:

P
(

PPS
H < PC

)

∈
[

(

1 +
µρβPAF

θAPC‖xA‖γA

)−1

Det (Id + αA)
−1/α

,

(

1 +
µρβPAF

θAPC‖xA‖γA

)−1

Det (Id + αA)
−1/α

+
(

1− e−µ
)

]

,

(29)

where Det denotes the Fredholm determinant, A is the integral

operator with kernel

A(x,y) =

√

1−
(

1 +
µρβPSF

θPC(‖x‖+ ǫ)γ

)−δ

×K(x,y)

√

1−
(

1 +
µρβPSF

θPC(‖y‖+ ǫ)γ

)−δ

,

x,y ∈ R
2, (30)

and K is defined in (15).

Proof of Theorem 5. We note that by the same arguments as

in the proof of Theorem 4, Theorem 2 yields the result.

Then, based on (7), we compute the transmission outage

probability in the power-splitting architecture.

Theorem 6. The transmission outage probability in the setting

of the power-splitting architecture is given by (31), where Am

is the integral operator with kernel

Am(x,y) =

√

√

√

√1−
(

1 +
θA‖xA‖γAPS

(

2κ/W − 1
)

θPA(‖x‖+ ǫ)γ

)−δ

×K(x,y)

√

√

√

√1−
(

1 +
θA‖xA‖γAPS

(

2κ/W − 1
)

θPA(‖y‖+ ǫ)γ

)−δ

,

x,y ∈ R
2, (32)

and Bm is given by (33), and K is defined in (15).

Proof of Theorem 6. It suffices to notice that the expression of

the maximum transmission rate CPS given in (7) is precisely

CTS with W (1− τ) replaced with W , PA replaced with (1−
ρ)PA, and σ2 replaced with σ2+(1−ρ)σ2

SP . Theorem 3 thus

applies whilst applying the mentioned replacements.

IV. PERFORMANCE ANALYSIS

In this section, we examine the validity and perform the

analysis of the expressions derived in the previous section

through numerical simulations. The network simulations in

this paper are considered in the scenario of an LTE-A network,

where an eNB performs downlink SWIPT to an MTC device

enabled with RF energy harvesting capability. The overlaid

network structure of MTC over cellular network has provided
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P(CPS < κ) ≃1− exp

(

−θA
(

σ2 + σ2
SP /(1− ρ)

)

‖xA‖γA

PA

(

2κ/W − 1
)

)

×
(

Det (Id + αAm)
−1/α −

(

1 +
µρβPAF

PC‖xA‖γAθA

)−1

Det (Id + αBm)
−1/α

)

, (31)

Bm(x,y) =

√

√

√

√1−
(

1 +
θA‖xA‖γAPSPC ξ

(

2κ/W − 1
)

+ µρβPSPAF

θPAPC(‖x‖+ ǫ)γ

)−δ

×K(x,y)

√

√

√

√1−
(

1 +
θA‖xA‖γAPSPC ξ

(

2κ/W − 1
)

+ µρβPSPAF

θPAPC(‖y‖+ ǫ)γ

)−δ

, x,y ∈ R
2, (33)

a nature framework to facilitate RF energy harvesting for MTC

devices from ambient cellular transmissions.

The eNB transmits on 46dBm (i.e., 39.81W) over a 20MHz

channel following the specification 3GPP TS 36.942. The

transmit power of ambient RF transmitters is set to be 100mW
which is within the normal transmit power of cellular mobiles.

The energy harvesting zone R is assumed to be 30m. The

RF-to-DC power conversion efficiency is set to be 30%. The

circuit power consumption of the MTC device is set to be

2.64µW as a recent circuit design in [68]. The incoming noise

at the information receiver for both receiver architecture is

assumed to be white Gaussian with power spectral density

-120dBm/Hz [69], correspondingly 20nW over the 20MHz

channel bandwidth. While the signal processing noise induced

by the power splitter is assumed to be 10−6µW as in [70]. The

other parameters take the values as shown in Table II unless

otherwise stated.

TABLE II
PARAMETER SETTING.

Symbol ‖xA‖ τ ̺ ǫ µ γ m

Value 80m 0.5 0.5 0.05 0.01 4 0.05Mbps

We evaluate the performance of the MTC devices over

Nakagami-m fading channels, which can be adjusted to fit

different fading environments. Indeed, hk ∼Nakagami(m, Ω),

m ≥ 0.5 is the shape parameter of the Nakagami distribution,

which controls the Nakagami-m fading degree. Here, Ω=

2σ2
I is the parameter which determines the spread of the

Nakagami-m power density function, where σ2
I = 1 is the

variance of the in-phase and in-quadrature components of the

received signal envelope [71]. Our adopted channel model

covers Nakagami(m, Ω) by setting hk ∼ Γ(m, m
Ω ) [72].

(Here, second parameter of the Gamma distribution is the

rate.) Note that the Rayleigh distribution can be obtained

with m = 1. Also, the results for the PPP can be obtained

by choosing α = 0 in the α-DPP setting. In addition, it

can be observed from Theorems 1, 2, 4 and 5 that the

performance of the power-splitting architecture in terms of

the expectation of the RF energy harvesting rate and average
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Fig. 2. Expectation of RF Energy Harvesting Rate versus Density of Ambient
RF Transmitters.

energy outage probability is identical to that of the time-

switching architecture by substituting ρ to τ .

We first examine the validity of the expectation of RF

energy harvesting rate. Fig. 2 shows the results for γ = 5 and

γ = 4 in Rayleigh fading channels (i.e., m=1). It can be seen

that the numerical results, averaged over 107 of simulations,

match accurately with the analytical expression given in (1)

over a wide range of densities ζ, i.e., from 0 to 0.1. This is

equivalent to the average number of ambient RF transmitters

varying between 0 and 283. The RF energy harvesting rate

is significantly affected by not only the path loss exponent

γ but also ǫ. As expected, a larger (average) RF energy

harvesting rate can be achieved when ǫ is small. The reason is

straightforward as smaller ǫ indicates the ambient transmitters

may stay closer to the RF-powered device, thus resulting

in more energy harvesting rate. In addition, the degree of

repulsion does not affect the average energy harvesting rate.

In Fig. 3, we illustrate the variation of the energy outage

probability Peo as a function of the density of ambient RF
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transmitters ζ. The numerical results validate that the ana-

lytical expressions for the energy outage probability in (23)

is accurate for different values of α under different fading

factor m. Additionally, the error is expected to be less than

µ = 0.01 which is verified by simulation. We can see that Peo

is a monotonically decreasing function of ζ. In other words,

the higher the density of ambient RF transmitters, the lower

the chance the MTC device experiences an energy outage.

Moreover, in an environment with smaller m, due to a larger

RF energy harvesting rate, the MTC device experiences a

smaller energy outage probability. Figure 4 further examines

an impact of α on Peo. A smaller value of α results in a

lower energy outage probability. In other words, the more

repulsion leads to the more scattering of the RF transmitters.

Consequently, the chance that some RF transmitters are close

to the MTC device to contribute enough energy is high, and

a lower energy outage probability can be observed. Moreover,

we observe that generally when the density ζ is larger, the

variation of α results in a greater difference in the value of

Peo. The reason is that when the number of RF transmitters

increases, strong attraction may generate more variance in the

distribution pattern causing larger performance differences.

In Fig. 5, we evaluate how the value of time-switching

coefficient τ influences the energy outage probability Peo in

the cases where the density ζ is 0.005 and 0.01. It can be

seen that Peo is a monotonically decreasing function of τ
irrespectively of ζ. That is, the energy outage probability is

minimized when τ takes the value of 1. From Fig. 5, we

observe that when the density is large (e.g., ζ =0.01), the

energy outage probability varies more dynamically with a

change of τ than when the density is low (e.g.,, ζ = 0.005).

Figure 6 demonstrates the impact of the circuit power

consumption PC of the MTC device on Peo when the density

ζ takes the value of 0.005 and 0.01. It is seen that Peo is a

monotonically increasing function of PC. When the density is

low (e.g., ζ = 0.005), the corresponding performance shows a

logarithm-like function. This shows that Peo is more sensitive

when PC is small and becomes less sensitive when PC is large.

This implies that advances in circuit implementation to lower

down PC can render a considerable decrease of the energy

outage probability, especially in the environment where the

available ambient RF transmitters are scarce. Moreover, we

observe that when ζ =0.005, the energy outage probability

with the DPP (α =-1) approaches that with the PPP. Nev-

ertheless, when ζ =0.01, the performance gap between the

cases of the DPP (α =-1) and the PPP is wider. Therefore,

the degree of repulsion α has more impact on Peo when the

density is low.

Next, we examine the analytical expressions for the trans-

mission outage probability Pto in (25) and (31) for time-

switching and power splitting architectures, respectively. Fig-

ure 7 illustrates the plots of Pto as a function of the density ζ
for different values of α for both time-switching and power-

splitting architectures. We observe that when the density ζ
is low, i.e., smaller than 0.01, there exists some small gap

between the simulation and analytical results. However, our

derived approximation matches the simulation results better

when ζ becomes larger. It can be found that Pto is a convex-

like function of ζ. With the increase of the density ζ from

0, Pto first decreases then bounces up. The reason is that

when ζ is small, the transmission outage is caused mostly

by insufficient harvested energy. The increase of ζ will bring

about more harvested energy, and thus decrease Pto. When

ζ is larger than a certain value, the cause of the transmis-

sion outage becomes the excessive interference. Though the

increase of ζ lowers the occurrence of an energy outage,

the resulted incremental interference decreases the decoded

information throughput, thus increasing Pto. Moreover, an

interesting observation is that, a smaller α (larger repulsion)

will not always be beneficial to achieve a lower Pto. This is

different from the impact of α on Peo wherein a smaller α
always induces a lower Peo. In particular, when the density

is low, e.g., ζ = 0.005, a smaller α results in a lower Pto.

However, when the density is high, e.g., ζ = 0.03, a larger α
(stronger attraction) is helpful to reduce Pto. The reason can

also be understood from the perspective of the distribution of

RF transmitters. When the density ζ is small, transmission

outage is caused primarily by insufficient harvested energy.

Recall that a smaller α induces a lower Peo, which also

helps to generate a smaller Pto. However, when the density

ζ is large, the occurrence of a transmission outage is caused
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mainly by impaired throughput due to enlarged interference.

Therefore, the DPP (corresponding to α =-1) yields better

performance than that of the PPP when ζ is low and provides

worse performance when ζ is high.

In Fig. 8, we study the influence of the time-switching

coefficient τ on Peo under different densities ζ. (As the power-

splitting coefficient ρ results in a similar impact on Pto, we

omit presenting the corresponding plots.) It is shown that

Pto is also a convex-like function of τ . Specifically, when

τ varies from 0 to 1, Pto first decreases from 100% and then

increases back to 100% after reaching its minimum point. This

is because there exists an optimal tradeoff in harvesting energy

and receiving information. Either a smaller τ that gives less

energy or a larger τ that diminishes the information throughput

which causes an increase in Pto. Furthermore, it is obvious

that the optimal value of τ is dependent on the density ζ.

The larger ζ is, the smaller the optimal τ . The reason is

straightforward as a smaller proportion of time is required to

harvest sufficient energy in an environment with larger density

ζ. Furthermore, when the throughput requirement is high, τ
should decrease to let a larger portion of the time be used for

receiving information.

We then compare the time-switching and power-splitting

architectures directly in terms of the transmission outage prob-

ability. Fig. 9 shows Pto as a function of an energy harvesting

ratio (τ for time-switching and ̺ for power-splitting) under

different minimum throughput requirements and densities ζ.

We observe that the power-splitting architecture always out-

performs the time-switching architecture. In particular, with

the adjustment of the energy harvesting ratio from 0 to 1,

the performance gap between the two architectures first in-

creases and then declines. The power-splitting architecture has

a significant performance advantage over the time-switching

architecture, especially when ρ is around its optimal value

to minimize Pto. The reason can be intuitively understood

as follows. Pto is determined by both the energy harvesting

rate and the information decoding time. When the energy
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harvesting ratio is small, transmission outage is mainly caused

by insufficient harvested energy. As the expressions of Peo

for both time-switching and power-splitting have the same

function for their corresponding energy harvesting ratio, the

performance difference for Pto of both architectures is small

when the energy harvesting ratio is small. However, when

the energy harvesting ratio is large (i.e., with a larger energy

harvesting ratio), Pto is mainly affected by the information

decoding time. The information decoding time of the time-

switching architecture is only (1-τ ) times that of the power-

splitting architecture. Therefore, the latter outperforms the

former when the energy harvesting ratio is large.

From Fig. 9, the optimal energy harvesting ratio obtained

to minimize Pto is τ = 0.4 and ρ = 0.81, when κ = 0.1.

Under this optimal setting of energy harvesting ratio, we then

demonstrates in Fig. 10 how Pto varies with the minimum

information throughput requirement κ. The time-switching

and power-splitting architectures are labeled as TS and PS,

respectively. We can see that the plots are a log-like function,

which indicates that κ has larger impact on Pto when κ takes

small values. Another observation is that for both architectures,

larger repulsion (e.g., α = −1) results in lower Pto when

κ is small, however, induces higher Pto when κ becomes

large. This is because when the κ is small, Pto is mainly

caused by insufficient harvested energy. As we have observed

from above, larger repulsion renders higher energy harvesting

rate thus results in smaller Pto. While when the κ is large,

interference becomes the dominate factor on Pto. In this case,

larger attraction (e.g., PPP) induces less interference thus

actually brings about better perform.

Next, we investigate the mutual impact of the density ζ and

the interference coefficient ξ as well as the transmit power

PA and PS on the transmission outage probability. Fig. 11

demonstrates the role of the interference coefficient ξ on the

transmission outage probability Pto. It can be observed that

ξ tends to have a larger impact on Pto in an environment

with a larger ζ. When the density of ambient RF transmitters

is high (e.g., ζ =0.05), Pto is very sensitive to the variation

of ξ, especially when ξ varies in a small range (e.g., from

0 to 0.4). An implication is that in a large-area network, a

channel experiencing less interference should be assigned to

MTC devices with a higher density of ambient transmitters. On

the contrary, channels suffer high interference can be allocated

to MTC devices with a lower density of ambient transmitters,

as Pto becomes less sensitive in that context.

In Fig. 12, we show how the transmit power of the eNB

and the ambient RF transmitter affect Pto, when ζ=0.01. As

expected, increasing PA monotonically decreases Pto. It is

also found that Pto is a concave-like function of PS. This

reveals a tradeoff between the energy harvesting rate and the

interference caused by the ambient transmitters. In a small

range, e.g., PS <0.03, the increase of PS markedly improves

the energy harvesting rate to lower down Pto. However, when

PS is greater than a certain threshold, the increase of PS

causes additional interference to impair the throughput, thus

amplifying Pto.

For future work, the access point can adopt MIMO [73]. In

this case, the transmission performance can be derived based
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on MIMO channels. Additionally, an RF energy source can

be based on MIMO, e.g. cellular base stations. The energy

harvesting can benefit from the energy of multiple antennas.

Moreover, instead of considering the distribution of the wire-

less nodes, different path-loss models, e.g., as discussed in

[74], can be adopted to analyze the self-sustainable commu-

nication networks. The new path-loss models could be able

to represent the non-uniform distributions of the RF energy

sources and access points. However, an indepth analysis to

evaluate the advantages and disadvantages of these approaches

deserves further study.

V. CONCLUSION

This paper has presented a novel tractable framework based

on the Ginibre point process to model and analyze the per-

formance of self-sustainable communications with RF energy

harvesting. We have introduced general models that scale well

with different distribution patterns, and in different channel

fading environments. Specifically, our study has characterized

the expectation of RF energy harvesting rate, the energy

outage probability and the transmission outage probability over

Nakagami-m fading channels. The accuracy of the derived

analytical expressions has been validated through numerical

simulations. In particular, we observe that when the density

of the ambient RF transmitters is small, a larger repulsion

among the ambient RF transmitters is able to yield a better

transmission outage performance. However, when the den-

sity is large, a stronger attraction among the ambient RF

transmission renders a lower transmission outage probability.

Moreover, the power-splitting architecture outperforms the

time-switching architecture in terms of the transmission outage

probability. Our analytical framework can be extended by

considering uplink transmission from the RF-powered device

to the base station. Additionally, it is also interesting to analyze

heterogeneous multi-tier cellular networks, e.g., considering

underlaying/overlaid small cells and picocells.

APPENDIX I

Proof of Lemma 1. By independence,

E

[

exp

(

−
∑

k∈K
hkϕ(xk)

)]

= E

[

E

[

∏

k∈K
exp (−hkϕ(xk)) | K

]]

= E

[

∏

k∈K
E [exp (−hkϕ(xk))]

]

= E

[

∏

k∈K
Mh(−ϕ(xk))

]

= E

[

exp

(

−
∑

k∈K
− ln (Mh(−ϕ(xk)))

)]

.

By (14),

E

[

exp

(

−
∑

k∈K
− ln (Mh(−ϕ(xk)))

)]

= Det (Id + αA)
−1/α

,

where the kernel of A is precisely (20).

APPENDIX II

Proof of Lemma 1. Let us begin by recalling that in (3) was

proven that E
[

F/(1 + F )
]

= 1. Thus by independence,

E
[

PTS
H

]

= τβ

(

E

[

PS

∑

k∈K

hk

(‖xk‖+ ǫ)γ

]

+ E

[

PAhA

‖xA‖γA

]

)

,

= τβ

(

PS E

[

∑

k∈K

E [hk | K]

(‖xk‖+ ǫ)γ

]

+
PA

θA‖xA‖γA

)

,

= τβ

(

PSδ

θ
E

[

∑

k∈K

1

(‖xk‖+ ǫ)γ

]

+
PA

θA‖xA‖γA

)

.

Additionally,

E

[

∑

k∈K

1

(‖xk‖+ ǫ)γ

]

=

∫

B(0,R)

ζ(1)(x)

(‖x‖+ ǫ)γ
dx,
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by Campbell’s formula [55], where ζ(1)(x) = K(x,x) = ζ is

the intensity function of K given by (16). Hence,

E[PTS
H ] = τβ

(

PSδ

θ

(

2π

∫ R

0

ζ
r

(r + ǫ)γ
dr

)

+
PA

θA‖xA‖γA

)

,

= τβ

(

2πζPSδ

θ

∫ R

0

r

(r + ǫ)γ
dr +

PA

θA‖xA‖γA

)

,

by polar change of variable.

We conclude by computing the latter integral. Let us begin

by writing
∫ R

0

r

(r + ǫ)γ
dr =

∫ ǫ+R

ǫ

u1−γ du− ǫ

∫ ǫ+R

ǫ

u−γ du,

by change of variable. Thus if γ 6= 1 and γ 6= 2,
∫ R

0

r

(r + ǫ)γ
dr =

1

2− γ

(

ǫ+R)2−γ − ǫ2−γ
)

− ǫ
1

1− γ

(

ǫ+R)1−γ − ǫ1−γ
)

=

(

ǫ2−γ − (R+ ǫ)1−γ(ǫ+ (γ − 1)R)
)

(γ − 2)(γ − 1)
.

Similarly,
∫ R

0

r

r + ǫ
dr = R− ǫ (ln(ǫ+R)− ln(ǫ)) ,

and
∫ R

0

r

(r + ǫ)2
dr = ln(ǫ+R)− ln(ǫ)− ǫ

(

1

ǫ
− 1

ǫ+R

)

,

which concludes the proof.

APPENDIX III

Proof of Theorem 2. First, notice that (35), where we have

used that since hA ∼ Exp(θA),

E
[

ethA
]

=

(

1− t

θA

)−1

, t < 1/θA.

Additionally by Lemma 1,

E

[

exp

(

−
∑

k∈K

µτβFPShk

PC(‖xk‖+ ǫ)γ

)]

= Det (Id + αA)
−1/α

,

where the kernel of A is precisely (24). Lastly, we note that

the only inequality in the previous computation is in (34).

Denoting by X := τβF
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[
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k∈K
PShk
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‖xA‖γA

]

, one

has
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(

F >
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hAPA
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(
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τβF
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[
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k∈K
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(‖xk‖+ ǫ)γ
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hAPA
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= P (F > X − 1)− P (F > X)

= E

[(

e−µ(X−1) − e−µX
)

1{X≥1} +
(

1− e−µX
)

1{X<1}
]

≤ E
[(

1− e−µ
)

1{X≥1} +
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1− e−µ
)

1{X<1}
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= 1− e−µ,

which concludes the proof.

APPENDIX IV

Proof of Theorem 3. Let gA be a random variable with the

same law as hA and independent from the rest. Define ĈTS

as in (4):

ĈTS =

{

(1− τ)W log2

(

1 + gAPA/‖xA‖γA

σ2+ξITS

)

if PTS
H ≥ PC,

0 if PTS
H < PC,

with gA in place of hA. We base the rest of the proof on

the approximation P
(

CTS < κ
)

≃ P(ĈTS < κ). Since

gA, hA ∼ Exp(θA), by (19), we have (36). and by the same

approximation as in Theorem 2 we obtain by conditioning

(37).

Now recall that since h1 ∼ Γ(δ, θ),

E
[

eth1
]

=

(

1− t

θ

)−δ

, t < 1/θ,

hence by Lemma 1, we conclude (38) and (39), respectively.

The result follows immediately by the approximation

P
(

CTS < κ
)

≃ P(ĈTS < κ).
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Mathématiques Appliquées pour la Maı̂trise. [Collection of Applied
Mathematics for the Master’s Degree], 1983.

[60] D. Vere-Jones, “A Generalization of Permanents and Determinants,” in
Linear Algebra Appl., vol. 111, pp. 119-124, 1988.

[61] H. Georgii and H. J. Yoo, “Conditional Intensity and Gibbsianness of
Determinantal Point Processes,” in J. Stat. Phys., 118(1-2):55-84, 2005.

[62] A. Soshnikov. Determinantal Random Point Fields. Uspekhi Mat. Nauk,
55(5(335)):107–160, 2000.

[63] A. Goldman. “The Palm Measure and the Voronoi Tessellation for the
Ginibre Process.” Ann. Appl. Probab., vol. 20, no. 1, pp. 90–128, 2010.

[64] F. Bornemann. On the Numerical Evaluation of Fredholm Determinants.
Math. Comp., 79(270):871–915, 2010.

[65] J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág. Determinantal
processes and independence. Probab. Surv., 3:1549-5787, 2006.

[66] L. Decreusefond, I. Flint, N. Privault, and G. L. Torrisi. Determinantal
point processes: a survey. to appear in “Stochastic Analysis for Poisson
Point Processes: Malliavin Calculus, Wiener-It Chaos Expansions and
Stochastic Geometry”, edited by G. Peccati and M. Reitzner, Bocconi
& Springer Series, Springer, 2016.

[67] L. Decreusefond, I. Flint, N. Privault, and G. L. Torrisi. Stochastic
dynamics of determinantal processes by integration by parts, to appear
in Communications on Stochastic Analysis.

[68] C. Chung, Y. Kim, T. Ki, K. Bae, and J. Kim, “Fully Integrated
Ultra-low-power 900 MHz RF Transceiver for Batteryless Wireless Mi-
crosystems,” in Proc. of IEEE International Conference on Electronics,

Circuits and Systems (ICECS), Beirut, Lebanon, Dec. 2011.

[69] L. Liu, R. Zhang, and K. Chua, “Wireless Information and Power
Transfer: A Dynamic Power Splitting Approach,” IEEE Transactions

on Communications, vol. 61, no. 9, pp. 3990-4001, Sept. 2013.

[70] X. Zhou, J. Guo, S. Durrani, and I. Krikidis, “Performance of Maximum
Ratio Transmission in Ad Hoc Networks with SWIPT,” IEEE Wireless

Communications Letters, vol. 4, no. 5, pp. 529-532, Oct. 2015.

[71] R. Morsi, D. S. Michalopoulos, and R. Schober, “Multiuser Scheduling
Schemes for Simultaneous Wireless Information and Power Transfer
Over Fading Channels,” IEEE Transactions on Wireless Communica-

tions, vol. 14, no. 4, pp. 1967-1982, Apr. 2015.

[72] M. Cardenas-Juarez and M. Ghogho, “Spectrum Sensing and Through-
put Trade-off in Cognitive Radio under Outage Constraints over Nak-
agami Fading,” IEEE Communications Letters, vol. 15, no. 10, pp. 1110-
1113, Oct. 2011.

[73] Z. Ding, C. Zhong, D. W. K. Ng, M. Peng, H. A. Suraweera, R.
Schober and H. V. Poor, “Application of Smart Antenna Technologies
in Simultaneous Wireless Information and Power Transfer,” IEEE Com-

munications, vol. 53, pp. 86-93, April 2015.

[74] K. Ishibashi and G. Abreu, “Analysis of RF Energy Harvesting in
Large-scale Networks Using Absorption Function,” in Proceedings of

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 7004-7008, May 2014.


