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Abstract: We developed a model for an active optomechanical cavity embedding a semi-
conductor optical gain medium in the presence of dispersive and dissipative optomechanical
couplings. Radiation pressure drives the mechanical oscillation and the back-action occurs
due to the mechanical modulation of the cavity loss rate. Our numerical analysis utilizing
this model shows that, even in a wideband gain material, such mechanism couples the
mechanical vibration with the laser relaxation oscillation, enabling an effect of self-pulsed
laser emission. In order to investigate this effect, we propose a bullseye-shaped device
with high confinement of both the optical and the mechanical modes at the edge of a disk
combined with a dissipative structure in its vicinity. The dispersive interaction is promoted
by the strong photoelastic effect while the dissipative mechanism is governed by the bound-
ary motion mechanism, enhanced by near-field interaction with the absorptive structure.
This hybrid optomechanical device is shown to lead sufficient coupling for the experimental
demonstration of the self-pulsed emission.

Index Terms: Semiconductors lasers, micro and nano opto-electro-mechanical systems
(MOEMS).

1. Introduction
The interaction between light and mechanical vibrations in optical microcavities is usually described
by the dispersive coupling between the optical and the mechanical modes. In such a scheme, the
cavity resonance shifts due to the mechanical oscillation and the dynamical back-action allows
amplification, cooling and interference of the mechanical modes [1]–[3]. A dissipative scheme
of optomechanical coupling has been investigated more recently, where the mechanical motion
modulates the decay rate of the optical cavity [4]–[6], leading to strong optomechanical coupling
[7], [8] and high mechanical sensitivity [9]. An attractive aspect of these systems is the prospect
of enhanced and less restrictive optomechanical cooling rates without requiring the good cavity
condition: κ � �m, where κ is the optical decay rate and �m the mechanical frequency [4].
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In this sense, the coupling of a optomechanical resonator to a light emitter has also been an
object of interest in the field of optomechanics due to its substantial potential to obtain laser cool-
ing to the ground state of the mechanical motion outside the resolved sideband regime [10], [11].
The experimental demonstration of these hybrid systems has been pursued in a different number
of devices, with increasing interest in observing the strong coupling regime [12]. Meanwhile, the
development of laser micro-cavities with built-in mechanical degrees of freedom has enabled the
investigation of the optomechanical interaction within active cavities. It was theoretically shown that
active cavities with purely dispersive optomechanical coupling exhibit back-action either under an
external coherent pump [13] or in the presence of resonant narrowband material gain [11]. Ex-
perimental demonstrations have been reported with semiconductor micro-lasers, exploring effects
of tuning [14], [15] and interaction with strain waves [16], leading to modification of the emission
properties beyond the optomechanical cooling.

In a previous work, we have shown that the modulation of the cavity loss rate by a mechanical
degree of freedom can enable optomechanical feedback in an active microcavity fed by its own
incoherent spontaneous emission. This was possible by exploiting the intrinsic geometric relation
between the optical resonance frequency and the cavity photonic decay rate, given by the optical
quality factor: Q o = �c/κ [17]. Such dissipative scheme is quite inefficient from this restriction and
it is not obvious if one can find a design with realistic parameters that would allow such backaction.
Nevertheless, in a more general scheme, Q o may as well change with the mechanical vibration,
allowing for the dispersive and dissipative optomechanical couplings to be independent. Therefore
it is fundamental to improve both mechanisms in order to enable the observation of optomechanical
feedback in such a cavity.

Here we propose and investigate a model for an active optomechanical cavity which includes both
dispersive and dissipative couplings, in the absence of a coherent driving field. The uniqueness
of such system is that dispersive and dissipative couplings interfere to enable optomechanical
feedback through amplification of laser relaxation oscillations. While the dispersive interaction
enables the back-action force, the dissipative coupling modulates the effective laser gain, therefore
linking the motion and the laser relaxation oscillations. We thoroughly investigate this system
and demonstrate that the optical spring effect and amplification of the mechanical oscillator can
occur despite the absence of driving field. Also, we present a trade-off between the laser and the
mechanical oscillator parameters which allows observing such effects in a realistic device.

Finally, we investigate the design of an active optomechanical resonator with enhanced dispersive
and dissipative optomechanical couplings. This device brings together the recently demonstrated
bullseye design [18], which allows high hybrid confinement of the optical and mechanical modes
in a modified microdisk, with a highly dissipative structure in its vicinity, typically a metallic ring,
spaced from the disk edge by a small air gap. With such design we predict a novel self-pulsation
regime based on the coupling between the mechanical mode and the relaxation oscillations of the
laser cavity.

2. Modified Laser Rate Equations With Optomechanical Coupling
We first recall the field dynamics of an optomechanical cavity in the presence of both dispersive
and dissipative couplings [see the simplified scheme in Fig. 1(a)]. The material gain is added
under a semi-classical approach, in order to modify the laser rate equations for a semiconductor
laser with a mechanical degree of freedom. The mechanical motion for a certain normal mode is
parameterized as a product of the normalized displacement u(r) multiplied by a time-dependent
amplitude x(t), i.e., U(r, t) = u(r)x(t). The evaluation of the motion equations for a passive cavity
has been proposed previously, obtained from the Hamiltonian of the system coupled to an optical
bath, such that the optical resonance �c and the external coupling κ are both modulated by the
mechanical motion [4], [6], [7]. The optical resonance is written as �c(x) = �0 + gωx(t), where �0 is
the bare optical resonance, and gω = ∂�c/∂x |x=0 is the optomechanical frequency pull parameter.
Analogously, the dissipative optomechanical coupling rate gκ is defined such as κ(x) = κ0 + gκx(t),
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Fig. 1. The optomechanical laser fundamentals. (a) Scheme of an active optomechanical cavity present-
ing both dispersive and dissipative optomechanical couplings. The gain medium G (n) is fed by optically
or electrically generated carriers and the output is a lasing mode carrying the features of the mechanical
system (�m, �m). (b) Relaxation Oscillation Frequency (in blue, �r) and respective damping (in red,
�r) for the referred system in our analysis. (c) Small-signal intensity modulation of the system for varied
injected current (d) Peak value of H (�) (see text), as function of the injected current ratio with the
threshold current value I th – each color point corresponds to the same color curve in (c).

with gκ = ∂κ/∂x |x=0. The Hamiltonian of the system can be written

H
�

= �c(x)a†a + �mb†b +
∫

dω ω a†
ωaω − i

√
κ(x)
2π

∫
dω (a†

ωa − a†aω), (1)

where a (a†) and aω (a†
ω) are respectively the annihilation (creation) operators of the optical field

and the annihilation (creation) of the optical bath at zero temperature; b (b†) is the annihilation
(creation) operator of the mechanical mode, set at frequency �m and normalized with respect to
the zero-point fluctuation of the harmonic oscillator, xzpf, as x/xzpf = b + b†. The generalized optical
force is derived from the gradient of H , F = −∂H /∂x , with first order approximation for x

F = −�gωa†a + i�
gκ

2
√

κ0
(a†

ina − a†ain), (2)

In (2) the first term is related to the radiation pressure, proportional to the photon number a†a, while
the second term is generated by the dissipative interaction. ain is expressed in terms of the bath

operator aω: 1√
2π

∫
dωaω(t) = ain(t) −

√
κ(x)
2 a(t), from which follows the standard input-output relation

aout(t) − ain(t) = √
κ(x)a(t) – the complete derivation is found in [19]. The time evolution for a(t) is

then described on time

da
dt

= −i�c(x)a − κ(x)
2

a +
√

κ(x)ain(t), (3)

In the correspondent semi-classical evaluation, the intracavity field amplitude α is the average value
of a, such as ain corresponds to an input field driving the cavity optical mode. For a semiconductor
laser cavity, this coherent driving field is absent when the cavity photons are generated by spon-
taneous and stimulated emission due to the carrier recombination. Hence, the usual dissipation-
induced optical force in (2) is zero, and the optical force is proportional to the total cavity-photon
number, P (t). The absence of the coherent drive allows for the usual semi-classical description of
the laser dynamics using rate equations for the cavity-photon and carrier densities, p (t) and n(t)
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respectively, with p (t) = P (t)/V , where V is the optical cavity volume. In this approach, the field in
the lasing mode is written α(t) = ∣∣α(t)

∣∣ eiφ(t), with
∣∣α(t)

∣∣2 = P (t); the phase is decoupled and it can be
treated separately, in contrast to usual optomechanics where the dynamics of the phase between
ain and α has an important role. Here we neglect the phase equation, since it is not involved in
the back-action mechanism. Nevertheless its evaluation would be relevant if one would need to
consider noise and the laser linewidth broadening. The advantage of using the photon number is
the possibility of computing the volumetric spontaneous emission rate R sp and the gain rate Gp (t),
where G is the net optical gain. From (3), we obtain the equation for photon density, and the gain is
then added in the typical relation of gain minus losses, which rules the laser behavior. This optical
gain originates from the stimulated emission due to the recombination of carriers, electrons and
holes, assumed to be in equal density, n(t). Considering a single lasing mode, the coupled rate
equations are

dp
dt

= [G − κ(x)]p + βR sp, (4)

dn
dt

= I
q V

− R sp − Gp , (5)

where I is the injected current obtained either by electrical or optical pumping, q is the elementary
charge and β is the fraction of the spontaneous emission coupled to the lasing mode. The sponta-
neous emission rate is written proportional to the product of the electron and hole densities, B spn2,
neglecting non-radiative terms, where B sp is the bimolecular recombination coefficient. Equations
(4) and (5) describe the dynamics of a semiconductor laser with good accuracy, provided that the
field oscillates slowly compared to �c, and that the dielectric response of the material is fast com-
pared with the carrier and photon lifetimes [20]. The presence of the dissipative optomechanical
coupling appears clearly in (4), as the photon decay rate is a function of the mechanical degree of
freedom x . We shall analyze the impact of this coupling on the laser dynamics.

3. Small Signal Analysis
In order to study the impact of mechanically induced fluctuations on the laser dynamics we have
assumed a small amplitude oscillation for x(t), x(t) = x0 + δxe−i�t , where x0 is the static displace-
ment, and we sought for the carrier population and photon number response using the ansatz
n(t) = n0 + δne−i�t and p (t) = p 0 + δp e−i�t , where n0 and p 0 are the steady state solutions with fluc-
tuations δn and δp – it is equivalent to solve the system in the frequency space. The fluctuations in
the photon number, δp , are of most importance as they induce a corresponding optical force that may
back-act on the mechanical system. To quantify the impact of the laser properties on this fluctuation,
we define a laser modulation sensitivity to the mechanical motion as H (�) = δp /p 0

gκδx . An analytical
expression for H (�) can be obtained by writing the stimulated emission rate for a frequency flat gain,
G (n), written then explicitly in the logarithm approximation (suitable for semiconductor gain medium
based on quantum wells, without loss of generality): G (n) = G n ln[(n + ns)/(ntr + ns)], where G n is
a gain coefficient, ntr is the carrier density for transparency and ns is a fitting parameter. Under the
small signal approximation, H (�) is given by

H (�) = δp /p 0

gκδx
= − �n − i�

�2
r − (� + i�r)2

, (6)

where �n = 2B spn0 + G np 0/n0 is the carrier fluctuation damping rate, �2
r = G 0G np 0/n0 +

2G 0B spn0 − (�n − �p)2/4 is the usual laser Relaxation Oscillation Frequency (ROF), with a de-
cay rate �r = (�n + �p )/2, and �p = βB spn2

0/p 0 is the photon fluctuation decay rate, with G 0 equal
to the gain at the steady-state [20]. Equation (6) is similar to laser loss modulation efficiency and
reveals that the resonant nature of relaxation oscillation plays a fundamental role in the dissipative
optomechanical interaction. For semiconductor lasers, the ROF can range from hundreds of MHz
[21] up to tens of GHz [22], while the associated damping rates �n, �p and �r are in the order of tens
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to hundreds of MHz. Due to the resonant response of laser cavity loss modulation, the mechani-
cal modes must match the laser relaxation oscillation frequency (�r) in order to have appreciable
dissipative optomechanical effects. For a simple microring optical cavity, such as the design we
will investigate below, both �r and �r can be (roughly) linearly tuned through the injected current
above the laser threshold (I th), as shown Fig. 1(b). Under high injection current, �r ≈ �n, and the
photonic decay �p decreases with the current. Despite the ROF tunability through the injected
current, increasing it well-above laser threshold leads to a steady reduction of the peak response
in H (�), as can be readily noted in Fig. 1(c) and (d). Even with the tunability, the ROF lies in the
few GHz range for a typical semiconductor microring cavity like investigated below. Therefore, it is
necessary that this type of cavity support dissipatively coupled mechanical modes in this frequency
range.

From the previous analysis, we see that the dissipative coupling gκ is essential for the photon
number response to mechanical oscillations. Now we can demonstrate that the dispersive optical
force – either electrosctriction or radiation pressure in a dielectric cavity – accompanying these pho-
ton number oscillations will back-act and drive the mechanical degree of freedom. The generalized
optical force was calculated previously in (2), and it was shown that the dissipative term is zero for
our incoherently driven system, leaving only the the dispersive term, −�gωP . Thus the equation for
the driven harmonic mechanical oscillator is

d2x
dt2

+ �m
dx
dt

+ �2
mx = −�Pgω

meff
, (7)

where �m is the mechanical resonance frequency, the mechanical damping rate is �m = �m/Q m,
and meff is the effective motional mass [1]. Using the ansatz for x(t) in (7), together with (6) for
the photon modulation, we arrive at an harmonic oscillator equation with modified frequency and
damping terms,

δ�m(� = �m) = G2 �n(�2
m − �2

r − �2
r ) − 2�r�

2
m

(�2
m + �2

r )
2 − 2�2

r (�2
m − �2

r ) + �4
r

, (8)

�om(� = �m) = G2 2�m (�2
m − �2

r + 2�n�r − �2
r )

(�2
m + �2

r )
2 − 2�2

r (�2
m − �2

r ) + �4
r

, (9)

where the effective optomechanical coupling was defined as G2 = gωgκx2
zpfP0, with x2

zpf =
�/(2meff�m) the mechanical zero-point fluctuation. Such a dissipative-dispersive effective optome-
chanical coupling is completely analogous to the light-enhanced optomechanical coupling in passive
optomechanics [1]. In analogy with passive optomechanical cavities, the origin of the optical spring
effect (8) and optomechanical damping (9) lies on the phase lag between the mechanical motion
and the optical forces induced by the fluctuation of the optical intensity – here though, enhanced by
the relaxation oscillation phenomena. In an active optomechanical cavity, therefore, the feedback
is caused by a combination of dispersive and dissipative processes. Also, we notice that the phase
response between mechanical motion and relaxation oscillation, obtained from the imaginary part
of H (�), depends on the sign of gκ, which will define if δx precedes or lags δp in the blue/red side of
the ROF resonance. Another important difference regarding passive optomechanical cavities is the
absence of the standard detuning parameter of optomechanics, since there is no driving external
field. Using �m ≈ �r, �n ≈ �r and �2

r � �2
r , we obtain simple expressions for the optically-induced

spring-effect and damping, δ�m = −G2/(2�r) and �om = G2/(2�r). Interestingly, the spring effect
is related to the relaxation oscillation damping and the optomechanical damping is related to its
frequency, i.e., the real and imaginary parts of the involved mechanical and ROF frequencies are
mixed, an inverted behavior when compared to the usual dynamical backaction, where δ�m is re-
lated primarily to the detuning and �om relates to κ [1]. Such character comes from the dual nature
of the optomechanical coupling here: while the force originates from the dispersive mechanism,
mechanical modulation of optical intensity occurs through the loss. We are specially interested
in the self-sustained oscillation regime of the mechanical oscillator, where �m + �om = �eff ≤ 0,
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Fig. 2. Active bullseye with single quantum well and metallic ring in the vicinity. (a) The chosen device
confines both the optical and the mechanical mode in the edge of a disk of radius R and it is surrounded
by an absorptive metallic ring separated by a small gap. A limited region of the disk with length w ring
is shielded by a mechanical grating in the disk top surface. We took R = 12 μm and gap = 20 nm
for our simulations in a disk that is 230 nm thick. The metallic ring, based on Chromium, has the
same thickness of the disk and it is anchored to the substrate – such fixation structure is not shown in
the schematic. In the inset (i), which corresponds to the indicated disk edge cross section, we show
the optical field density for w ring = 1 μm, a typical WGM with azimuthal number m = 244 and with
evanescent field confined in the air spacing. The quantum well 7 nm thick is localized in the middle of
the disk. The normalized displacement modulus |u(r)| for the chosen mechanical mode (fundamental
Fabry-Perot-like) is shown in (ii). (b) Dependency of the mechanical frequency and effective mass with
respect to the length w ring. (c) Calculated optomechanical dispersive (gω) and dissipative (gκ) coupling
strengths for the structure, considering moving boundary and photoelastic contributions.

when the mechanical amplitude is steady in time, leading to a steady behavior of the photon and
carrier fluctuation, as shown in [17], where laser self-pulsed emission is obtained. Additionally, the
discussion of optomechanical cooling capability in this system requires proper treatment of the
spontaneous emission noise. This calculation is yet to be performed and lies beyond the scope of
this work.

4. Design of an Active Bullseye Resonator for Enhanced gω and gκ

We present in the following a realistic optomechanical laser design and show a path towards ex-
perimental observation of the self-sustained optomechanical oscillations in an active cavity. Since
the effective optomechanical coupling rate in our system, G, depends on the combination of disper-
sive (gω) and dissipative coupling (gκ), the challenge is to find a suitable cavity design that maximize
both type of coupling simultaneously. Previously reported works often implemented the dissipa-
tive optomechanical coupling factor through a boundary shift that changed the external coupling
rate κ, which depended exponentially on the distance between a loss structure, for instance a bus
waveguide, and the main cavity. In these works the coupling led to values of ∂κ/∂x in the order of
1-10 MHz/nm [5], [23] and in some cases, strong disturbance of the optical mode and a consequent
increase of the radiation losses [9].

Our design is inspired by a recently demonstrated device, the bullseye optomechanical resonator
[18] [Fig. 2(a)] which relies on a strong photo-elastic dispersive coupling. By evanescently cou-
pling the bullseye cavity to a metallic rim, we show below that a significant dissipative coupling
can be achieved [9], [24]. In such a design, the optical mode is confined within the edge of the
disk, as a typical whispering gallery mode (WGM) [Fig. 2(a)(i)], while a dielectric nanostructured
grating built in at the top surface of the disk allows the mechanical mode to be confined within
the optical mode region. This optimized overlap of the optical and the mechanical modes ensures
the strong photo-elastic contribution to the dispersive optomechanical coupling while retaining high
mechanical quality factors. Also, relatively high optical quality factor, Q o, can be achieved with-
out compromising the mechanical resonator properties. By adding a strongly dissipative structure
in the vicinity of the disk – a metallic ring – a large dissipative coupling is reachable as well,
without compromise of the laser operation. As shown in Fig. 2(a), the dissipative bullseye device
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has a metallic ring separated by a small air-gap, which can readily be anchored to a surround-
ing substrate (not shown in the scheme). Such loss modulation scheme is completely compatible
with the current micro and nanofabrication techniques, and has been effective in the demonstra-
tion of PT-cavity lasers [25], where a metallic tip is brought to proximity with the laser cavity. Our
proposal relies on optical pumping of the gain medium, but it also could be implemented with
an electrically injected pump scheme [26]. Since this outer metallic ring is attached to the sub-
strate, all the modulation is due to the bullseye boundary displacement alone. We have chosen
the mechanical breathing mode of the outer edge region for the analysis, which is represented
in Fig. 2(a)(ii).

III-V alloys represent a natural choice of materials and we picked up a GaAs based structure,
since this platform is already well established in the field of cavity optomechanics. Specially, the
photoelastic effect has been well explored [27], [28] and recent work shows good results for surface
passivation of GaAs based devices [29]. The gain medium is based on a single quantum well of
InGaAs with 13% of In and 7 nm thick. The disk is 230 nm thick in total and 12 μm radius. For this
structure, the laser active transition is at 933 nm, but we will work slightly red shifted, at 950 nm
(correspondent azimuthal number m = 244), in order to have smaller differential gain. Indeed there
is a trade-off between laser and optomechanical parameters: a high photon density is required for
large effective optomechanical coupling, but it is desirable to not increase the ROF significantly to
not diminish �om. Approximating the laser relaxation oscillation frequency by �2

r ≈ G 0G np 0/n0, it
is clear that a differential gain reduction compensates an increase in the photon density and one
may be able to reach lasing without changing significantly the photon number. In this sense, the
logarithmic nature of the gain dependence on carrier density for quantum wells helps avoiding large
changes in the laser relaxation oscillation frequency, since the differential gain decreases with the
carrier density. In this design, we chose a lasing mode red-shifted from the transition edge – a
small but sufficient gain is still possible in this region due to the intraband relaxation process that
broadens the spontaneous emission spectrum. At this wavelength, the calculated gain provides
G n = 1.1 × 1011 s−1, n tr = 1.4 × 1024 m−3 and ns = −1.0 × 1024 m−3. Other laser parameters used
in the numerical evaluation are β = 10−4 and B sp = 10−16 m3s−1. The intrinsic loss was taken
κi/2π = 7.9 GHz (equivalent to a spatial absorption rate of roughly 500 m−1) and κ0 = κi + �0/Q o,
with Q o calculated for each specific w ring and gap distance to the metal.

Finite elements method (FEM) simulations were performed for the mechanical properties of the
device. Chromium was chosen as the material for the ring due to its high absorption coefficient and
high refractive index, favoring the mode spreading within the air gap, likewise a slot waveguide. For
this design/simulation, this gap was set to 20 nm. In Fig. 2(b) we show the mechanical frequency
and the effective mass as a function of w ring. We calculated the optomechanical dispersive and
the dissipative coupling factors separately, as shown in Fig. 2(c). The dispersive part is given by
perturbation theory [30],

gω = −�c

2
〈E∗|∂ε/∂x |E〉

〈E∗|ε|E〉 , (10)

including the contribution from photoelastic and moving boundary terms in the dielectric perturbation
∂ε/∂x , with the first term being dominant. In the other hand, the dissipative coupling is obtained from
the full calculation of the complex optical frequency for a standing dielectric ring with its edge moving
with respect to the metallic ring position – assuming that the radial moving boundary is the most
important component for the dissipative modulation, being directly related to the gap between the
disk edge and the metallic ring. gκ is then calculated from the spatial derivative of the imaginary part
of the frequency. Component analysis shows that gω and gκ have opposite signs [30] – in brief, the
approximation of the metal induces a reduction of the optical frequency and an increase of the decay
rate. As shown in Fig. 2(c), we highlight the very high gκ obtained with this strategy, of the order
of GHz/nm, while gω is kept with high values as well, allowing for very high overall optomechanical
coupling. This is a result of the intrinsic separation of the coupling mechanism, where the dispersive
interaction is generated mainly by photoelastic effect and the dissipative interaction arises from a
boundary motion process.
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Fig. 3. Optical spring effect and limit for the self-oscillation regime. (a) We have calculated the optome-
chanical feedback for three values of w ring: 1200 nm (red), 1000 nm (green) and 800 nm (blue), with
respective mechanical frequencies of 1.758 GHz, 2.106 GHz and 2.625 GHz for the indicated me-
chanical mode – displacements profiles shown as insets on the top. We evaluate the relative shift in the
mechanical frequency (i) and the relative optomechanical damping (ii) for a fixed value of Q m = 5000 as
function of the detuning  = (�r − �m)/2π, with interest in the amplification region, where �eff ≤ 0. The
injected current tunes �r, as explicit in (iii). (b) The density plot shows the value of the effective damping
�eff for the case of w ring = 1000 nm, a fixed current and variable Q m, in order to evaluate the impact of
small variations on the mechanical frequency from the design. The current is fixed in I /I th = 2.5, where
�r/2π = 1.95 GHz, and we calculate the minimum Q m needed to achieve �eff = 0, highlighted in black.
Therefore all the points above this curve will present self-pulsed emission, supporting a mechanical
frequency variation of 12% from the design without need of higher Q m.

5. Self-Sustained Laser Pulsation
In the following, we present the calculation of the optical spring effect and optomechanical damping
for our design in order to evaluate the possibility of obtaining self-sustained laser pulsation. There
is an aimed optimal range of mechanical frequencies, near few GHz, where H (�) is high enough,
i.e efficient transduction between the mechanical motion and the optical loss modulation is allowed
[see Fig. 1(c) and (d)], and the dissipative optomechanical coupling is still sufficiently high, based
on Fig. 2(b) and (c). Therefore, it is important to evaluate the device for different values of w ring.
We have chosen to investigate three different w ring lengths: 1200 nm, 1000 nm and 800 nm in
order to find the optimum size. The calculated relative spring effect (i) and optomechanical damp-
ing (ii) are shown in Fig. 3(a) (curves shown in red, green and blue, respectively). The profiles of
the modes are shown as insets at the top of the figure, with respective mechanical frequencies
�m/2π: 1.758 GHz, 2.106 GHz, and 2.625 GHz. The mechanical quality factor was fixed with a
value of Q m = 5000, which is about two times the experimental value obtained for this design of
cavity, but expected to be achievable in reference [18]. We defined a detuning, in analogy with the
term in usual optomechanics, as  = (�r − �m)/2π. In Fig. 3(a)(i) we notice a maximum spring
modification occurs near the zero detuning, where �m is slightly blue shifted from �r – from (8),
we see that this occurs when �2

m ≈ �2
r − �2

r . Also, δ�m/�m is always positive, and it is not sym-
metric due to the non symmetric behavior of �r and �r with the current. Fig. 3(a)(ii) shows the
relative optomechanical damping, defining two regions with respect to zero detuning, increasing or
decreasing �m. Finally, Fig. 3(a)(iii) shows the dependence between detuning and the injection cur-
rent which shows that one may position the system under different conditions of the optomechanical
interaction. In order to have self-sustained pulsation, optomechanical amplification is necessary.
This is achieved under the condition where the damping coefficient is negative, i.e.,, �eff ≤ 0, and
this only occurs when the mechanical frequency is blue shifted with respect to the relaxation os-
cillation frequency – in the figure, this is readily achieved by the green and blue curves. Although
the current allows to sweep the relaxation oscillation frequency, the amplification region is limited
to a small bandwidth, as seen in Fig. 3(a)(ii). The self-sustained oscillation regime was discussed
in our previous work [17]. Essentially, when the laser is turned on, with an injected current above
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the laser threshold, I > I th, the mechanical oscillator receives an initial kick and starts oscillating
with an amplitude decay rate related to its own dissipation. The oscillation lifetime is of the order
of τm = Q m/�m. However, if the mechanical damping is modified, such that �eff ≤ 0, after the initial
kick the mechanical oscillation amplitude would grow with time, until it reaches a dynamical steady-
state, shifted from the rest position and with a non-zero small amplitude oscillation. Such oscillation
is transferred to the photon and carrier population, leading to a self-pulsation state of the laser
emission.

We have checked the system robustness regarding this bandwidth for the observation of the
self-pulsed emission. This concerns essentially small changes of the mechanical frequency and/or
quality factor of the real device. An interesting map of the oscillation condition can be obtained
by plotting the damping rate �eff for different detuning and different mechanical quality factor.
Fig. 3(b) presents this map where we have fixed the w ring = 1000 nm, and operate the laser with an
injection current 2.5 times the lasing threshold value, I /I th = 2.5. Under this condition, the relaxation
oscillation frequency is �r/2π = 1.95 GHz. The black curve denotes �eff = 0, i.e., the onset of the
sustained oscillations. Points above this curve are therefore in the amplification regime, showing
the robustness of the device – a variation of 12% of the mechanical frequency from the design
is supported without necessary increase of the mechanical quality factor. These predictions are
consistent with the full numerical integration of the optomechanical laser rate equations, as shown
previously [17]. Thus we expect this model to provide good analytical predictions about the threshold
for the self-sustained optomechanical laser oscillation.

An obvious concern about the feasibility of this device is the very small gap which is necessary to
achieve a reasonable value of gκ. We observe that these simulations are based on a mode resonant
aroung 950 nm and with the first radial order of the optical mode. There are two possible ways of
improving this scenario: by using a higher radial order mode, which is supposed to be less confined
and have a more spread evanescent field, naturally leading to higher dissipative coupling; and/or by
using different semiconductor alloys and then work with emission between 1300 nm and 1600 nm,
since the mode is less confined in these cases as well. These are ongoing subjects beyond the
scope of this paper. Nevertheless, given the well established current nanofabrication techniques,
this value for the gap between the dielectric disk and the metallic ring, although challenging, should
not be an impediment for an experimental implementation of the device. Furthermore, the model
presented is general of a semiconductor laser cavity and can be applied to other geometries and
gain media, leading to similar dynamics. The most relevant limitation is the absence of thermal
effects. Heating of the device may occur due to non-radiative recombination or excess free carriers
and shift the optical resonances and the gain envelope. It may also cause degradation of the optical
and mechanical quality factors and diminish the efficiency of the laser. Nevertheless, our proposed
design has robust working points and acceptable parameters. Besides this, thermal effects can be
mitigated at low temperature due to the reduced thermal expansion and reduced thermo-optic effect.
Therefore, the active bullseye represents a realistic device for the pursuit of the optomechanical
laser and the predicted self-sustained pulsed emission.

6. Conclusion
We have shown the existence of coupling between the laser relaxation oscillation and the mechani-
cal motion in an optomechanical laser with both dispersive and dissipative optomechanical coupling
under a semi-classical approach. Small signal analysis reveals the dependence of the optomechan-
ical damping and optical spring effect with the laser parameters, controlled by the injected current.
Even in the absence of a coherent external pump, it is possible to achieve an optomechanical
amplification, when the laser relaxation oscillations couple to the mechanical oscillation, leading
to self-oscillating light emission. A proposed design based on high confinement of both the optical
and the mechanical mode combined with a near-field dissipative structure results in high disper-
sive and dissipative optomechanical coupling factors, compatible with experimental demonstration.
Incorporation of optical gain in optomechanical cavities may now enable the development of a new
class of active devices.
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