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Abstract. This paper presents a size-structured dynamical model of plant growth. The model
takes the form of a partial differential-integral equation and includes the effects of self-
shading by leaves. Closed form solutions are presented for the equilibrium size density dis-
tribution. Analytic conditions are derived for community persistence, and the self-thinning
exponent is obtained as a function of species characteristics and environmental conditions.

1. Introduction

Most mathematical models agree that migration, birth, and death are the three most
important processes dictating the growth and dynamics of populations or entire
communities (Chew and Chew, 1965; Harper, 1977; Nagano, 1978; Hara, 1984a,b,
1985; Takada and Iwasa, 1986; Petersen, 1988; West et al., 1989; Petersen et al.,
1990; Weiner, 1990; Kohyama, 1991, 1992). However, the search for general prin-
ciples of plant population dynamics is unlikely to produce robust generalizations,
unless specific habitat and life forms are taken into account. Therefore, population
dynamic models of plant growth should be specifically addressed to certain habi-
tat/forms type (e.g. trees in forest, shrubs in desert, annuals in early successional
communities, herbaceous perennials in grasslands) and should account for both
the spatial and size structures of the population (Leslie, 1945; Lefkovitch, 1965;
Schaffer and Leigh, 1976; Antonovics and Levin, 1980; Pacala and Silander, 1985;
Metz and Diekmann, 1986; Crawley, 1990; Czárán and Bartha, 1992; De Angelis
and Gross, 1992; Bishir and Namkoong, 1992; Hara, 1992; Hara and Wyszomirski,
1994; Durrett and Levin., 1994; Takada and Hara, 1994; Diekmann et al., 1998;
Cushing, 1998; Diekmann et al., 2001; Bolker et al., 2003).

In this regard, population size structure is the most apparent and the most appli-
cable to applied biological sciences such as agronomy and forestry. For example,
world-wide data sets describing the size density distribution of tree-dominated
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communities are available and have been used to calibrate allometric relation-
ships, namely how trees attributes such as number per unit area, standing leaf
biomass, basal stem diameter, height, change with variation in tree size (Yoda et al.,
1963; Enquist and Niklas, 2001). Theoretical allometric studies based on mechan-
ical (McMahon, 1973) and biophysical (Niklas, 1994; West et al., 1997, 1999b,a;
Enquist et al., 1998, 1999; Niklas et al., 2003) principles, result in one of plant
ecology’s most robust empirical generalizations: the so-called self-thinning rule. It
predicts that the number of trees per unit area scales as the -2 power of basal stem
diameter or as the -3/4 power of tree biomass, which also implies, by assuming that
tree biomass is proportional to tree volume (approximately basal stem diameter
times height), that tree height scales as the 2/3 power of basal stem diameter. In
contrast to such theoretical studies, statistical analysis of real data sets confirms
the allometric power law relationships but yields values of the power law exponent
which may differ from the theoretically derived values. E.g. (Niklas et al., 2003)
found that the number of trees per unit area scales as the -1.75 power of basal stem
diameter based on a world-wide data set for the size density distributions of 226
communities consisting of woody plant species.

In this paper, we develop a non-spatial, size-structured continuum model of
plant growth, without focusing on a particular species, but with emphasis on a dense
tree-dominated forest. We intentionally sacrifice biological realism for mathemati-
cal tractability, but we derive a closed form solution for the equilibrium size density
distribution and analytical conditions for communities persistence. Our model is
based on the following features: (i) all individuals larger than a designated size
class contribute new individuals to the smallest size class (in the form of seeds),
(ii) individuals continue to grow in size (and thus pass into progressively larger
size classes) until they reach a species-specific maximum size class beyond which
they do not grow owing to death, (iii) individuals in each size class (other than
the smallest class) shade those in the smaller size classes, and (iv) individuals in
all size classes die as a result of stochastic abiotic or biotic processes. Intraspe-
cific competition for water and soil nutrients and soil nutrient recycling through
decomposition of dead plants are omitted from the model. This is a simplification
of reality but is expected to be valid when water and soil nutrients are available at
nonlimiting quantity and concentrations. Herbivores effects are also omitted. How-
ever, there is general agreement among plant ecologists that asymmetric intra- and
inter-specific competition for light is the driving force in the dynamics of most plant
communities living in non-desert environments (Crawley, 1990) and that removal
of herbivores often has little effect on plant population dynamics and persistence
(Crawley, 1989).

The model permits us to assess how the dynamics of the size density distri-
bution of a population depends on its species-specific growth and seeding rates,
shading capacity, and mortality. The model allows us to simulate the dynamics of a
population from its inception (germination of broadcast seeds) to maturity as well
as to evaluate the equilibrium condition, i.e., the structure of a stable size density
distribution and its persistence under the foregoing parameter perturbation. Despite
its simplicity the model shows a remarkable agreement with the self-thinning rule
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as tested by prior works using a world-wide data set for the size density distributions
of 226 communities consisting of woody plant species (Enquist and Niklas, 2001).

The rest of the paper is organized as follows. Section 2 presents the mathemat-
ical model. We first consider a discrete size structure and we later take the limit
to an infinite number of size classes to obtain a continuum model. We feel that
this approach is more biologically transparent than directly deriving the continuum
model. Section 2.1 reports on the analytical conditions for the persistence of the
plant community and the closed form solutions for the equilibrium size density
distributions (mathematical details are relegated to Appendices I and II), which are
pictured in some examples in Section 2.2. Section 2.3 shows the transient behav-
ior of the model reporting some examples obtained via numerical simulation. The
discussion of the mathematical results and their biological interpretations in terms
of community persistence and self-thinning are given in Section 3, while a criti-
cal revisitation of the model and some remarks on possible future works close the
paper.

2. Mathematical model

We consider the size density distribution of a single species with M+1 discrete size
bins, where the size variable is plant basal stem diameter D. Emphasis is placed
on basal stem diameter because it is the easiest to measure and most often used
size variable in the field. We note, however, that the model is equally appropriate
and robust if the ‘single species’ is considered to reflect an ‘average species’ for
each of the M + 1 size bins. We now consider the discrete version of the model,
but we will later extend the model by taking the limit as M approaches infinity
to obtain a continuum model, which is more tractable mathematically. For direct
(but equivalent) approaches to the continuum model see Webb (1985); Metz and
Diekmann (1986); Cushing (1998); Diekmann et al. (1998, 2001).

For the discrete version, the variables describing the state space are N0, N1,...,
NM , each corresponding to a measure of the plants which lie in size bins D0, D1,...,
DM , respectively. The equations of motion are:

dN0

dt
= −γN0−λN0(N1 + N2 + · · · + NM) − µN0 + σ(N1 + N2 + · · · + NM)

(1)
dNi

dt
= γ (Ni−1 − Ni)−λNi(Ni+1 + Ni+2 + · · · + NM) − µNi (1 ≤ i ≤ M)

(2)

where γ is a scaling coefficient for the average rate of growth in size (basal stem
diameter) for all the individuals in size bin Di . This parameter dictates the rate
at which individuals ‘migrate’ from one size bin to the next larger bin size as a
consequence of increasing size. The parameter λ denotes asymmetric competition
for light, i.e. the negative effects of larger individuals on the growth of smaller
counterparts in terms of light capture. Larger (taller and wider) individuals will
necessarily shade smaller individuals growing in their shadow as a result of their
elevated and broader leaf canopies. The mortality coefficient µ reflects the effects of
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a variety of factors that have the potential to cause death (e.g., pathogens, herbivory,
and local mechanical perturbation such as wind-throw). This parameter reduces the
number of individuals in any given size bin. Note that asymmetric competition in
model (1), (2) is modeled as an extra mortality (Hara, 1985). Other authors have
interpreted asymmetric competition as a limitation to growth, i.e. as a reduction
of the rate of ‘migration’ to the next class (Takada and Iwasa, 1986; Hara, 1992).
While it is obvious that shading has both the effects of increasing mortality and lim-
iting growth, the two effects appear as different terms in the equations. Our choice
here has been made for convenience, in order to obtain closed form equilibrium
solutions to the continuum model (see Appendix II). The seeding coefficient σ is a
measure of the fecundity of the individuals comprising a population (or that of the
‘average species’ reflecting a mixed-species community), i.e., the number of viable
seeds produced per individual per unit time. All individuals (except those in the
first class) produce seeds until they die, since no evidence for a threshold plant size
below which reproduction is impossible has been documented (Rees and Crawley,
1989). Finally, note that the model proscribes a maximum size. Individuals reach-
ing this size survive for a time (they grow in size within the largest bin size) but
they eventually die and leave this size bin.

Briefly then, γ is a growth coefficient, λ is a shading coefficient, µ is a mortality
coefficient, and σ is a seeding coefficient. See Fig. 1.

We have taken the coefficients γ , λ, µ and σ as constants. In the case of λ, µ

and σ this has been done for convenience. A more general (but complex) model

Fig. 1. Schematic of a simple size density distribution with Ni number of plants in each of
three size categories (defined in terms of basal stem diameter Di). Four parameters are used
to model the dynamics of Ni : the seeding coefficient σ , which characterizes the number of
seeds produced per individual per unit time; the shading coefficient λ, which characterizes
the extent to which larger plants shade smaller plants; the growth coefficient γ , which char-
acterizes the rate at which plants grow and thus ‘migrate’ from one size category to the next
(e.g. from D0 to D1); and the mortality coefficient µ, which characterizes the loss of plants
from each size category as the result of stochastic abiotic or biotic processes (e.g. wind throw
and disease, respectively)
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would allow these parameters to depend on i, i.e. to vary as a function of basal stem
diameter. In contrast, the assumption that γ is constant is predicated on empirical
observations (Chew and Chew, 1965; Niklas, 1997). Specifically, 1/γ is the time
required for a plant to grow from one size bin to the next, i.e., γ is the diameter
growth rate. Allometric theory shows that the height of a vascular plant H scales as
a power law of the basal stem diameter, i.e. H ≈ Dh (Enquist and Niklas, 2001),
from which it follows that plant volume and plant mass are proportional to D2+h.
Taking a time derivative we see that biomass growth rate is proportional to D1+h

times diameter growth rate γ . Moreover, it has also been shown that the biomass
growth rate at the level of an individual plant is proportional to the standing leaf
biomass, which scales as HD ≈ D1+h (Enquist and Niklas, 2002). Therefore, the
diameter growth rate γ is constant across all size bins.

To transform the discrete model (1), (2) into a continuum model, we replace
the discrete model’s bin measure Ni by a density n(D, t) in the continuum model
(in the following we will omit the time dependence when not necessary). The two
are related by the equation:

Ni =
∫ Di+h

Di

n(D)dD (3)

where h is the bin width (which is typically constant in the available size density
distributions for real plants). Eq. (3) is approximated for small h by the relation

Ni = n(Di) h (4)

We now nondimensionalize the bin size variable D so that Dmax = 1 by defining

D̃ = D

Dmax

and then dropping the ∼for convenience.
Note that

∂n

∂D
≈ n(Di) − n(Di−1)

h
≈ Ni − Ni−1

h2 (5)

and ∫ 1

D

n dD ≈ (n(Di+1) + n(Di+2) + · · · + n(DM))h

≈ (Ni+1 + Ni+2 + · · · + NM) (6)

Dividing Eq. (2) by h gives

1

h

dNi

dt
= �

h2 (Ni−1 − Ni) − λ
Ni

h
(Ni+1 + Ni+2 + · · · + NM) − µ

Ni

h

where � = γ h. Note that as h → 0, γ → ∞ such that the product γ h is constant.
Using Eqs. (4), (5), (6) and taking the limit as h → 0, we obtain:

∂n

∂t
= −�

∂n

∂D
− λn

∫ 1

D

n dD − µn (7)
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We next divide Eq. (1) by h:

1

h

dN0

dt
= − �

h2 N0 − λ
N0

h
(N1 + · · · + NM) − µ

N0

h
+ σ

h
(N1 + · · · + NM)

Again using Eqs. (4), (5), (6), we obtain the approximate intermediate result:

∂n

∂t
= −�

h
n − λn

∫ 1

0
n dD − µn + σ

h

∫ 1

0
n dD, D = 0

where we have taken the smallest size class as D = 0 for convenience. Multiplying
by h and taking the limit as h → 0, we obtain the boundary condition:

�n = σ

∫ 1

0
n dD, D = 0 (8)

The continuum model consists of Eq. (7) with the boundary condition (8). Eqs. (7),
(8) are a particular version of the Sharpe and Lotka (1911)-McKendrick (1926)-von
Foerster (1959) equation

∂n

∂t
= − ∂

∂D
(G(D, t)n(D, t)) − M(D, t)n(D, t)

with boundary condition

G(D, t)n(D, t) = R(t), D = 0

which has been used by many authors in plant ecology (Nagano, 1978; Takada and
Iwasa, 1986; Kohyama, 1992) as well as in various other fields of biology (Trucco,
1965; Shinko and Streifer, 1967; Levin and Paine, 1974; Paine and Levin, 1981;
Kirkpatrick, 1984). Likewise, the Sharpe-Lotka-McKendrick-von Foerster equa-
tion is a particular version of the more general Fokker-Plank equation (also known
as diffusion or Kolmogorov forward equation), which describes the moment dynam-
ics of a probability distribution and has been used by Hara (1984b) and many others
to incorporate the spatial and stochastic fluctuations of the size density distribution.
The original Sharpe-Lotka-McKendrick-von Foerster equation is linear. Nonlinear
age- and size-structured population models have been first proposed by Gurtin
and MacCamy (1974) and Hoppensteadt (1974) (see also Webb, 1985; Metz and
Diekmann, 1986; Cushing, 1998; Diekmann et al., 2001). Traditionally, the source
of nonlinearity is the density dependence of some of the characteristic population
rates (birth, death, migration) on the total population size

NT =
∫ 1

0
n dD (9)

(see Eq. (6)). Such nonlinearities pose integral conditions on the solution of the
boundary-value problem, which typically prevent any possibility of deriving closed
form equilibrium solutions. Conversely, the nonlinearity present in our model is
due to asymmetric competition, often called one-side competition because the char-
acteristic population rate, mortality due to shading, is only affected by one side of
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the size distribution, with respect to the shaded plant, i.e. by bigger plants. This
results in the partial differential-integral Eq. (7), whose equilibria can be solved
analytically (see Appendix II). A similar model, in which the appearance of such
a nonlinearity arises from hierarchical competition, is described in Kinzig et al.
(1999) and inspired the present work.

Although model (7), (8) involves four parameters �, λ, µ and σ , the number of
parameters can be reduced to two by defining the following normalized quantities:

t̂ = �t, n̂ = λ

�
n, µ̂ = µ

�
, σ̂ = σ

�
(10)

In terms of these quantities, Eqs. (7), (8) become:

∂n̂

∂t̂
= − ∂n̂

∂D
− n̂

∫ 1

D

n̂ dD − µ̂n̂ (11)

n̂ = σ̂

∫ 1

0
n̂ dD, D = 0 (12)

2.1. Community persistence and equilibrium size density distributions

Note that the model (11), (12) exhibits the trivial solution n̂ ≡ 0, which leads to
the local extinction of the species being modeled. We show in Appendix I that the
trivial solution n̂ ≡ 0 is stable if and only if

σ̂ <
µ̂

1 − e−µ̂
(13)

and unstable otherwise. Eq. (13) indicates that the plant species will not survive
unless the seeding coefficient σ̂ is large enough relative to the mortality coefficient
µ̂. See Fig. 2.

The equations governing the equilibrium size density distribution (the steady
state equilibrium) in the model (11), (12) are:

dn̂

dD
+ n̂

∫ 1

D

n̂ dD + µ̂n̂ = 0 (14)

n̂ = σ̂

∫ 1

0
n̂ dD, D = 0 (15)

InAppendix II we show that a nontrivial steady state solution exists in the region
of the µ̂-σ̂ parameter plane in which the trivial solution is unstable, see Figure 2.
The analytical expression of the steady state solution is different in the two regions
A and B in Fig. 3, which are separated by the following curve:

σ̂ = 2

2 − µ̂
(16)

In region B, the steady state solution takes the form:

n̂(D) = 4k2(µ̂2 − 4k2)

4k2 − µ̂2 + (4k2 + µ̂2) cosh 2k(1 − D) − 4kµ̂ sinh 2k(1 − D)
(17)
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Fig. 2. Stability of the trivial solution n̂ ≡ 0. See Eq. (13)

where k is a parameter related to µ̂ and σ̂ by the equation:

µ̂σ̂ sinh2 k − 2σ̂ k sinh k cosh k + 2k2 = 0 (18)

and in region A, we have the steady state solution:

n̂(D) = 4c2(µ̂2 + 4c2)

4c2 + µ̂2 + (4c2 − µ̂2) cos 2c(1 − D) − 4cµ̂ sin 2c(1 − D)
(19)

where:

µ̂σ̂ sin2 c − 2σ̂ c sin c cos c + 2c2 = 0 (20)

On the curve (16) separating regions A and B, the steady state solution takes the
form:

n̂(D) = 2µ̂2

((1 − D)µ̂ − 2)2 (21)

See Appendix II for details.
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Fig. 3. The curves given in Eqs. (13), (16) divide the µ̂-σ̂ plane into 3 regions (here des-
ignated by A, B, C). In region C, the only steady state is the trivial solution n̂ ≡ 0, which
is stable in region C and unstable in regions A and B. The representation of the nontrivial
steady state solution (17) is valid in region B, while the representation (19) is valid in region
A. On the curve (16) separating regions A and B, the representation (21) is valid

2.2. Examples

As an example of the steady state solution (17) in region B, we take

µ̂ = 3, σ̂ = 4 ⇒ k = 1.46227 (from Eq. (18))

The corresponding steady state solution (17) is plotted in Fig. 4.
As an example of the steady state solution (19) in region A, we take

µ̂ = 1, σ̂ = 3 ⇒ c = 0.6011 (from Eq. (20))

The corresponding steady state solution (19) is plotted in Fig. 4.
As an example of the steady state solution (21) on the boundary (16) between

regions A and B, we take

µ̂ = 1.5, σ̂ = 4

The corresponding steady state solution (21) is plotted in Fig. 4.
These solutions have been checked by numerically integrating the partial differ-

ential-integral equation (11) with the boundary condition (12). These numerical
integrations show that these nontrivial steady states are stable because they were
approached as t̂ → ∞ for all initial conditions tried.
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Fig. 4. Steady state equilibrium solutions. The lower curve is Eq. (17) for µ̂ = 3, σ̂ = 4
which lies in region B. The middle curve is Eq. (19) for µ̂ = 1, σ̂ = 3 which lies in region
A. The upper curve is Eq. (21) for µ̂ = 1.5, σ̂ = 4 which lies on the boundary (16) between
regions A and B. Note that while the analytical solutions (17), (19) and (21) have different
forms, they all have the same general appearance when plotted

2.3. Transient behavior

The transient behavior exhibited by the model is shown here by numerically inte-
grating the partial differential-integral equation (11) with the boundary condition
(12) for a variety of parameters and initial conditions and displaying plots of n̂

versus D for a time sequence. Fig. 5 corresponds to the parameters µ̂ = 3, σ̂ = 4,
which lies in region B (see Fig. 3), for the initial condition n̂(0) = 0.1 (1 − D).
This scenario corresponds to an environment in which there is initially a very small
population compared to the steady state. The growth is monotonic.

Figure 6 corresponds to the same parameters but a different initial condition,
i.e., n̂(0) = 12/(1 + D)10. In this example, we have an initial population that is
comparable to that of the steady state, consisting of mainly smaller sized plants.
The result is that we see a ‘bump’in the n̂(D) curve, which propagates to the right as
time increases. This bump corresponds to growth of the plants which were initially
present and has been observed in real plant populations (Sprugel, 1976). We also
see slower growth occurring due to seeds generated by the bump and other plants.
The final time shown, t̂ = 9 is very close to the steady state (which has already
been shown as the bottom curve in Fig. 4). Comparing the initial distribution with
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Fig. 5. Transient behavior obtained by numerical integration of Eqs. (11), (12). Parameters
are µ̂ = 3, σ̂ = 4 and the initial condition is n̂(0) = 0.1 (1 − D). The lowest curve in
this figure corresponds to t̂ = 0, and each curve above it corresponds in sequence to times
{1, 2, · · · , 9}. This scenario corresponds to an environment in which there is initially a very
small population compared to the steady state

the steady state, we see that the measure of smaller plants has decreased while that
of larger plants has increased.

Figure 7 corresponds to the same initial condition as Fig. 6, and the same value
of the mortality coefficient µ̂ = 3, but to a smaller value of the seeding coefficient
σ̂ = 2. This system lies in region C of Fig. 3 in which the only steady state is the
trivial solution n̂ ≡ 0. We see the same bump as in Fig. 6, again corresponding to
the growth of the plants which were initially present. However, here the seeding
rate is not large enough to sustain a nontrivial steady state, and the population is
seen to be decreasing to zero as time gets larger.

3. Discussion

An interesting feature of the model is the absence of a nontrivial steady state in the
region C of the µ̂-σ̂ parameter plane. This ‘tipping point’phenomenon is to be con-
trasted with another plausible scenario in which the total population size at steady
state gradually gets smaller as the seeding coefficient σ̂ is reduced to zero. Let us
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Fig. 6. Transient behavior obtained by numerical integration of Eqs. (11), (12). Parameters
are µ̂ = 3, σ̂ = 4 and the initial condition is n̂(0) = 12/(1 + D)10. Each curve corresponds
in sequence to times {0, 0.1, 0.2, · · · , 0.9}. This scenario corresponds to an environment in
which there is an initial population which is comparable in measure to the steady state. The
bump seen propagating to the right as time increases corresponds to the growth of plants
which were initially present. We also see slower growth occurring due to seeds generated by
the bump and other plants

designate by N̂T the normalized total steady state population size (see Eq. (9)):

N̂T =
∫ 1

0
n̂ dD (22)

We show in Appendix II how the steady state solutions obtained above can be used
to get expressions for N̂T . For example, in region B we obtain

N̂T = (µ̂2 − 4k2) sinh k

2k cosh k − µ̂ sinh k
(23)

By combining Eq. (23) with Eq. (18), we may find the locus of points in the µ̂-σ̂
parameter plane which correspond to a fixed steady state population size N̂T . The
result is shown in Fig. 8 for N̂T = 2, 4, 6, 8 and 10. By inspection of Fig. 8 we
obtain the following approximate relationship between N̂T and parameters µ̂ and
σ̂ , valid for µ̂ > 3:

N̂T ≈ 2(σ̂ − µ̂) (24)



A size-structured model of plant growth 345

Fig. 7. Transient behavior obtained by numerical integration of Eqs. (11), (12). Parameters
are µ̂ = 3, σ̂ = 2 and the initial condition is n̂(0) = 12/(1 + D)10. Each curve corresponds
in sequence to times {0, 0.1, 0.2, · · · , 0.9}. This scenario is similar to that of Fig. 6 except
here the seeding rate σ̂ is too small to sustain a nontrivial steady state, and the population is
seen to be decreasing to zero as time gets larger

Figure 8 illustrates that although nontrivial steady states occur at all points in regions
A and B, the steady state population size gets larger as we get further away from
the boundary of region C, see Eq. (13).

It is of interest to convert Eq. (24) from normalized quantities back into physical
quantities, (see Eqs. (10), (9)), i.e.

NT ≈ 2

(
σ − µ

λ

)
valid for µ > 3� (25)

This shows that although increases in both the mortality coefficient µ and the shad-
ing coefficient λ tend to decrease the total steady state population size, they do so in
a markedly different manner. An increase in λ reduces NT in a continuous fashion,
whereas an increase in µ has a tipping point at approximately µ = σ such that any
larger values of µ cause NT to be zero.

The model presented here mimics many of the features of real plant size den-
sity distributions. For example, as described in the introduction, prior work using a
world-wide data set for the size density distributions of 226 communities consisting
of woody plant species (Enquist and Niklas, 2001) indicates that these distributions
are well approximated by log-log linear regression curves, taking the general form
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Fig. 8. Normalized total steady state population size N̂T . Each curve corresponds to the
locus of points on which N̂T = 2, 4, 6, 8, or 10 respectively. Cf. Figs. 2, 3

Ni = βDi
−α (26)

where Ni is the number of individuals in the basal stem diameter size bin Di , β is
an allometric constant, often called the Y-intercept of the log-log linear regression
curve, and −α is the slope of the regression curve. Similarly, our model can be
used to generate log-log size density distributions for all simulated plant popula-
tions reaching an equilibrium condition by approximating the distribution equilib-
ria (17), (19) by a regression curve of the form of Eq. (26). The result is shown in
Figs. 9, 10 for α and β, respectively.

As was mentioned in the introduction, both theoretical and experimental stud-
ies have shown that α typically takes on values around 2. E.g., across 226 plant
communities, the mean ± SE of the slopes of the log-log linear regression curves
was found to be −1.75 ± 0.03. A particular value of α corresponds in our model
to a relationship between µ̂ and σ̂ which plots as a curve in the µ̂-σ̂ plane. See
Fig. 11. Note that the model predicts that higher mortality µ̂ accompanies lower
seeding coefficient σ̂ .

Our model indicates that the shading coefficient λ reduces the total number of
individuals in a population, but that this parameter has no effect on the slope −α of
a log-log linear regression of the numbers of individuals in size bins versus plant
size of a population’s size density distribution.
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Fig. 9. This figure shows the result of least squares fitting a straight line to the log n̂ vs.
log D version of Eq. (17), yielding an approximation of the form log n̂ = log β − α log D
or n̂ = βD−α . Here we display α as a function of µ̂ and σ̂ . Points in region C are displayed
as having α = 0. Cf. Fig. 3

Our model shows that the shape of the size density distribution will change over
time as a population grows in size (number of individuals) such that the distribution
is skewed initially to the left (toward smaller plant sizes) as a result of seeding but
subsequently becomes less skewed (as individuals increase in their average size
and migrate to larger bin sizes). This prediction is consistent with the behavior
of real plant populations and mixed-species communities. It also sheds light on
the supposition that the numerical value of the slope of log-log linear size density
distributions decreases as a population or community ages or fails to experience
global physical or biological disturbance (Niklas et al., 2003). This supposition
is predicated on the fact that larger individuals, which take time to grow to their
large size, shade their smaller counterparts and thus directly or indirectly reduce
the numbers of smaller individuals in a population or a community.
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Fig. 10. This figure shows the result of least squares fitting a straight line to the log n̂ vs.
log D version of Eq. (17), yielding an approximation of the form log n̂ = log β − α log D
or n̂ = βD−α . Here we display β as a function of µ̂ and σ̂ . Points in region C are displayed
as having β = 0. Cf. Fig. 3

4. Conclusions

Our model is extremely simple in terms of using only four parameters to generate
plant size density distributions, and each of these parameters (�, µ, λ and σ ) math-
ematically subsumes a number of biological phenomena, each of which taken in
isolation may profoundly influence the shape of real size distributions. Likewise,
we have adopted a number of simplifying assumptions. For example, we assume
nonlimiting water abundance and soil-nutrient concentrations, and that the mortal-
ity, shading and seeding coefficients µ, λ and σ are invariant across the different
size categories in each size distribution. Finally, we note that our model treats a
population of conspecifics (i.e. a population composed of many plants of the same
species) rather than a community composed of many species, each characterized by
its own specific biological features (reflected by the numerical values of �, µ, λ and
σ ). Future refinements of the model are required to remedy these simplifications.
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Fig. 11. This figure shows curves in the µ̂-σ̂ plane which correspond to constant α values
in the regression relation n̂ = βD−α . These curves are level sets of the surface in Fig. 9.
The α values chosen, 1.75 and 2, correspond respectively to experimentally obtained and
theoretically derived values

Thus, for example, we may assume that λ scales like a power law of D, as the capac-
ity to shade smaller individuals increases as a function of absolute size. Another
refinement involves simulating the size density distributions of mixed-species com-
munities to evaluate whether their mathematical behavior accords with the behavior
of real communities.

Despite its apparent simplicity, our model obtains a general phenomenology for
size distributions that is consistent with empirical observations on the size density
distributions of vascular plant communities world-wide. This congruity suggests
that the model is biologically robust. For example, our model draws sharp attention
to the influence of the relative numerical values of the seeding coefficient and the
mortality coefficient, σ and µ, respectively. Model behavior for which σ sufficiently
exceeds µ predicts stable equilibria for size density distributions, whereas distribu-
tions that eventually collapse are obtained when σ is sufficiently small compared to
µ (see Eq. (13) or (25)). This result is biologically logical and consistent with obser-
vations on the distribution of conspecifics in mixed-species communities, which
show that species failing to produce sufficient seeds eventually disappear from such
communities.
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The model as presented here appears to mimic the general phenomenology
observed for real plants and offers a mathematically explicit and heuristic approach
to dissecting the complex affects of growth in size, fecundity, mortality, and the
capacity to shade smaller individuals on the general shape of a size distribution.
In particular, the model offers a closed form expression for the equilibrium size
density distribution, from which explicit algebraic conditions for persistence have
been derived. Moreover, when the results of the model are approximated by a log-
log regression curve, a given slope (such as -2) has been shown to correspond a
specific relationship between mortality and fecundity.

Appendix I: Stability of the trivial solution

In order to investigate the linear stability of trivial solution, we linearize Eqs.
(11), (12) about n̂ = 0:

∂n̂

∂t
= − ∂n̂

∂D
− µ̂n̂

n̂ = σ̂

∫ 1

0
n̂ dD, D = 0

To determine stability, we set n̂(D, t) = ertf (D), which gives:

f ′ + (µ̂ + r)f = 0 (27)

f = σ̂

∫ 1

0
f dD, D = 0 (28)

where by ′ we mean ∂/∂D. The transition from stable to unstable occurs when
r = 0. Using this condition in Eq. (27) gives

f = exp(−µ̂D) (29)

Inserting (29) into the boundary condition (28), we get

1 = σ̂

(
1 − e−µ̂

µ̂

)

Thus, the trivial solution n̂ ≡ 0 is stable if and only if

σ̂ <
µ̂

1 − e−µ̂
(13)

and unstable otherwise.
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Appendix II: Steady state equilibrium

The equations governing the steady state equilibrium in the model (11), (12) are:

dn̂

dD
+ n̂

∫ 1

D

n̂ dD + µ̂n̂ = 0 (14)

n̂ = σ̂

∫ 1

0
n̂ dD, D = 0 (15)

here reported for convenience. These equations may be solved by setting

z(D) =
∫ 1

D

n̂ dD ⇒ n̂(D) = − dz

dD
(30)

which gives the following ordinary differential equation:

z′′ + z′z + µ̂z′ = 0 (31)

with the boundary conditions

z = 0 when D = 1 (32)

z′ + σ̂ z = 0 when D = 0 (33)

Equation (31) can be solved to satisfy the boundary condition (32):

z = (µ̂2 − 4k2) sinh(1 − D)k

2k cosh(1 − D)k − µ̂ sinh(1 − D)k
(34)

where k is an arbitrary constant. Substituting (34) into the boundary condition (33)
gives the relation (18) between k and µ̂ and σ̂ . The corresponding steady state
expression (17) is obtained by differentiating Eq. (34), while Eqs. (19), (20) are
obtained from (17), (18) by setting k = ic, respectively.

Each of the two representations (17), (19) is valid in a distinct region of the
µ̂-σ̂ parameter plane. To find these regions, we note that the two representations
are separated by the value k = 0. The curve separating the two regions is there-
fore obtained by setting k = 0 in Eq. (18), which gives Eq. (16). Straightforward
computations show that the corresponding steady state solution takes the limiting
form of Eq. (21) as k → 0.

The Eqs. (19), (20) simplify in the important case of no mortality, µ̂ = 0:

n̂(D) = 2k2 sec2 k(1 − D), µ̂ = 0

where k is related to σ̂ by:

σ̂ = 2k csc 2k, µ̂ = 0

The normalized total steady state population size N̂T (see Eq. (22)) is related to the
quantity z(D) defined in Eq. (30):

N̂T = z(0)

In region B, for example, we may use Eq. (34) to easily obtain expression (23).
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