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Abstract

Unsupervised pre-training has led to much re-

cent progress in natural language understand-

ing. In this paper, we study self-training as an-

other way to leverage unlabeled data through

semi-supervised learning. To obtain addi-

tional data for a specific task, we introduce

SentAugment, a data augmentation method

which computes task-specific query embed-

dings from labeled data to retrieve sentences

from a bank of billions of unlabeled sentences

crawled from the web. Unlike previous semi-

supervised methods, our approach does not re-

quire in-domain unlabeled data and is there-

fore more generally applicable. Experiments

show that self-training is complementary to

strong RoBERTa baselines on a variety of

tasks. Our augmentation approach leads to

scalable and effective self-training with im-

provements of up to 2.6% on standard text

classification benchmarks. Finally, we also

show strong gains on knowledge-distillation

and few-shot learning.

1 Introduction

Self-training is a semi-supervised method which

uses a teacher model, trained using labeled data,

to create synthetic labels for unlabeled exam-

ples (Scudder, 1965; Yarowsky, 1995). These syn-

thetic labels are then used to train a student model.

This approach is called self-training when the stu-

dent model has a similar or higher capacity than the

teacher, and knowledge distillation (Hinton et al.,

2015) when the student model is smaller than the

teacher. Self-training has been successfully ap-

plied to a variety of tasks, including image recog-

nition (Yalniz et al., 2019; Xie et al., 2020; Zoph

et al., 2020), automatic speech recognition (Syn-

naeve et al., 2019; Kahn et al., 2020; Park et al.,

2020), sequence generation (He et al., 2019), and

parsing (McClosky et al., 2006).

∗Equal contribution.

An alternative semi-supervised technique is pre-

training (Dai and Le, 2015; Radford et al., 2018;

Howard and Ruder, 2018; Devlin et al., 2018),

which has led to large improvements for natural

language understanding compared to purely super-

vised learning. In that case, models are first trained

on an auxiliary task, such as language modeling,

followed by fine-tuning on the task of interest.

A natural question is the following: do pre-

training and self-training capture the same infor-

mation, or are they complementary? Recently,

Zoph et al. (2020) studied this question in the

context of image recognition, showing that self-

training was helpful, even in addition to pre-

training. However, their study mostly considers su-

pervised pre-training, in which models were trained

on ImageNet classification. Moreover, in cases

where large amounts of supervised data were avail-

able for the downstream task, pre-training was not

helpful, even without self-training. This is in con-

trast to natural language understanding for which

language modeling pre-training is a very strong

baseline that leads to large improvements for all

the tasks we consider.

An important ingredient for self-training, and

semi-supervised learning in general, is the unan-

notated data and the fact that it comes from the

same domain as the downstream task. Exist-

ing work, such as UDA (Xie et al., 2019), self-

training (He et al., 2019; Xie et al., 2020) and

back-translation for machine translation (Bojar and

Tamchyna, 2011; Sennrich et al., 2015; Edunov

et al., 2018), assumes the existence of unannotated

data in the same domain as the downstream task.

This assumption limits the broad application of

such semi-supervised methods, in particular in the

case of low-resource downstream tasks. A sec-

ond important question is thus: how can we obtain

large amounts of unannotated data from specific

domains?

In this paper, we propose a data augmentation
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method, SentAugment, to build datasets of “in-

domain” data for a given task from data crawled

on the web. Web data covers many domains, and

is available in large quantities. We use a large

bank of web documents and construct sentence em-

beddings (Kiros et al., 2015; Wieting et al., 2016;

Conneau et al., 2017; Artetxe and Schwenk, 2019;

Cer et al., 2018; Arora et al., 2017) that allow us

to retrieve domain-specific unannotated sentences,

which are similar to the existing training set of the

downstream tasks. Our sentence embedding model

is optimized for similarity search, trained with a

triplet loss on ground-truth paraphrases, parallel

sentences as well as as hard negatives (Wieting

et al., 2016; Wieting and Gimpel, 2017). We train a

teacher model using the labeled task data and then

further use it to synthetically label the retrieved

sentences, and train the final model based on this

synthetic dataset. Experiments show that SentAug-

ment is effective for self-training, knowledge dis-

tillation and few-shot learning. The approach is

generally applicable to new problems, leading to

improvements on a variety of domains and tasks

such as hate-speech and movie review classification

over a strong RoBERTa (Devlin et al., 2018; Liu

et al., 2019) baseline. To the best of our knowledge,

this is the first study showing that self-training is

complementary to a strong pre-training baseline for

natural language understanding. Specifically, we

make the following contributions:

• We introduce SentAugment, a data augmen-

tation approach for semi-supervised learn-

ing that retrieves task-specific in-domain data

from a large bank of web sentences.

• We show that self-training improves upon

unsupervised pretraining: we improve

RoBERTa-Large by 1.2% accuracy on average

on six standard classification benchmarks.

• We show that self-training improves accuracy

by 3.5% on average for few-shot learning.

• For knowledge-distillation, our approach im-

proves the distilled RoBERTa-Large by 2.9%

accuracy on average, reducing the gap be-

tween the teacher and the student model.

• We release code and models for researchers

to build on top of our work.1

1
https://github.com/facebookresearch/SentAugment

2 Approach

Our SentAugment approach retrieves task-specific

in-domain unsupervised data from a large bank of

sentences which is used for self-training, where the

teacher model - a RoBERTa-Large model finetuned

on the downstream task - synthetically labels it.

The synthetic labeled data is finally used to train

the output student model (see Figure 1). We give

more details on our approach in what follows.

2.1 SentAugment: data augmentation for

semi-supervised learning

Whereas most semi-supervised approaches rely on

in-domain unlabeled data, we are constructing sim-

ilar datasets on the fly from the large bank of unan-

notated text. In what follows, we describe our data

retrieval strategy for augmentation.

Large-scale sentence bank. Our approach relies

on a large-scale corpus of unsupervised sentences,

derived from data crawled on the web (Wenzek

et al., 2019). Because of its scale and diversity,

our sentence bank contains data from various do-

mains and with different styles, allowing to re-

trieve relevant data for many downstream tasks.

We embed each sentence using a universal para-

phrastic sentence encoder (Wieting et al., 2016;

Arora et al., 2017; Ethayarajh, 2018a), a model

which was trained to output similar representations

for sentences of similar meaning. This sentence

embedding space does not depend on the down-

stream tasks, and will be used to retrieve subsets

of the sentence bank which are relevant to partic-

ular tasks. For sentence encoders, we consider

word2vec embeddings (Mikolov et al., 2013, 2018)

and uSIF (Ethayarajh, 2018b). We also train our

own English sentence encoder, a Transformer pre-

trained with masked language modeling and fine-

tuned to maximize cosine similarity between simi-

lar sentences. Specifically, we use a triplet loss

L(x, y) = max(0, α − cos(x, y) + cos(x, yc))
where positive pairs (x, y) are either paraphrases

or parallel sentences (Wieting et al., 2019a) and yc
are in-batch hard negatives (Wieting et al., 2016).

Downstream task embeddings. For each down-

stream task, we build embeddings that are repre-

sentative of the task, using the same paraphrastic

model. Then, we use these task embeddings as

queries for retrieving similar sentences from the

sentence bank, using cosine similarity in the embed-

ding space. Specifically, we consider three ways

https://github.com/facebookresearch/SentAugment
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Figure 1: The SentAugment approach. The self-training procedure follows multiple steps; Step 1: A RoBERTa-

Large model - the teacher - is finetuned on a downstream task using a cross-entropy loss, Step 2: Task-specific

unannotated data is extracted from a large bank of sentences; This step uses task-specific query embeddings (pro-

duced by a paraphrastic sentence encoder) to select nearest neighbors from the bank. Step 3: This data is synthet-

ically annotated using the teacher model; top K samples from each class are selected to form the final synthetic

dataset; Step 4: A RoBERTa-Large model - the student - is finetuned on this dataset using KL-divergence. Our

approach differs from previous work at Step 2, which we show is crucial for open-domain self-training.

for computing the task embeddings: all-average,

where we obtain one embedding by averaging the

sentence embeddings of all the samples from the

training set of the downstream task ; label-average,

where we construct one embedding per label, cor-

responding to the average of the sentence embed-

dings in the train set for each label ; per-sentence,

where we keep one embedding for each sentence

on the training set of the downstream task.

Unsupervised data retrieval. Using task-

representative embeddings as queries, we retrieve

a subset of our large sentence bank, corresponding

to a few million sentences which we use as

in-domain candidates for semi-supervised learning.

Reducing the amount of unannotated data is an

important step as synthetically annotating billions

of sentences using a large Transformer does not

scale. We perform additional filtering based on

the confidence of our teacher model keeping only

high-confident samples while maintaining the ratio

of labels of the training set of the downstream task.

For relatively small tasks, we use a threshold such

that our augmented training set is approximately a

hundred times bigger, and for datasets of medium

size, only ten times bigger.

2.2 Semi-supervised learning for natural

language understanding

We combine our data augmentation technique with

self-training and knowledge distillation, two semi-

supervised learning techniques that benefit from

having relevant unannotated sentences.

Self-training. Following the steps in Figure 1,

we first train a teacher model by fine-tuning a pre-

trained RoBERTa-Large model on the target down-

stream task. We then use it to annotate the retrieved

in-domain sentences. For each class, we select the

sentences with the highest scores and prune the rest.

We make sure the label ratio is maintained between

the original downstream task training set and the

augmented set by considering the probability of the

classifier. As our student model, we then finetune

a new RoBERTa-Large using KL-divergence on

the synthetic data by considering the post-softmax

class probabilities as labels.

Knowledge-distillation. We follow the same ap-

proach for knowledge-distillation, except we con-

sider a student model that has an order of mag-

nitude less parameters than the RoBERTa-Large

teacher model. As for self-training, we pretrain

the student and use continuous probabilities as syn-

thetic labels. We exploit data augmentation by

using in-domain unannotated sentences.

Few-shot learning. Semi-supervised learning

techniques are adapted to settings where little su-

pervised data is available. We simulate a few-shot

learning environment by only considering a few

samples per class, for several downstream tasks.

We apply data augmentation and self-training in

that context by augmenting the training set by two

to three orders of magnitude more data and use a

teacher model trained on only a few training sam-

ples to synthetically annotate data.
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Dataset task domain #train #classes

SST-2 sentiment analysis movie reviews 67349 2

SST-5 sentiment analysis movie reviews 8544 5

CR product classification product reviews 2500 2

IMP hate-speech classification forum conversations 3947 2

TREC question-type classification short questions 5001 6

CoNLL named entity recognition news stories 11663 5

Table 1: Downstream tasks used for evaluation.

3 Experimental setup

Next, we give details on how we build the bank

of sentences, what downstream tasks we use for

evaluation and we describe our training procedure

for semi-supervised learning.

3.1 Large-scale bank of sentences

As a large-scale external bank of unannotated sen-

tences, we extract and filter text from Common-

Crawl 2 (Wenzek et al., 2019). In particular, we ap-

ply a simple sentence segmenter to turn documents

into sentences and perform deduplication. We refer

to samples in this dataset as sentences although is

also contains shorts spans of text that can be seen as

short documents. We use three corpora, CC-100M

with one hundred million sentences (2B words),

CC-1B with one billion sentences (20B words) and

CC-5B with five billion sentences (100B words),

the first two being random subsets of the biggest

one. When retrieving sentences, we remove those

that overlap with sentences from the test set of the

downstream task. CommonCrawl data contains

a wide variety of domains and text styles which

makes it a good general-purpose corpus. We re-

lease pointers to obtain a similar corpus.

3.2 Evaluation datasets

We evaluate our approach on the Stanford Sen-

timent Treebank (Socher et al., 2013) binary and

fine-grained sentiment analysis datasets (SST-2 and

SST-5), on product classification (CR) from (Hu

and Liu, 2004), hate-speech comment classifica-

tion3 (IMP), question classification (TREC) from

(Voorhees and Tice, 2000) and named entity recog-

nition (CoNLL 2002) from (Sang and De Meulder,

2003). We provide details of each task including

task, domain, size and number of classes in Table 1.

2
www.github.com/facebookresearch/cc net

3
www.kaggle.com/c/detecting-insults-in-social-commentary/overview

3.3 Training details

Our sentence embeddings. We train our own

SentAugment Sentence Encoder (SASE) by

leveraging paraphrases from NLI entailment

pairs (Williams et al., 2017), MRPC (Dolan and

Brockett, 2005), Quora Question Pairs (QQP),

round-trip translation (Wieting and Gimpel, 2017)

and web paraphrases (Creutz et al., 2018), together

with OpenSubtitles (Lison et al., 2019) and Eu-

roparl (Koehn, 2005) parallel data from English to

French, Italian and Indonesian - language pairs that

were shown to provide good paraphrastic sentence

embeddings (Wieting et al., 2019a). We pretrain

the model with a multilingual masked language

modeling objective (Devlin et al., 2018; Conneau

and Lample, 2019) in these 4 languages, with a

sentence piece segmentation trained on a corpus

with 3/4 of English data to give more importance

to English, and the rest in other languages. We use

a triplet loss to learn cosine sentence embedding

similarity where the negative is selected to be the

hardest in the batch. We evaluate our model on STS

benchmarks (Agirre et al., 2012) and report results

in Section 5 where we show our model outper-

forms previous approaches. We found that due to

pretraining and being trained on longer sentences,

our model is also more adapted to raw and long

sentences from CommonCrawl. We also consider

word2vec embeddings (Mikolov et al., 2013) and

the uSIF approach (Ethayarajh, 2018b; Arora et al.,

2017) as baselines in our experimental results.

Fine-tuning the student model. We use

fairseq (Ott et al., 2019) and the open-source

RoBERTa-Large model (Liu et al., 2019) as our

pretrained Transformer baseline and perform

finetuning on each downstream task. We use

Adam, with learning-rate schedule 1e-5. We

use batch-sizes of 16 and dropout rate 0.1. We

fine-tune on synthetically annotated data using

www.github.com/facebookresearch/cc_net
www.kaggle.com/c/detecting-insults-in-social-commentary/overview
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Model SST-2 SST-5 CR IMP TREC NER Avg

RoBERTaLarge 96.5 57.8 94.8 84.6 97.8 92.7 87.4

RoBERTaLarge + ICP 93.9 55.1 93.7 84.4 97.8 92.1 86.2

RoBERTaLarge + ST 96.7 60.4 95.7 87.7 97.8 93.3 88.6

Table 2: Results of self-training on natural language understanding benchmarks. We report a strong RoBERTa-

Large baseline, as well as in-domain continued pretraining of this model (ICP) and our self-training approach (ST).

Model SST-2 SST-5 CR IMP TREC NER Avg

Num samples 40 100 40 40 120 200 -

RoBERTaLarge 83.6±2.7 42.3±1.6 88.9±1.7 77.3±2.8 90.9±2.5 49.0±1.7 72.0±2.2

RoBERTaLarge + ST 86.7±2.3 44.4±1.0 89.7±2.0 81.9±1.4 92.1±2.4 58.4±1.4 75.5±1.8

Table 3: Results of self-training for few-shot learning, using only 20 samples per class.

KL divergence. We found that fine-tuning again

on the training set of the downstream task with

ground-truth labels was not necessary, neither was

adding ground-truth sentences from the training

set to the self-training data.

Few-shot learning experiments. We sample 5

training sets that each consist of 20 examples from

each label from the original training set of the task.

We sample 200 examples from the original vali-

dation set of the task, taking the label distribution

into account. We use the original test set of the

task as our test set. For all experiments, we run

10 seeds for each train set and consider the mean

test accuracy of top 3 models (based on their vali-

dation accuracy) as the performance on that train

set. Based on this, we calculate the mean and stan-

dard deviation across 5 training sets, to report our

final results. We synthetically annotate both re-

trieved and ground-truth data, and train each model

for 50 epochs. Different from our experiments in

the full-shot setting, we (1) use discrete labels, (2)

include ground truth data in the training set, and

(3) augment the reduced training set by one order

of magnitude data samples sampled from the top

1000*(total supervised examples). These choices

were made for few-shot learning experiments as the

teacher model is not as strong, leading to noisier

annotations compared to the full dataset setup.

4 Analysis and Results

In this section, we first report results on self-

training, knowledge-distillation and few-shot learn-

ing with our best approach. We then provide an

analysis of the key factors that makes self-training

with SentAugment work in the context of natural

language understanding.

4.1 Self-training experiments

In Table 2, we report results using self-training on

six different downstream tasks. To understand the

contribution of domain-adaptation and the actual

contribution of self-training (ST), we compare ST

to in-domain continued pretraining (ICP) where

we continue masked language model pretraining

of a RoBERTa-Large model on the retrieved in-

domain augmented data. The goal of this com-

parison is to understand whether self-training only

does domain adaptation to the target domain of the

downstream task, which ICP also does. Indeed,

RoBERTa-Large has been trained on a very large

generic dataset of web data but not particularly

specific to each downstream task.

First, we observe that self-training alone im-

proves performance over a strong RoBERTa-Large

baseline, leading to an 1.2% improvement on aver-

age. Improvements are largest on SST-5 and IMP,

with 2.6% and 3.1% improvements respectively.

On the other hand, when continuing pretraining

on the self-training data with ICP, we observe a

decrease in performance from 87.4% to 86.2%. It

is interesting to note that this is not only the use

of the in-domain data that is useful but the combi-

nation with the self-training algorithm. While ICP

performs domain adaptation at pretraining time

of the RoBERTa-Large model, it does not outper-

form the baseline. Self-training is thus a nontrivial

way of improving generalization and doing domain-
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Model KD-data SST-2 SST-5 CR IMP TREC Avg

Models trained directly on the training set of each downstream task

RoBERTaLarge - 96.5 57.8 94.8 84.6 97.8 86.3

RoBERTaSmall - 92.0 49.0 88.7 83.8 96.4 82.0

Models distilled using the same number of sentences as in the train set (cf. Table 1)

RoBERTaSmall(Large) GT 92.4 49.7 89.6 84.4 96.6 82.5

RoBERTaSmall(Large) RD 90.7 47.5 87.4 69.1 90.8 77.1

RoBERTaSmall(Large) SA 91.8 50.7 88.2 84.6 94.4 81.9

Models distilled using more unsupervised sentences (100k sentences)

RoBERTaSmall(Large) RD 92.5 51.2 92.4 78.1 96.2 82.1

RoBERTaSmall(Large) SA 94.2 57.6 92.6 85.5 97.0 85.4

Table 4: Results of knowledge-distillation using ground-truth (GT), random (RD), or data-selected data (SA) as

unnanotated sentences. We distill a RoBERTa-Large model of 24 layers into a RoBERTa-Small model with 100×
less parameters.

adaptation at fine-tuning time. (Xie et al., 2019)

however show gains using ICP. We attribute that

difference in our conclusion to (i) RoBERTa be-

ing trained on much more data than their BERT

model trained on Wikipedia, (ii) our ICP using only

approximately in-domain data rather than ground-

truth.

4.2 Few-shot learning experiments

We investigate the effectiveness of our approach

in the context of few-shot learning. In Table 3,

we fine-tune a RoBERTa-Large model on between

40-200 samples of training data in each task and

use it as a teacher model. Self-training leads to

3.5% average gains on all tasks, going from 72.0%

to 75.5% while also reducing the variance. Gains

are particularly strong on sequence labeling, where

the student model obtains 58.4 F1 over 49.0 F1 for

the teacher model.

4.3 Knowledge distillation experiments

Knowledge distillation (KD) also strongly benefits

from large-scale augmentation. Table 4 shows

baseline results from the RoBERTa-Large and

RoBERTa-Small directly fine-tuned on the training

set of each downstream task. Comparing distilled

models that use different kinds of unannotated data,

we observe that using the ground-truth (GT) leads

to significantly better performance compared to ran-

dom (RD) sentences, going from 77.1% to 82.5%.

This shows that assuming the existence of data in

the exact same domain is a strong assumption. Us-

ing the same amount of data, our data augmentation

(SA) method bridges the gap with 81.9% average

accuracy.

When leveraging more unannotated sentences,

we push the random baseline to 82.1% which cor-

responds to a 5% improvement, getting closer to

the GT baseline. Finally, using SentAugment leads

to strong improvements, up to 85.4% average accu-

racy, only 0.9% average accuracy below the teacher

model with almost ten times less parameters, show-

ing the importance of data augmentation for KD.

4.4 Ablation study of data augmentation

Our approach leverages several key components

that make data augmentation work and that enable

self-training for natural language understanding.

We examine these components in this section.

Task-specific retrieval. We compare different

methods for building task-specific embeddings

used as queries for retrieving in-domain sentences

from the large bank of sentences. In Table 5, we

observe that using one query for each label (label-

average) leads to better performance than having

a single query embedding for the entire task (all-

average), leading to a 83.1% accuracy on average.

For tasks with unbalanced classes, this avoids an

over-representation of the majority class, and also

provides more diversity in the retrieved sentences.

Interestingly, having one query embedding per sen-

tence in the training set does not improve perfor-

mance, except for named entity recognition where
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the per-sentence approach leads to the best perfor-

mance.

Model Selection C SST-5 CR NER Avg

RoBERTaLarge + ST all-avg O(Md2) 60.0 94.7 92.8 82.5

RoBERTaLarge + ST label-avg O(KMd2) 60.4 95.7 93.1 83.1

RoBERTaLarge + ST per-sent O(NMd2) 60.1 95.4 93.3 82.9

Table 5: Impact of data augmentation technique. C is

the complexity, M the size of the bank of sentences,

K the number of labels (or clusters), N the size of the

downstream training set and d the embedding size.

Sentence embedding space. Our data augmen-

tation method is based on structuring a large ex-

ternal bank of text with a sentence embedding

space. The sentence embedding method plays

an essential role as shown in Table 6. We com-

pare three embedding methods, the average of

fastText (Mikolov et al., 2018) word embeddings

(average-word2vec), the uSIF-ParaNMT embed-

dings (Ethayarajh, 2018b) and our own sentence

encoder. We observe that uSIF-ParaNMT and para-

embeddings - two sentence embedding methods

that obtain state-of-the-art results on semantic tex-

tual similarity benchmarks - lead to stronger perfor-

mance than the average-word2vec approach. Para-

embeddings leads to the best performance and im-

proves performance over uSIF by 0.4% on average.

Model Embedding dim SST-5 CR NER Avg

RoBERTaLarge + ST avg-w2v 300 59.4 95.2 92.9 82.5

RoBERTaLarge + ST uSIF 300 59.9 95.0 93.1 82.7

RoBERTaLarge + ST SASE 256 60.4 95.7 93.1 83.1

Table 6: Impact of sentence embedding method:

average-word2vec, uSIF with ParaNMT and SASE.

Scaling bank size. To demonstrate the impor-

tance of large-scale retrieval, we evaluate our

method using an increasing amount of data for our

bank, from fifty million sentences to five billion

sentences (one hundred billion words). We observe

a significant increase in performance from 50m

to 1B in Table 7, but the improvement seems to

saturate when going from 1B to 5B. However, the

5B external bank may however provide additional

gains for tasks that are in rare domains and that can

leverage the additional 4B sentences, which cor-

respond to 342M additional CommonCrawl docu-

ments. Another effect of increasing the corpus size

may be reducing diversity in the retrieved sentences.

We leave experimenting with diversity-inducing en-

hancements to the retrieval for future work.

Model #lines #words SST-5 CR NER Avg

RoBERTaLarge + ST 50m 1B 59.5 95.4 92.8 82.6

RoBERTaLarge + ST 250m 5B 59.5 95.7 92.9 82.7

RoBERTaLarge + ST 1B 20B 60.4 95.7 93.1 83.1

RoBERTaLarge + ST 5B 100B 60.0 95.3 93.1 82.8

Table 7: Impact of sentence bank size (number of lines

and words) on self-training results.

Continuous labels. In Table 8, we show that us-

ing class probabilities as synthetic labels leads to

significantly better performance, outperforming

discrete synthetic labels by 0.9% on average. We

found very little gain when using self-training with

discrete labels, contrary to previously published

results in computer vision (Yalniz et al., 2019; Xie

et al., 2020). A difference with previous work in

computer vision is the number of classes of the

supervised data. In that context, discrete labels

provide even less information to the student model

than continuous class probabilities.

Model label type SST-5 CR NER Avg

RoBERTaLarge + ST discrete 59.1 94.7 92.8 82.2

RoBERTaLarge + ST logits 60.4 95.7 93.1 83.1

Table 8: Impact of label type on self-training results.

Computational cost of self-training. SentAug-

ment data prefiltering reduces the amount of data to

be annotated by the teacher model and also filters

based on the target domain. Filtering based solely

on classifier confidence is significantly more ex-

pensive computationally, as annotating 10000 sen-

tences with RoBERTa-Large takes approximately

3 seconds on a Volta-32GB GPU. This means that

annotating 1B sentences takes 83 hours on a single

GPU and much longer for models of larger size

such as T5 (Raffel et al., 2019) or GPT-3 (Brown

et al., 2020). On the other hand, using SentAug-

ment based on a few task-specific query embedding

(label-average) takes one minute for scoring 1B sen-

tences. By only selecting the first few million top

sentences, or less, to synthetically annotate, this

greatly reduces computational cost and allows to

scale to a larger bank of sentences, which in turn

allows for more domains to be considered. Note

that similarity search can be further sped up signifi-

cantly by using fast nearest neighbor search such as

product quantization with inverted files (Johnson

et al., 2019).
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BioNLP query: A single gene on chromosome 7 makes a protein called the cystic fibrosis transmembrane conductance regulator (CFTR).

Nearest neighbor: Cystic Fibrosis A mutation in the gene cystic fibrosis transmembrane conductance regulator (CFTR) in chromosome 7.

Financial Query: Google has entered into an agreement to buy Nest Labs for $3.2 billion.

Nearest neighbor: In January Google (NASDAQ:GOOG) reached an agreement to buy Nest Labs for $3.2 billion in cash.

Hate-speech Query: Average sentence embeddings of the ”hateful” class of IMP

Nearest neighbor: fuzzy you are such a d* f* piece of s* just s* your g* d* mouth. – All you n* and s* are fucking ret*

Movie review Query: Average sentence embeddings of the ”bad movie” class of SST-5

Nearest neighbor: This movie was terribly boring, but so forgettable as well that it didn’t stand out for how awful it was..

Product review Query: Average sentence embeddings of the ”positive” class of CR

Nearest neighbor: The phone is very good looking with superb camera setup and very lightweight.

Question type Query: Average sentence embeddings of the ”location” class of TREC

Nearest neighbor: Lansing is the capital city of which state?

Table 9: Examples of nearest neighbors using a per-sentence or label-average query from different domains.

5 Analysis of similarity search

In this section, we present the results of our Sen-

tAugment sentence embedding (SASE) method on

semantic textual similarity (STS) benchmarks and

present examples of retrieved sentence based on

large-scale similarity search.

5.1 Sentence embeddings (SASE)

In Table 10, we compare our sentence embedding

method to previous approaches including BERT

(Mean) (Devlin et al., 2018), InferSent (Conneau

et al., 2017), GenSen (Subramanian et al., 2018),

USE (Cer et al., 2018), Sentence-BERT (Reimers

and Gurevych, 2019), uSIF (Ethayarajh, 2018a),

Charagram (Wieting and Gimpel, 2017) and

BGT (Wieting et al., 2019b). On average, our

embeddings outperform previous approaches by

0.2% on STS 2012 to 2016 (Agirre et al., 2012,

2013, 2014, 2015, 2016), and by 0.9% on STS-

Benchmark (Cer et al., 2017).

Model
Semantic Textual Similarity (STS)

2012 2013 2014 2015 2016 Avg STS-B

BERT (Mean) 48.8 46.5 54.0 59.2 63.4 54.4 -

InferSent 61.1 51.4 68.1 70.9 70.7 64.4 70.6

GenSen 60.7 50.8 64.1 73.3 66.0 63.0 -

USE 61.4 59.0 70.6 74.3 73.9 67.8 -

Sentence-BERT 66.9 63.2 74.2 77.3 72.8 70.9 -

uSIF- 68.3 66.1 78.4 79.0 - - 79.5

Word, trigram 67.8 62.7 77.4 80.3 78.1 73.3 79.9

BGT 68.9 62.2 75.9 79.4 79.3 73.1 -

SASE (ours) 69.7 62.9 77.3 79.8 78.1 73.5 80.8

Table 10: Results of our sentence encoder (SASE) on

STS benchmarks from 2012 to 2016 and on the test sets

of the STS-Benchmark dataset, compared to previously

published results. We report Pearson’s r × 100.

5.2 Examples of large-scale similarity search

SentAugment uses large-scale similarity search

combined with an embedding space with billions of

sentences to find in-domain sentences. In Table 9,

we show examples of nearest neighbors extracted

from CommonCrawl based on sentence-level or

label-level queries and for different domains such

as biomedical, financial or hate-speech data. We

see that retrieving nearest neighbors can lead to

good paraphrases which either preserve the mean-

ing or augment it with additional information. We

also observe reformulation of the same input sen-

tence. As for label-level queries, we observe that

retrieved sentences match very well the domain of

the downstream task. We also release as part of

our work nearest-neighbor indexes for researchers

to explore further large-scale similarity search of

web data. These indexes provide more examples

of how well the model performs when trying to

find similar sentences in our corpus using our sen-

tence embedding. We hope this will lead to an

improved understanding of large-scale embedding

spaces and also help the community analyze the

content and biases of large-scale web corpora used

to train language models.

6 Conclusion

Recent work in natural language understanding has

focused on unsupervised pretraining. In this pa-

per, we show that self-training is another effective

method to leverage unlabeled data. We introduce

SentAugment, a new data augmentation method for

NLP that retrieves relevant sentences from a large

web data corpus. Self-training is complementary

to unsupervised pre-training for a range of natu-

ral language tasks and their combination leads to

further improvements on top of a strong RoBERTa

baseline. We also explore knowledge distillation

and extend previous work on few-shot learning by

showing that open domain data with SentAugment

is sufficient for good accuracy.
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