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Analysis of liquid or gas properties using light 

Available devices

 are often bulky

Great interest for fabrication 

of integrated devices

Context 



Integrated optofluidic devices

Domain of Interest : biology, chemistry, 

biomedical, integrated optics…

Interests : 
-  Portable devices
-  Fast response
-  Very small quantity of analyte.

Context 

Optofluidic dye laser. From  : Li, Z. Y., Zhang, Z. Y., Emery, T., Scherer, A. & 

Psaltis, D., Opt. Express 14, 696–701 (2006).

Optofluidic chip for cell manipulation. From  : R. 

Osselame, Politecnico Di Milano.



Context 

Challenges : combination of micro-channels & optical 

waveguides :

  Fluidic channels with smooth walls
  Buried waveguides
  Optimization of waveguides/channels alignment



 Integrating optical sensing into lab-on-a-chip 

systems, R. Osellame et. al. SPIE Newsroom, DOI: 

10.1117/2.1200905.1597(1997) 

Fabrication technique 

Scanning beam technique



Fabrication technique 

Self-trapped beams

Self-trapped beam writing technique

-  Single step process
-  Self-induced singlemode waveguides 
-  Low loss circular waveguides
-  Self-aligned trajectory

Requirements and characteristics 

-  Nonlinear focusing medium (Kerr, 

thermal, photopolymer, 

photorefractive..)
-  Stable self-confinement of 2-D beams 

with saturable nonlinearity
-  Ultimately spatial soliton can be formed



Studied configuration

nc

LiNbO3

Fluidic

Channel

Light-written

waveguides

Why LiNbO3 ?
-  Photonic material

(transparent Vis-NIR, electro-optic, ..)
-   Properties

(photorefractive, pyroelectric, ..) 



Precision saw Disco DAD 321

Precision dicing/polishing is used to cut the sample 

and to inscribe the fluidic channel.

Samples fabrication 



The optical waveguide is induced by photorefractive beam 

self-trapping controlled by the pyroelectric effect. 

heated sampleAt room 

temperature 

Optical set- up 

Waveguides induction : principle 

Experimental observation
(15mm long crystal, ΔT= 20°C, 
P=200µW)



Safioui et. al., “Pyroliton: pyroelectric spatial soliton”,Opt.Express 

17,2209 (2009).

Underlying physics 
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Input Beam 

(FWHM≈10µm)

Waveguide crossing channel (θ=0)

ΔT=20°C

Properties of induced waveguide :
-  Singlemode
-  Low losses (0.9dB) 
-  Quasi-permanent (lifetime > several months)

Parameters : 

λ = 532nm, 

extraordinary 

polarization, P= 

70µW

Without channel

With channel (θ=0)



Optical set-up 

Determination of the refractive 

index of the liquid (nliq)  by 

transmission analysis

Laser diode

640nm

Realization of an index sensor

Step 1 : waveguide induction
-  No liquid
-  Laser diode at high power
-  Sample temperature = 40°C

Step 2 : index measurement
-   Liquid present
-   Laser diode current below threshold
-   Sample at ambient temperature

Chauvet et. al., “Integrated optofluidic index sensor based on self-

trapped beams in LiNbO3”,Appl. Phys. Lett, 101, 181104 (2012).
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Test of index sensor

Evolution of the normalized sensor transmission versus time. 

Sensor response with ethanol



Modeling of index sensor

Fresnel reflections : Beam diffraction : Total gap transmission :
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Refractive index nL of the liquid

Image of guided mode

Wguide= 6.8 µm

Theoretical response of sensor 

Parameters : 

L = 200µm,

 λ0 = 640nm, 

nLN : Sellmeier 

equation. 

Ethanol
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Refractive index nL of the liquid

Measurement with methanol

exp 1.317 0.005 1.320theo
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Tilted channels (θ0)

nc

nLN

 When incident angle θ approach the critical angle 
-  Beam shift d  
-  Beam distortion
-  Beam transmission T   

 Interest : high sensitivity sensors, innovative integrated optics ..  
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θ= 24°

Influence of channel tilt angle 
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Incident angle (θ)°

θBr 
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Fabricated structures



Parameters : 

λ = 532nm, 

ordinary 

polarization 

(TM), P = 20µW,

ΔT=20°C

Input beam 

FWHM≈12µm FWHM≈13µm

Experimental results 
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Incident angle (θ)°

θ = 24,6°

θ = 25°

Successful self-trapping

Unsuccessful self-trapping



Experimental results 
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Beam self-focusing is obtained for both TE and TM polarizations 

for incident angle close to critical angle



Potential for sensing devices

q =34°

q =32°

q =30°

q =28 ° λ=633nm
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L=200µm

W1=10µm

Fabrication : 

Waveguide written 

with ref. liquid

Sensor 

sensitivity and 

span can be 

adjusted with θ 

value

Use  : Transmission 

highly dependent on 

test liquids index  

nc writing = 1.33
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Potential for sensing devices/spectral filters

θ

Broadband 

spectrum 

source

Optical 

spectrum 

analyser

Index  sensor 

Sensitivity can 

reach 10-6

Spectral filter

  Spectral width adjustable with θ 

  Central wavelength tunable with fluid 

410 /cdn nm
dλ

−≈



Potential for integrated optical components

Material birefringence

can be used to design an integrated 

polarization separator :

Input

arbitrary 

polarization

Output 1 : 

vertical (TE) 

polarization
Output 2 : 

horizontal (TM) 

polarization
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Al Fares  et. al., Self-trapped beams crossing tilted channels to induce 

guided polarization separators”,Appl. Phys. Lett, 103, 041111 (2013)



Fabrication of a polarization separator

The polarization separator is inscribed in a one step self-writting process.

Parameters : 

λ = 532nm, 

P= 20µW,

θ = 23.9°

ΔT=20°C

Injection TM Injection TE

Injection TE 

+TM

Injection TE 

+TM

Injection TE 

+TM

Input beam 

FWHM≈12µm



Test of polarization separator

Properties of component : 

-  Extinction ratio TE/TM > 20db
-  Transmission 68% for TM et 25% for TE

100µm

Input polarization

Detected intensity 

TM TE TM+TE 



Conclusions

 Ability of self-trapped beams to induce unique automatically adapted 

buried waveguides crossing channels have been demonstrated

 Integrated components based on LiNbO3 have been fabricated
●  Index sensor 
●  Integrated polarization separator

 More elaborated devices taking advantage of self-aligned waveguides can 

be developed :

  High sensitivity sensors, tunable filters, couplers to optical 

resonators

Use of other materials such as photopolymers (low cost and permanent 

structuring)

Perspectives
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