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Abstract. We present a brief overview of the basic concepts of the theory ofspatial optical soli-
tons, including the soliton stability in non-Kerr media, the instability-induced soliton dynamics, and
collision of solitary waves in nonintegrable nonlinear models.
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1. Introduction

Recent years have shown increased interest in the study of self-guided (or self-trapped)
optical beams that propagate in slab waveguides or bulk nonlinear media without support-
ing waveguide structures [1]. Such optical beams are commonly referred to by physicists
asspatial optical solitons. Simple physics explains the existence of spatial solitons in a
generalized self-focusing nonlinear medium. First, we recall the physics of optical waveg-
uides. Optical beams have an innate tendency to spread (diffract) as they propagate in a
homogeneous unbounded medium. However, the beam’sdiffraction can be compensated
for by beamrefractionif the material refractive index is increased in the region of the beam.
An optical waveguide is an important means to provide a balance between diffraction and
refraction if the medium is uniform in the direction of propagation. The corresponding
propagation of the light is confined in the transverse direction of the waveguide, and it
is described by the so-called linearguided modes, spatially localized eigenmodes of the
electric field in the waveguide.

As was discovered long time ago [2], a similar effect, i.e. suppression of diffraction
through a local change of the refractive index, can be produced solely by nonlinearity (fig-
ure 1). As has already been established in many experiments, some materials can display
considerable optical nonlinearities when their properties are modified by the light propa-
gation. In particular, if the nonlinearity leads to a change of the refractive index of the
medium in such a way that it generates an effective positive lens to the beam (figure 1), the
beam can becomeself-trapped, and it propagates unchanged without any external waveg-
uiding structure [2]. Such stationary self-guided beams are calledspatial optical solitons,
they exist with profiles of certain form allowing a local compensation of the beam diffrac-
tion by the nonlinearity-induced change in the material refractive index.
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Figure 1. Qualitative picture of the beam self-trapping effect leading to the formation
of a spatial optical soliton.

Until recently, the theory of spatial optical solitons has been based on the nonlinear
Schrödinger (NLS) equation with a cubic nonlinearity, which isexactly integrableby
means of the inverse scattering technique (IST) [3]. Generally speaking, integrability
means that any localized input beam will be decomposed intostable solitary waves(orsoli-
tons) andradiation, and also that interaction of solitons is elastic. From the physical point
of view, the integrable NLS equation describes (1+1)-dimensional (i.e. one transverse and
one longitudinal dimensions) beams in a Kerr nonlinear medium in the framework of the
so-called paraxial approximation. The cubic NLS equation is known to be a good model
for temporal optical solitonspropagating large distances alongexistingwaveguides, op-
tical fibers. In application tospatial optical solitons, the cubic NLS equation is not an
adequate model. First, for spatial optical solitons much higher input powers are required to
compensate for diffraction, meaning that the refractive index experiences large deviations
from a linear (Kerr) dependence. Second, as was recognized long time ago [4], radially
symmetric stationary localized solutions of the (2+1)-dimensional NLS equation are un-
stable and may collapse [5]. To deal with the realistic optical models, saturation had been
suggested as a way to stabilize such a catastrophic self-focusing and produce stable solitary
waves of higher dimensions. Accounting for this effect immediately leads tononintegrable
models of generalized nonlinearities, not possessing the properties of integrability and not
allowing elastic soliton collisions. Another mechanism of non-Kerr nonlinearities and en-
hanced nonlinear properties of optical materials is a resonant, phase-matched interaction
between the modes of different frequencies. In this latter case,multi-component solitary
wavesare created [6], and the mutual beam coupling can modify drastically the properties
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of single beams, as it occurs in the case of the so-calledquadratic solitons of cascaded
nonlinearities.

In spite of the fact that, generally speaking, there exist no universal analytical tools for
analyzing solitary waves and their interactions in nonintegrable models, recent advances
of the theory suggest that many of the properties of optical solitons in non-Kerr media
are similar, and they can be approached with the help of rather general physical concepts.
Also, from this perspective we understand thatthere is no simple mappingbetween tem-
poral and spatial optical solitons. Spatial solitons are a much richer and more complicated
phenomenon, and this has already been demonstrated by a number of elegant experiments
in this field.

In particular, it has been recently demonstrated experimentally, that self-guided beams
can be observed in materials with strong photorefractive and photovoltaic effect [7], in
vapours with a strong saturation of the intensity-dependent refractive index [8], and also
as a result of the mutual self-focusing due to the phase-matched three-wave mixing in
quadratic (orχ (2)) nonlinear crystals [9]. In all these cases, propagation of self-guided
waves is observed innon-Kerr materialswhich are described by the models more general
than the cubic NLS equation.

Because the phenomenon of the long-distance propagation of temporal optical solitons
in optical fibers is known to a much broader community of researchers in optics and non-
linear physics, first we emphasize the difference between spatial and temporal solitons.
Indeed, stationary beam propagation in planar waveguides has been considered somewhat
similar to the pulse propagation in fibers. This is a direct manifestation of the so-called
spatio-temporal analogyin wave propagation [10], meaning that the propagation coordi-
natez is treated as the evolution variable and the spatial beam profile along the transverse
direction, for the case of waveguides, is similar to the temporal pulse profile, for the case of
fibers. This analogy has been employed for many years, and it is based on a simple notion
that both beam evolution and pulse propagation can be described by the cubic NLS equa-
tion. However, contrary to this widely accepted opinion, we point outa crucial difference
between these two phenomena. Indeed, in the case of the nonstationary pulse propagation
in fibers, the operation wavelength is usually selected near the zero of the group-velocity
dispersion. This means that the absolute value of the fiber dispersion is small enough to be
compensated by a weak nonlinearity such as that produced by the (very weak) Kerr effect
in optical fibers which leads to a relative nonlinearity-induced change in the refractive in-
dex of the order of 10�10. Therefore, nonlinearity in such systems isalways weakand it
should be well modeled by the same form of the cubic NLS equation, which is known to
be integrable by means of the IST technique. However, for very short (fs) pulses the cu-
bic NLS equation describing the long-distance propagation of pulses should be corrected
to include some additional effects such as higher-order dispersion, Raman scattering, etc.
[11]. All these corrections can be taken into account by a perturbation theory [12]. Thus,
in fibers nonlinear effects are weak and they become important only when dispersion is
small (near the zero-dispersion point) affecting the pulse propagation over large distances
(of order of hundred of meters or even kilometers).

In contrary to pulse propagation in optical fibers, the physics underlying stationary beam
propagation in planar waveguides and bulk media is different. In this case the nonlinear
change in the refractive index should compensate for the beam spreading caused by diffrac-
tion which is not a small effect. That is why to observe spatial solitons, much larger nonlin-
earities are usually required, and very often such nonlinearities are not of the Kerr type (e.g.
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they saturate at higher intensities). This leads to the models of generalized nonlinearities
with the properties of solitary waves different from those described by the integrable cubic
NLS equation. For example, unlike the solitons of the cubic NLS equation, solitary waves
of generalized nonlinearities may be unstable, they also show some interesting features,
such as fusion due to collision, inelastic interactions and spiraling in a bulk, wobbling, am-
plitude oscillation, etc. Propagation distances usually involved in the phenomenon of beam
self-focusing and spatial soliton propagation are of the order of millimeters or centimeters.
As a result, the physics of spatial solitary waves is rich, and it should be understood in the
framework of the theory of nonintegrable nonlinear models.

2. Basic equations

To describe optical spatial solitons in the framework of thesimplest scalar model of nonres-
onant nonlinearities, we consider the propagation of a monochromatic scalar electric field
E in a bulk optical medium with an intensity-dependent refractive index,n= n 0+nnl(I),
wheren0 is the linear refractive index, andnnl(I) describes the variation in the index due
to the field with the intensityI = jEj2. The functionnnl(I) is assumed to be dependent on
the light intensity only, and it may be introduced phenomenologically.

Solutions of the governing Maxwell’s equation can be presented in the form

E(R
?
;Z; t) = E (R

?
;Z)eik0Z�iωt

+c:c:; (1)

where c.c. denotes complex conjugate,ω is the source frequency, andk0 = 2π=λ is the
linear wave number, or the plane-wave propagation constant for the uniform background
medium,λ = 2πc=(ωn0) is the linear wavelength, withc being the free-space speed of
light. Usually, the spatial solitons are discussed for two geometries. For the beam prop-
agation in a bulk, we assume a (2+1)-dimensional model, so that theZ-axis is parallel
to the direction of propagation, and theX- andY-axis are two transverse directions. For
the beam propagation in a planar waveguide, the effective field is found by averaging the
Maxwell’s equations over the transverse structure defined by the waveguide confinement,
and therefore the model becomes (1+1)-dimensional.

The functionE (R
?
;Z) describes the wave envelope which in the absence of nonlin-

ear and diffraction effectsE would be a constant. If we substitute eq. (1) into the two-
dimensional, scalar wave equation, we obtain the generalized nonlinear parabolic equation,

2ik0
∂E
∂Z

+

�
∂ 2E

∂X2 +
∂ 2E

∂Y2

�
+2k2

0n�1
0 nnl(I)E = 0: (2)

In dimensionless variables, eq. (2) becomes the well-knowngeneralized NLS equation,
where local nonlinearity is introduced by the functionnnl(I).

For the case of the Kerr (or cubic) nonlinearity we havennl(I) = n2I , n2 being the coef-
ficient of the Kerr effect of an optical material. Now, introducing the dimensionless vari-
ables, i.e., measuring the field amplitude in the units of

p
2n0=jn2j, and the transverse coor-

dinates and propagation distance in the units of(2k0)
�1, we obtain the (2+1)-dimensional

NLS equation in the standard form,

i
∂Ψ
∂z

+

�
∂ 2Ψ
∂x2 +

∂ 2Ψ
∂y2

�
�jΨj2Ψ = 0; (3)
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where the complexΨ stands for a dimensionless envelope, and the sign(�) is defined by
the type of nonlinearity,self-defocusing(‘minus’, for n2 < 0) or self-focusing(‘plus’, for
n2 > 0).

For propagation in a slab waveguide, the field structure in one of the directions, sayY,
is defined by the linear guided mode of the waveguide. Then, the solution of the governing
Maxwell’s equation has the structure

E(R
?
;Z; t) = E (X;Z)An(Y)eik(0)

n z�iωt
+ : : : ; (4)

where the functionAn(Y) describes the corresponding fundamental mode of the slab
waveguide, andk(0)n is the corresponding linear propagation constant. Similarly, substi-
tuting this ansatz into Maxwell’s equations and averaging overY, we come again to the
renormalized equation of the form (3) with theY-derivativeomitted, which in the dimen-
sionless form becomes the standard cubic NLS equation

i
∂Ψ
∂z

+
∂ 2Ψ
∂x2 �jΨj

2Ψ = 0: (5)

Equation (5) coincides formally with the equation for the pulse propagation in dispersive
nonlinear optical fibers, and it is known to be integrable by means of the inverse scattering
transform (IST) technique [3].

For the case of nonlinearities more general then the cubic one, we should consider the
generalized NLS equation,

i
∂Ψ
∂z

+
∂ 2Ψ
∂x2 +F (jΨj2)Ψ = 0; (6)

where the functionF (I) describes a nonlinearity-induced change of the refractive index,
usuallyF (I) ∝ I for smallI .

The generalized NLS equation (2) [or eq. (6)] has been considered in many papers for
analyzing the beam self-focusing and properties of spatial bright and dark solitons. All
types of non-Kerr nonlinearities in optics can be divided, generally speaking, intothree
main classes: (i) competing nonlinearities, e.g., focusing (defocusing) cubic and defocus-
ing (focusing) quintic nonlinearity, (ii)saturable nonlinearities, and (iii) transiting nonlin-
earities. Many references can be found in the recent review paper [13].

Usually, the nonlinear refractive index of an optical material deviates from the lin-
ear (Kerr) dependence for larger light intensities. Nonideality of the nonlinear optical
response is known for semiconductor (e.g., AlGaAs, CdS, CdS1�xSex) waveguides and
semiconductor-doped glasses. In the case of small intensities, this effect can be mod-
eled bycompeting, cubic-quintic nonlinearities,nnl(I) = n2I +n3I

2. This model describes
a competition between self-focusing (n2 > 0), at smaller intensities, and self-defocusing
(n3 < 0), at larger intensities. Similar models are usually employed to describe the stabi-
lization of wave collapse in the (2+1)-dimensional NLS equation.

Models withsaturable nonlinearitiesare the most typical ones in nonlinear optics. The
effective generalized NLS equation with saturable nonlinearity is also the basic model
to describe the recently discovered (1+1)-dimensional photovoltaic spatial solitons in
photovoltaic-photorefractive materials such as LiNbO3. Unlike the phenomenological
models usually used to describe saturation of nonlinearity, in the case of photovoltaic soli-
tons this model can be justified rigorously.
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There exist several different models for saturating nonlinearities. In particular, the phe-
nomenological modelnnl(I) = n∞[1� (1+ I=Isat)

�1
] is used more frequently, and it corre-

sponds to the well-known expression derived from the two-level model.
Finally, bistable solitonsintroduced by Kaplan [14] usually require a special type of the

intensity-dependent refractive index which changes from one type to another one, e.g., it
varies from one kind of the Kerr nonlinearity, for small intensities, to another kind with
different value ofn2, for larger intensities. Unfortunately, examples of nonlinear opti-
cal materials with such dependencies are not yet known, but the bistable solitons possess
attractive properties useful for their possible future applications in all-optical logic and
switching devices.

At last, we would like to mention the model of logarithmic nonlinearity,n2
(I) = n2

0+

ε ln(I=I0), that allows close-form exact expressions not only for stationary Gaussian beams
(or Gaussons, as they were introduced in [15]), but also for periodic and quasi-periodic
regimes of the beam evolution [16]. The main features of this model are the following:
(i) the stationary solutions do not depend on the maximum intensity (quasi-linearization)
and (ii) radiation from the periodic solitons is absent (the linearized problem has purely
discrete spectrum). Such exotic properties persist in any dimension.

3. Stability of spatial solitons

Spatial optical solitons are of both fundamental and technological importance if they are
stable under propagation. Existence of stationary solutions of the different models of non-
Kerr nonlinearities does not guarantee their stability. Therefore, stability isa key issue in
the theory of spatial optical solitons.

For temporal solitons in optical fibers, nonlinear effects are usually weak and the model
based on the cubic NLS equation and its deformations is valid in most of the cases [11].
Therefore, being described by integrable or nearly integrable models, solitons are always
stable, or their dynamics can be affected by (generally small) external perturbations which
can be treated in the framework of the soliton perturbation theory [12].

As has been discussed above, much higher powers are usually required for spatial soli-
tons in waveguides or a bulk, so that real optical materials demonstrate essentially non-Kerr
change of the nonlinear refractive index with the increase of the light intensity. Generally
speaking, the nonlinear refractive index always deviates from Kerr for larger input pow-
ers, e.g., it saturates. Therefore, models with a more general intensity-dependent refractive
index are employed to analyze spatial solitons and, as we discuss below, solitary waves
in such non-Kerr materials can become unstable. Importantly, in many cases the stabil-
ity criteria for solitary waves can be formulated in a rather general form using the system
invariants.

3.1Linear eigenvalue problem

To discuss the stability properties of spatial optical solitons, we consider the nonintegrable
generalized NLS equation that describes the (1+1)-dimensional beam self-focusing in a
waveguide geometry,
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i
∂ψ
∂z

+
∂ 2ψ
∂x2 +F (I)ψ = 0; (7)

whereψ(x;z) is the dimensionless complex envelope of the electric field,x is the trans-
verse spatial coordinate,z is the propagation distance,I = jψ(x;z)j2 is the beam intensity,
and the real functionF (I) characterizes nonlinear properties of a dielectric medium, for
which we assume with no lack of generality thatF (0) = 0. Stationary spatially local-
ized solutions of the model (7) have the standard form,ψ(x;z) = Φ(x)eiβz, whereβ is the
soliton propagation constant (β > 0) and the real functionΦ(x) vanishes forjxj ! ∞. An
important conserved quantity of the soliton in the model (7) is itspowerdefined as

P(β ) =

Z +∞

�∞
jψ(x;z)j2dx: (8)

To find the linear stability conditions, we consider the evolution of a small-amplitude
perturbation of the soliton presenting the solution in the form

ψ(x;z) =
n

Φ(x)+ [v(x)�w(x)]eiγz
+[v�(x)+w�

(x)]e�iγ�t
o

eiβz; (9)

where the star stands for a complex conjugation, and obtain the linear eigenvalue problem
for v(x) andw(x),

L0w= γv; L1v= γw

Lj =�
d2

dx2 +β �Uj ;
(10)

whereU0 =F (I) andU1 =F (I)+2I(∂F (I)=∂ I).
A stationary solution of the model (7) is stable if all the eigenmodes of the corresponding

linear problem (10) do not have exponentially growing amplitudes. It can be demonstrated
that the continuum part of the linear spectrum of the problem (10) consists oftwo symmet-
ric branchescorresponding to real eigenvalues, and the eigenstates in the gapjγ j < β are
responsible for the stability properties of localized solutions. Then, several cases of such
discrete eigenvalues should be distinguished:

� internal modeswith real eigenvalues describe periodic oscillations;
� instability modescorrespond to purely imaginary eigenvalues;
� oscillatory instabilitiescan develop if the eigenvalues are complex.

In what follows, we present several approaches that allow to study analytically and nu-
merically the structure of the discrete spectrum in order to determine the linear stability
properties of solitary waves. We also analyze the nonlinear evolution of unstable solitons.

3.2Soliton internal modes and stability

Since the soliton instabilities always occur in nonintegrable models, we wonder what kind
of novel features can be found for solitary waves in nonintegrable models which might
be responsible for the instabilities of their localized solutions. It is commonly believed
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that solitary waves of nonintegrable nonlinear models differ from solitons of integrable
models only in the character of the soliton interactions: unlike proper solitons, interaction
of solitary waves is accompanied by radiation [12]. However, the soliton instabilities are
associated with nontrivial effects of different nature, generic for localized waves in nearly
integrable and nonintegrable models. In particular, a small perturbation to an integrable
model may createan internal modeof a solitary wave [17] that is indeed responsible for
the appearance of instabilities. This effect is beyond a regular perturbation theory, because
solitons of integrable models do not possess internal modes. But in nonintegrable models
such modes may introducequalitatively new featuresinto the system dynamics and, in
particular, lead to instabilities.

To demonstrate that the internal modes are generic for nonintegrable models, we con-
sider a weakly-perturbed cubic NLS equation with the nonlinear term,

F (I) = I + ε f (I); (11)

where f (I) describes a deviation from the Kerr nonlinear response, andε is a small
parameter. Then, the stationary solution can be expressed asymptotically asΦ(x) =

Φ0(x)+ εΦ1(x)+O(ε2
), whereΦ0(x) =

p
2βsech(

p
βx) is the soliton of the cubic NLS

equation, andΦ1(x) is a localized correction defined from eqs (7) and (11). Neglecting the
second-order corrections, we find the results for the effective potentials of the linearized
eigenvalue problem (10),U0 =Φ2

0+ε eU0 andU1 = 3Φ2
0+ε eU1, whereeU0 = f (Φ2

0)+2Φ0Φ1

andeU1 = f (Φ2
0)+2Φ2

0 f 0(Φ2
0)+6Φ0Φ1, and the prime denotes differentiation with respect

to the argument.
The linear eigenvalue problem (10) and (11) can be solved exactly atε = 0 ( [18]).

Its discrete spectrum contains only the degenerated eigenvalue at the origin,γ = 0, corre-
sponding to the so-calledsoliton neutral mode(see figure 2a). We may show that a small
perturbation can lead tothe creation of an internal mode, which bifurcates from the contin-
uum spectrum band, as shown in figure 2b. For definiteness, we consider the upper branch
of the spectrum and suppose that the cut-off frequenciesγ m = �β are not shifted by the
perturbation. Then, the internal mode frequency can be presented in the formγ = β�ε 2κ2,
whereκ is defined by the following result [17]

jκ j=
1
4

sign(ε)
Z ∞

�∞

n
V(x;β ) eU1V(x;β )+W(x;β ) eU0W(x;β )

o
dx: (12)

HereV(x;γ) andW(x;γ) are the eigenfunctions of the cubic NLS equation calculated at the
edge of the continuum spectrum,V(x;β ) = 1�2sech2(

p
βx) andW(x;β ) = 1. A soliton

internal mode appears if the right-hand side of eq. (12) is positive.
As an important example, we consider the case of the NLS equation (7) and (11) per-

turbed by a higher-order power-law nonlinear term,

f (I) = I3: (13)

The first-order correction to the soliton profile can be found in the form

Φ1(x) =�

p
2β 5=2

h
2cosh(2

p
βx)+cosh(4

p
βx)

i
3cosh5(

p
βx)

:
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Figure 2. Schematic presentation of the origin of the bifurcation-induced soliton insta-
bilities: (a) spectrum of the integrable cubic NLS model, (b) bifurcation of the soliton
internal mode, (c) collision of the internal mode with the neutral mode resulting in the
soliton instability.

With the help of eq. (12), it is easy to show that forε > 0 a perturbed NLS soliton possesses
an internal mode that can be found analytically near the continuum spectrum edge,

γ = β

"
1�

�
64ε
15

�2

β 4
+O(β 6

)

#
: (14)

For high intensities, the additional nonlinear term (13) is no longer small, and the soliton
solutions, together with the associated linear spectrum, should be calculated numerically.
Power dependenceP(β ) calculated with the help of eq. (8) for the soliton of the model (7),
(11), and (13) is presented in figure 3a, and it corresponds to the discrete eigenvalue of
the linearized problem (10) shown in figure 3b. First of all, we notice that the asymptotic
theory provides accurate results for small intensity solitons, atβ < 0:1 (shown by the
dotted curves in the inserts). Second, the slope of the power dependence changes its sign
at the pointβ = βcr where the soliton internal mode vanishes colliding with the soliton
neutral mode, as depicted in figures 2a–c. At that point, the soliton stability changes due
to the appearance of unstable (purely imaginary) eigenvalues (dashed curve in figure 3b).
In x4, we demonstrate rigorously a link between the soliton stability and the slope of the
dependenceP(β ).

For β � βcr, the instability-induced dynamics of an unstable soliton can be described
by approximate equations for the soliton parameters derived by the multi-scale asymptotic
technique (seex3.3.4) but, in general, we should perform numerical simulations in order
to study the evolution of linearly unstable solitons. In figures 4a, b, we show two different
types of the soliton evolution in our model. In the first case, a small perturbation that effec-
tively increasesthe soliton power results in an unbounded growth of the soliton amplitude
and subsequent beam collapse (see figure 4a). In the second case, a smalldecreaseof the
soliton power leads to a switching of a soliton of an unstable (dashed line, figure 3a) branch
to a stable (solid line, figure 3a) one, as is shown in figure 4b. This latter scenario becomes
possible because, in the model under consideration, all small-amplitude solitons are stable.
However, if the small-amplitude solitons are unstable, the soliton beam does not converge
to a stable state but, instead, it diffracts. Thus, in the NLS-type nonlinear models there
existthree distinct typesof the instability-induced solitons dynamics [19].
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Figure 3. Soliton instability in the model defined by eqs (7), (11), (13) forε = 1,
presented through (a) the power dependenceP(β ) and (b) the evolution of the dis-
crete eigenvalue of the problem (3) that defines the soliton internal mode (solid) and
an instability mode (dashed). Solitons forβ > βcr, i.e. for dP=dβ > 0 (dashed curves
in (a) and (b)) arelinearly unstable. Dotted lines in the insets show the asymptotic
dependences calculated analytically.

3.3Stability criterion for fundamental solitons

Direct investigation of the eigenvalue problem (10) is a complicated task which, in general,
does not have a complete analytical solution. However, for a class of ‘fundamental’ solitary
waves (i.e. solitons with no nodes), the analysis can be greatly simplified. First, we reduce
the system (10) to a single equation:

L0L1v= γ2v; (15)

and the stability condition requires all eigenvaluesγ 2 to be positive. It is obvious to show
thatL0 = L+L�, whereL� =�d=dx +Φ�1

(dΦ=dx), and thus one can consider instead an
auxiliary eigenvalue problem [20],

L�L1L+ṽ= γ2ṽ; (16)
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Figure 4. Evolution of an unstable NLS soliton in the model (7),(11),(13) forε = 1,
and β = 2, in the case of (a) increased power (collapse) and (b) decreased power
(switching to a low-amplitude stable state). The soliton power was changed by 1%.

which reduces to eq. (15) after the substitutionv = L+ṽ. Since the operatorL�L1L+ is
Hermitian, all eigenvaluesγ 2 of eqs (15) and (16) are real, and in this case oscillatory
instabilities are not possible.

OperatorsL j ( j = 0;1) are well-studied in the literature, in particular, as a characteristic
example of the spectral theory of the second-order differential operators [21]. For our prob-
lem, we use twogeneral mathematical resultsabout the spectrum of the linear eigenvalue
problemL j ϕ

( j)
n = γ( j)

n ϕ( j)
n :

� the eigenvalues can be ordered asγ ( j)
n+1

> γ( j)
n wheren� 0 defines the number of

zeros in the corresponding eigenfunctionϕ ( j)
n ;

� for a ‘deeper’ potential well,eUj(x)�Uj(x), the corresponding set of the eigenvalues

is shifted ‘down’, i.e.,eγ( j)
n � γ( j)

n .

Let us first discuss the properties of the operatorL0, for which the soliton neutral mode
is an eigenstate, i.e.,L0Φ(x) = 0. As we have assumed earlier,Φ(x) > 0 is the ground
state solution with no nodes and, therefore,γ (0)n > γ(0)

0
= 0 for n > 0. This means that

the operatorL0 is positive definite on the subspace of the functions orthogonal toΦ(x),
which allows to use several general theorems [22–26] in order to link the soliton stability
properties to the number of negative eigenvalues of the operatorL 1. Specifically, in a ho-
mogeneous medium the fundamental soliton stability depends on the slope of the function
P(β ), according to the Vakhitov-Kolokolov stability criterion [22], i.e., a soliton isstable
if ∂P=∂β > 0, and it isunstable, otherwise.

To demonstrate the validity of the Vakhitov-Kolokolov criterion, we follow the standard
procedure [22]. First, we note that, for the fundamental solitons with no nodes, both the
direct,L0, and inverse,L�1

0 , operators exist, and they are positively definite for any function
orthogonal toΦ(x), which is not an eigenmode of eq. (15), and thus can be ignored. Thus,
by applying the inverse operatorL�1

0 to eq. (15), we obtain another linear problem with the
same spectrum:
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L1v= γ2L�1
0 v; (17)

wherev(x) now satisfies the orthogonality condition:

hvjΦi �
Z +∞

�∞
v�(x)Φ(x)dx= 0: (18)

Second, we multiply both sides of eq. (17) by the functionv�(x), integrate overx, and
obtain the following result,

γ2
=



vjL1v

�D
vjL�1

0
v
E : (19)

Because the denominator in eq. (19) is positively definite forv satisfying eq. (18), the sign
of this ratio depends only on the numerator. The instability will appear if there exists an
eigenvalueγ2 < 0 (so thatγ is imaginary), and this can be possible only if

min


vjL1v

�
< 0; (20)

where we normalize the functionv(x) to make the expression in eq. (20) finite,hvjvi= 1.
In order to find the minimum in eq. (20) under the constraints given by eqs (18) and (20),

we use the method of Lagrange multipliers, and look for a minimum of the following
functional:

L =



vjL1v

�
�ν hvjvi�µ hvjΦi ;

where real parametersν andµ are unknown. With no lack of generality we assume that
µ � 0, as otherwise the sign of the functionv(x) can be inverted. The extrema point of
the functionalL can be then found from the conditionδL =δv= 0, whereδ denotes the
variational derivative. As a result, we obtain the following equation:

L1v= νv+µΦ; (21)

where the values ofν andµ should be chosen in such a way that conditions in eqs (18)
and (20) are satisfied. Then, it immediately follows that



vjL1v

�
= ν hvjvi and, according

to eq. (20), the stationary state is unstable if and only if there exists a solution withν < 0.

OperatorL1 has a full set of orthogonal eigenfunctionsϕ (1)
n [21], i.e.,

D
ϕ(1)

n jϕ(1)
m

E
= 0 if

n 6= m. The spectrum ofL1 consists of discrete (γ (1)n < β ) and continuous (γ (1)n � β ) parts,

and we scale the eigenmodes norms
D

ϕ(1)
n jϕ(1)

n

E
to unity or a delta-function, respectively.

Then, we can decompose the functionv(x) in the following way:

v(x) = ∑
n

Dnϕ(1)
n (x)+

Z +∞

β
Dnϕ(1)

n (x)dγ (1)n ; (22)

where the sum goes only over the eigenvalues of the discrete spectrum ofL 1. Coefficients

in eq. (22) can be found asDn =

D
ϕ(1)

n jv
E

. FunctionΦ(x) can be then decomposed in a

similar way, with the coefficientsCn =

D
ϕ(1)

n jΦ
E

. Then, eq. (21) can be reduced to:
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Dn =

8<: µ Cn=(γ(1)n �ν); if Cn 6= 0 andµ > 0;
1; if Cn = 0; µ = 0; andν = γ (1)n ;
0; otherwise:

(23)

In order to find the Lagrange multiplierν , we substitute eqs (22) and (23) into the orthog-
onality condition (18), and obtain the following equation for the parameterν :

Q(ν)� hvjΦi= ∑
n

CnD�

n+

Z +∞

β
CnD�

ndγ (1)n = 0: (24)

As has been mentioned above, instability appears if there exists a rootν < 0, and thus we
should determine the sign of minimalν solving eq. (24). Because the lowest-order modes
of the operatorsL0 andL1, Φ(x) andv0(x) respectively, do not contain zeros, the coefficient
C0 6= 0. Then, from the structure of eq. (24) it follows thatQ(ν < γ (1)

0
) > 0, and thus the

solutions are only possible forν > γ (1)
0

.
SinceF (I) does not depend onx, a fundamental soliton has a symmetric profile with

a single maximum, anddΦ=dx is the first-order neutral mode of the operatorL 1, i.e.,
γ(1)
1

= 0. Therefore, the modes withν = γ (1)m do not give rise to instability, and we search
for the solutions withµ > 0. We notice that the functionQ(ν) is monotonic in the interval
(�∞;+∞) for γ (1)

0
< ν < γ(1)m , wherem> 1 corresponds to the smallest eigenvalue with

Cm 6= 0. Then, becauseγ (1)m > γ(1)
1

= 0, the sign of the solutionν is determined by the
value ofQ(0). Indeed, ifQ(0) > 0, the functionQ(ν) vanishes at someν < 0 which
indicatesinstability, and vice versa. From eqs (21) and (24), it follows thatQ(ν = 0) =

L�1

1 µΦjΦ
�
. To calculate this value, we differentiate the equalityL0Φ = 0 with respect to

the propagation constant and obtain

L1
∂Φ
∂β

=�Φ; (25)

that finally determines the sign, sign[Q(0)] =�sign(dP=dβ ). These results provide a proof
of the stability condition outlined above.

Linear stability discussed above should be compared with a moregeneral Lyapunov sta-
bility theoremwhich states that in a conservative system a stable solution (in the Lyapunov
sense) corresponds to an extrema point of an invariant such as the system Hamiltonian,
provided it is bounded from below (or above). For the cubic NLS equation, this means
that a soliton solution is a stationary point of the HamiltonianH for a fixed powerP, and
it is found from the variational problemδ (H +βP) = 0. In order to prove the Lyapunov
stability, one needs to demonstrate that, for a class of localized solutions, the soliton so-
lution realizes a minimum of the Hamiltonian whenP is fixed. This fact can be shown
rigorously for a homogeneous medium with cubic nonlinearity [23], i.e., forF (I ;x) = I ,
and it follows from the integral inequality,

H > Hs+(P1=2�P1=2
s ); (26)

where the subscript ‘s’ defines the integral values calculated for the NLS soliton. Condi-
tion (26) demonstrates the soliton stability for both small and finite-amplitude perturba-
tions, and a similar relation can be obtained for generalized nonlinearity, being consistent
with the Vakhitov-Kolokolov criterion.
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3.4Marginal stability point: Asymptotic analysis

As was shown above, even a small perturbation of the cubic NLS equation may lead to
novel features in the soliton dynamics associated with the soliton internal modes. As fol-
lows from the linear stability analysis, the solitons in a homogeneous medium are unstable
when the slope of the power dependence is negative, i.e., fordP=dβ < 0.

Near the marginal stability pointβ = βcr, such that(dP=dβ )β=βrmcr
= 0, where the

instability growth rate is small, we can derive a general analytical asymptotic model which
describes not only linear instabilities but also the nonlinear long-term evolution of unstable
solitons. Such an approach is based on a nontrivial modification of the soliton perturbation
theory [12] near the marginal stability pointβ = β cr.

The standard soliton perturbation theory [12] is usually applied to analyse the soliton
dynamics under the action of external perturbations. Here we should deal witha qualita-
tively different physical problemwhen an unstable bright soliton evolves under the action
of its ‘own’ perturbations. As a result of the development of the instability, the soliton
propagation constant varies slowly along the propagation direction, i.e.,β = β (z). Near
the instability threshold, when the derivativedP=dβ vanishes atβ = β cr, the instability
growth rate is small, and we can assume that the instability-induced evolution of the per-
turbed soliton is slowly varying inz and the soliton evolves almost adiabatically (i.e., it
remains self-similar). Therefore, we can developan asymptotic theoryrepresenting the
solution to the original model (7) in the formψ = φ(x;β ;Z)exp[iβ 0z+ iε

R Z
0 β (Z0)dZ0],

whereβ = β0+ ε2Ω(Z), Z = εz, andε � 1. Here the constant valueβ0 is chosen in the
vicinity of the critical pointβcr. Then, using the asymptotic multi-scale expansion in the
form φ = Φ(x;β )+ε3φ3(x;β ;Z)+O(ε4

), we obtain the following equation for the soliton
propagation constantβ (details can be found in [19,27]),

M(βcr)
d2Ω
dZ2 +

1
ε2

dP
dβ

����
β=β0

Ω+
1
2

d2P
dβ 2

����
β=βcr

Ω2
= 0; (27)

whereP(β ) andM(β ) are calculated through the stationary soliton solution, and

M(β ) =

Z +∞

�∞

�
1

Φ(x;β )

Z x

0
Φ(x0;β )

∂Φ(x0;β )

∂β
dx0
�2

dx> 0:

A remarkable result which follows from this asymptotic analysis is the following. In the
generalized NLS equation (7) the dynamics of solitary waves near the instability threshold
can be described by a simple model (27) which is equivalent to the equation for motion
of an effectiveinertial and conservativeparticle of the massM(βcr) with the coordinate
Ω moving under the action of a potential force which is proportional to the difference
P0�P(β ), whereP0 = P(β0).

The first two terms in eq. (27) give the result of the linear stability analysis, according
to which the soliton islinearly unstableprovideddP=dβ < 0. Nonlinear term in eq. (27)
allows to describe not only linear but also long-term (nonlinear) dynamics of an unstable
soliton and, moreover, to identify qualitatively different scenarios of the instability-induced
soliton dynamics near the marginal stability point (see details in [19,27]).
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4. Interaction of spatial solitons

In the case of optical solitons generated in a waveguide geometry, i.e., those described by
the (1+1)-dimensional NLS equation, the special case of the cubic nonlinearity is known
to be integrable by means of the IST transform. This is in a sharp contrast with the (2+1)-
dimensional models where integrability is very rare, and usually it is not associated with
the optical models. One of the many properties of an integrable model is the existence
of exact analytical solutions describingelastic interaction of any number of solitons, that
is, when a complicated nonlinear interaction of spatially localized waves reduces to sim-
ple nonlinear superposition resulting in phase shifts. In the framework of the generalized
NLS equation the soliton interaction is not elastic because the model is non-integrable.
Non-integrability produces a number of interesting effects which are closely associated
with soliton interactions in realistic physical models corresponding to those observed in
experiment. Many of the effects produced by the absence of integrability can be already
seen in a simple example of the cubic-quintic NLS equation (11). When the parameterε
is small, the inelastic effects associated with non-integrability of the model can be divided
into two classes. The first class of the effects is characterized by the order ofε 2 produced
by radiation (of the amplitude� ε) that appears as a result of collision between two soli-
tons in the framework of eq. (11). Radiation is also responsible for a change of the soliton
amplitude after the collision. The second class of effects is associated with the order ofε .
An important example is the so-calledmulti-soliton inelastic effectsobserved in collision
of three (or more) solitons as an energy exchange between the colliding solitary waves not
involving radiation (in the order ofε) [28].

Similar inelastic effects of the first order ofε are produced by the excitation of the soliton
internal modes [17], that can appear forε 6= 0, being associated with discrete eigenvalues
splitting off the soliton continuum spectrum (see above). No soliton internal modes are
known to exist in integrable soliton-supporting models.

When the perturbation parameterε is not small, the soliton interaction becomes more
complicated, and it is usually accompanied by strong radiation and energy exchange. How-
ever, for two colliding solitons of equal amplitudes, the interaction crucially depends on the
relative phaseθ between the colliding solitons and their mutual coherence. These prop-
erties are very common for different types of solitons (including those of the integrable
models), and they are explained by simple physics. Two mutually coherent solitons attract
each other when they are in phase [θ = 0, figure 5a] or repel when they are out-of-phase
[θ = π , figure 5c]. In the intermediate case, i.e., for 0< θ < π the soliton interaction is
accompanied by energy exchange, as shown in figure 5b.

The basic attractive and repulsive interaction involves the following. For in-phase beams
the intensity in the overlapping region between the beams increases. This, in turn, results
in a local increase of the refractive index which effectively attracts both beams. Exactly the
opposite situation arises when the solitons are out-of-phase. Then, the light intensity drops
in the overlap region and so does the refractive index change. This results in the beams
moving away from each other, which is interpreted as a repulsive force.

5. Conclusions

During the last 10 years, the field of spatial optical solitons has expanded dramatically be-
ing driven by a number of impressive experimental demonstrations of the soliton effects
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Figure 5. Result of the collision of two solitons with equal amplitudes in the nonin-
tegrable model defined by eqs (7),(11) forf (I) = I2 andε = 0:2. The initial soliton
relative phaseθ is (a) 0, (b)π=2, and (c)π.

in different types of nonlinear bulk media, waveguide structures, and waveguide arrays. In
this (largely tutorial) paper, we have presented only a small fraction of the fundamental
problems associated with this field. Unlike temporal solitons in fiber optics, the spatial
solitons are described by higher-dimensional nonintegrable nonlinear models, they may
become unstable even in the Kerr medium, and their analysis requires the development of
novel analytical techniques for studying of localized solutions of nonintegrable nonlinear
equations.

Spatial optical solitons bring many novel concepts into the nonlinear physics, they can
carry a topological charge analogous to ‘spin’, they can consist of several components, they
can spiral, fuse, repel each other in a bulk medium, etc. We believe that novel nonlinear
materials such as nonlinear photonic crystals may expand the possibility of realistic appli-
cations of spatial optical solitons towards creating a novel generation of nonlinear optical
devices operating entirely with light.
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