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The importance of the acoustical mode of lattice vibration for self-trapping of an elec· 

tron is emphasized. It is shown that when the coupling constant between the electron and 

the acoustical mode vibration exceeds a certain critical value, the effective mass of the 

electron changes discontinuously to such an enormous value that it is practically allowed to 

take a localized self-trapping state as an eigenstate, in contrast to the case of polaron, in 

which the effective mass changes continuously with coupling constant. This difference is 

attributed to the different force range of electron-lattice interaction in the two cases. 

§I. Introduction 

29 

Since Landau1
> pointed out the possibility of self-trapping of an electron in 

deformable lattice as early as in 1933, much attention has been focused on the 

interaction between an electron and polar mode of lattice vibration. 2 >~a> One 

may well suppose that in ionic crystals the electrostatic :field caused by the 

polarization wave interacts with the conduction electron more strongly than the 

acoustical mode does. In fact, the interaction in the former case is usually so 

strong3
J,o> that the perturbation theoretical treatment is not a very good approx

imation whereas it is in the latter case, as long as one starts from the band 

picture. 

If the interaction of an electron with lattice vibration is very strong, the 

electron is supposed to 'dig its own hole and be trapped there '.1>, 2>, 7> On the 

other hand, true eigenstate of the electron-lattice syste1n must be such that it 

has translational symmetry with wave vector k, that is, it is a plane-wave like 

linear combination of localized electron states accompanied by surrounding 

lattice distortion, 8
J even if the localized states themselves are good approxi

mations. When the interaction is not very strong, this way of description is 

not appropriate. One should rather describe the electron to be virtually emitting 

and absorbing phonons, suffering recoil each time, and as a whole it moves 

through the crystal with a certain wave vector k.3
! In any case, the word 

'self-trapping' or 'localization' should not be taken so literally, and the problem 

of the possibility of self-trapping should be replaced by the discussion of the 

magnitude of the effective mass of this quasi-particle, that is, an electron ac

companied by virtual phonons or lattice distortion. 

In the case of a slow electron interacting with polar mode of lattice v1-
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30 Y. Toyozawa 

bration, this quasi-particle has been called 'polaron', and several authors in

vestigated its properties, such as self-energy, effective mass, spatial extension 

and so on. 31 ~ 61 According to them, especially to Feynman,51 the effective mass 

of the polaron increases rather rapidly but continuously as the interaction be

comes stronger. It proved that neither discontinuity nor sudden increase of 

the effective mass appears, contrary to the expectation by some people. Thus, 

the word 'self-trapping' has only a relative meaning here, or has to be taken 

as a limiting case of very large effective mass of the quasi-particle. Moreover, 

in real crystals, it is limited to rather few cases that one can expect the effec

tive mass or the time of staying of an electron within a unit cell is so large 

that the word self-trapping is appropriate. 

According to the experimental works carried out hitherto, the electrons 

in alkali91 and silver halides101 are mobile though the mobility is much smaller 

than in the cases of Ge and Si, and through the analysis of the temperature 

dependence of the mobility it has been shown that the scattering of the electron 

(or exactly polaron) by polar mode vibration plays the main role except at 

rather low temperature where the scattering by acoustical mode vibration and 

by impurities becomes more important. As for the holes, the situation is the 

same in the case of AgBr,111 but it is reported that the hole in AgCl is several 

orders of magnitude less mobile than the electron.10
; The holes in alkali-halides 

~re now believed to be practically in self-trapped state since the experimental 

works by Kanzig and others12
J appeared. 

This essentially qualitative, difference, or quantitatively quite large difference 

in the behaviors of holes in the cases of alkali-talides and AgCl on the one hand 

and of AgBr on the other hand, the other properties of both of which do not seem 

to have essential difference, suggests that the motion of an electron (or a hole) 

in deformable lattice is divided rather distinctly into mobile type and practically 

immobile type (self-trapping state) according as the electron-lattice interaction 

is smaller or larger than a certain critical value. 

The interaction of an electron with polar mode, the importance of which 

has been emphasized by many authors and in fact has been proved experimentally 

for mobile electrons, fails to explain this discontinuity, as was mentioned above. 

In this paper we shall emphasize that the interaction with acoustical mode plays 

an essential role in self-trapping of an electron. The most important difference 

between the two kinds of interaction is that in the case of polar mode the in

teraction is of long range (electrostatic Coulomb potential) while it is of short 

range in the case of acoustical mode (deformation potential). The effect of 

the force range will be discussed in § 2, where we shall show, in rather intui

tive way based on the continuum model, that the electron changes its behavior 

discontinuously from mobile type to self-trapping type when the strength of the 

interaction with acoustical mode exceeds certain critical value. In view of the 

strong localization of the electron and the lattice distortion in the self-trapping 
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Self-Trapping of an Electron 31 

state, we shall take into account the discrete structure of the lattice explicitly 

in § 3, and investigate the eigenstate of the electron-lattice system with wave 

number h, making use of the variation method, with the result that the effective 

mass of the electron increases discontinuously to an enormous value as the 

interaction exceeds the critical value. The validity of the approximations used 

m § 3 are discussed in the final section, more thorough calculations being left 

to the following paper. 

§ 2. Preliminary discuss!ons based on the continuum model 

As was mentioned in § 1, the exact eigcnstates of the electron-lattice system 

have the translational symmetry with wave number li, and the localized self

trappiq.~ state is only an approximate eigenstate. Nevertheless, it seems sug

gestive in elucidating the effect of the difference in the force ranges of acoustical 

and polar modes to calculate the adiabatic potential for the localized self-trapping 

state. We shall take the continuum model for the lattice, for simplicity. 

Acoustical mode of lattice vibration is nothing but the elastic wave as long 

as the wavelength is large compared with the interatomic distance. Let us assume 

that the crystal has deformed in such a way that the volume dilation .d(r) is 

given by 

d(r) = l : (r<R), 

(r>R). 

The elastic potential energy for this deformation IS given by 

u = }~c _4_~ R3 J'} 
2 3 ' 

where C is an appropriate elastic constant.* 

(2·1) 

(2·2) 

According to the deformation potential theory/3
J an electron m the con

duction band suffers the potential energy 

E 1 Li(r) (2·3) 

due to this deformation, where E 1 is the deformation potential constant. If the 

* It is to be noted that the local dilation (2 ·1) induces shearing strain field outside the sphere 

such that the medium is compressed along the radial direction and stretched in directions normal 

to it. Since the displacement of the medium at r=R is equal to JR/3, the displacement outside 

the sphere is given by (JR./3) (R/r), and the elastic energy stored outside the sphere is proportional 

to J 2R.4 .\:(v-~Y r 2drcx::J2R.3. This energy is to be included in (2·2). C, therefore, is a somewhat 

complicated combination of elastic constants. As for the electron-lattice interaction, the shearing 

strain has no first order interaction with the electron in the case where the lattice is cubic and 

the minimum of the electronic energy band is located at k=O.l3> Hence we have the form (2·3) 

for the interaction energy. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

6
/1

/2
9
/1

9
3
3
8
6
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



32 Y. Toyozawa 

sign of il is such that E 1 L1 < 0, we have a three-dimensional square well poten

tial problem for the electron. Let us denote the band effective mass of the 

electron by m*. \Vhen the depth of the well is sufficiently large, that is, when 

;;~_2m* R2E1L1> (-!!_)2 
fZ 2 2 ' 

(2 ·4) 

there IS a bound state, with binding energy 

-E=---~-
2 

-(~cot ~) 2 

2m* R2 
' 

(2·5) 

where ~ IS the root of 

(2 ·6) 

If (2 · 4) IS not valid, there is no bound state and 

E=O (2·7) 

for the ground state of the electron. 

The adiabatic potential for the ground state of the electron is now written as 

R 

t 

W(il, R) = U+E 

n2 r'? 

21n* R0R 

_ _/}2 -- [ (;2_-- !!_~C032 ~ J 
2m* R 0R R 2 

Fig. 1. Schematic representation of the equipoten

tial lines for the adiabatic potential of the 

electron-acoustical mode system on the elastic 

continuum model. R is the radius of the 

sphere in which there is a uniform volume 

dilation .d. The arrows give the direction of 

decreasing energy. 

(r>< ( ~~r ), 
(a> (;r), 

where 

(2·8) 

(2 ·9) 

Taking R constant, (2·8) increases 

monotonously with (J for larger values 

of R, while it takes a maximum and 

a minimum, and then increases mono

tonously for smaller values of R. 

The equipotential line of (2 · 8) on 

the ( il, R) -plane is shown schema

tically in Fig. 1. \Vhen o is larger 

than (IT/2) 2 (the right side of the 

broken line), a bound state for the 

electron appears, and when 

R<R1==R0 cos
2
(2~\) =0.0476R0 

(2 ·10) 

where ~1 =2.25 is the root of 
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Self-Trapping of an Electron 

tan(2~t= 1 
2;: 

33 

lV takes negative values for appropriate values of .d (the shaded region in Fig. 1). 

If the crystal were perfectly continuous elastic medium, the stable state of 

the system corresponds to infinitesimally small R and infinitely large .d, with 

infinitely deep adiabatic potential. Due to the atomic structure of the crystal, 

R must be larger than a' where a' is of the same order of magnitude with 

interatomic distance a. 

Consequently, we can conclude as follows. If R1 is larger than a', that is, if 

_,n* I.E;le > 22.0 (2 ·11) 
fl 2Ca' ' 

the stable state of the system is such that the electron is trapped at the lattice 

distortion which takes as small a spatial extension as is compatible with atomic 

structure of the crystal, while the state in which the electron moves through 

the lattice without lattice distortion is metastable. The latter statement is 

evident because these two states are completely different from each other being 

separated by a barrier of adiabatic potential. 

The saddle point of this barrier is given by 

(2·12) 

where ,;=8 =1.929 IS the root of 

} __ ctn;= +1-tan ~=0 
~ 3 

H is important to note that at the saddle point a bound state is already split 

off from the conduction band, and that the adiabatic approximation is valid 

there. 

The existence of the potential barrier between the two types of states is 

due to the fact that for the square well potential the bound state appears only 

when the depth or the radius is larger than a finite value. Before the energy 

gain due to the binding appears, the lattice must suffer finite distortion with 

finite elastic energy. However, one may well ask why one has to confine the 

distortion to the shape given by (2 ·1). Were there no path in the functional 

space of .d(r) through which one can get to the negative W region starting 

from the undistorted state without any potential barrier ? In order that the 
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34 Y. Toyozawa 

bound state appears for any small distortion, .d(r) must decay as r-1 or more 

slowly with increasing r. This makes the elastic energy U=(C/2)J.d(r) 2dr 

diverge at r= co. The energetically favorable distortion is such that .d(r) is 

more or less localized. That is the reason why we took the form (2 ·1). 

The situation is quite different in the case of polar mode. Denote by P(r) 

the local electric polarization due to the relative displacement of positive and 

negative ions. The space charge /1 (r) clue to this polarization is given by 

p(r) = -div P(r), while the electrostatic potential energy for the electron is 

given by -ecp(r) where dcp(r) = -47rp(r). 

Let us take the polarization field such that 

Ze~ 
r> b, 

T 

-ecp(r) = (2·13) 
Zc~ 

\ b 
r<b, 

where Z and b are parameters. P(r) IS then given by 

{ 

Ze 

P(r) = 0 4rr r' 
r>b, 

(2·14) 

r<b, 

and the electrostatic energy stored m the lattice IS 

" 2 1 Z 2 

U=const.jP(r) dr=2,]( -b-~, (2·15) 

where K is an appropriately defir:.ecl polarizability of the lattice. It is important 

to note that in the present case it is possible to choose a pattern of lattice dis

tortion such that the lattice energy integral converges and yet there are bound 

states for any small magnitude of the distortion. The binding energy of the 

ground state is given by 

Z
~ 

-E= e_ 
2r0 ' 

ro= --- ~
trt*Ze2' 

(2·16) 

if r 0 ';;Y b so that the flattening of the potential (2 ·13) at r < b has no sizable 

effect, while if r 0 <{ b there is no effect of uncertainty principle and - E is given 

by Ze2/b itself. Combining these limiting cases we can write 

~ Ze2 

- E = --- ------
2ro+h 

(2 ·17) 

for qualitative purpose. 

The equipotential line of the adiabatic potential W= U+E on the (Z, b)

plane is shown in Fig. 2. There is a negative energy region (shaded in the 

Figure) which begins from the undistorted state and there is only one minimum 

point, 
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Se!j:Trapping of an Electron 35 

_,_ z 
Fig. 2. Schematic representation of the equipoten

tial line for the adiabatic potential of the electron

polar mode system on the dielectric continuum 

model b is the radius of the sphere on the 

surface of which there is a uniform charge, +Ze 

in total, due to the polarization field surrounding 

the sphere. Z is a parameter representing the 

strength of polarization. 

There is no potential barrier bet

ween this stable state and the undis

torted state. 

As the coupling constant K in

creases, the polarization Z of the 

stable state increases, and the r 1dius 

h of the space charge and also the 

radius of electron orbit decreases. 

That is, the stable configuration 

changes continuously with coupling 

constant, in contrast to the case of 

acoustical mode where the stable 

state changes abruptly from the 

undistorted configuration into the strongly distorted configuration. 

It is easy to see from the above discussions that the difference between 

these two modes of lattice vibration results from the different force ranges of 

electron-lattice interaction in the two cases. As is given by (2 · 3), a local 

dilation induces the potential for the electron at the same position only, that 

is, the interaction is a short-range force. The local space charge due to the 

electric polarization, on the other hand, gives rise to electrostatic potential at 

2. distant point, too. A long-range potential, such as Coulomb potential, can 

always accommodate an electron, while a short-range potential, such as square 

well potential can bind an electron only when the depth of the potential becomes 

sufficiently large, at the cost of finite energy of the lattice. 

Of course, the above discussion is not fully satisfactory in that we have 

not taken into account the translational symmetry of the eigenstate, and in that 

we have made use of the adiabatic approximation. Moreover, we found that 

for the self-trapping state in the case of acoustical mode, the continuum theory 

breaks down which compelled us to introduce a cut-off length a'. In the fol

lowing section we shall explicitly take into account the discrete nature of the 

lattice which is essential for the self-trapping state, and when we apply a 

variation principle, we shall choose ab initio the trial eigenfunctions which is 

consistent with the translational symmetry of the lattice, in order to see how 

the effective mass changes with the coupling constant. We confine ourselves 

to the case of acoustical mode, because the case of polar mode has been fully 
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36 Y. Toyozawa 

explored by a number of authors. 

§ 3. Discontinuous change of the effective mass with coupling constant 

Let us take tight binding approximation for the electron in the crystal 

lattice, neglecting the overlap energies other than that for the nearest neighbors: 

- V. Making use of the second quantization formalism for the electron and 

phonons, we can write the total Hamiltonian as follows: 

/"-... 

=- v~~ am*an 
m n 

+ ~ li uw b,.* bll'. (3·1) 
'U} 

Here a:_ and am are those operators which create and annihilate, respectively, 

the electron at the m-th lattice, the position vector of which is denoted by m. 

bt"J and b,.. are those for phonon with wave number w. .1V, 1\;f and u are the 

total number of unit cells, the mass of a unit cell, and sound velocity, respec

tively. The symbol ;\ over the double sum of the first term means that the 

summation is to be carried out only when m and n are nearest neighbors to 

each other. The second term is nothing but the Fourier expansion of the de

formation potential given by (2 · 3), in a discrete lattice space. 

We now investigate the lowest eigenstate of (3 ·1) with wave number k, 

by a variational procedure. We apply the intermediate coupling method15
l which 

is usually expected to be useful when one wants to see how the weak coupling 

and strong coupling solutions are connected, and which has been successfully 

applied to the polaron problem.4
l One important difference between the polaron 

problem and the present problem is that the total pseudo-momentum operator, 

~ n k ak* a"+ :z=; liwbw* bu., 
/-..~ 'IV 

where a1,:-::::=N-112 L exp (- il£ · m) a~~~, is the annihilation operator for the electron 
rn 

in the Bloch state, does not commute with (3 ·1), because (3 ·1) includes the 

matrix elements for the Umklapp-process, as the result of explicit consideration 

of periodic structure of the lattice for the motion of the electron. It is incon

venient to cancel the electron coordinate by specifying the total momentum k, 

as was done in the polaron problem.4
J Instead, we -vvrite the trial wave function 

of the total system as 

ilfF1 •. )=1V-112L exp (ik ·m) S,..(m)T~r(m) IO), (3·2) 
'" 
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SelfTrapping of an Electron 37 

2:\¢k(n) \
2
=1, (3·3) 

" 

S,..(m) ==exp[:Cf,/ (w)exp(iw ·m)bw 
((} 

-(hermite conjugate)] (3·4) 

with ¢(n) andf(w) are trial functions for the electron and lattice configurations, 

respectively. \0) means the vacuum state for both electron and phonon. 

Making use of the theorem that 

if S==exp(a*b-ab*) (a:: c-number), 

then s·-1 bS=b-a and s-1 b* S=b*-a*, (3 ·5) 

we see that the displacement operator of the l-th atom 

X(l) = :E {h (w)bw exp(iw ·l) + (h.c.)} 
w 

is transformed by S"'(m) into 

S,,,(m) - 1X(l) S,.(m) =X(l)- I: {h(w)f,,,(w)exp(iw ·l-m) +(c. c.)}. 
w 

in other words, s,,,(m) is the operator which makes the lattice deform, and the 

fact that the displacement represented by the second term is a function of 

(l-m) only, means that the pattern of distortion generated by Sk(m+n) is 

nothing but the pattern obtained as the result of translation of pattern Sk(m) 

by lattice vector n. This assures the translational symmetry of (3 · 2) with 

wave number k. The m-th term of (3 · 2), Sk(m)T1,,(m) \0), represents the state 

in which the electron is distributed with amplitude ¢1,,(n) around the m-th 

lattice point, while the lattice is in the zero point vibrational state around the 

displaced position corresponding to pattern S~.-.(m). 

have 

Making use of elementary operational calculus (see the Appendix), we 

(0\S~.-*(m)S,,,(m+l) \O)=exp( -o-),,(l)), 

O"~.:(l) == L:;J/.,* ( w )}/, (w) {1- exp (- iw ·l)} =O"~;,* ( -l) 
ll' 

(3·6) 

(3·7) 

for the overlap integral between the zero point vibrational states for the pattern 

Sh(m) and S 1,,(m+l). In the same way we have 

(lfl 1 ,.\ifl~;)= I:; exp {ilc·l-0"1,,(l)} L:;¢'t(n)¢~;(n-l), 
l n 

/'... 

(lfl"'\Ke\ 11/1,)=- VI:; exp {iJ;.l-61,,(l)} L:;~¢ 1 /(n)¢k(n-l +8), 
l n a 

(3·8) 

( 
h )1~ . 

X L:;E1 0
--- iw112 {exp( -iw ·n)j/,.(w) -exp(iw ·n-l)fl~*(w)}, 

'W .:_..._l\l.,'Vf:u 
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38 Y. T oyozawa, 

( if!~.-JHLJIJt,..) = ( W,..JW~.-) L:nuuif,.,* (w )f, .. ( w), 
/(' 

where/"-... on the summation means that o is to run over the nearest neighbours. 

As the first approximation, let us neglect the spatial broadening of the 

electronic wave function and set ¢ ( n) = rJ11 , 0 where rJ11, m is three-dimensional 

Kronecker's o-function. (3 · 8) is greatly simplified then and we can write the 

expectation value of the total energy as 

/"-... 

=- VL:exp {ik·o-a-~.-(8)} + ~nuwf~.,*(w)f,.,(w) 
8 w 

- 2:E1 l iw
112 {f, .. (w) -_f,..*(w)}. ( 

t ) 1/2 

"' 2Ni11u 

Minimizing (3·9) with respect to fi.,(w), we have 

- iwlJ2 El( -- n~-. ) 1/2 

':},JVl\1u 
f,~(w) =--/C:---------------·----· ---- - -------

V)--~ {1- exp ( -iw · 8)} exp {ik ·8-a-1,(8)} + lluw 
8 . 

Inserting this into (3 · 7) and (3 · 9), we have 

Et- ~---·co {1- exp (- it.v · 8)} 
o-J.-(8) = L __ ?'... 2NMu ___________ , 

w [VI: {1- exp ( -iw ·8')} exp {ik · 8' -a-"(8')} + nuw ]2 

8 

/"-... 

E(k) =-Vl: {1 +a-1..( o)} exp {ik · 8- a-1,,(8)} 
0 

E
1

2-fJ __ ·w 
2NMu -2:- /"-... ---------~·~-------

w VI:{1-exp( -iw·o)}exp{ik·o-a-!.'(8)} +fiuw 
8 

(3·9) 

(3 ·10) 

(3·12) 

'The denominators of (3·11) and (3·12) are real due to (3·7). (3·11) are 

v simultaneous equations for v unknowns a-,..(8), where v is the number of the 

nearest neighbors. 

To the first order with respect to the coupling constant E 1
2

, we have 

E/~ 1 !--w 
/"-... 2N_lVfu 

E ( k) = - VL:exp ( ik · 8) - 'E - ?":~-- ------ /"-... 
8 

w VL:exp(ik·8)- V:Z:exp(i(k-w) ·o) +nuw 
0 0 

(3·13) 

of which the first term is the electronic band energy of the state k, and the 

second term is the self-energy (at absolute zero of temperature) of this state due 

to the electron-lattice interaction. On the other hand, for very large coupLing 

constant, we can neglect exp( -a-,,(8)) compared with unity, and we have 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

6
/1

/2
9
/1

9
3
3
8
6
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Self-Trapping of an Electron 39 

(3 ·14) 

It is the main purpose o{ this section to see how the solution changes from 

the weak coupling limit (3 ·13) to the strong coupling limit (3 ·14) as we in

crease the coupling constant continuously. 

In solving (3 ·11) we approximate the band energy by a parabolic form: 

/"-. . h2k2 
c(k) -c(O) =- V~ {exp (zk·8) -1} ~----~---

s 2m* 
(3·15) 

without spoiling the essential feature of the matter. First we solve (3 ·11) for 

the state: k=O. It is evident that in this case all a-0(o) are equal: 

a-o( o) =a-, 

and (3 ·11) reduces to a single equation 

f
1. t 3dt 

a-=3gr exp c2a-) ;{!+r~~-p(~)P' 

while (3 ·12) can be written as 

l 

- E_(()_2_ = (1 +a-) exp (-a-) + 3g;- exp (a-) \'---~-__t~qt~----
v V ,, t+r exp(a-) 

0 

where v is the number of the nearest neighbors, and 

. _ huw0 
r=~-----·- -----

h2wo2/2m*' 

g:,--==--12-
. 2liV ' 

(3 ·16) 

(3 ·17) 

(3·18) 

(3·19) 

(3·20) 

w 0 being the Debye cut-off wave number. Hereafter we shall call g the coupling 

constant. It is important to note that r, the ratio of maximum phonon energy 

to the band width, is usually of the order of 1/100,.....,1/10. We shall call it 

the non-adiabatic parameter, since the lattice vibration can be treated adiabati

cally in the limit of r~>O. 

Instead of solving (3 ·17) with respect to a- as a function of g and then 

substituting the a- in (3 ·18), we shall use the parametric representation of g and 

E with a- as a parameter. In the limiting case of r exp (a-) ~1, we have 

-1 3 exp (2o-) 
g r-v-;; r ~- - -- -- - , 

1-J a-

~E(O) ,....., (1 +2o-)exp( -a-), 
vV 

while when r exp(a-) ~ 1, we have 

-1 3 -1 1 
g '"'"'---r -~ 

4 (J 
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(a) 

Y. Toyozawa 
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(b) 

flc flz ~g 

Fig. 3. Schematic representation of the solution of the variation 

problem. (a) : Parametric representation of the interaction 

constant g and the calculated energy E with rr as a parameter 

which is a measure of the magnitude of distortion. (b) : E 

as a function of g. The arrows on the curve are towards 

the direction of increasing a", 

-E(O) 4 ., 
-- - ,..._._/ (), 

vV 3 

Since r~1, we get g-1 -(J" and E-() curves as shown in Fig. 3a, from which 

we get the E-g curve shown in Fig. 3b. It is important to note that o- is a 

three-valued function of g between [h and [/2• As the result, E- g curve has 

a closed loop with a node at g=gc, () taking the value ()cU! and o-c<tl on the two 

branches. Making use of the fact that r ~ 1, we have 

(3·21) 

(3·22) 

As is evident {rom (3 · 7), (J" represents the magnitude of lattice distortion 

around the electron. In fact, the expectation value of the number of phonons 

induced around the electron is given by 

(3·23) 
'IV w 

which is of the same order of magnitude with (J"'s. 

When the coupling constant g is smaller than gc, the stable solution (the 

one with the lowest energy) corresponds to small ()( <(J"/l) while for g> gc it 

corresponds to large (J"( > (J"/t;). There appears discontinuity at g=gc, o- jumping 

from (J"c <n ( ~ 1) to (J"c <tl ( >-1). It is evident that the former solution corresponds to 

the mobile state and the latter to the (plane wave of) self-trapping state. The 
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Self-Trapping of an Electron 41 

second lowest solution for Y1 < g < g2 represents a metastable state which is the 

self-trapping state or the mobile state according as g <ge or g> ge· (See the 

discussion in § 2.) Whether the third solution has a definite physical meaning 

is not clear at present. 

Let us calculate the effective mass of the self-trapped electron. Since 

exp(-CT)~1 in this case, the k-dependent term of CTk(o) in (3·11) is of the 

order of exp( -CT) in comparison with the main term CT0((J) =CT, and we have, 

from (3 ·12), 

/"-... 

E(k) -E(O) =- V exp( -CT) :E {exp(ik ·o) -1} +O(exp( -2CT) ), (3 ·24) 
8 

that is, the effective mass of the self-trapped electron is exp () times the band 

effective mass. Since CTCtJ ~ ()c <tJ = 3/4 · r-\ the ratio is an enormous quantity of 

the order of e
10 

,...._,e
100

• It is almost nonsense from the practical point of view 

to speak of the band formation of the self-trapped electron; it is practically 

immobile at absolute zero of temperature. The situation is quite different for 

the case of polaron, where neither the discontinuity of the effective mass (as 

the coupling increases) nor such a large distortion is expected to take place. 

Finally, it is to be noted that the large discontinuity and the coexistence 

of essentially different states, is partly due to the smallness of non-adiabatic 

parameter r. In fact, if r is as large as 2:1, the g-1 -CT curve of Fig. 3a becomes 

monotonous, and the discontinuity disappears. The situation is analogous to 

the problem of gas-liquid transition if we let temperatare correspond to r. 

§ 4. Discussions 

We must now discuss the approximations in the preceding section. The 

first point is concerned with the Ansatz ¢(n) =ri11 , 0 • If we treat the case of 

polar mode in the same way as in § 3, with the same Ansatz, there appears a 

discontinuity of the same kind as was obtained there. This discontinuity seems 

to be illusory in view of the results obtained by many authors on the continuum 

dielectric model. That the Ansatz ~~(n) =r)n,o is inappropriate in the case of 

polar mode is evident from the discussions in § 2, where we found that there 

is one and only one optimum broadening of the electron wavefunction, which 

is usually much larger than the interatomic distance and can be determined inde

pendently of the atomic structure of the lattice. 

On the other hand this Ansatz seems appropriate or at least tolerable in 

the case of the acoustical mode, because we found, in § 2, that in the self

trapping state the electron has a tendency to shrink as small as possible within 

the compatibility with the atomic structure of the lattice. Moreover, the results 

of § 3 in the weak-coupling case coincide with the results obtained by the con

ventional perturbation theory which is sufficiently good approximation in the 

case of acoustical mode. 
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42 Y. Toyozawa 

Thus it seems rather probable that discontinuity obtained in § 3 is a genuine 

one in the case of acoustical mode, although the approximations used there 

lead to dangerous results in the case of polar mode. It might be desirable to 

relax the Ansatz ¢(n) =o1 ,,o, but in that case there appear many exp ( -a-,,,(l)) 

in the expression for the energy expectation value, and it is practically impossi

ble to solve a number of simultaneous equations for O"(l) 's. 

The second point is concerned with the Ansatz (3 · 4). This operator makes 

the origin of vibration displace; however, it does not include the effect of 

change of frequencies and the effects of higher order. 

In the following paper we shall investigate the broadening of electron wave 

function and the corresponding lattice distortion and frequency change in the 

self-trapping state more thoroughly, at the cost of neglecting the effect of band 

formation which, in fact, has been shown to be quite small in § 3 of the present 

paper. Thereby we shall use the perturbation expansion in V (that is, in g-1
) 

and show that the convergence is fairly rapid, that is, the electronic wave 

function is in fact almost concentrated on the center atom even when g-1 is 

as large as a few times of gc - 1
• This partly justifies the Ansatz ¢( n) = on,o, and 

is also consistent with the nature of discontinuity discussed in § 3 ; that is, there 

exist two different types of well-defined states (one stable and the other metasta

ble), and as g passes gc, the only thing to take place is the reversal of energies 

of the two states, nothing discontinuous occurring in each state. 

By the same method we shall also investigate the activated state through 

which the self-trapping state at some lattice point jumps to its nearest neighbor, 

and point out that it is when g> g/ ( > gc) that the electron moves through the 

lattice by the 'hopping motion ',8
l while for intermediate coupling region: 

gc<g<g/, the electron will rather make a 'Schub-type motion', that is, it is 

once released from the self-trapping state and moves a few lattice distances before 

it becomes again self-trapped, because the activated state mentioned above has 

a higher energy than that of the mobile state. 

Finally we must answer the most important question : Is it possible for 

real crystals that the coupling constant is as large as gc ( ,....,_, 1) ? Assuming simple 

cubic lattice with nearest neighbor distance a, we have 

fi} 
Va2=-- ----

2m* 

by (3 ·15), and (3 · 20) becomes 

g=}- fl_/JJ__z*_ (C=Mu 2/a3 
IS elastic constant) 

6 ft 2Ca 

E1(in eV) 2 (m* /m) =0.035--- - ·--- ----------- -0--

C(in 1012 dyne/cm2)a(in A) 
(4·2) 

Since E 1 is usually of the order of several electron volts, it IS fairly possible 
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Se~f-Trapping of an Electron 43 

in relatively soft crystal with narrow band that the electron or hole becomes 

self-trapped. Quantitatively, of course, the criterion may vary to some extent 

if we change the model (for instance, other lattice structures, the consideration 

of the overlap energy V' for the second neighbor, or of the non-diagonal element 

(m\1\n) of the interaction Hamiltonian which seems important for the Kanzig 

center), or if we improve the approximations of § 3, as we shall do in the 

following paper. 

Appendix 

Consider the following two operators ; 

A==a*b-ab*, A'=a'*b-a'b* 

where b, b* are phonon operators and a, a' are complex numbers. The ex

pectation value 

F(J.) =(0\exp( -i.Jl)exp(L1') \O)L 

can be evaluated by differentiation, for it gives 

F' (}.)={a* (a' -a) -a' (a'* -a*)} I.F(}.) 

if one makes use of (3 · 5). After integration we have 

F(}.) =exp[ {a* (a' -a) -a' (tx'* -a*)} ).2/2]. 

In the same way we have 

(0\exp ( -I.A)b exp(J.A') \0)= -l.a' F(}.) 

(0\exp( -/.A)b*exp(L4') \0)= -}.a*F(}.) 

(0\exp( -I.A)b*b exp(}.A') IO)=i. 2 t:~*a' F().). 

(A·l) 

(A·2) 

(A ·1) is made use of in deriving (3 · 6) and (3 · 7) while (A· 2) IS used m 

deriving (3·8). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

6
/1

/2
9
/1

9
3
3
8
6
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



44 Y. Toyozawa 

References 

1) L. Landau, Phys. Zeits. d. Sowjetunion 3 (1933), 664. 

2) See, for instance, N. F. Mott & R. W. Gurney, Electronic Processes in Ionic Crystals. 

(Oxford, 1940), § 5. 

3) H. Frohlich, Advances in Physics 3 (1954), 325. 

4) T. D. Lee, F. E. Low and D. Pines, Phys. Rev. 90 (1953), 297. 

T. Yokota, Ann. Inst. Statist. Math. 5 (1954), 107. 

M. Gurari, Phil. Mag. 44 (1953), 329. 

5) R. P. Feynman, Phys. Rev. 97 (1955), 660. 

6) T. D. Shultz, Tech. Rep. M. I. T. No. 9 (1956). 

7) J. Markham and F. Seitz, Phys. Rev. 7 4 (1948), 1014. 

8) J. Yamashita and T. Kurosawa, J. Phys. Chem. Solids 5 (1958), 34. 

]. Yamashita and T. Kurosawa, J. Phys. Soc. Japan 15 (1960), 802. 

T. Kurosmva, J. Phys. Soc. Japan 15 (1960), 1211. 

G. L. Sewell, PhiL Mag. 36 (1958), 1361. 

9) M. Onuki and H. Kawamura, J. Phys. Soc. Japan 14 (1959), 967. 

10) K. Kobayashi and F. C. Brown, Phys. Rev. 113 (1959), 507 

D. C. Burnham, F. C. Brown and R. S I<.nox, Phys. Rev. 119 (1960), 1560. 

11) R. C. Hanson and F. C. Brown, J. Appl. Phys. 31 (1960), 210. 

12) \T\f. Kanzig, Phys. Rev. 99 (1955), 1890. 

T. G. Castner and W. IGinzig, J. Phys. Chem. Solids 3 (1957), 178. 

T. 0. Woodruff & vV. Kanzig, J. Phys. Chcm. Solids 5 (1958), 268. 

13) J. Bardeen and W. Shockley, Phys. Rev. 80 (1950), 72. 

14) L. I. Schiff, Quantum IV!echanics (McGraw Hill, 1949), Chapt. IV. 

15) S. Tomonaga, Prog. Theor. Phys. 2 (1947), G. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

6
/1

/2
9
/1

9
3
3
8
6
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


