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SUMMARY

This paper deals with Networked Control Systems (NCS) design, under the constraint of limited bandwidth
on the communication channel. A linear quadratic problem for a fixed sampling period is solved and this
result is used for the development ofH2 andH∞ performance indexes, yielding to the statement and solution
of H2 andH∞ optimal control problems. Finally, a self–triggered controller is designed with a switched
system approach in order to improve performance. Several examples are presented in order to illustrate the
validity of the developed theory. Copyrightc© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Networks have become widespread in present days and this fact causes the integration of various

areas of engineering to a networked environment. This is dueto the flexibility in the data traffic

between components of the system and to the reduced cost required to its implementation [1].

In this context, a Networked Control System (NCS) is a spatially distributed system in which

the communication between sensors, actuators and controllers is done through a communication

network [2]. Notice that the structure of a NCS differs from the classical control system one, in

which the communication channels are idealized and are not shared. NCSs exhibit some limitations

[1], [2], including limited bandwidth, sampling, coding, delay and packet dropout which may

compromise the overall performance. In this paper, we focusour study on the so called direct

structure, which requires more careful design techniques,see [1].

Several results may be found involving networked control systems analysis. In [3] we can find

meaningful results on stabilization of linear systems withminimumbit–rateand in [4] some models

of networked control systems with limited bandwidth are shown and necessary and sufficient
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2 M. SOUZA ET AL.

stability conditions are discussed for state feedback and output feedback design. Another state

feedback design approach is proposed in [5], where network delay and data packet dropout issues

are taken into account. In some applications, data packet disorder may occur, due to the network-

induced delay and this situation is discussed in [6]. Furthermore, [7], [8] provide stability conditions

on NCSs involving minimum information rate, data delay and packet dropout.

Limited bandwidth NCSs are closely related to sampled-datasystems. Indeed, a networked

system of this class may be modeled as a sampled-data one witha maximum sampling rate

constraint, defined by the main characteristics of the communication channel [9]. The classical

approach when dealing with sampled-data systems consists in ideal sampling of the discrete-

time measurements and in the use of zero-order holds to convert discrete-time control signals to

continuous-time ones. In [10], the classical LQR problem is solved for a periodically sampled

control signal through the definition of a specific discrete-time system, which will be used

afterwards. Some analysis onH2 andH∞ performance for the sampled-data control system has

also been done. More general results may be derived with the use of lifting techniques, in which

the sampler and the holder may also be designed in order to optimize the closed-loop performance.

A very comprehensive framework of lifted systems is given in[11], whereH2 andH∞ controller

designs are developed for single rate sampled data systems.Another important contribution in the

area is presented in [12] and providesH2 andH∞ design for synchronous multirate systems, which

has been done by converting that problem to an equivalent onewith a single sampling rate.

Another approach to NCSs design satisfying some performance index is done withself–triggering

andevent–triggeringstrategies [13], [14], [15], [16]. Both techniques try to reduce network resource

consumption by the control system, but they differ in some aspects. The first one uses the current

sampled state to determine the control signal and the next sampling time, involving ascheduling

procedure. The second one uses anevent detector, that is located next to the plant and uses a function

of the current state to determine when the next sampling timemust occur. An important comparison

between both techniques is provided by [14] and [15], where the authors discuss some performance

specifications and protocols that implement both control strategies via state feedback. The update

time instants in the self-triggered case are designed in order to guarantee stability and to enforce the

desired performance, which is measured by the decay of a Lyapunov function. An output feedback

self-triggered design is developed in [13], where the authors generalize two strategies conceived for

state feedback:flow based schedulingandbound based schedulingfor the sampling instants.

Therefore, one may conclude that there are several results on stability and analysis of NCSs,

but one may notice that there are few results on design of NCSsthat satisfy some performance

index. Optimal control results are obtained for fixed sampling time and this may not be well

adapted for shared networks. Furthermore, we will show thatbetter results are obtained if we

allow a dynamically chosen sampling period. Another important remark is that event–triggering

may consume network resources excessively in order to detect when the expected event will occur.

Hence, we conclude that a self–triggering approach to the design of a NCS is well adapted to

a networked environment, since it allows a sampled data control that does not demand network

resources excessively. In this context, our goal is to provide results on NCSs optimal design for a

fixed sampling period, based on [10], considering the well establishedH2 andH∞ performance

indexes. Later on we relax this constraint and we design a switched control system, where the

switching function determines the next sampling time, yielding a self–triggering controller. In
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SELF–TRIGGERED LINEAR QUADRATIC NETWORKED CONTROL 3

this paper, stability results and guaranteed cost determination for discrete-time switched systems

obtained by [17] will be extensively used.

The notation throughout is standard. For square matricesTr(·) denotes the trace function and

for a symmetric matrixσmax(·) is its maximum singular value. For real matrices or vectors

(′) indicates transpose. For symmetric matrices, the symbol(•) denotes each of its symmetric

blocks. The setM is composed by all Metzler matrices with nonnegative elements πji ≥ 0, ∀i, j
satisfying the normalization constraint

∑

j πji = 1, ∀i. The set of real and nonnegative integer

numbers are denoted asR andN whereas the set of theN first natural numbers is denoted as

K = {1, 2, · · · , N}. The squared norm of a trajectoryξ(t) defined for allt ≥ 0, denoted by‖ξ‖22, is

equal to‖ξ‖22 =
∫∞

0
ξ(t)′ξ(t)dt. All trajectories with finite norm, that is‖ξ‖2 < ∞, constitute the

setL2. With a little abuse of notation, the symbolL2 also denotes the set of all trajectories with

finite norm in discrete-time.

2. PRELIMINARIES

We begin by the calculation of two performance indexes that we think are specially well adapted

to NCS, where the effect of limited bandwidth in measurementand control channels are taken into

account. This is the basis for the solution of what we call Linear Quadratic Networked Control

Problem - LQN to be defined afterwards, see [10] for similar results. For the moment, we point

out that optimal control problems of this class are formulated in continuous-time and are solved,

without introducing any conservatism, from the positive definite stabilizing solution of a discrete-

time Riccati equation. Hence, from the numerical viewpointthese problems are adequately handled

by the methods available in the literature to date even for systems with large dimensions.

2.1. Sampled data system

Let us consider a continuous-time linear system with minimal state space realization

ẋ(t) = Ax(t) +Buk(t) , x(0) = ξ (1)

z(t) = Cx(t) +Duk(t) (2)

wherex(t) ∈ Rn is the state,z(t) ∈ Rq is the controlled output anduk(t) ∈ Rm is the control

signal transmitted through a limited bandwidth channel. Following [9], let us suppose that the

communication channel is a perfect noiseless channel, withno time delay, and thatµ > 0 is the

maximum allowed bit-rate. Then, for a givenr > 0, we consider the classSr of such channels with

any sampling periodT > 0 satisfying
µ

T
≤ r, (3)

which models bandwidth limitations. Hence, this constraint is equivalent toT ≥ T⋆ ≡ µ/r > 0,

whereT⋆ is the minimum sampling period allowed for transmission.

Copyright c© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2012)
Prepared usingocaauth.cls DOI: 10.1002/oca



4 M. SOUZA ET AL.

With this in mind, supposing that quantization effects can be ignored, the control input is modeled

as a piecewise constant signal of the form

uk(t) = uk , ∀t ∈ [tk, tk+1) (4)

for all k ∈ N. For the moment, the time duration between two successive sampling instants is

constant, that is

tk+1 − tk = T ≥ T⋆ , ∀k ∈ N (5)

This assumption will be relaxed afterwards to cope with non-uniform samplingsTk = tk+1 −
tk, ∀k ∈ N, defined as an additional decision variable. This is a control system of data-rate-limited

type with limited bandwidth equal to1/T⋆. We start by introducing the following notation associated

to the continuous-time system (1)-(2), namelyA ∈ R(n+m)×(n+m) andC ∈ Rq×(n+m) given by

A =

[

A B

0 0

]

, C =
[

C D
]

(6)

and stating a central result to be extensively used in the sequel.

Lemma 1

Consider the system (1)-(2), define matrices(Ad, Bd, Cd, Dd) of compatible dimensions such that

eAT =

[

Ad Bd

0 I

]

(7)

∫ T

0

eA
′tC′CeAtdt =

[

C′
d

D′
d

][

C′
d

D′
d

]′

(8)

and the discrete-time invariant linear system

xk+1 = Adxk +Bduk , x0 = ξ (9)

zk = Cdxk +Dduk (10)

then the following equality holds

∫ ∞

0

z(t)′z(t)dt =

∞
∑

k=0

z′kzk (11)

The proof of this lemma, see [10], makes clear that, generally, the dimensions of the output

vectorsz(t) andzk are not the same. For instance, it may occur that the left handside of (8) be a

positive definite matrix which imposeszk ∈ Rn+m even thoughz(t) ∈ Rq with q ≤ n < n+m.

Moreover, given the state space representation of the continuous-time system(A,B,C,D) and

T > 0, it is a simple matter to calculate the state space minimal representation of the discrete-

time system(Ad, Bd, Cd, Dd) such that equality (11) is preserved. This result is important in the

context of networked control systems since it provides a wayto calculate a discrete-time linear

system such that theL2 norm of the output trajectoryzk, ∀k ∈ N, equals theL2 norm of the output
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SELF–TRIGGERED LINEAR QUADRATIC NETWORKED CONTROL 5

trajectoryz(t), ∀t ≥ 0, of the continuous-time system. This fact, expressed by theequality (11), does

not involve any kind of approximation. Furthermore, it is important to stress that for anyT > 0 the

result of Lemma1 can be used to determine the exact value of squared norm of theoutput trajectory,

whenever the control signaluk(t) is transmitted to the limited bandwidth channel satisfying(4).

With this result, problems formulated in continuous-time are exactly solved in discrete-time.

2.2. Performance indexes

Based on the result of Lemma1, in this section, we develop two performance indexes associated

to the networked system under consideration. They are closely related to the concept ofH2 and

H∞ norms of LTI systems, respectively. Their importance stemsfrom the fact that theH2 norm

follows from an impulsive input which implies that all frequencies are equally excited. On the other

hand, theH∞ norm, whenever bounded, imposes to the system certain robustness properties against

parameter perturbations, for details see [18].

Consider an open-loop continuous-time system

ẋ(t) = Ax(t) + Ew(t) , x(0) = 0 (12)

z(t) = Cx(t) + Fw(t) (13)

where, as before,x(t) ∈ Rn is the state,z(t) ∈ Rq is the output andw(t) ∈ Rr is the exogenous

perturbation. In this section, it is assumed that matrixA is Hurwitz which implies that matrixAd

is Schur for allT > 0. First, as usually done in the definition ofH2 norm we assume thatF = 0

and the perturbation is such thatw(t) = eiδ(t) whereei ∈ Rr, i = 1, · · · , r, are the columns of the

identity matrix. Hence, denoting byzi(t) the output trajectory, the performance index is expressed

simply as

J2 =

r
∑

i=1

∫ ∞

0

zi(t)′zi(t)dt (14)

and, remembering that the impulse att = 0 induces a discontinuity on the initial condition

corresponding to move it instantaneously fromx(0) = 0 to x(0+) = Eei, i = 1, · · · , r, Lemma1

applied toẋ(t) = Ax(t), z(t) = Cx(t) for each initial condition yields

J2 =

r
∑

i=1

∞
∑

k=0

(zik)
′(zik) (15)

wherexk+1 = Adxk, x0 = Eei andzik = Cdxk for eachi = 1, · · · , r and

eAT = Ad ,

∫ T

0

eA
′tC′CeAtdt = C′

dCd (16)

From this calculation it follows that

J2 = Tr

(

E′
∞
∑

k=0

A′k
d C′

dCdA
k
dE

)

=
∥

∥Cd(zI −Ad)
−1E

∥

∥

2

2
(17)
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It is interesting to observe that the pair of matrices(Ad, Cd) depends onT > 0 but the indexJ2 does

not. We conclude that

∥

∥C(sI −A)−1E
∥

∥

2

2
=
∥

∥Cd(zI −Ad)
−1E

∥

∥

2

2
, ∀T > 0 (18)

which means that this is just an alternate and equivalent wayto calculate the performance index in

terms of theH2 norm of the associated discrete-time system transfer function. As it will be clear in

the sequel, this is an useful result to dealing with networked control systems.

Now, let us move our attention to theH∞ performance index. To this end, we assume thatw(t) 6=
0 is an arbitrary perturbation inL2 with finite norm transmitted through the limited bandwidth

channel. In other words, it is modeled as an additive perturbation that acts in the control channel,

which is, in our opinion, an adequate performance index to beconsidered in the NCS framework.

After transmission, denoting againz(t) the corresponding output signal given by (12)-(13), we

define the performance index

J∞ = sup
wk(t) 6=0∈L2

∫∞

0
z(t)′z(t)dt

∫∞

0
wk(t)′wk(t)dt

(19)

wherewk(t) = wk, ∀t ∈ [tk, tk+1) for all k ∈ N. It is important to give some interpretation about

the index we have just introduced that is strongly related totheH∞ norm of the continuous-time.

Indeed, we immediately have

J∞ ≤ sup
w(t) 6=0∈L2

∫∞

0
z(t)′z(t)dt

∫∞

0
w(t)′w(t)dt

≤
∥

∥C(sI −A)−1E + F
∥

∥

2

∞
(20)

Although the upper bound does not depend onT > 0, the value of the indexJ∞ does. However, it

can be calculated by applying once again the result of Lemma1 which yields

J∞ = sup
wk 6=0∈L2

∑∞
k=0 z

′
kzk

T
∑∞

k=0 w
′
kwk

(21)

wherexk+1 = Adxk + Edwk, zk = Cdxk + Fdwk. This is now a classicalH∞ norm evaluation in

the discrete-time domain, which immediately gives

J∞ =

∥

∥

∥

∥

Cd(zI −Ad)
−1Ed + Fd√
T

∥

∥

∥

∥

2

∞

(22)

which means that, forT > 0 given, the proposed index is proportional to theH∞ squared norm of

the transfer function from the inputwk to the outputzk of the previously given discrete-time system.

Copyright c© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2012)
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SELF–TRIGGERED LINEAR QUADRATIC NETWORKED CONTROL 7

Finally, denotingH(s) = C(sI −A)−1E + F and takingT > 0 arbitrarily small we have

J∞ = (1/T )
∥

∥Cd(zI −Ad)
−1Ed + Fd

∥

∥

2

∞

≈
∥

∥C((zI − I)/T −A)−1E + F
∥

∥

2

∞

≈ sup
ω∈[0, π/T ]

σ2
max

(

H((ejωT − 1)/T )
)

≈ ‖H(s)‖2∞ (23)

where the last approximation follows from the relation

jω ≈ ejωT − 1

T
(24)

valid for all ω ∈ R andT > 0 arbitrarily small. As expected, the indexJ∞ recovers the squareH∞

norm of the continuous-time system under consideration, without any bandwidth limitation. In our

opinion, both indexes are valid for all values ofT > 0 whenever the performance deterioration due

to bandwidth limitation has to be measured. The next sectionis devoted to state and solve theH2

andH∞ optimal control problems for networked systems taking intoaccount the limited bandwidth

constraint. The rationale to be adopted is to convert the continuous-time model to the discrete-time

one as indicated in Lemma1.

3. LINEAR QUADRATIC NETWORKED CONTROL

Let the control system with bandwidth limitation be given as

ẋ(t) = Ax(t) +Buk(t) + Ew(t) (25)

z(t) = Cx(t) +Duk(t) + Fw(t) (26)

with zero initial condition and wherew(t) is the exogenous input. The main goal is to determine

a state feedback gainL ∈ Rm×n such that the closed-loop system withu(t) = uk = Lxk, ∀t ∈
[tk, tk+1), minimizes one of the indexesJ2 or J∞ that we have discussed in the previous section.

3.1. H2 norm optimization

Applying Lemma1, we convert the above problem in the one that consists in findinguk(t) in order

to minimize the indexJ2. As usual, it is assumed thatF = 0. Based on the results of the previous

section, this problem can be recast in the equivalent form:

inf
L

‖(Cd +DdL)(zI − (Ad +BdL))
−1E‖22 (27)

which is nothing else than a classical LQ problem in discrete-time. Hence, the optimal gain can be

determined from the positive definite stabilizing solutionof the algebraic Riccati equation obtained

from

(Ad +BdL)
′P (Ad +BdL)− P + (Cd +DdL)

′(Cd +DdL) = 0 (28)

Copyright c© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2012)
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Figure 1. Values of the performance indexJ2 for T > 0.

together with

L = −(B′
dPBd +D′

dDd)
−1(B′

dPAd +D′
dCd). (29)

This state feedback gain is unique and the best one as far as the control constraint (4) is taken

into account. Moreover, whenever it admits a positive definite stabilizing solution, the closed-loop

continuous-time system becomes asymptotically stable as aconsequence of the equality (11).

As before, it is interesting to see that forT > 0 arbitrarily small, we can adopt the approximations

Ad ≈ I + TA, Bd ≈ TB, Cd ≈
√
TC andDd ≈

√
TD and the previous Lyapunov equation (28)

collapses to

(

I + T (A+BL)
)′

P
(

I + T (A+BL)
)

− P + T (C +DL)′(C +DL) = 0

that is

(A+BL)′P + P (A+BL) + (C +DL)′(C +DL) +O(T ) = 0

whereO(T ) ≥ 0 and, as expected, it goes to zero whenT > 0 goes to zero. We recover the optimal

continuous-time state feedback gain for the classical problem without bandwidth constraint. Of

course forT > 0 arbitrary the optimal solution does not necessarily coincide with this one, which

is valid only forT > 0 sufficiently small.

Example 1

Consider a networked system (25)-(26) defined by matrices

A =

[

0 1

−6 1

]

, B =

[

0

1

]

, E =

[

1

1

]

,

C =

[

1 0

0 0

]

, D =

[

0

1

]

, F =

[

0

0

]

Figure1 shows the indexJ2 against the sampling periodT > 0. For T → 0, it illustrates the fact

that the optimal continuous-time solution is generated.

Notice the vertical asymptotes for the discrete-time system clearly indicated in the same figure.

We have observed that these lines occur periodically with period approximately equal toπ/ωn,

whereωn is the natural frequency of the open-loop system. These singularities put in evidence the

existence of values of the sampling period for which the closed-loop system is unstable. In this case,

Copyright c© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2012)
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SELF–TRIGGERED LINEAR QUADRATIC NETWORKED CONTROL 9

the discrete-time algebraic Riccati equation does not admit a stabilizing positive definite solution.

This phenomenon is caused by thepathological sampling[19] of the state variables, which creates

uncontrollable (hidden) unstable poles in the connected system. If we useT = 0.5 [s], the optimal

state feedback gain is given byL = [2.3758 − 1.3907] yielding the minimum costJ∗
2 = 17.5661.

This figure makes clear that the increasing ofT > 0 reflects an increasing on the optimalH2 cost

is not necessarily true, showing that the performance indexJ2(·) is not a monotonic function of the

sampling periodT .

3.2. H∞ norm optimization

Following the same steps of theH2 case, our concern now is to determine the state feedback gain

L ∈ R
m×n that minimizes the costJ∞. Imposingu(t) = uk = Lxk, ∀t ∈ [tk, tk+1), from Lemma1

we obtain

inf
L

1

T
‖(Cd +DdL)(zI − (Ad + BdL))

−1Ed + Fd‖2∞ (30)

SinceT > 0 is fixed, the matrices(Ad, Bd, Cd, Dd, Ed, Fd) are readily determined by Lemma1

applied to the augmented system(A, [B E], C, [D F ]), allowing us to see (30) as a standardH∞

problem in discrete-time, which can be entirely expressed through LMIs [20]. Indeed, the global

optimal solution of problem (30) is obtained from

inf
X>0,Z,ρ

ρ (31)

subject to the LMI constraint











X • • •
XA′

d + Z ′B′
d X • •

E′
d 0 I •
0 CdX +DdZ Fd ρI











> 0 (32)

which provides the state feedback gainL = ZX−1 and the costJ∞ = ρ/T . The advantage of this

approach is the linear dependence of all involved variables, includingρ, which avoids the adoption

of an interactive method based on the Riccati equation calculation to get the minimum value of the

norm. On the other hand, forT > 0 arbitrarily small, considering the approximations previously

adopted together withEd ≈ TE andFd ≈
√
TF the inequality (32) reduces to







AQ+QA′ +BR+R′B′ • •
E′ −I •

CQ +DR F −(ρ/T )I






< 0 (33)

whereQ = X/T andR = Z/T , which is nothing else but theH∞ condition in continuous-time.

This inequality puts in evidence the scaling1/T appearing in theρ variable in order to compensate

the same scaling in the cost (30).

Example 2

Consider the same dynamic system described in Example1. Figure2 shows the indexJ∞ against

the sampling periodT > 0. Notice that periodic vertical asymptotes also occur for this index, due

Copyright c© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2012)
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Figure 2. Values of the performance indexJ∞ for T > 0.

to the pathological sampling of the state vector. These peaks put in evidence the existence of values

of the sampling period for which the closed-loop system is unstable. In this case, the LMIs for the

H∞ control design do not admit a stabilizing feasible solution. If we useT = 0.5 [s], the optimal

state feedback gain is given byL = [1.1351 − 2.9486] yielding the minimum costJ∗
∞ = 13.5919.

As before, the performance indexJ∞(·) is not a monotonic function of the sampling periodT .

4. SELF-TRIGGERED DESIGN

In this section we introduce what we call adiscrete self-triggered control designbased on the

following observation. Contrarily of what is adopted in theevent-triggering strategy [15], where

the sampling period is considered a continuous variableT ∈ R to be determined in real time, in

order to improve stability and performance, we assume that,for a givenT⋆ > 0, the sampling period

satisfiesT ∈ {Ti ≥ T⋆ : i ∈ K} where the numberN and the values of different time samplings

Ti, i ∈ K, are provided by the designer. They are chosen taking into account two important features

of networked control systems:H2 orH∞ performance and bandwidth limitations. The first criterion

induces smallT while the second one goes in the opposite direction. One possible choice for the set

of Ti, i ∈ K is to equally divide the interval one would varyT ∈ R overN discrete values.

4.1. H2 Control Design

The main problem to be faced is the determination of a switching rule that orchestrates the use

of a particularTi for somei ∈ K. The first step yields the strictly proper state space models

(ALi, E, CLi, 0) for all i ∈ K as follows. For eachTi, i ∈ K, the optimal solution of problem (27)

provides the closed-loop system matricesALi = Adi +BdiLi andCLi = Cdi +DdiLi which define

the switched linear system

xk+1 = ALσxk + Ewk (34)

zk = CLσxk (35)

evolving fromx0 = 0, whereσ(k) : N → K is the switching function to be designed andwk ∈ Rr is

an impulsive external input of the formwk = δ(k)eℓ, beingeℓ theℓth column of the identity matrix

Copyright c© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2012)
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SELF–TRIGGERED LINEAR QUADRATIC NETWORKED CONTROL 11

which is used to define theH2 performance

J2(σ) =

r
∑

ℓ=1

‖zℓ‖22 (36)

It is important to stress that whenever the switching function is enforced to be equal toσ(k) = i ∈ K

for all k ∈ N then J2(σ) equals the optimal performance of the closed-loop system with the

samplingTi. Hence, our purpose is to determine a state dependent switching strategy of the form

σ(k) = g(xk) in order to improve the final performance by an appropriate choice of the samplings

Ti, i ∈ K, dynamically, that is, at each instant of timetk, for all k ∈ N. Following [17], we consider

g(x) = argmin
i∈K

x′Pix (37)

wherePi > 0, ∀i ∈ K, have to be adequately determined. Indeed, we define the setX2 composed by

all matrices{P1, · · · , PN} and a Metzler matrixΠ ∈ M that satisfy the so called Lyapunov-Metzler

inequalities

A′
LiPpiALi − Pi + C′

LiCLi < 0, i ∈ K (38)

wherePpi =
∑

j∈K
πjiPj . It is proven in [21] that any feasible matrices{P1, · · · , PN} whenever

plugged in (37) makes the switched linear system asymptotically stable and

J2(σ) < min
i∈K

Tr(E′PiE) (39)

Hence, the minimum upper bound is given by the optimal solution of the problem

Jso
2 = inf

{P1,··· ,PN ,Π}∈X2

min
i∈K

Tr(E′PiE) (40)

which provides the switching strategyσso
2 that clearly satisfiesJ2(σso

2 ) ≤ Jso
2 . This problem is, in

general, difficult to solve due to the product of variablesπjiPj which makes it nonconvex. To this

end, some general purpose nonlinear programming method hasto be adopted, see [22], unlessN is

small (typically2 or 3) in which case it is solved by grid search by taking advantageto the fact that

for Π ∈ M fixed, (38) reduces toN LMIs.

Problem (40) exhibits a remarkable property. By construction, all discrete-time subsystems

matricesALi, i ∈ K, are Schur and consequently the matrixΠ = I ∈ M is feasible. Indeed,

plugging this matrix in (38) the LMIs become decoupled, that is

A′
LiPiALi − Pi + C′

LiCLi < 0, i ∈ K (41)

implying that

J2(σ
so
2 ) ≤ Jso

2

≤ inf
{P1,··· ,PN ,Π=I}∈X2

min
i∈K

Tr(E′PiE)

≤ min
i∈K

inf
Pi>0

{Tr(E′PiE) : (41)}

≤ min
i∈K

‖CLi(zI −ALi)
−1E‖22 (42)
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Based on this last relation we can drawn the conclusion that the procedure proposed in this paper

promotes, in general, a gain of the performance due to the dynamic allocation of time sampling

periods. It is also important to state that the obtainedH2 performance is preserved for the original

system (25)-(26). Furthermore, the switching strategy dynamically chooses the sampling period

Tσso

2
so that (25)-(26) has the sameH2 cost as (34)-(35) with σ = σso

2 . In fact, without loss of

generality, we supposenw = 1 and we denoteσk = σso
2 (xk), for simplicity. The general case is

straightforward. Then, theH2 cost for (34)-(35) is

∞
∑

k=0

z′kzk =

∞
∑

k=0

x′
kC

′
Lσk

CLσk
xk

=

∞
∑

k=0

x′
k

∫ Tσ
k

0

e(A+BLσ
k
)′t(C +DLσk

)′×

× (C +DLσk
)e(A+BLσ

k
)t dt xk

=

∞
∑

k=0

x′
k

∫ tk+1

tk

e(A+BLσ
k
)′(t−tk)(C +DLσk

)′×

× (C +DLσk
)e(A+BLσ

k
)(t−tk) dt xk

=

∞
∑

k=0

∫ tk+1

tk

x(t)′(C +DLσk
)′(C +DLσk

)x(t) dt

=

∫ ∞

0

z(t)′z(t) dt, (43)

which is theH2 cost for (25)-(26). This result is a natural consequence of ourH2 performance

index and it ensures the stability of the closed-loop system, since (34)-(35) is clearly stable by the

Lyapunov–Metzler conditions (38). The next example illustrates the more important featuresof the

procedure.

Example 3

Consider the following marginally stable dynamic system ofthe form (25)-(26), given by its state

space realization

A =

[

0 1

−9 0

]

, B =

[

0

1

]

, E =

[

1

1

]

,

C =

[

1 0

0 0

]

, D =

[

0

2

]

, F =

[

0

0

]

To build the discrete-time switched linear system we suppose the transmission is allowed only with

sampling periods equal toT1 = 0.80 [s] andT2 = 1.1 [s]. Using the procedure developed in this

section, we obtain the associated costsJ2(σ = 1) = 8.8501 andJ2(σ = 2) = 9.9731. In addition,

solving problem (40) by performing a grid search in the box[0, 1]× [0, 1] we have determined the

minimum guaranteedH2 costJso
2 = 8.6059.

We also solved this problem using the event–triggering strategy proposed by [15]. Through

simulation, the event–triggered regulator achieves anH2 gain of7.80 and our approach provides a

costJ2(σso
2 ) = 8.31 < Jso

2 < mini=1,2{J2(σ = i)}, which confirms (42). However, to accomplish

this performance, in various intervals of time, the event–triggered compensator works with very
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Figure 3. Sampling period for both techniques.

small sampling periods, which may not be possible on limitedbandwidth communication channels.

This behavior is shown in Figure3, which displays the sampling period for both strategies. Asit

can be seen in this figure, the upper curve describes the sampling period with respect to time for

our switching approach and the second one represents the sampling period for the event–triggered

controller. It is interesting to observe that, from Figure3, the self-triggered technique works with

an average sampling periodTavg = 1.02 [s]. If a periodic sampling strategy withT = Tavg was

adopted, the associated optimal cost, obtained from (27), would beJavg = 12.0622, which is clearly

outperformed by the self-triggered controller designed inthis example.

With this in mind, in order to compare the two strategies under the same limited bandwidth,

we impose a constraint of the form (5) with T⋆ = 0.80 [s]. In this situation the event–triggering

technique provides a cost of11.39, which shows that our technique enables a gain of27% in

performance, approximately. It is also important to state that, if we use our approach and allow

sampling with a period less than or equal to0.55 [s], we obtain betterH2 costs than the event–

triggered strategy and may demand less network resources, depending on the chosen period.

The previous example puts in evidence that our approach is well adapted to NCS, when bandwidth

limitations are imposed. However, the event–triggering technique does not provide a trustable

controller when communication constraints are additionally imposed, in which case instability may

occur. In fact, the event–triggered controller demands a large amount of network resources in some

time intervals, which may not be possible in shared sensors/actuators networks.

4.2. H∞ Control Design

Following the same reasoning that we have developed for theH2 problem, the main goal of this

section is to determine a switching rule that imposes a particular sampling periodTi, i ∈ K. To

this end, we define the state space models(ALi, Edi, CLi, Fdi), for eachi ∈ K, as follows. For each

sampling periodTi, we obtain theH∞ discrete-time equivalent system described in Subsection

3.2 and define the closed-loop matricesALi = Adi +BdiLi andCLi = Cdi +DdiLi, where the

feedback gainsLi are given from the solution of problem (31). Thus, we define the switched system

xk+1 = ALσxk + Edσwk (44)

zk =
CLσ√
Tσ

xk +
Fdσ√
Tσ

wk (45)
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m1 m2

x1 x2

κ1
κ2

Figure 4. Mass–spring system.

evolving from x0 = 0. Notice that the definition of theH∞ performance index assures that the

exogenous disturbancewk ∈ L2 is a piecewise constant function and, due to (22), the output

matrices in (45) are divided by the active periodTσ. Then, let us consider theH∞ performance

J∞(σ) = sup
wk 6=0∈L2

∑∞
k=0 z

′
kzk

∑∞
k=0 w

′
kwk

(46)

which, forσ(k) = i, constant for allk ∈ N, coincides with theH∞ cost for the closed-loop system

with a fixed sampling periodTi, i ∈ K.

As before, we consider the state dependent switching functionσ(k) = g(xk), whereg(·) is given

by (37), and the setX∞ composed by all positive definite matrices{P1, . . . , PN} and a Metzler

matrixΠ ∈ M that satisfy the Riccati-Metzler inequalities











Pi • • •
0 ρI • •

PpiALi PpiEdi Ppi •
CLi Fdi 0 TiI











> 0, i ∈ K (47)

It is proven in [23] that any feasible solution inX∞ assures the closed-loop system is globally

asymptotically stable. Moreover, the minimum upper bound is given by the solution of the

optimization problem

Jso
∞ = inf

{P1,...,PN ,Π}∈X∞

ρ (48)

which provides a switching strategyσso
∞ such thatJ(σso

∞) ≤ Jso
∞ . Unfortunately, in theH∞ case,

we cannot guarantee that a similar inequality as (42) holds for the designed switching function

associated to the matrixΠ = I ∈ M. The adoption of a more general Metzler matrix must be

investigated.

5. PRACTICAL APPLICATION

In this section, we consider the following example given in [24]. It consists of two cars with masses

m1 andm2, with positionsx1(t) andx2(t), coupled by two springs, as described in Figure4. Let

us consider that the elastic constants of the springs areκ1 = κ2 = 1.0 [N/m] and the masses are

m1 = 1.0 [kg] andm2 = 0.5 [kg]. Our goal is to control the position of the car with massm2 by

applying a forceuk, of the form (4), to the other car.

Copyright c© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth.(2012)
Prepared usingocaauth.cls DOI: 10.1002/oca



SELF–TRIGGERED LINEAR QUADRATIC NETWORKED CONTROL 15

0

0.5

1 0

0.5

1

2

3

4

5

q p
J
s
o

2

Figure 5.Jso
2 as a function of(p, q).

Define the state vectorxp(t) = [x1(t) x2(t) ẋ1(t) ẋ2(t)]
′. Following the same notation used in the

previous section, the state space realization of the systemis given by (25)-(26), with

A =











0 0 1 0

0 0 0 1

−2 1 0 0

2 −2 0 0











, B =











0

0

1

0











, E =











0

0

1

0











(49)

and

C =

[

0 1 0 0

0 0 0 0

]

, D =

[

0

1

]

, F =

[

0

0

]

(50)

In this self–triggered control design, it is supposed that the allowed transmission periods are

T1 = 1.65 [s] andT2 = 2.10[s], due to bandwidth limitations. Applying the results developed in

this section, we obtain the associated costsJ2(σ = 1) = 3.1501 andJ2(σ = 2) = 3.3468. Hence,

performing a grid search in(p, q) ∈ [0, 1]× [0, 1], considering the Metzler matrix of the form

Π =

[

p 1− q

1− p q

]

∈ M, (51)

we obtain the minimum guaranteed costJso
2 = 2.2356, for p = q = 0, as shown in Figure5.

We simulate the closed-loop system with the derived switching functionσso
2 , obtaining the

actualH2 costJ2(σso
2 ) = 2.0338, which is 35% better than the minimumH2 cost related to the

subsystems, which confirms the inequality (42). The dynamic sampling period is shown in Figure

6. It is important to state that the optimalH2 cost for the continuous-time system, without any

communication constraint, isJc
2 = 1.1609. Hence, it is clear that, even with large sampling periods,

our approach has a comparableH2 performance. The quality of our results is due to the precise

definition of the performance indexes, to the optimal control problems solved in Section3 and to

the self-triggered controller designed in Section4. As before, it is possible to verify that the average

sampling period isTavg = 1.84 [s] with the associated costJavg = 2.2368, which is very close to

Jso
2 but greater thanJ2(σso

2 ), as expected.
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Figure 6. Sampling period of the closed-loop system using self–triggering.

6. CONCLUSION

In this paper, we have presented results in Networked Control Systems design subject to limited

bandwidth communication constraints. To this end, our firstapproach consisted in obtaining an

optimal state feedback gain that stabilizes the sampled time system through the solution of a linear

quadratic problem of a specific discrete-time system. This important result has been used afterwards

in order to developH2 andH∞ performance indexes for the limited bandwidth problem. With these

indexes, we state and solve the optimalH2 andH∞ control problems for the NCS.

Finally, a self–triggering control system has been designed using a discrete-time switched control

approach. It has been shown that this strategy is well adapted to the networked environment and

it may improve the overall performance of the closed-loop system. It is important to mention that

the conditions are given by LMIs or Riccati equations, whichcan be efficiently solved numerically,

using methods available in the literature to date.
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