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SUMMARY

This paper deals with Networked Control Systems (NCS) aesigder the constraint of limited bandwidth
on the communication channel. A linear quadratic problemaf@ixed sampling period is solved and this
resultis used for the developmentigf and# . performance indexes, yielding to the statement and solutio
of H2 andH optimal control problems. Finally, a self-triggered cofier is designed with a switched
system approach in order to improve performance. Seveaahpbes are presented in order to illustrate the
validity of the developed theory. Copyrig@ 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Networks have become widespread in present days and thisdases the integration of various
areas of engineering to a networked environment. This istduke flexibility in the data traffic
between components of the system and to the reduced costectda its implementationl].
In this context, a Networked Control System (NCS) is a spwtidistributed system in which
the communication between sensors, actuators and cangédl done through a communication
network P]. Notice that the structure of a NCS differs from the clagkwontrol system one, in
which the communication channels are idealized and arehaoed. NCSs exhibit some limitations
[1], [2], including limited bandwidth, sampling, coding, delaydapacket dropout which may
compromise the overall performance. In this paper, we famusstudy on the so called direct
structure, which requires more careful design technigesss[].

Several results may be found involving networked contretams analysis. In3] we can find
meaningful results on stabilization of linear systems wiithimumbit-rateand in ] some models
of networked control systems with limited bandwidth arevehcand necessary and sufficient
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2 M. SOUZAET AL.

stability conditions are discussed for state feedback arigud feedback design. Another state
feedback design approach is proposedsijn\where network delay and data packet dropout issues
are taken into account. In some applications, data packetdir may occur, due to the network-
induced delay and this situation is discussed]nfurthermore, T], [8] provide stability conditions

on NCSs involving minimum information rate, data delay aadket dropout.

Limited bandwidth NCSs are closely related to sampled-dg&iems. Indeed, a networked
system of this class may be modeled as a sampled-data oneawithximum sampling rate
constraint, defined by the main characteristics of the comeoation channelq]. The classical
approach when dealing with sampled-data systems consistdeal sampling of the discrete-
time measurements and in the use of zero-order holds to daigerete-time control signals to
continuous-time ones. InL{)], the classical LQR problem is solved for a periodically géex
control signal through the definition of a specific discriétee system, which will be used
afterwards. Some analysis 6#, and#., performance for the sampled-data control system has
also been done. More general results may be derived withgbeoiilifting techniques, in which
the sampler and the holder may also be designed in orderitoiaptthe closed-loop performance.
A very comprehensive framework of lifted systems is giveffilif, where#, and#.. controller
designs are developed for single rate sampled data sysfarather important contribution in the
area is presented iif] and providesi, andH., design for synchronous multirate systems, which
has been done by converting that problem to an equivalenividthe single sampling rate.

Another approach to NCSs design satisfying some perforeiamtiex is done witlself-triggering
andevent—triggeringtrategies3], [14], [15], [ 16]. Both techniques try to reduce network resource
consumption by the control system, but they differ in sonyeeats. The first one uses the current
sampled state to determine the control signal and the nexplgzg time, involving ascheduling
procedure. The second one usegwaent detectgtthat is located next to the plant and uses a function
of the current state to determine when the next samplingrirgt occur. An important comparison
between both techniques is provided fy][and [L5], where the authors discuss some performance
specifications and protocols that implement both contratstjies via state feedback. The update
time instants in the self-triggered case are designed ierd@odguarantee stability and to enforce the
desired performance, which is measured by the decay of aungapfunction. An output feedback
self-triggered design is developed i8], where the authors generalize two strategies conceived fo
state feedbacKlow based schedulirgndbound based schedulirigr the sampling instants.

Therefore, one may conclude that there are several resulttability and analysis of NCSs,
but one may notice that there are few results on design of N@&ssatisfy some performance
index. Optimal control results are obtained for fixed sampliime and this may not be well
adapted for shared networks. Furthermore, we will show bedter results are obtained if we
allow a dynamically chosen sampling period. Another imaotrtremark is that event—triggering
may consume network resources excessively in order totdetem the expected event will occur.
Hence, we conclude that a self-triggering approach to tilsggdeof a NCS is well adapted to
a networked environment, since it allows a sampled dataralotitat does not demand network
resources excessively. In this context, our goal is to pi®vesults on NCSs optimal design for a
fixed sampling period, based ofh(d], considering the well established, and # ., performance
indexes. Later on we relax this constraint and we design &lad control system, where the
switching function determines the next sampling time, diiy a self-triggering controller. In
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SELF-TRIGGERED LINEAR QUADRATIC NETWORKED CONTROL 3

this paper, stability results and guaranteed cost detatioimfor discrete-time switched systems
obtained by 17] will be extensively used.

The notation throughout is standard. For square matfleég denotes the trace function and
for a symmetric matrixo,,..(-) is its maximum singular value. For real matrices or vectors
(') indicates transpose. For symmetric matrices, the synobenotes each of its symmetric
blocks. The seiM is composed by all Metzler matrices with nonnegative eldmep > 0, Vi, j
satisfying the normalization constraiEj 7 = 1,Vi. The set of real and nonnegative integer
numbers are denoted & and N whereas the set of th first natural numbers is denoted as
K = {1,2,---, N}. The squared norm of a trajectofyt) defined for allt > 0, denoted by|¢||3, is
equal to|[£[|3 = [, £(t)&(t)dt. All trajectories with finite norm, that i§¢||> < oo, constitute the
set L. With a little abuse of notation, the symb6} also denotes the set of all trajectories with
finite norm in discrete-time.

2. PRELIMINARIES

We begin by the calculation of two performance indexes thathink are specially well adapted
to NCS, where the effect of limited bandwidth in measurenaent control channels are taken into
account. This is the basis for the solution of what we calleiainQuadratic Networked Control
Problem - LQN to be defined afterwards, sé&é][for similar results. For the moment, we point
out that optimal control problems of this class are formedain continuous-time and are solved,
without introducing any conservatism, from the positivéimiee stabilizing solution of a discrete-
time Riccati equation. Hence, from the numerical viewpthetse problems are adequately handled
by the methods available in the literature to date even fstesys with large dimensions.

2.1. Sampled data system

Let us consider a continuous-time linear system with mihstete space realization

=
—~

~+
~—

Ax(t) + Buk(t) , x(0) =¢ 1)
Cx(t) + Duy(t) (2)

IS
—~

~
~

wherez(t) € R™ is the statez(t) € R? is the controlled output and,(t) € R™ is the control
signal transmitted through a limited bandwidth channelldwong [9], let us suppose that the
communication channel is a perfect noiseless channel, mdttime delay, and thai > 0 is the
maximum allowed bit-rate. Then, for a given> 0, we consider the clas$. of such channels with
any sampling period’ > 0 satisfying

<, 3)

NI=

which models bandwidth limitations. Hence, this constrénequivalent tol’ > T, = p/r > 0,
whereT, is the minimum sampling period allowed for transmission.
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4 M. SOUZAET AL.

With this in mind, supposing that quantization effects caigmored, the control inputis modeled
as a piecewise constant signal of the form

uk(t) =u,, Vt € [tk;tk-i-l) 4)

for all k£ € N. For the moment, the time duration between two successi®lgzg instants is
constant, that is
thp1 —th=T2>1T,,VEeN 5)

This assumption will be relaxed afterwards to cope with maiferm samplingsTy, = tx11 —

tx, Vk € N, defined as an additional decision variable. This is a cosyrstem of data-rate-limited
type with limited bandwidth equal tt/T',. We start by introducing the following notation associated
to the continuous-time syster)¢(2), namely.A € R(»tm)x(n+m) gndC e R4 (+m™) given by

A B
0

,c:[c D] 6)

and stating a central result to be extensively used in theedeq

Lemma 1
Consider the systeni)-(2), define matrice$A,, B4, C4, D4) of compatible dimensions such that

AT = | A B 7)
0 I
T
/ ettelceMat = | ¢ ¢ (8)
0 Dy || Dy
and the discrete-time invariant linear system
Tpr1 = Agrp + Bauk , 19 =¢§ 9)
zr = Caxp + Dauy (10)
then the following equality holds
/ 2(t) 2(t)dt =Y 2.z (11)

0 k=0

The proof of this lemma, seel(], makes clear that, generally, the dimensions of the output
vectorsz(t) andz, are not the same. For instance, it may occur that the left batedof @) be a
positive definite matrix which imposes, € R"™™ even though:(t) € R? with ¢ < n <n +m.
Moreover, given the state space representation of theraamis-time systentA4, B,C, D) and
T >0, it is a simple matter to calculate the state space minimalesentation of the discrete-
time system(A4,, B4, Cq, Dg4) such that equalityl(l) is preserved. This result is important in the
context of networked control systems since it provides a teagalculate a discrete-time linear
system such that th&, norm of the output trajectoryy, Vk € N, equals theC, norm of the output
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SELF-TRIGGERED LINEAR QUADRATIC NETWORKED CONTROL 5

trajectoryz(t), V¢t > 0, of the continuous-time system. This fact, expressed bgdality (L1), does
not involve any kind of approximation. Furthermore, it igantant to stress that for arfy > 0 the
result of Lemmeal can be used to determine the exact value of squared norm ofithaet trajectory,
whenever the control signal,(¢) is transmitted to the limited bandwidth channel satisfy{dp
With this result, problems formulated in continuous-tinne exactly solved in discrete-time.

2.2. Performance indexes

Based on the result of Lemnia in this section, we develop two performance indexes astexti
to the networked system under consideration. They are lgloskated to the concept ofl, and
H.o norms of LTI systems, respectively. Their importance stémms the fact that thé{, norm
follows from an impulsive input which implies that all fregcies are equally excited. On the other
hand, thel{., norm, whenever bounded, imposes to the system certaintretsssproperties against
parameter perturbations, for details s&g [

Consider an open-loop continuous-time system

z(t) = Axz(t)+ Fw(t), z(0) =0 (12)
z(t) = Cux(t)+ Fw(t) (13)

where, as before;(t) € R™ is the statez(t) € R? is the output anduv(t) € R" is the exogenous
perturbation. In this section, it is assumed that matrilss Hurwitz which implies that matrixd,

is Schur for allT > 0. First, as usually done in the definition &f, norm we assume thdt = 0

and the perturbation is such thaft) = e;6(t) wheree; € R",i = 1,--- ,r, are the columns of the
identity matrix. Hence, denoting by (¢) the output trajectory, the performance index is expressed
simply as

o= / 2(t) 2 (t)dt (14)
i=170
and, remembering that the impulse @& 0 induces a discontinuity on the initial condition
corresponding to move it instantaneously fraid) = 0 to z(0*) = Fe;,i =1,--- ,r, Lemmal

applied toi(t) = Ax(t), z(t) = Cz(t) for each initial condition yields

Jo=Y " (2) (z1) (15)

1=1 k=0
wherexy1 = Aqxi, 9 = Ee; andz], = Cyxy, foreachi = 1,--- ,r and
T !’
AT = Ay, / Mt cettdt = 0y (16)
0

From this calculation it follows that

J, = Tr (E'ZAgfcgch’;E>

k=0
= |’Cd(Z17Ad)71E’|§ (17)
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6 M. SOUZAET AL.

Itis interesting to observe that the pair of matri¢dg, C;) depends off’ > 0 but the indexJ; does
not. We conclude that

|C(sT — A) 7 B[, = ||Ca(= — Ag)'E||, .¥T > 0 (18)

which means that this is just an alternate and equivalenttavaglculate the performance index in
terms of thel{> norm of the associated discrete-time system transferifumdAs it will be clear in
the sequel, this is an useful result to dealing with netwdid@ntrol systems.

Now, let us move our attention to thé,, performance index. To this end, we assume @} #
0 is an arbitrary perturbation if» with finite norm transmitted through the limited bandwidth
channel. In other words, it is modeled as an additive peatioh that acts in the control channel,
which is, in our opinion, an adequate performance index todresidered in the NCS framework.
After transmission, denoting agair{¢) the corresponding output signal given H2)-(13), we
define the performance index

Jo—  sup Jo z(t) z(t)dt

J 19
wi(t)20eLs [y wi(t) wy(t)dt 49

wherewy(t) = wy, Vt € [k, tx+1) for all &k € N. It is important to give some interpretation about
the index we have just introduced that is strongly relatethéd ., norm of the continuous-time.
Indeed, we immediately have

o0 I
T < “up fgo 2(t) z(t)dt
w(t)£0els fo w(t)w(t)dt
< |leGI- AT E+FL (20)

Although the upper bound does not dependion 0, the value of the indeX, does. However, it
can be calculated by applying once again the result of Lethmhich yields

Z:io 21,7k
Joo = sup =T — (21)
wi#0E Ly TZk:O Wy, W
wherexy1 = Agxy + Eqwyg, 2z, = Cqxy, + Fqwy. This is now a classicall,, norm evaluation in
the discrete-time domain, which immediately gives

Cd(ZI — Ad)_lEd + Fy 2

VT

which means that, fof > 0 given, the proposed index is proportional to #g, squared norm of
the transfer function from the inpuf; to the output; of the previously given discrete-time system.

(22)

|

[e )
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SELF-TRIGGERED LINEAR QUADRATIC NETWORKED CONTROL 7

Finally, denotingH (s) = C(sI — A)~'E + F and takingl' > 0 arbitrarily small we have

Jo

(1/T) HCd(ZI — Ad)_lEd + Fd“io
|C((=I —1)/T — A)'E + F|%,

sup O—fnaz (H((ejWT - 1)/T>)
wel0, m/T]

1H (5)11% (23)

Q

Q

Q

where the last approximation follows from the relation

vl 1

- (24)

jw &
valid for allw € R andT > 0 arbitrarily small. As expected, the indgx, recovers the squaf..
norm of the continuous-time system under consideratiothoumit any bandwidth limitation. In our
opinion, both indexes are valid for all values®f> 0 whenever the performance deterioration due
to bandwidth limitation has to be measured. The next sedsiaievoted to state and solve thg
and#.., optimal control problems for networked systems taking aoount the limited bandwidth
constraint. The rationale to be adopted is to convert thémoous-time model to the discrete-time
one as indicated in Lemnia

3. LINEAR QUADRATIC NETWORKED CONTROL

Let the control system with bandwidth limitation be given as

#(t) = Ax(t) + Bup(t) + Ew(t) (25)
Cz(t) + Dui(t) + Fuw(t) (26)

I
—~

~+
~—

with zero initial condition and where(t) is the exogenous input. The main goal is to determine
a state feedback gaih € R™*" such that the closed-loop system wiilt) = uy = Lay, Vt €
[tk, tr+1), Minimizes one of the indexek or J, that we have discussed in the previous section.

3.1. H, norm optimization

Applying Lemmal, we convert the above problem in the one that consists infgngi (¢) in order
to minimize the index/,. As usual, it is assumed that= 0. Based on the results of the previous
section, this problem can be recast in the equivalent form:

i%f [(Ca + DaL)(2I — (Aq + B4L)) " E||3 (27)

which is nothing else than a classical LQ problem in disetiete. Hence, the optimal gain can be
determined from the positive definite stabilizing solutairihe algebraic Riccati equation obtained
from

(Ag+ BaL) P(Aq + BaL) — P+ (Cqy+ D4L)' (Cy + DyL) =0 (28)

Copyright© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth(2012)
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8 M. SOUZAET AL.

120,

Jo [dB]

T [s]

Figure 1. Values of the performance indéxfor 7' > 0.

together with
L= 7(B&PBd + D&Dd)il(B&PAd + Dng) (29)

This state feedback gain is unique and the best one as farawttirol constraint4) is taken
into account. Moreover, whenever it admits a positive defisfabilizing solution, the closed-loop
continuous-time system becomes asymptotically stablecassequence of the equaliti/1j.

As before, it is interesting to see that fBr> 0 arbitrarily small, we can adopt the approximations
Ag~I1+TA, B;~TB, Cy~+TC andDy ~ V/TD and the previous Lyapunov equatia?g]
collapses to

(re7(a+ BL))'p(I +T(A+BL)) ~ P+T(C+ DLY(C+ DL) =0

thatis
(A+BL)P+P(A+ BL)+(C+ DL)(C+ DL)+O(T) =0

whereO(T) > 0 and, as expected, it goes to zero wher 0 goes to zero. We recover the optimal
continuous-time state feedback gain for the classical lprbwithout bandwidth constraint. Of
course forT" > 0 arbitrary the optimal solution does not necessarily calaavith this one, which
is valid only forT > 0 sufficiently small.

Example 1
Consider a networked syste@5j-(26) defined by matrices

1
T B e o
—6 1 1 1
1
o OV po | 9] po|?
0 0 1 0

Figure 1 shows the index/» against the sampling peridd > 0. ForT — 0, it illustrates the fact
that the optimal continuous-time solution is generated.

Notice the vertical asymptotes for the discrete-time systéearly indicated in the same figure.
We have observed that these lines occur periodically witipdeapproximately equal ta/w,,,
wherew,, is the natural frequency of the open-loop system. Theseikirities put in evidence the
existence of values of the sampling period for which theedislwop system is unstable. In this case,
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SELF-TRIGGERED LINEAR QUADRATIC NETWORKED CONTROL 9

the discrete-time algebraic Riccati equation does not adrsiabilizing positive definite solution.
This phenomenon is caused by theghological sampling19] of the state variables, which creates
uncontrollable [lidden unstable poles in the connected system. If welise 0.5 [s], the optimal
state feedback gain is given ly= [2.3758 — 1.3907] yielding the minimum cosy; = 17.5661.
This figure makes clear that the increasinglof- 0 reflects an increasing on the optinfd} cost

is not necessarily true, showing that the performance indéx is not a monotonic function of the
sampling period’".

3.2. H., horm optimization

Following the same steps of thé, case, our concern now is to determine the state feedback gain
L € R™*™ that minimizes the cosk... Imposingu(t) = uy = Ly, Vt € [tg, tg+1), from Lemmal
we obtain

inf %H(Cd + DyL)(21 — (Aq+ B4L)) " Eq + Fal|% (30)

SinceT > 0 is fixed, the matrice$A,, By, Cy, Da, Eq, F,;) are readily determined by Lemnia
applied to the augmented systém, [B E],C,[D F1]), allowing us to see3Q) as a standar@{
problem in discrete-time, which can be entirely expressedugh LMIs P0]. Indeed, the global
optimal solution of problem30) is obtained from

X>l¥)l,fZ,p p (31)
subject to the LMI constraint
X ° e o
XA+ Z'B! X
at 2By R [ 32)
E, 0 I e
0 CyX +DyZ Fy pl

which provides the state feedback gair= Z X ~! and the cost/, = p/T. The advantage of this
approach is the linear dependence of all involved varialietuding p, which avoids the adoption
of an interactive method based on the Riccati equation tzlon to get the minimum value of the
norm. On the other hand, fdr > 0 arbitrarily small, considering the approximations prexly
adopted together withl; ~ TE andF; ~ v/TF the inequality 82) reduces to

AQ+ QA"+ BR+ R'B' o °
E I o <0 (33)
CQ+ DR F  —(p/T)I

whereQ = X/T and R = Z/T', which is nothing else but th&, condition in continuous-time.
This inequality puts in evidence the scalihgl” appearing in the variable in order to compensate
the same scaling in the cosd).

Example 2
Consider the same dynamic system described in Exafnftegure2 shows the index, against
the sampling period” > 0. Notice that periodic vertical asymptotes also occur fis thdex, due
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10 M. SOUZAET AL.

T [s]

Figure 2. Values of the performance indéx for 7" > 0.

to the pathological sampling of the state vector. Thesegpakin evidence the existence of values
of the sampling period for which the closed-loop system istaiple. In this case, the LMIs for the
"Hoo control design do not admit a stabilizing feasible solutiérve useT = 0.5 [s], the optimal
state feedback gain is given y= [1.1351 — 2.9486] yielding the minimum cos{*, = 13.5919.

As before, the performance inddx, (-) is not a monotonic function of the sampling peribd

4. SELF-TRIGGERED DESIGN

In this section we introduce what we calldiscrete self-triggered control desigmsed on the
following observation. Contrarily of what is adopted in teeent-triggering strategylp], where
the sampling period is considered a continuous varidbieR to be determined in real time, in
order to improve stability and performance, we assume fitbiad, givenT’, > 0, the sampling period
satisfiesT” € {T; > T, : i € K} where the numbeN and the values of different time samplings
T;, i € K, are provided by the designer. They are chosen taking irtowd two important features
of networked control systemst, or H.. performance and bandwidth limitations. The first criterion
induces small” while the second one goes in the opposite direction. Onelgeshoice for the set
of T;, i € K is to equally divide the interval one would vafye R over N discrete values.

4.1. H, Control Design

The main problem to be faced is the determination of a swithule that orchestrates the use
of a particularT; for somei € K. The first step yields the strictly proper state space models
(ALi, E,CL;,0) for all i € K as follows. For eaclf;, i € K, the optimal solution of problen{)
provides the closed-loop system matriegs = Aq; + Ba;L; andCr; = Cy; + Dgy; L; which define

the switched linear system

Tht1 = Apsxr + Ewy (34)
L = CLcrxk (35)

evolving fromz, = 0, whereo (k) : N — K is the switching function to be designed ang ¢ R" is
an impulsive external input of the formy, = J(k)e,, beinge, the ¢t column of the identity matrix

Copyright© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth(2012)
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SELF-TRIGGERED LINEAR QUADRATIC NETWORKED CONTROL 11

which is used to define th#, performance
Jo(o) = |I213 (36)
=1

Itis important to stress that whenever the switching fuorcis enforced to be equalédk) =i € K
for all k € N then Jy(o) equals the optimal performance of the closed-loop systeth thie
samplingT;. Hence, our purpose is to determine a state dependent swjtstrategy of the form
o(k) = g(xx) in order to improve the final performance by an appropriatéaghof the samplings
T;,1 € K, dynamically, that is, at each instant of timg for all £ € N. Following [17], we consider

g(z) = arg Izrélﬂg 2’ P (37)

whereP; > 0, Vi € K, have to be adequately determined. Indeed, we define th& seimposed by

all matrices{ Py, - - - , Py } and a Metzler matriXI € M that satisfy the so called Lyapunov-Metzler
inequalities

ILiPpiALi — P, + C}‘ZCLz <0,1¢€ K (38)
whereP,;, = ZJEK 7;; P;. It is proven in R1] that any feasible matricegP;, - - - , Py } whenever

plugged in 87) makes the switched linear system asymptotically stalde an

Ja(o) < min Tr(E'P,E) (39)
1€

Hence, the minimum upper bound is given by the optimal sotubif the problem

J50 = inf min Tr(E'P,E) (40)
{Pi1, ,Pn,II}€Xs i€K

which provides the switching strategy® that clearly satisfied,(c5°) < J5°. This problem is, in
general, difficult to solve due to the product of variabtesP; which makes it nonconvex. To this
end, some general purpose nonlinear programming methado hasadopted, se€?), unlessN is
small (typically2 or 3) in which case it is solved by grid search by taking advantadke fact that
for IT € M fixed, (38) reduces taV LMIs.

Problem ¢0) exhibits a remarkable property. By construction, all tse-time subsystems
matricesAy;, i € K, are Schur and consequently the maffix= I € M is feasible. Indeed,
plugging this matrix in 8) the LMIs become decoupled, that is

LiP AL — P+ C,CLi <0, i €K (41)
implying that
Jo(03%) < J5°
< inf min Tr(E'P,E)
{Py, Py JI=I}eX; i€K
< . . :
< win inf {Te(E'PE) - (41)}
< min |Cri(=I — Av) B3 (42)
1€
Copyright© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth(2012)
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12 M. SOUZAET AL.

Based on this last relation we can drawn the conclusion beaptocedure proposed in this paper
promotes, in general, a gain of the performance due to thardimallocation of time sampling
periods. It is also important to state that the obtaitgdperformance is preserved for the original
system P5)-(26). Furthermore, the switching strategy dynamically cheoe sampling period
T,so so that £5)-(26) has the sameé{, cost as §4)-(35) with o = 05°. In fact, without loss of
generality, we suppose,, = 1 and we denoter;, = 05°(xy), for simplicity. The general case is
straightforward. Then, th&, cost for 34)-(35) is

oo

o0
E / E / U
Zka - ZkCLO'kCLJk:Ck

k=0 k=0
00 To), )

=D / ATBL)(C + DL, )
k=0 0
X (C 4 DLg, e At BLa)t g 1)

ed trt1 ,
- Z x;C / e(A+BLdk) (t_tk)(c + DLcrk )IX
k=0 2

X (C' + DL, )eATBLa)t=te) gt 4

_ Z /t‘"'+1 2(t)'(C + DLy, ) (C + DLy, )x(t) dt

k=0"tk

= /Oo 2(t) () dt, (43)

0

which is theH, cost for @5)-(26). This result is a natural consequence of @l performance
index and it ensures the stability of the closed-loop sys&nte 34)-(35) is clearly stable by the
Lyapunov—Metzler conditions3@). The next example illustrates the more important featafélse
procedure.

Example 3
Consider the following marginally stable dynamic systenthef form @5)-(26), given by its state
space realization

P R e N
-9 0 1 1
1

oo 01 p_|9] mo |0
00 2 0

To build the discrete-time switched linear system we supplos transmission is allowed only with
sampling periods equal t6; = 0.80 [s] and7> = 1.1 [s]. Using the procedure developed in this
section, we obtain the associated cost& = 1) = 8.8501 and J2 (o = 2) = 9.9731. In addition,
solving problem 40) by performing a grid search in the b@x 1] x [0, 1] we have determined the
minimum guarantee@, cost.J;° = 8.6059.

We also solved this problem using the event—triggeringtesisa proposed by15]. Through
simulation, the event—triggered regulator achieve${amyain of 7.80 and our approach provides a
costJy(05°) = 8.31 < J5° < min;—1 2{J2(0 = i)}, which confirms 42). However, to accomplish
this performance, in various intervals of time, the evaiggered compensator works with very

Copyright© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth(2012)
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30

Figure 3. Sampling period for both techniques.

small sampling periods, which may not be possible on limiteddwidth communication channels.
This behavior is shown in Figurg which displays the sampling period for both strategiesitAs
can be seen in this figure, the upper curve describes the ismpariod with respect to time for
our switching approach and the second one represents th@isgmperiod for the event-triggered
controller. It is interesting to observe that, from Fig®ehe self-triggered technique works with
an average sampling peridd,,, = 1.02 [s]. If a periodic sampling strategy witlh' = T,,,, was
adopted, the associated optimal cost, obtained fif)) ould beJ,,, = 12.0622, which is clearly
outperformed by the self-triggered controller designethis example.

With this in mind, in order to compare the two strategies urrtle same limited bandwidth,
we impose a constraint of the formd)(with 7, = 0.80 [s]. In this situation the event—triggering
technique provides a cost afi.39, which shows that our technique enables a gairR®% in
performance, approximately. It is also important to stheg,tif we use our approach and allow
sampling with a period less than or equal(té5 [s], we obtain bettef{, costs than the event—
triggered strategy and may demand less network resourepsnding on the chosen period.

The previous example puts in evidence that our approachlisdeagpted to NCS, when bandwidth
limitations are imposed. However, the event—triggerinchitéque does not provide a trustable
controller when communication constraints are additilgriedposed, in which case instability may
occur. In fact, the event—triggered controller demandsgelamount of network resources in some
time intervals, which may not be possible in shared sereditsdtors networks.

4.2. H. Control Design

Following the same reasoning that we have developed fof#theroblem, the main goal of this
section is to determine a switching rule that imposes a qdati sampling period?;, i € K. To
this end, we define the state space models, E,;, Cr;, Fu;), for eachi € K, as follows. For each
sampling periodl’;, we obtain the}, discrete-time equivalent system described in Subsection
3.2 and define the closed-loop matricds; = Ag; + Ba;L; and Cr; = Cy; + Dga; L;, Where the
feedback gaing; are given from the solution of probler@1). Thus, we define the switched system

Ty1 = Aperk + Eaowg (44)
CLO’ Fda
V1o e
Copyright© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth(2012)
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i o i
W mi1 *W m2

Figure 4. Mass—spring system.

evolving fromzy = 0. Notice that the definition of thé{., performance index assures that the
exogenous disturbance, € £, is a piecewise constant function and, due 2@)( the output
matrices in {5) are divided by the active peridd,. Then, let us consider thé., performance

Js(o) = sup 720;::0 i (46)
wiAOELs D pm Wi Wh
which, foro (k) = 4, constant for alk € N, coincides with thé{., cost for the closed-loop system
with a fixed sampling period;, i € K.
As before, we consider the state dependent switching fometik) = g(x), whereg(-) is given
by (37), and the sett,, composed by all positive definite matricé®, ..., Py} and a Metzler
matrixII € M that satisfy the Riccati-Metzler inequalities

P ° ° °
0 7l
r * *|>o0 ek (47)
PyiAri PpiEai Ppi @
CrL; Fy; 0 Tl

It is proven in P3] that any feasible solution ik, assures the closed-loop system is globally
asymptotically stable. Moreover, the minimum upper bousdgiven by the solution of the
optimization problem

JSO — . f 48
> {lenlgvl,ﬂ}e)(mp ( )

which provides a switching strategy’? such that/(¢32) < J32. Unfortunately, in thel{ ., case,
we cannot guarantee that a similar inequality 428 olds for the designed switching function
associated to the matridk = I € M. The adoption of a more general Metzler matrix must be
investigated.

5. PRACTICAL APPLICATION

In this section, we consider the following example givendd]] It consists of two cars with masses
my andms, with positionsz; () andxz(t), coupled by two springs, as described in Figdréet
us consider that the elastic constants of the springs:are x2 = 1.0 [N/m] and the masses are
my = 1.0 [kg] andmz = 0.5 [kg]. Our goal is to control the position of the car with mass by
applying a forceu, of the form @), to the other car.

Copyright© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth(2012)
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Figure 5.J5¢ as a function ofp, ¢).

Define the state vectat, (¢t) = [x1(t) z2(t) ©1(¢) #2(¢)]’. Following the same notation used in the
previous section, the state space realization of the syistgiven by ¢5)-(26), with

0 0O 1 0 0 0
1
A= 0 00 , B= 0 , B = 0 (49)
-2 1 0 0 1 1
2 =2 00 0 0
and
01 0 0 0 0
C= ,D=||,F= (50)
0 0 0 O 1 0

In this self—triggered control design, it is supposed that allowed transmission periods are
Ty = 1.65 [s] and T = 2.10]s], due to bandwidth limitations. Applying the results deysd in
this section, we obtain the associated cabig = 1) = 3.1501 and J;(c = 2) = 3.3468. Hence,
performing a grid search ifp, ¢) € [0, 1] x [0, 1], considering the Metzler matrix of the form

D 1—gq
I-p ¢

II =

1 eM, (51)

we obtain the minimum guaranteed cdgt = 2.2356, for p = ¢ = 0, as shown in Figuré.

We simulate the closed-loop system with the derived swilghfunction ¢5°, obtaining the
actual, costJ2(05°) = 2.0338, which is 35% better than the minimurfi» cost related to the
subsystems, which confirms the inequali#y?); The dynamic sampling period is shown in Figure
6. It is important to state that the optimad, cost for the continuous-time system, without any
communication constraint, if; = 1.1609. Hence, itis clear that, even with large sampling periods,
our approach has a comparabig performance. The quality of our results is due to the precise
definition of the performance indexes, to the optimal cdrgroblems solved in Sectiod and to
the self-triggered controller designed in Sectiois before, it is possible to verify that the average
sampling period i9,,, = 1.84 [s] with the associated cosh,.,, = 2.2368, which is very close to
J5° but greater thaz(05°), as expected.

Copyright© 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth(2012)
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ZJ—

15r

T [s]

t [s]

Figure 6. Sampling period of the closed-loop system usilfgtsiggering.

6. CONCLUSION

In this paper, we have presented results in Networked Clo8trstems design subject to limited
bandwidth communication constraints. To this end, our fiygbroach consisted in obtaining an
optimal state feedback gain that stabilizes the sampleel siystem through the solution of a linear
guadratic problem of a specific discrete-time system. Thigirtant result has been used afterwards
in order to develop{; and# ., performance indexes for the limited bandwidth problem hliese
indexes, we state and solve the optiraland?..., control problems for the NCS.

Finally, a self-triggering control system has been deslgrsing a discrete-time switched control
approach. It has been shown that this strategy is well addptéhe networked environment and
it may improve the overall performance of the closed-loogtam. It is important to mention that
the conditions are given by LMIs or Riccati equations, whieh be efficiently solved numerically,
using methods available in the literature to date.
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