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Abstract— This paper proposes a Model Predictive Control
(MPC) framework combined with a self-triggering mechanism
for constrained uncertain systems. Under the proposed scheme,
the control input as well as the next control update time are
provided at each triggering instant. Between two consecutive
triggering instants, the control trajectory given by the MPC
is applied to the plant in an open-loop fashion. This results
to less frequent computations while preserving stability and
convergence of the closed-loop system. A scenario for the
stabilization of a nonholonomic robot subject to constraints and
disturbances is considered, with the aim of reaching a specific
triggering mechanism. The robot under the proposed control
framework is driven to a compact set where it is ultimately
bounded. The efficiency of the proposed approach is illustrated
through a simulated example.

I. INTRODUCTION

The formulation of control schemes in event-based rather
than traditional periodic frameworks is a recent development
that leads to the alleviation of energy consumption and it can
result to the mitigation of the network traffic in network con-
trol systems. The key attribute of these approaches is that the
decision for the control update is based on a certain condition
of the state of the system. The event-based schemes can lead
not only to a more flexible aperiodic sampling but also can
preserve necessary properties of the system such as stability
and convergence. Event and self-triggered control are two
particular event-based approaches that however have some
similarities. Both have a controller that provides the control
input and both have a triggering mechanism that determines
when the new control update should be. Nevertheless, the
event-triggered techniques require a constant measurement
of the actual state of the plant in order to decide when the
control execution must be triggered while in the case of self-
triggered control only the latest state measurement needs to
be known for determining the next triggering instant. Related
works on event-triggered control can be found in [6], [7],
[17], [20]. Some relevant results for the self-triggered set-up
can be found in [1], [9], [10], [19], [21].

Nonlinear Model Predictive controllers have the capability
to deal with nonlinearities and constraints. This is particu-
larly desired in real applications where constraints on the
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inputs as well as the states must be taken explicitly into
consideration. However, most NMPC schemes are computa-
tionally demanding which gives us the motivation to design
the NMPC law along with a triggering mechanism in order to
compute the control law only when is needed. Note, that in
[22] a NMPC was applied to a nonholonomic vehicle under
a discrete-time framework. However, the control horizon was
decided ad-hoc and no triggering condition was given.

In this paper a self-triggered MPC strategy is presented.
We treat the case of constrained nonholonomic systems with
additive disturbances under a NMPC law. The contribution
relies in finding a framework that will provide control
trajectories that lead to stable closed-loop responses and a
mechanism that decides when the control updates should
occur. In [4], a similar analysis was proposed for an event-
based MPC framework. In the event-based set-up there is
the need for continuously taking state measurements, in
contrast to the proposed self-triggered set-up where this need
is relaxed.

Even though event-based control have been considered
extensively in recent years, the case of event-based MPC
controllers has just started to gain attention whereas very
few results have been presented for the self-triggered MPC
set-up. For event-triggered MPC the reader is referred to [3],
[4], [5], [15], [18]. In the context of self-triggered MPC, an
analysis was presented in [8] for Network Scheduling. The
authors focus on discrete-time LTI systems and they propose
a cost function of the MPC that depends on the control
performance and the cost for sampling. In [2], a self-triggered
MPC framework was presented for constrained discrete-time
linear systems. The MPC controller is designed to maintain
some specific optimality levels while the control input that is
sent to the actuators is the current control value and not the
trajectory of the optimal inputs as is the case in the current
paper. An approach for network control systems which is
extended to continuous time systems, but not in the area of
MPC, proposes a self-triggered selection based on quadratic
programming, [12]. There, the authors present an analysis
that leads to an optimization problem for maximizing the
intersampling period.

The remainder of the paper is organized as follows. The
scenario for the control of the nonholonomic robot as well
as the problem statement are presented in Section II. Section
III accommodates the robust stability analysis for the NMPC
scheme which leads to the self-triggered framework. In
Section IV, some simulated examples are presented which
show the efficiency of the proposed scheme, along with
some comparative results. Finally, Section V summarizes the
results of this paper and indicates further research goals.
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II. PROBLEM FORMULATION

In this section the specifics for the stabilization scenario
are presented. First, the mathematical model of the nonholo-
nomic system is given along with the constraints that must
be fulfilled. Next, the design and analysis of the proposed
controller is provided along with some assumptions that are
necessary in order to achieve stability of the closed-loop
system.

A. Mathematical Modeling

Consider that the motion of the robot is governed by uni-
cycle kinematics with respect to a global cartesian coordinate
frame G. The kinematic model is given by

ẋ = f(x, u)⇒

χ̇ẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

[υ
ω

]
(1)

where x = [χ, y, θ]> is the state vector comprised by the
position of the robot (χ, y) and the orientation θ with respect
to G. The vector u = [υ, ω]> denotes the control inputs,
and υ, ω are the linear and angular velocity of the robot,
respectively, expressed in the body-fixed frame B.

The requirements of the robotic system along with a
saturation bound in the velocity impose the constraints of
the problem. Particularly, the requirements are captured by
the connected state constraint set X , given by

x(t) ∈ X ⊂ R3 (2)

Note that the whole state x(t) is assumed to be available,
for all t ∈ R≥0. The control constraint set U is assumed to
be compact and it is given by:

u(t) , [υ(t), ω(t)]> ∈ U ⊂ R2 (3)

The constraints of the input are of the form |υ| ≤ ῡ and
|ω| ≤ ω̄. Therefor we get ||u|| ≤ ū, where ū =

√
ῡ2 + ω̄2,

where we have ū, ῡ, ω̄ ∈ R≥0. The nominal system (1) is
Lipschitz continuous with Lipschitz constant 0 < Lf < ∞.
More specifically,

Lemma 1: The nominal model f(x, u), given the con-
straints (2) and (3), is locally Lipschitz in x for all x ∈ X ,
with a Lipschitz constant Lf ,

√
2ῡ.

Proof: The Euclidean norm is used for the sake of
simplicity. We have

||f(x1, u)− f(x2, u)||2 = ||

 υ cos θ1 − υ cos θ2
υ sin θ1 − υ sin θ2

ω − ω

 ||2
= |υ|2| cos θ1 − cos θ2|2 + |υ|2| sin θ1 − sin θ2|2

≤ 2|υ|2|θ1 − θ2|2

where the mean value theorem is used. Thus, it can be
concluded that ||f(x1, u)− f(x2, u)|| ≤

√
2ῡ||x1 − x2|| for

all x1, x2 ∈ X .
We assume that the robot moves under the influence of

a current w with respect to the global frame. Therefor we
consider a perturbed system of the form:

ẋ = f(x, u) + w (4)

with w(t) ∈W ⊂ R3 and W to be a compact set. Since the
uncertainty is assumed to be bounded we set ||w|| ≤ w̄.

B. Control Design and Objective

The goal is to control the actual system (4) subject to
x(t) ∈ X and u(t) ∈ U , to a desired compact set that
includes the desired state xd , [χd, yd, θd]

T ∈ X . A
predictive controller is employed in order to achieve this
task. With the NMPC law the state of the system is proven
to converge to the desired set. Inside this set, an auxiliary
terminal controller is used to drive the system to the desired
point. The design of an ISS stable controller for system (4)
is presented next.

The NMPC consists in solving a finite-horizon, open-loop
optimal control problem, based on the actual state of the
plant x(ti), at time ti. The solution is a control trajectory
u(t), for t ∈ [ti, ti+Tp], where Tp is the prediction horizon.
The Optimal Control Problem (OCP) of the NMPC is given
as

min
u(·)

J(u(·), x(ti)) =

min
u(·)

∫ ti+Tp

ti

F (x̂(τ), u(τ)) d τ + E(x̂(ti + Tp)), (5a)

subject to

˙̂x = f(x̂(t), u(t)), x̂(ti) = x(ti), (5b)

u(t) ∈ U, (5c)

x̂(t) ∈ Xt−ti t ∈ [ti, ti + Tp], (5d)

x̂(ti + Tp) ∈ Ef , (5e)

where ·̂ denotes the controller internal variables, correspond-
ing to the nominal dynamics of the system. F and E are
the running and terminal costs functions, respectively. The
design parameters F and E, as well as the sets Xt−ti and
Ef are defined later in the text.

In order to proceed to the subsequent analysis a few
definitions and some preliminary results are presented first.

The predicted state of the nominal system (1) at time ti+τ
with τ ≥ 0, is denoted as x̂(ti+τ, u(·), x(ti)) and it is based
on the measurement of the actual state x(ti) at time ti, when
a control trajectory u(·;x(ti)) is applied to the system for
time period ti until ti + τ . It holds that x̂(ti, u(·), x(ti)) ≡
x(ti). Moreover the following result is given:

Lemma 2: The difference between the actual state x(ti+t)
at time ti + t and the predicted state at the same time under
the same control law u(ti + t, x(ti)), with 0 ≤ t ≤ Tp,
starting at the same initial state x(ti), can be shown to be
upper bounded by

||x(ti + t)− x̂(ti + t, u(·), x(ti))|| ≤ γ(t) (6)

where γ(t) , (2
√

2ῡ + w̄)t for all t ∈ [0, Tp].
Proof: Set the control trajectory u(·) , u(ti + t, x(ti))

and x(t) , x(t, u(·), x(ti)) to be the state trajectory for
system (4). Also we denote for the sake of simplicity, x̂(t) ,
x̂(t, u(·), x(ti)) for all t ∈ R≥0. Using the Euclidian norm
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and the triangular inequality for system (1) and system (4),
we get

||x(ti + t)− x̂(ti + t)|| = ||x(ti) +

∫ ti+t

ti

f(x(τ), u(·)) d τ

+

∫ ti+t

ti

w(τ) d τ − x(ti)−
∫ ti+t

ti

f(x̂(τ), u(·)) d τ ||

≤ ||
∫ ti+t

ti

f((x(τ), u(·))− f(x̂(τ), u(·))) d τ ||

+ ||
∫ ti+t

ti

w(τ) d τ || ≤
∫ ti+t

ti

||[υ(cos θ(τ)− cos θ̂(τ)),

υ(sin θ(τ)− sin θ̂(τ)), 0]>|| d τ +

∫ ti+t

ti

||w(τ)|| d τ

≤ (2
√

2ῡ + w̄)t

To address to the divergence between the actual state
trajectory of system (4) and the predicted state trajectory
of the nominal system as given in Lemma 2, we replace the
state constraint set X with the restricted constraint set Xt−ti
into (5d), with Xt−ti ⊆ X . We resort to this constraint’
tightening technique presented in [11] and [13] since the con-
trol trajectory that results from (5a)-(5e) when it is applied
to the system (4), results to a state trajectory that does not
violate the state constraint set X . In particular, the restricted
constraint set is defined as Xt−ti = X ∼ Bt−ti where
Bt−ti = {x ∈ Rn : ||x|| ≤ γ(t− ti)}, with t ∈ [ti, ti + Tp].
The set operator “∼” denotes the Pontryagin difference, i.e.,
given two sets A,B ⊆ Rn the Pontryagin difference set C
is defined as C = A ∼ B , {x ∈ Rn : x+ ξ ∈ A,∀ξ ∈ B}.

Assume now that the terminal cost E(x) as well as the cost
function F (x, u), are quadratic of the form E(x) = x>Px
and F (x, u) = x>Qx + u>Ru, respectively, with P , Q
and R being positive definite matrices. More specifically
we set P = diag{p1, p2, p3}, Q = diag{q1, q2, q3} and
R = diag{r1, r2}. Moreover it can be shown that F (0, 0) =
0 and that F (x, u) ≥ min{q1, q2, q3, r1, r2}||[x, u]>||2 ≥
min{q1, q2, q3, r1, r2}||x||2. Since X and U are bounded, it
can be concluded that:

Lemma 3: The stage cost F (x, u) is Lipschitz continuous
in X × U , with a Lipschitz constant LF , 2(R2

max +
(π2 )2)1/2σmax(Q), where σmax(Q) is the largest singular
value of matrix Q and Rmax is the largest distance of the
robot with respect to the target.

Proof: We have

||F (x1, u)− F (x2, u)|| = ||x>1 Qx1 − x>2 Qx2|| = ||x>1 Qx1
− x>1 Qx2 + x>1 Qx2 − x>2 Qx2|| = ||x>1 Q(x1 − x2)

+ (x1 − x2)>Qx2|| ≤ (||x1||+ ||x2||)σmax(Q)||x1 − x2||

Notice though that ∀x ∈ X we have ||x||2 ≤ |χ|2 + |y|2 +
|θ|2 ≤ R2

max + (π2 )2, which concludes the proof.
In order to assert that the NMPC strategy results in a robust

stabilizing controller, some stability conditions are stated in
the following:

Assumption 1: Assume that a set E ⊂ X is an admissible
positively invariant set for the nominal system (1), and that
E is such that E , {x ∈ X : ||x|| ≤ ε0}, with ε0 being a
positive parameter.

Assumption 2: Assume that for the terminal set Ef , there
exists a local stabilizing controller uT (x(t)) ∈ U , ∀x ∈ E .
The associated Lyapunov function E(·) has the following
properties

∂E

∂x
f(x(τ), uT (x(τ)))+F (x(τ), uT (x(τ))) ≤ 0 ∀x ∈ E

and is Lipschitz in E , with Lipschitz constant LE =
2ε0σmax{P} for all x ∈ E . The proof for finding the
Lipschitz constant LE is the same as the proof of Lemma 3.

Assumption 3: For the set E we have E(x) = x>Px ≤
αE where αE = max{p1, p2, p3}ε02 > 0 and we assume
that E = {x ∈ XTP

: uT (x) ∈ U}. Take αEf
∈ (0, αE )

and assume that Ef = {x ∈ R3 : E(x) ≤ αEf
} is such that

∀x ∈ E , f(x, uT ) ∈ Ef .

C. Problem Statement

The solution of the OCP (5a)-(5e) at time ti provides an
optimal control trajectory denoted as u∗(t;x(ti)), for t ∈
[ti, ti +Tp]. A portion this control trajectory, is then applied
to the plant, i.e.,

u(t) = u∗(t;x(ti)), t ∈ [ti, ti+1) (7)

During the time interval [ti, ti+1) the control law is applied
to the plant in an open-loop fashion. A question that naturally
arises is how large this time interval can be? The self-
triggered strategy that will be presented later in this paper,
provides sufficient conditions for finding the recalculation
periods, or in other words sufficient conditions for trigger-
ing the computation of the NMPC law. In particular, the
presented framework not only provides the control law to
be applied to the actual system (4), but also provides the
time of the next triggering instant, ti+1. This leads us to the
statement of the problem treated in this paper:

Problem Statement 1: Consider the system (4) that is sub-
ject to constraints (2) and (3). The objective is (i) to design
a feedback control law provided by (5a)-(5e) such that the
system (4) converges to the terminal constraint set and (ii)
to find a mechanism to decide when the next control update
should be.

III. STABILITY ANALYSIS OF NMPC

In this section a stability analysis for the closed-loop
system (4)-(7) is presented. Due to the fact that the system
in consideration is perturbed, we only require “ultimate
boundedness” results. Accordingly, it can be proven that the
closed-loop scheme is Input to State stable (ISS) with respect
to the disturbances, [16]. Moreover, through the ISS analysis
it is possible to reach to a self-triggering mechanism which
provides the triggering instants.

The proof of stability of a system under a predictive
controller consists in guaranteeing (i) the feasibility property
and (ii) the convergence property of the closed-loop system.
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We begin by showing that initial feasibility implies feasibility
afterwards. Consider two successive triggering events ti and
ti+1. A feasible control trajectory ū(·, x(ti+1)), at ti+1, may
be the following:

ū(τ, x(ti+1)) = (8){
u∗(τ, x(ti)) ∀τ ∈ [ti+1, ti + Tp]

uT (x̂(ti + Tp, u
∗(·), x(ti))) ∀τ ∈ [ti + Tp, ti+1 + Tp]

where u∗(·, x(ti)) is the optimal solution of the OCP at ti.
From feasibility of u∗(·, x(ti)) and the fact that uT (x) ∈

U for all x ∈ E , it follows that ū(τ, x(ti+1)) ∈ U for all
τ ∈ [ti+1, ti+1 +Tp]. We continue by showing that x̂(ti+1 +
Tp, ū(τ, x(ti+1)), x(ti+1)) ∈ Ef . We have

E(x̂(ti + Tp, u(·), x(ti+1)) ≤ E(x̂(ti + Tp, u(·), x(ti))

+ LEγ(Tp) ≤ αEf
+ LE(2

√
2ῡ + w̄)Tp ≤ αE

The uncertainties must then be bounded by w̄ + 2
√

2ῡ ≤
αE−αEf

LETp
. Moreover, the state constraints must be fulfilled:

according to [11] and [14] and considering that ||x(t) −
x̂(t, u(·), x(ti))|| ≤ γ(t), for all t ≥ ti, it can be verified that
since x̂(t, u∗(·), x(ti)) ∈ Xt−ti , then x̂(t, ū(·), x(ti+1)) ∈
Xt−ti+1 .

The convergence of the state is discussed now. A proper
value function must be shown to be decreasing in or-
der to prove stability of the closed-loop system. Con-
sider the optimal cost J∗(u∗(·;x(ti)), x(ti)) , J∗(ti)
from (5a) as a Lyapunov function candidate. Then, con-
sider the cost of the feasible trajectory, indicated by
J̄(ū(·;x(ti+1)), x(ti+1)) , J̄(ti+1). Note that ti, ti+1 are
two successive triggering instants. Also, we introduce the
“feasible” state x̄(τ, ū(τ ;x(ti+1)), x(ti+1)) which accounts
for the predicted state at time τ , with τ ≥ ti+1, based on
the measurement of the real state at time ti+1, while using
the feasible control trajectory ū(τ ;x(ti+1)) from (8).

Set x1(τ) = x̄(τ, ū(τ ;x(ti+1)), x(ti+1)), u1(τ) =
ū(τ ;x(ti+1)), x2(τ) = x̂(τ, u∗(τ ;x(ti)), x(ti)) and u2(τ) =
u∗(τ ;x(ti)).

The difference between the optimal cost and the feasible
cost is:

J̄(ti+1)− J∗(ti) =∫ ti+1+Tp

ti+1

F (x1(τ), u1(τ)) d τ + E(x1(ti+1 + Tp))

−
∫ ti+Tp

ti

F (x2(τ), u2(τ)) d τ − E(x2(ti + Tp))

=

∫ ti+Tp

ti+1

F (x1(τ), u1(τ)) d τ + E(x1(ti+1 + Tp))

+

∫ ti+1+Tp

ti+Tp

F (x1(τ), u1(τ)) d τ

−
∫ ti+1

ti

F (x2(τ), u2(τ)) d τ

−
∫ ti+Tp

ti+1

F (x2(τ), u2(τ)) d τ − E(x2(ti + Tp)) (9)

From (8), we have that u1(t) ≡ u2(t) ≡ ū(t) for t ∈
[ti+1, ti + Tp]. Imposing this control law to the system (1)
we get:

||x1(t)− x2(t)|| = ||x(ti+1) +

∫ t

ti+1

f(x̄(τ), ū(τ)) d τ−

x(ti)−
∫ ti+1

ti

f(x̂(τ), u∗(τ)) d τ −
∫ t

ti+1

f(x̂(τ), ū(τ)) d τ ||

= ||x(ti+1)− x̂(ti+1, u
∗(·), x(ti))|| ≤ γ(ti+1 − ti) (10)

The difference between the running costs, with the help of
(10), becomes:∫ ti+Tp

ti+1

F (x1(τ), u1(τ)) d τ −
∫ ti+Tp

ti+1

F (x2(τ), u2(τ)) d τ

≤
∫ ti+Tp

ti+1

||F (x1(τ), ū(·))− F (x2(τ), ū(·))|| d τ

≤ LF
∫ ti+Tp

ti+1

||x1(τ)− x2(τ)|| d τ

≤ LF
∫ ti+Tp

ti+1

γ(ti+1 − ti) d τ

= LF (2
√

2ῡ + w̄)(ti+1 − ti)(ti + Tp − ti+1) ≥ 0 (11)

Integrating the inequality from Assumption 2 for t ∈ [ti +
Tp, ti+1 + Tp] results in the following:∫ ti+1+Tp

ti+Tp

F (x1(τ), u1(τ)) d τ + E(x1(ti+1 + Tp))

− E(x2(ti + Tp))− E(x1(ti + Tp)) + E(x1(ti + Tp))

≤ E(x1(ti + Tp))− E(x2(ti + Tp))

≤ LE ||x1(ti + Tp)− x2(ti + Tp)||
≤ LE(2

√
2ῡ + w̄)(ti+1 − ti) ≥ 0 (12)

Since function F is positive definite, it can be concluded that∫ ti+1

ti

F (x2(τ), u2(τ)) d τ ≥ LQ(ti+1) ≥ 0 (13)

with LQ(t) , min{q1, q2, q3, r1, r2} ·∫ t
ti
||x̂(τ, u∗(τ ;x(ti)), x(ti))||2 d τ for t ≥ ti. Substituting

(11), (12), (13) to (9), the following is derived

J̄(ti+1)− J∗(ti)
≤ LF (2

√
2ῡ + w̄)(ti+1 − ti)(ti + Tp − ti+1)

+ LE(2
√

2ῡ + w̄)(ti+1 − ti)− LQ(ti+1) (14)

The optimality of the solution yields

J∗(ti+1)− J∗(ti) ≤ J̄(ti+1)− J∗(ti) (15)

The Lyapunov function J∗(·) has been proven to be decreas-
ing, thus the closed-loop system converges to a compact set
Ef , where it is ultimately bounded, due to Assumption 3.
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A. Self-triggered Framework

In this section the self-triggering mechanism is going to be
presented. Consider that at time ti an event is triggered. The
ISS of the NMPC was proven considering that the time ti+1,
i.e, the next triggering instant, was known. Here, the next
control update time ti+1 is considered to be unknown and
should be found. The next control update time ti+1 should
be such that the closed-loop system does not lose any of its
desired properties. Thus, we still need the Lyapunov function
J∗(·) to be decreasing, which will preserve the convergence
of the closed-loop system.

Given (14) and (15), then for some triggering instant ti
and some time t with t ∈ [ti, ti + Tp] we get

J∗(t)− J∗(ti)
≤ LF (2

√
2ῡ + w̄)(t− ti)(ti + Tp − t)

+ LE(2
√

2ῡ + w̄)(t− ti)− LQ(t) (16)

The time instant t should be such that

LF (2
√

2ῡ + w̄)(t− ti)(ti + Tp − t)
+ LE(2

√
2ῡ + w̄)(t− ti) ≤ σLQ(t) (17)

with 0 < σ < 1. Plugging in (17) to (16) we get

J∗(t)− J∗(ti) ≤ (σ − 1) · LQ(t) (18)

This suggests that provided σ < 1, the convergence prop-
erty is still guaranteed. Thus, the next control update time
should be triggered when (17) is violated. This provides
the triggering mechanism. Notice that the time ti+1 can
be found beforehand at time ti, i.e, this is a self-triggering
mechanism. Moreover, it should be pointed out that the term
LQ(t) includes only predictions of the nominal system that
is forming a trajectory and that it can be found by forward
integration of (1) for time t ∈ [ti, ti + Tp].

Next we describe the self-triggering mechanism. At time
ti a control update is triggered and a control trajectory for
[ti, ti + Tp] is provided. With the help of (17) we get

(2
√

2ῡ + w̄)[LF (ti + Tp − t) + LE ](t− ti) = σLQ(t)
(19)

The solution of (19) will provide the next update time ti+1.
During the time interval t ∈ [ti, ti+1) the control trajectory
u(t) = u∗(t, x(ti)) is applied to the plant in an open-loop
fashion. Next, at time ti+1 the OCP is solved again using the
current measure of the state x(ti+1) as the initial state. The
controller follows this procedure until the system converges
to the terminal constraint set.

We are now ready to state the stability result for this self-
triggered MPC framework:

Theorem 1: Consider the system (4) that is subject to
constraints (2) and (3) under the NMPC strategy and assume
that Assumptions 1-4 hold. The control update times that are
provided by (19) and the NMPC law provided by (5a)-(5e)
which is applied to the system in an open-loop fashion during
the inter-sampling periods, drive the closed-loop system
towards a compact set Ef where it is ultimately bounded.

IV. SIMULATION RESULTS

In this section, a simulated example of the proposed
framework for a nonholonomic robot is presented. The
objective is to control the robot through a NMPC law of the
form (5a)-(5e) in order to reach a desired terminal constraint
set. The nominal model of the nonholonomic system has
the form (1). Furthermore we assume that disturbances
exist and that they are bounded by ||w|| ≤ 0.5. Thus,
the actual model is (4). The initial position of the robot
is xinitial = [−43, 11.5,−π/6]> and the desired position is
xd = [0, 0, 0]>.

In order to evaluate the proposed self-triggered approach
we are going to present some comparison results. The
traditional time-triggered, periodical, scheme is given and
the event-triggered MPC framework that was proposed in
our earlier work [4] is given as well. The simulation shows
that the actual system (4) under all three schemes, i.e., time,
event and self-triggered NMPC, converges to the terminal set
around the desired state, see Fig. 1.

Fig. 1. State trajectories of the nonholonomic robot under robust MPC.
The solid line represents the trajectory of the robot under periodic MPC.
The dashed line as well as the dash-dotted line represents the trajectories
of the robot under the event-triggered MPC and the self-triggered MPC,
respectively. The red triangle is the initial position of the robot, while the
green is the desired state.

In Fig. 2, the evolution of the system trajectories under
all three schemes is depicted. It is apparent that all three
schemes have comparable results. Finally, Fig. 3, is capturing
the triggering instants on both the event-triggered and the
self-triggered frameworks. The time-triggered framework is
not depicted because it is trivially triggered at each sampling
period, i.e., the smallest triggering period β = 0.1sec.

V. SUMMARY AND FUTURE WORK

We provided a self-triggered formulation for constrained
nonholonomic systems under a model predictive controller.
The main idea is to trigger the solution of the optimal control
problem only when it is needed and not periodically as in
the case of classic MPC schemes. This approach results to
an improvement on the requirements on the computation
resources. With the self-triggered approach both the control
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Fig. 2. The evolution of the system trajectories in time. The green line
represents the time-triggered case. The red and blue represent the event-
triggered and self-triggered, respectively.

Fig. 3. The triggering instants. When the vertical axis has the value 1,
the NMPC is triggered. For value 0 the control law is implemented on
the system in an open-loop fashion. (a) The event-triggered set-up, (b) The
self-triggered set-up.

input and the next control update time are evaluated in order
to avoid continuous supervision of the actual state of the
system. During the inter-sampling times the control trajectory
from the NMPC is applied to the system in an open-loop
fashion. In this paper sufficient conditions for triggering were
presented along with some simulation results that depict the
validity of the overall framework.

Future work involves experimental results for the proposed
framework with a real nonholonomic underwater vehicle.
Moreover, the robust MPC controller will be combined with
vision-based techniques that should provide the estimate of
the state vector with respect to the target frame.

REFERENCES

[1] A. Anta and P. Tabuada. To sample or not to sample: self-triggered
control for nonlinear systems. IEEE Transactions on Automatic
Control, 55(9):2030–2042, 2010.

[2] J.D.J. Barradas Berglind, T.M.P. Gommans, and W.P.M.H. Heemels.
Self-triggered mpc for constrained linear systems and quadratic costs.
4th IFAC Nonlinear Model Predictive Control Conference, 2012.

[3] D. Bernardini and A. Bemporad. Energy-aware robust model predic-
tive control based on wireless sensor feedback. 47th IEEE Conference
on Decision and Control, pages 3342 – 3347, 2008.

[4] A. Eqtami, D.V. Dimarogonas, and K.J. Kyriakopoulos. Novel event-
triggered strategies for model predictive controllers. 50th IEEE Conf.
Decision and Control & Eur. Control Conf., pages 3392–3397, 2011.

[5] R. Findeisen and P. Varutti. Stabilizing nonlinear predictive control
over nondeterministic communication networks. In Nonlinear Model
Predictive Control, Lecture Notes in Control and Information Sciences,
pages 167–179. Springer Berlin / Heidelberg, 2009.

[6] E. Garcia and P.J. Antsaklis. Model-based event-triggered control with
time-varying network delays. 50th IEEE Conf. Decision and Control
& Eur. Control Conf., pages 1650 – 1655, 2011.

[7] W.P.M.H. Heemels, J.H. Sandee, and P.P.J. Van Den Bosch. Analysis
of event-driven controllers for linear systems. International Journal
of Control, 81(4):571–590, 2007.

[8] E. Henriksson, D. E. Quevedo, H. Sandberg, and K. Henrik Johansson.
Self-triggered model predictive control for network scheduling and
control. 8th IFAC Symposium on Advanced Control of Chemical
Processes, 2012.

[9] M. Mazo Jr., A. Anta, and P. Tabuada. On self-triggered control
for linear systems: Guarantees and complexity. European Control
Conference, 2009.

[10] D. Lehmann and J. Lunze. Event-based control: A state feedback
approach. European Control Conference, pages 1716–1721, 2009.

[11] D. Limon Marruedo, T. Alamo, and E.F. Camacho. Input-to-state sta-
ble mpc for constrained discrete-time nonlinear systems with bounded
additive uncertainties. 41st IEEE Conf. Decision and Control, pages
4619 – 4624, 2002.

[12] P. Millán, L. Orihuela, D. Mu noz de la Peña, C. Vivas, and F.R. Rubio.
Self-triggered sampling selection based on quadratic programming.
Proceedings of the 18th IFAC World Congress, pages 8896–8901,
2011.

[13] G. Pin, D.M. Raimondo, L. Magni, and T. Parisini. Robust model
predictive control of nonlinear systems with bounded and state-
dependent uncertainties. IEEE Transactions on Automatic Control,
54(7):1681 – 1687, 2009.

[14] M. Rubagotti, D. M. Raimondo, A. Ferrara, and L. Magni. Robust
model predictive control with integral sliding mode in continuous-
time sampled-data nonlinear systems. IEEE Transactions on Automatic
Control, 56(3):556 –570, 2011.

[15] J. Sijs, M. Lazar, and W.P.M.H. Heemels. On integration of event-
based estimation and robust mpc in a feedback loop. Proceedings of
the 13th ACM international conference on Hybrid systems: computa-
tion and control, pages 31–40, 2010.

[16] E.D. Sontag. Input to state stability: Basic concepts and results.
In Nonlinear and Optimal Control Theory, pages 163–220. Springer
Berlin / Heidelberg, 2008.

[17] P. Tabuada. Event-triggered real-time scheduling of stabilizing control
tasks. IEEE Transactions on Automatic Control, 52(9):1680–1685,
2007.

[18] P. Varutti, B. Kern, T. Faulwasser, and R. Findeisen. Event-based
model predictive control for networked control systems. 48th IEEE
Conf. Decision and Control, pages 567 – 572, 2009.

[19] M. Velasco, J. Fuertes, and P. Marti. The self-triggered task model
for real-time control systems. In Work in Progress Proceedings of the
24th IEEE Real-Time Systems Symposium, pages 67–70, 2005.

[20] X. Wang and M.D. Lemmon. Event design in event-triggered feedback
control systems. 47th IEEE Conf. Decision and Control, pages 2105–
2110, 2008.

[21] X. Wang and M.D. Lemmon. Self-triggered feedback control systems
with finite-gain L2 stability. IEEE Transactions on Automatic Control,
45(3):452–467, 2009.
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