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Abstract— Digital implementations of feedback laws com-
monly consider periodic execution of control tasks. In this paper
we go beyond the periodic model by developing self-triggered
schedules for the execution of control tasks. These schedules
guarantee asymptotic stability under sample-and-hold imple-
mentations while drastically reducing processor usage when
compared with the more traditional periodic implementations.
At the technical level the results rely on a homogeneity
assumption on the continuous dynamics and extend to the self-
triggered framework some of the advantages of event-triggered
implementations recently studied by the authors. The results
presented in this paper can be seen as an effort towards
understanding the real-time scheduling requirements of control
tasks.

I. INTRODUCTION

Existing techniques to schedule feedback control laws on

digital platforms can be divided into 3 main categories:

• Periodic time-triggered: the control task is executed

periodically every T units of time. It is by far the

most common and simple implementation. The main

difficulty of this approach lies in the selection of a

sampling period T which guarantees desired levels of

control performance. Moreover, periodic implementa-

tions usually result in conservative usage of resources

since T is chosen for a worst-case scenario and hence

the control task is executed at the same rate regardlessly

of the state of the plant. There is a vast literature about

this particular implementation; still, there are many

open points, specially for nonlinear systems. For linear

systems, there exist several results relating sampling

period and stability of the system, most of them based

on the construction of an equivalent discrete model.

Nonlinear systems, in general, cannot be discretized

in closed form. Hence, a common approach is to find

approximate discrete-time models, and then carry out

the study for this set of equations [NTK99]. Other stud-

ies focused on specific structures, or tried to determine

existence of a fast enough sampling rate guaranteeing

stability of the sampled system [BF05]. In [ZOB90]

implicit relations between the domain of attraction and

sampling rates were studied, and some conservative

estimates for the sampling periods were numerically

computed. Therefore, as there is not yet available a

solid theory to estimate sampling periods, in many
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applications engineers opt for a fast sampling strategy,

based on some rough previous simulations.

• Event-triggered: the control task is executed according

to some condition based on plant measurements. This

technique was explored from a stochastic point of

view in [AB02]. In [Tab07] the inter-sample behaviour

was analyzed to derive a stabilizing event-triggered

feedback law for nonlinear systems. Indeed, it seems

natural to apply the feedback law just when something

significant happens in the process. This strategy will

reduce resource usage, provide more robustness, but in

many cases it requires special hardware, not available

in general purpose devices, to decide when the control

should be executed.

• Self-triggered: the underlying idea is to merge the

advantages of time and event-triggered implementa-

tions: reduce the number of times that control tasks

are executed without resorting to extra hardware. In

most feedback laws, the state of the plant has to be

measured (or estimated) to compute the next value of

the controller; hence, this information could be used to

decide when the control task has to be applied again.

The self-triggered task model was previously studied for

linear systems in [VFM03], by using a discretization

of the model of the plant (not feasible in general

for nonlinear systems); and in [LCHZ07], where the

computation of the state transition matrix is required,

making the approach computationally inefficient.

In this paper we investigate self-triggered implementations

of stabilizing control laws for homogeneous control systems.

Drawing inspiration from the event-triggered framework in-

troduced in [Tab07] we will exploit homogeneity to derive

a scaling law for the execution times of the control task as

a function of the state norm. This scaling law will show

how we can execute the control task less frequently as the

state approaches the origin while maintaining desired levels

of performance. The results in this paper can be seen as a

first step towards understanding the scheduling requirements

for more general nonlinear control systems.

II. NOTATION AND PROBLEM STATEMENT

A. Notation

We shall use the notation |x| to denote the Euclidean

norm of an element x ∈ R
n. A continuous function
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α : [0, a[→ R
+

0 , a > 0, is said to be of class K if it is

strictly increasing and α(0) = 0. It is said to be of class

K∞ if a = ∞ and α(r) → ∞ as r → ∞. We define a ray

through x ∈ R
n as the 1-parameter family {λx : λ > 0}.

B. Problem statement

We consider a control system:

ẋ = f(x, u), x ∈ R
n, u ∈ R

m (II.1)

for which a feedback controller:

u = k(x) (II.2)

has been designed rendering the closed loop system:

ẋ = f(x, k(x+ e)) (II.3)

Input-to-State Stable (ISS) with respect to measurement

errors e ∈ R
n. We shall not need the definition1 of ISS

in this note but rather the following characterization.

Definition 2.1: A smooth function V : R
n → R

+

0 is

said to be an ISS Lyapunov function for the closed loop

system (II.3) if there exist class K∞ functions α, α, α and γ
satisfying:

α(|x|) ≤ V (x) ≤ α(|x|) (II.4)
∂V
∂x
f(x, k(x+ e)) ≤ −α(|x|) + γ(|e|) (II.5)

Closed loop system (II.3) is said to be ISS with respect to

measurement errors e ∈ R
n if there exists an ISS Lyapunov

function for (II.3).

The implementation of the feedback law (II.2) on an

embedded processor is typically done by sampling the state

at time instants ti, computing k(x(ti)) and updating the

actuator values at time instants ti + ∆i, where ∆i ≥ 0
represents the time required to read the state from the

sensors, compute the control law and update the actuators.

Furthermore, the sequence of times ti is typically periodic

meaning that ti+1 − ti = T , where T > 0 is the period.

In this paper we drop the periodicity assumption in favour

of less frequent aperiodic executions. In particular we will

solve the following problem:

Problem 2.2: Let ẋ = f(x, u) be a homogeneous control

system for which a homogeneous control law u = k(x)
rendering the closed loop system ẋ = f(x, k(x)) globally

asymptotically stable has been designed. Identify a class of

aperiodic execution schedules for the computation of k(x)
guaranteeing stability while reducing processor usage.

To tackle this problem, we will explore the inter-sample be-

haviour of the plant under the event-triggered implementation

introduced in [Tab07] and reviewed in the next section.

III. EVENT-TRIGGERED STABILIZATION

OF LINEAR SYSTEMS

Although the results of this paper apply to nonlinear

systems, we shall review the event-triggered stabilization in

1See, for example, [Son05] for an introduction to ISS and related notions.

a linear context for simplicity of presentation. Let our control

system be described by:

ẋ = Ax+Bu (III.1)

and globally asymptotically stabilized by a linear feedback:

u = Kx (III.2)

The dynamics of the closed loop system under the controller

u = Kx(ti) is given by:

ẋ(t) = Ax(t) +BKx(ti)

= Ax(t) +BKx(t) −BKx(t) +BKx(ti)

= (A+BK)x(t) +BKe(t) (III.3)

where the measurement error e is defined by:

t ∈ [ti + ∆, ti+1 + ∆[ =⇒ e(t) = x(ti)− x(t) (III.4)

Thus we can rewrite the state space representation of the

linear system including the measurement error as another

state variable:
[

ẋ
ė

]

=

[

A+BK BK
−A−BK −BK

] [

x
e

]

(III.5)

since ė = −ẋ. For simplicity, we will assume ∆ = 0 since

the results can be generalized for nonzero ∆ by following

the procedure described in [Tab07]. Since A+BK is a stable

matrix we have a quadratic Lyapunov function V whose

derivative along (III.3) satisfies:

V̇ ≤ −a|x|2 + b|x||e| (III.6)

If we restrict the error to satisfy:

b|e| ≤ σa|x| (III.7)

the dynamics of V is bounded by:

V̇ =
∂V

∂x

(

(A+BK)x(t) +BKe(t)
)

≤ (σ − 1)a|x|2

thus guaranteeing that V decreases provided that σ < 1.

Inequality (III.7) can be enforced by executing the control

task whenever:

|e| = σ
a

b
|x| (III.8)

And every time the control task is executed the current

state is measured, making x(ti) = x(t) which implies

e(t) = x(ti) − x(t) = 0. An event-triggered implementation

based on this equality would require dedicated hardware

to test (III.8) frequently. This constitutes the main disad-

vantage of the event-triggered policy introduced in [Tab07].

To overcome this drawback, we could implicitly implement

an approximation of this strategy by computing offline the

sequence of inter-execution times and then execute the con-

trol task in a time-triggered fashion, using the precomputed

schedule. Obviously, this new strategy will lack the inherent

robustness properties of the event-triggered implementation,

but on the other hand no additional hardware is required.

The approach we will follow in this paper lies in between

pre-computing a schedule off-line and testing (III.8) on-line:
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the control task will use the current state measurement to

determine its next deadline.

The inter-execution time implicitly defined by (III.8) is the

time it takes for
|e|
|x| to evolve from2 0 to σ a

b
. An estimate of

this time can be obtained by first constructing the following

estimate of d
dt

|e|
|x| (see [Tab07] and [TW06] for details):

d

dt

|e|

|x|
≤ α0 + α1

|e|

|x|
+ α2

(

|e|

|x|

)2

with α0 = |A+BK|, α1 =
(

|A+BK|+ |BK|
)

and α2 =

|BK|. Hence, an upper bound for
|e|
|x| is given by:

|e(t)|

|x(t)|
≤ φ(t, φ0) (III.9)

where φ(t, φ0) satisfies the following Riccati differential

equation:

φ̇ = α0 + α1φ+ α2φ
2 (III.10)

with φ(0, φ0) = φ0. The desired lower bound for the inter-

execution is thus obtained as the time τ satisfying:

φ
(

τ, 0
)

= σ
a

b
(III.11)

The explicit solution for (III.10) is:

φ(t, φ0) = −
1

2α2

(

α1 − Θtan
(1

2
Θ(t+ Ψ)

)

)

with Ψ and Θ defined as:

Ψ = −
2

iΘ

(

arctan
(α1 + 2φ0α2

−iΘ

)

)

Θ =
√

4α2α0 − α2
1

Finally, we can explicitly compute the value of τ :

τ = −Ψ −
2

iΘ

(

arctan
(α1 + 2a

b
σα2

−iΘ

)

)

(III.12)

As shown in [Tab07], the bounds herein obtained are

sufficiently accurate to be useful in practical situations, and

they are valid for any x(ti) ∈ R
n, as we are dealing with a

linear system. We should point out that these times are just

bounds, as we cannot find an explicit expression defining the

evolution of |e|/|x|. However, by exploiting linearity we can

obtain the inter-execution times τ
(

x(ti)
)

for different initial

conditions x(ti).
Proposition 3.1: Let ẋ = Ax+Bu be a control system for

which a feedback control law u = Kx has been designed.

The inter-execution times implicitly defined by the execution

rule |e| = c|x| with c > 0 coincide for any x(ti) lying along

the same ray:

τ
(

λ(x(ti))
)

= τ
(

x(ti)
)

(III.13)

Proof: Both e and x depend on e(ti) and x(ti), but

since we are only interested in the case where e(ti) = 0, we

will simply regard e and x as functions of time and x(ti).

2Recall that if ∆ = 0 we have e(t) = x(ti)−x(t) = 0 at the execution

instant t = ti and thus
|e|
|x|

= 0.

From (III.5), we see that e(t, x(ti)) is linear in x(ti), so the

following holds:

|e(t, λx(ti))|

|x(t, λx(ti))|
=

|λe(t, x(ti))|

|λx(t, x(ti))|
=

|e(t, x(ti))|

|x(t, x(ti))|
(III.14)

Hence, the inter-execution times are exactly the same for

any x(ti) lying along a ray.

In the next section we generalize Proposition (3.1) to the

nonlinear case under a homogeneity assumption. As we will

see, in the nonlinear case the inter-execution times will no

longer be constant along rays, but will still satisfy a simple

relationship.

IV. HOMOGENEOUS SYSTEMS AND DILATIONS

Homogeneous systems appear as local approximations

for general nonlinear systems [Her91] since we can always

decompose an analytic function in an infinite sum of homo-

geneous functions. Moreover, many physical systems such

as the rigid body can be described as homogeneous systems

(see [Bai80] for more examples). To define homogeneity we

first review the notion of dilation.

Definition 4.1: Given an n-tuple r=(r1, .., rn) ∈ (R+

0 )n,

a dilation map δr
λ : R

n → R
n is defined by:

δr
λ(x) = (λr1x1, ..., λ

rnxn), λ > 0 (IV.1)

We call a dilation standard if ri = 1 for any i = 1, .., n.

A homogeneous ray is defined as the 1-parameter family of

dilations {δr
λ(x) : λ > 0}.

Definition 4.2: A function f : R
n → R

n is called

homogeneous of order d if for all λ > 0, there exist

ri > 0, i = 1..n such that:

fi(δ
r
λ(x)) = λdλrifi(x) (IV.2)

where d > −mini ri. With this definition, we see that linear

functions are homogeneous of degree d = 0 with respect to

the standard dilation.

Consider now a differential equation:

ẋ = f(x) (IV.3)

whose right-hand side is homogeneous. Then, the solution

φ(t, φ0) satisfies:

φ(t, δr
λ(x0)) = δr

λ ◦ φ(λdt, x0) (IV.4)

In fact, since φ is a solution of (IV.3) we have

φ̇ = f(φ(t, x0)) and we can check that the right hand side

of (IV.4) is also a solution:

d δr
λ ◦ φi(λ

dt, x0)

d t
=
d δr

λ ◦ φi(λ
dt, x0)

dφi

dφi(λ
dt, x0)

d λdt

d λdt

d t

= λri · fi(φ(λdt, x0))·λ
d

= fi(δ
r
λ ◦ φ(λdt, x0)) (IV.5)

Let ψ(t) := δr
λ ◦ φ(λdt, x0). Then ψ(t) will satisfy the

differential equation. Since uniqueness of solutions is a

consequence of homogeneity [MA00] we conclude:

ψ(t) = φ(t, ψ(0))

ψ(0) = δr
λ(φ(0, x0)) = δr

λ(x0) ⇒

ψ(t) = δr
λ ◦ φ(λdt, x0) = φ(t, δr

λ(x0)) (IV.6)
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as desired.

In the next section we will consider homogeneous control

systems with respect to the standard dilation, since the gen-

eral case can be reduced to this one, as explained in [Grü00].

V. INTER-EXECUTION TIME SCALING LAWS

FOR HOMOGENEOUS SYSTEMS

The main technical contribution of the paper is the follow-

ing scaling law for the inter-execution times that generalizes

Proposition (3.1) to the nonlinear homogeneous case.

Theorem 5.1: Let ẋ = f(x, u) be a control system for

which a feedback control law u = k(x) rendering the

closed loop homogeneous of order d with respect to the

standard dilation has been designed. The inter-execution

times implicitly defined by the execution rule |e| = c|x|
with c > 0 scale according to:

τ(δr
λ(x(ti, x0)) = λ−dτ(x(ti, x0)) (V.1)

Proof: To clarify the argument, we define

xa = x(ti, x0), the initial condition for the inter-

sample behaviour. As the closed loop is homogeneous,

the trajectories of the system will satisfy (IV.4), i.e.,

x(t, δr
λ(xa)) = δr

λ ◦ x(λdt, xa). And this condition holds

for all t, so x(ti, δ
r
λ(xa)) = δr

λ ◦ x(λdti, xa). Hence if we

consider the initial condition to be δr
λ(xa) the inter-sample

behaviour will be:

|e(t, δr
λ(xa))|

|x(t, δr
λ(xa))|

=
|x(ti, δ

r
λ(xa)) − x(t, δr

λ(xa))|

|x(t, δr
λ(xa))|

=
|δr

λ ◦ x(λdti, xa) − δr
λ ◦ x(λdt, xa)|

|δr
λ ◦ x(λdt, xa)|

=
|λx(λdti, xa) − λx(λdt, xa)|

|λx(λdt, xa)|

=
|e(λdt, xa)|

|x(λdt, xa)|
(V.2)

So the inter-sample dynamics for dilations of xa is λd times

faster than for xa. Therefore, the inter-execution times will

be λd shorter, as shown in equation (V.1).

Similar results were obtained in [Tun05] for hybrid homo-

geneous systems.

Remark 5.2: The execution rule |e| = c|x| stabilizes the

system whenever we have an ISS Lyapunov function for the

system of the type:

∂V

∂x
f(x, k(x+ e)) ≤ −α(|x|) + γ(|e|)

for α, γ being K∞ functions, α−1, γ Lipschitz continuous

on compact sets (see [Tab07]) and k appropriately chosen.

However, in many cases these functions might not be Lip-

schitz continuous at the origin. To overcome this issue, we

can define a set where the aforementioned execution rule

guarantees practical stability. For instance, we could pick

the set {x ∈ R
n
∣

∣|x| ≥ ra}, with ra as small as desired (to

achieve practical stability).

Theorem 5.1 allows us to use the estimate of the inter-

execution times at some x in order to estimate the times

for the whole ray through x. Therefore, it is enough to find

estimates of these times on any n − 1 sphere, and then

extend the results along homogeneous rays. Moreover, since

estimates for τ are easily computed for linear systems, as

described in Section III, we can always choose a n−1 sphere

where a linear over-approximation for the control system can

be easily obtained. To do so, we recall that a homogeneous

function g of order d satisfies:

(d+ ri)gi(x) =
n

∑

i=1

rixi

∂gi

∂xi

Hence, for the closed loop system

ẋ = f̃(x, e) = f(x, k(x+ e)) we can find a bound for

|f̃(x, e)| linear in |x| and |e|:

|f̃(x, e)| = |H(x, e)x+G(x, e)e|

≤ |H(x, e)||x| + |G(x, e)||e|

≤ |H(x∗a, e
∗
a)||x| + |G(x∗b , e

∗
b)||e|

where:

H :=









r1

d+r1

∂f̃1

∂x1

. . . r1

d+r1

∂f̃1

∂xn

...
. . .

...
rn

d+rn

∂f̃n

∂x1

. . . rn

d+rn

∂f̃n

∂xn









G :=









r1

d+r1

∂f̃1

∂e1

. . . r1

d+r1

∂f̃1

∂en

...
. . .

...
rn

d+rn

∂f̃n

∂e1

. . . rn

d+rn

∂f̃n

∂en









(V.3)

and (x∗a, e
∗
a) and (x∗b , e

∗
b) are such that |H(x, e)| ≤

|H(x∗a, e
∗
a)| and |G(x, e)| ≤ |G(x∗b , e

∗
b)| for all (x, e) in a

neighbourhood Ω around the origin. So given this set Ω we

can find where the norm of these weighted Jacobians attain

its maximum values and then work with the linear model

ẋ = H∗x+G∗e (V.4)

It is important to emphasize that we are not trying to find a

linearized model, as it would not guarantee stability for the

original nonlinear system. To summarize, the computation of

aperiodic sampling strategy is made in 4 steps:

1) Define an invariant set Ω around the equilibrium point,

for instance a level set of the Lyapunov function.

2) Find H and G as defined in (V.3). Then, we compute

the point(s) {x∗, e∗} ∈ Ω where |H| and |G| are

maximized.

3) Compute the inter-execution time τ∗ for the linear

model (V.4) as described in (III.12), by identifying

A+BK with H∗ and BK with G∗. τ∗ is a stabilizing

sampling period of our original system for any initial

condition lying in Ω.

4) Let Γ be the largest ball inside Ω, and let p be its

radius. Relate the current state x(ti) with some point in

the boundary3 of Γ via homogeneous rays, that is, find

λ such that δr
λ(y) = x(ti) for some y in the boundary

of Γ. Since we are working with the standard dilation

3Note that the boundary of Γ is an n − 1 sphere.
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and since we have an estimate τ∗ valid for any point in

the boundary of Γ we can compute the next deadline

τ(x(ti+1)) of the control task by using (V.1):

τ(x(ti+1)) =

(

|x|

p

)−d

τ∗ (V.5)

As τ∗ can be precomputed offline, the evaluation of (V.5)

can be performed online in a very short time. It is important

to notice that the conservativeness of this technique relies

entirely on the accuracy of the sampling rate guaranteeing

stability for the linear system. That is, no conservativeness is

added when the scaling law is applied. This implies as well

that we could use any technique available to find a lower

bound τ∗ for the linear system, and then nicely extend it to

any point via homogeneous rays.

VI. EXAMPLE

To illustrate the previous results, we consider the following

nonlinear system:

ẋ1 = −x3
1 + x1x

2
2

ẋ2 = x1x
2
2 + u− x2

1x2 (VI.1)

which is homogeneous with r1 = r2 = 1 and d = 2. First,

we find a state feedback controller rendering the closed loop

ISS with respect to measurement errors. One such law is

given by:

u = −x3
2 − x1x

2
2 (VI.2)

and using V = 1

2
(x2

1 + x2
2) as the Lyapunov function we

obtain:

V̇ = − x4
1 − x4

2 + x2(−e1(x2 + e2)
2

− x1(e
2
2 + 2x2e2) − e2(e

2
2 + 3x2

2 + 3x2e2))

This system is ISS as we can find two K∞ functions α and γ
satisfying (II.5). In order to find a stabilizing execution rule

of the type |e| = c|x|, we can define a compact set where

the system will achieve practical semi-global stability. For

instance, let’s define an annulus {x ∈ R
n
∣

∣ra ≤ |x| ≤ rb}.

If we pick ra = 10−3 and rb = 10 we obtain the following

bound (valid only in the annulus):

V̇ ≤ k1|x|
4 + k2|x|

2|e|2 (VI.3)

with k1 = −1/2 and k2 = 3112.2. The corresponding

execution rule to guarantee stability is:

3112.2|e|2 =
1

2
σ|x|2 (VI.4)

We select a value of σ < 1 guaranteeing stability under

rule (III.8), for instance σ = 0.1. We will find an estimate of

the aperiodic time sequence following the 4 steps mentioned

before. Let the initial condition be x0 = (0.1, 0.4)

1) The equilibrium point is (0, 0). We define a ball Ω =
{|x| ≤ p}, for p = 10−1. For this particular Lyapunov

function, the sets Ω and Γ coincide.

2) Find the weighted Jacobians for the closed loop system

ẋ = f(x, e):

H=
1

3

[

−3x2
1 + x2

2 2x1x2

−x2
2 − 2x1x2 − (x2 + e2)

2 −x2
1 + 2x1x2 + l

]

G=
1

3

[

0 0
−(x2 + e2)

2 l

]

with l = −3(x2 + e2)
2 − 2(x2 + e2)(x1 + e1). We

search for the maximum of H and G (independently)

under the constraints |x| ≤ p and |e| ≤ σp4.

The maximum is attained at x∗a = (0.0187, 0.0982),
e∗a = 10−3(0.099, 0.388), x∗b = (−0.0248,−0.0968)
and e∗b = 10−3(−0.099,−0.388).

3) Compute the inter-execution time for linear model:

τ∗ = 0.308s.
4) Compute the next deadline using (V.5):

τ(x0) = λ−dτ∗ =

(

|x0|

p

)−d

τ∗ =

=

(

0.412

0.1

)−2

0.308 = 0.018s.

As we get closer to the equilibrium point, |x(ti)| will

decrease and so will (|x(ti)|/p), leading to larger inter-

execution times. In the next figures, we compare periodic and

aperiodic strategies. Both of them exhibit a similar behaviour

for the Lyapunov function (see Figure (1)). Figure (2) shows

the evolution of the input for the homogeneous system. At the

beginning, both the periodic and aperiodic use the same inter-

execution time, but as the system tends to the equilibrium

point the periodic policy updates the controller at the same

rate, whereas the aperiodic policy increases the time between

executions. The right side of Figure (2) zooms the last part

of the simulation, where the inter-execution times for the

aperiodic strategy is nine times larger than the periodic.

Hence the aperiodic time-triggered implementation leads

to a much smaller number of executions, while achieving

similar performance. The number of executions required

for periodic, aperiodic and event-triggered implementation

are shown in Table (I): the aperiodic policy executes the

controller 74% less times than the periodic, and 67% more

than the event-triggered (due to the conservativeness of τ∗)

for a simulation time of 40sec. The aperiodic implementation

will be even more efficient when the systems works in a

large compact sets or when the degree of homogeneity of the

system is large (so that inter-execution times vary widely).

Additionally, the aperiodic sampling will be robust with

respect to measurement noise, as expected because of the

existence of an ISS Lyapunov function. The last figure shows

the behaviour of the Lyapunov function for both periodic and

aperiodic strategies when sensor noise is considered (noise

power being 2% of the signal power). Again, the aperiodic

strategy achieves a similar rate of decay with a much smaller

number of executions. The periodic behaviour without noise

is included as a reference.

4Execution rule (VI.4) will guarantee that |e| will not violate this bound.
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Fig. 1. Comparison of the Lyapunov functions for periodic and aperiodic
implementation
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Fig. 2. Control input for periodic and aperiodic implementation

VII. CONCLUSIONS AND FURTHER WORK

In this paper we showed that it is possible to implement

a stabilizing control law in an aperiodic fashion while

guaranteeing not only asymptotic stability but also a given

rate of decay for the Lyapunov function of the system. The

proposed implementation is based on a scaling law for the

deadlines of the control task that was derived under an

homogeneity assumption on the continuous dynamics. This

scaling law shows that less frequent executions of the control

tasks are required when the state approaches the origin and

thus showing that periodic implementations do not result in

an efficient use of processor time. An example illustrated in

detail the benefits of self-triggered vs periodic time-triggered

implementations. We are currently extending these results to

the more general case of polynomial control systems.
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