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Self-Triggering in Nonlinear Systems: A Small-Gain Theorem Approach

Domagoj Tolić, Ricardo G. Sanfelice and Rafael Fierro

Abstract— This paper investigates stability of nonlinear con-
trol systems under intermittent information. Building on the
small-gain theorem, we develop self-triggered control yielding
stable closed-loop systems. We take violation of the small-gain
condition to be the triggering event, and develop a sampling
policy that precludes this event by executing the control law
with up-to-date information. Based on the properties of the
external inputs to the plant, the developed sampling policy
yields regular stability, asymptotic stability and ℒp-stability.
Control loops are modeled as interconnections of hybrid sys-
tems, and novel results on ℒp-stability of hybrid systems are
presented. Prediction of the triggering event is achieved by
employing ℒp-gains over a finite horizon. In addition, ℒp-gains
over a finite horizon produce greater intersampling intervals
when compared with standard ℒp-gains. Furthermore, a novel
approach for calculation of ℒp-gains over a finite horizon
is devised. Finally, our approach is successfully applied to a
trajectory tracking control system.

I. INTRODUCTION

In order to address demands of the modern world, the
control community has recently put under scrutiny its funda-
mental concept – feedback. These efforts tackle the question:
“How often should up-to-date information about a plant be
collected and transmitted to the controller in order to meet
a desired performance?” The desired performance can be
estimation quality (see [1] and the references therein) or
stability. This paper is concerned with stability of nonlinear
control systems under intermittent information. Under the
term intermittent information we refer to both intermittent
feedback (a user-designed property of a system as in [1],
[2], [3] and [4]) and intrinsic properties of control sys-
tems such as packet collisions, sampling period, processing
time, network throughput, scheduling protocols, delays, lossy
communication channels, occlusions of sensors or a limited
communication/sensing range (see [5] and the references
in [1]). Obviously, intermittent information are present in
almost all real-life applications. Therefore, the study of
systems under intermittent information is a critical area of
research. User-designed intermittent feedback is motivated
by rational use of expensive resources at disposition in an
effort to decrease energy consumption, and processing and
sensing requirements. Consequently, autonomy and life span
of the components increase.
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Recent approaches regarding stability under intermittent
information can be classified as follows:

(i) small-gain theorem approaches [6], [7], [8];
(ii) dissipativity or passivity-based approaches [9];

(iii) Input-to-State Stability (ISS) approaches [4], [10], [11];
and

(iv) other approaches [2], [3], [12].

Systems comprised of subsystems are, in general, char-
acterized by multiple time scales. Instead of trying to
synchronize all time scales and dealing with time-driven
systems, event-triggered and self-triggered realizations of
intermittent feedback are proposed in [4], [13], [10], [11],
[12] and [9]. In these event-driven approaches, one defines a
desired performance, and sampling (i.e., transmission of up-
to-date information) is triggered when an event representing
the unwanted performance occurs. The work in [9] utilizes
the dissipative formalism of nonlinear systems (see [14]
for more), and employs passivity properties of feedback
interconnected systems in order to reach an event-triggered
control strategy for stabilization of passive and output passive
systems. In self-triggered approaches, the current sampling
instance is used to predict and preclude an occurrence of
the triggering event. When compared with event-triggering,
self-triggering decreases requirements posed on sensors and
processors in embedded systems. Building on the event-
triggered strategy from [4], a self-triggered strategy is devel-
oped in [10]. The work in [12] utilizes Lyapunov formalism
and develops event-triggered trajectory tracking for control
affine nonlinear systems.

The authors in [6] and [7] present a framework in which
one first designs a controller without taking into account a
communication network and then, in the second step, one
determines how often control and sensor signals have to be
transmitted over the network so that the closed-loop system
remains stable. Our previous work based on this framework
can be found in [15]. In comparison with the approach from
[6] and [7], most of the above efforts appear to be more
restrictive and less general in terms of types of stability
reached under intermittent information, and requirements on
the system in the absence of communication network. In
addition, [6] and [7] consider dynamic controllers, external
(or exogenous) inputs and output feedback. Among the
aforementioned works, only [12] explicitly takes into account
external inputs to a plant. Because of that, we apply our
method to the tracking controller from [12] and provide a
comparison of the methods.

On the other hand, self-triggered implementations of [6]
and [7] are hindered due to the use of standard ℒp-gains.
Recall that a standard ℒp-gain is not a function of time, i.e.,



predictions of a triggering event are not possible. Therefore,
we employ ℒp-gains over a finite horizon that are functions
of the time horizon, and develop new results regarding ℒp-
stability of systems patched together from systems that are
ℒp-stable over a finite horizon. The triggering event in our
approach is violation of the small-gain condition.

The main contributions of this paper are: a) the design of a
self-triggered sampling policy yielding stable nonlinear sys-
tems by employing the small-gain theorem; b) consideration
of external inputs in the stability analysis; c) the formulation
of novel conditions for ℒp-stability of hybrid systems; and d)
the design of a novel method for calculating ℒp-gains over
a finite horizon. In addition, our approach does not require
construction of storage or Lyapunov functions which can be
quite a difficult task for a given problem.

The rest of the paper is organized as follows. Section II
presents the notation and definitions utilized in this paper.
Section III formulates the problem of self-triggered sam-
pling under different assumptions. The methodology brought
together to solve the problem is presented in Section IV.
The small-gain theorem is employed in Section V, and a
self-triggered sampling policy resulting in different types of
stability is obtained. The proposed self-triggered sampling
policy is verified on a trajectory tracking problem in Section
VI. Finally, conclusions are drawn and the future work is
discussed in Section VII.

II. MATHEMATICAL PRELIMINARIES

A. Notation

To shorten the notation, we use (x, y) := [xT yT ]T . The
dimension of a vector x is denoted nx. Next, let f : ℝ→ ℝn
be a Lebesgue measurable function on [a, b] ⊂ ℝ. We use
the notation

∥f [a, b]∥p :=

(∫
[a,b]

∥f(s)∥pds

)1/p

,

to denote the ℒp norm of f when restricted to the interval
[a, b]. In the above expression, ∥ ⋅ ∥ refers to the Euclidean
norm of a vector. If the argument of ∥ ⋅ ∥ is a matrix B,
then it denotes the induced 2-norm of B. Let us define an
operator x̄, where x ∈ ℝn, such that

x̄ = (∣x1∣, ∣x2∣, . . . , ∣xn∣),

where ∣ ⋅ ∣ denotes the absolute value of a real number.
Furthermore, let x = (x1, x2, . . . , xn), y =

(y1, y2, . . . , yn) ∈ ℝn. The partial order ⪯ is given
by

x ⪯ y ⇐⇒ xi ≤ yi ∀i ∈ {1, ⋅ ⋅ ⋅ , n}.

Finally, let A+
n denote the subset of all n×n matrices that

are symmetric, and have nonnegative entries. In addition, let
ℝn+ denote the nonnegative orthant. The natural numbers are
denoted ℕ.

B. Hybrid Systems

Let {ti}∞i=1 be a sequence of increasing time instants such
that 0 < ti+1 − ti <∞, for all i ∈ ℕ, and such that t1 > t∘
where t∘ is the initial time. Consider the hybrid system

Σ

⎧⎨⎩
ẋ = fh(t, x, !)

y = gh(t, x, !)

}
t ∈ [t∘, t1) ∪

∪
i∈ℕ

[ti, ti+1),

x(t+) = ℎh(t, x(t)) t ∈ T ,
(1)

with the input (or disturbance) !, and the output y. We as-
sume enough regularity on fh and ℎh to guarantee existence
of solutions given by right-continuous functions t 7→ x(t)
starting from x∘ at t = t∘. Jumps of the state x at time
t ∈ T := {ti : i ∈ ℕ} are denoted x(t+). Notice that
the above hybrid model does not prevent jump times to
accumulate in finite time, i.e., the Zeno behavior. In fact,
valid self-triggered control policies must guarantee absence
of the Zeno behavior (see Remark 5 for more details).

C. Stability Types

Definition 1: (stability) For ! ≡ 0, the equilibrium point
x = 0 of Σ is (locally) uniformly stable if there exists a
class-K function � and a positive constant c, independent of
t∘, such that ∥x(t)∥ ≤ �(∥x(t∘)∥) for every t ≥ t∘ ≥ 0 and
for every ∥x(t∘)∥ < c. If the above inequality holds for any
initial state ∥x(t∘)∥, then Σ is globally uniformly stable.

Definition 2: (asymptotic stability) For ! ≡ 0, the equi-
librium point x = 0 of Σ is (locally) uniformly asymp-
totically stable if there exists a class-Kℒ function � and a
positive constant c, independent of t∘, such that ∥x(t)∥ ≤
�(∥x(t∘)∥, t − t∘) for every t ≥ t∘ ≥ 0 and for every
∥x(t∘)∥ < c. If the above inequality holds for any initial
state ∥x(t∘)∥, then Σ is globally uniformly asymptotically
stable.

Definition 3: (ℒp-stability) Let p ∈ [1,∞]. Σ is ℒp-stable
from ! to y with (linear) gain  ≥ 0 if ∃K ≥ 0 such that for
all t∘ ≥ 0 we have that ∥y[t∘, t]∥p ≤ K∥x∘∥+ ∥![t∘, t]∥p
for all t ≥ t∘.

Definition 4: (ℒp-stability over a finite horizon � ) Let p ∈
[1,∞]. Σ is ℒp-stable over a finite horizon � ≥ 0 from ! to y
with (linear) constant gain ̃(�) ≥ 0 if there exists a constant
K̃(�) ≥ 0 such that for all t∘ ≥ 0 we have that ∥y[t∘, t]∥p ≤
K̃(�)∥x∘∥+ ̃(�)∥![t∘, t]∥p for all t ∈ [t∘, t∘ + � ].

It can be shown that the function � 7→ ̃(�) is mono-
tonically nondecreasing. Since a standard ℒp-gain  can be
defined as

 := sup
�≥0

̃(�), (2)

we conclude that ̃(�) ≤  for all � ≥ 0.
Definition 5: (detectability) Let p, q ∈ [1,∞]. The state x

of Σ is ℒp to ℒq detectable from (y, !) to x with (linear)
gain  ≥ 0 if ∃K ≥ 0 such that for all t∘ ≥ 0 we have
that ∥x[t∘, t]∥q ≤ K∥x∘∥ + ∥y[t∘, t]∥p + ∥![t∘, t]∥p for
all t ≥ t∘.

Definitions 1 and 2 can be found in [16], Definitions 3
and 5 are taken from [6] while Definition 4 is motivated by
the work in [17].



Proposition 1: If a hybrid system Σ given by (1) is ℒp-
stable and the state x is ℒp to ℒp detectable, then Σ is
ℒp-stable from ! to the state x. The same holds when ℒp-
stability is replaced with ℒp-stability over a finite horizon.

III. PROBLEM FORMULATION AND ASSUMPTIONS

Consider a nonlinear feedback control system consisting
of a plant

ẋp = fp(t, xp, u, !p),

y = gp(t, xp), (3)

and a controller

ẋc = fc(t, xc, y, !c),

u = gc(t, xc) (4)

where xp ∈ ℝnp and xc ∈ ℝnc are the states, y ∈ ℝny and
u ∈ ℝnu are the outputs, and !p ∈ ℝn!p and !c ∈ ℝn!c are
the external inputs or disturbances of the plant and controller,
respectively. Notice that y is the input of the controller,
and u is the input of the plant. In control systems such
as the above one, one tacitly assumes that the controller
is fed continuously and instantaneously by the output of
the plant y, and that the control signal u continuously and
instantaneously drives the plant. However, in real-life appli-
cations these assumptions are rarely fulfilled, and excessively
demanding since, as we will show here, stability of a closed-
loop system can be achieved via intermittent feedback.

In order to account for the intermittent knowledge of u
by the plant, and of y and !p by the controller, we model
the links between the plant and controller as communication
networks with intermittent exchange of information. More
precisely, we introduce the output error vector e as follows:

e(t) :=

[
ŷ(t)− y(t)
û(t)− u(t)

]
=:

[
ey(t)
eu(t)

]
, (5)

where ŷ (respectively, û) is an estimate of y (respectively, u)
computed at the controller end (respectively, the plant end),
and the input error vector e! as follows:

e!(t) := !̂p(t)− !p(t), (6)

where !̂p is an estimate of !p from the controller end. In
scenarios where no estimation is performed, !̂p, ŷ and û
are the most recently communicated values (or transmitted
measurements) of the external inputs and outputs of the plant,
and control signal, respectively. This is known as the zero-
order-hold estimation strategy. Therefore, ˙̂!p ≡ 0, ˙̂y ≡ 0 and
˙̂u ≡ 0 in this paper.

In general, estimates ŷ and û experience jumps when new
(up-to-date) information arrives, i.e.,

ŷ(t+) = y(t) + ℎy(t, e(t))

û(t+) = u(t) + ℎu(t, e(t))

}
t ∈ T ,

as it is assumed that the jump times at the controller and plant
end coincide. Likewise, !̂p experiences jumps at ti’s when
information arrives. Furthermore, many control laws are
designed such that !c = !̂p. Examples are trajectory tracking

Fig. 1. A diagram of a control system with the plant and controller
interacting over a communication network with intermittent information
updates.

controllers [12]. An illustration of a control system with
communication channels causing intermittent information is
provided in Figure 1.

The main problem considered herein can now be stated:
Problem 1: Based on the last transmission instant ti of

!p and y where i ∈ ℕ, find a time interval �i = ti+1 − ti
until the next transmission instant ti+1 of !p and y yielding
the closed-loop system (3) and (4) stable in some sense.

Let us now introduce the standing assumption:
Assumption 1: (standing assumption) The jump times at

the controller and plant end coincide. The signals û and ŷ
are not corrupted by noise.

Based on the assumptions on !̂p and !p, different types
of stability are achieved with the control strategy proposed
in this paper (stability, asymptotic stability and ℒp-stability).
The following cases are investigated:

Case 1: !̂p is not corrupted by noise and !p is constant
on [t∘, t1) and [ti, ti+1) for every i ∈ ℕ.

Case 2: !̂p is potentially corrupted by noise and !p is
arbitrary.
Case 1 represents an idealized environment, i.e., e! ≡ 0,
while Case 2 is a step towards more realistic scenarios.

IV. METHODOLOGY

A. Modeling Approach

Along the lines of the approach from [6], we write
the nonlinear feedback control system (3) and (4) as the
following interconnected hybrid system

ẋ = f(t, x, e, !̂p, e!)

ė = g(t, x, e, !̂p, e!)

}
t ∈ [t∘, t1) ∪

∪
i∈ℕ

[ti, ti+1), (7a)

x(t+) = x(t)

e(t+) = ℎ(t, e(t))

}
t ∈ T , (7b)

where x = (xp, xc), and functions f , g and ℎ are given by
(8) and (9). By inspecting (9), one infers that gp and gc have
to be piecewise continuously differentiable in order to write
(7). The form (7) of a closed-loop system is amenable for
analysis with the small-gain theorem. In the remainder of this
section we present the tools used in Section V to obtain �i’s.
Basically, �i’s are designed in order to preclude triggering
events.



f(t, x, e, !̂p, e!) :=

[
fp(t, xp, gc(t, xc) + eu, !̂p − e!)
fc(t, xc, gp(t, xp) + ey, !̂p)

]
; ℎ(i, e) :=

[
ℎy(i, e(ti))
ℎu(i, e(ti))

]
(8)

g(t, x, e, !̂p, e!) :=

⎡⎢⎣ f̂p(t,xp,xc,gp(t,xp)+ey,gc(t,xc)+eu,!̂p−e!)︸ ︷︷ ︸
≡0 for zero-order-hold estimation strategy

−∂gp∂t (t, xp)− ∂gp
∂xp

(t, xp)fp(t, xp, gc(t, xc) + eu, !̂p − e!)

︷ ︸︸ ︷
f̂c(t,xp,xc,gp(t,xp)+ey,gc(t,xc)+eu,!̂p) −∂gc∂t (t, xc)− ∂gc

∂xc
(t, xc)fc(t, xp, gp(t, xp) + ey, !̂p)

⎤⎥⎦
(9)

B. Why ℒp-gains Over a Finite Horizon?
Besides availability of the provable and relatively straight-

forward methods for calculating ℒp-gains over a finite
horizon (see Subsection IV-D and [17]), ℒp-gains over a
finite horizon allow prediction of the triggering event (10).
In addition, they produce less conservative (i.e., greater)
intertransmission intervals �i’s than classical ℒp-gains when
used in the small-gain theorem. The fact that ℒp-gains over a
finite horizon allow prediction and produce less conservative
�i’s is justified next.

Recall that the small-gain theorem requires 12 < 1
where 1 and 2 are the infinite horizon ℒp-gains of feedback
interconnected systems [16]. Take

12 ≥ 1 (10)

to be the triggering event that has to be precluded as it
imperils closed-loop stability. In order to determine the time
horizon when the triggering event might happen, we use
gains over a finite horizon and trigger jumps in order to
preclude the gains to satisfy

̃1(�i)̃2(�i) ≥ 1. (11)

Denoting the maximal such �i as �∗i , we want �∗i to be
as great as possible. Due to the monotonicity property (2),
we infer that ℒp-gain over a finite horizon yield greater
�∗i ’s. For example, the �∗i that satisfies ̃1(�i)̃2(�i) < 1
is greater or equal than the �∗i that satisfies 1̃2(�i) < 1.
Furthermore, some systems might only be ℒp-stable over a
finite horizon and not ℒp-stable in the standard sense. For
example, systems that are ℒp-stable over a finite horizon but
not ℒp-stable in the standard sense are given in Theorem 2.

C. ℒp-Stability of Hybrid Systems
The following theorem presents the main result of this

paper. It provides sufficient conditions for ℒp-stability of a
system obtained by patching together systems that are ℒp-
stable over a finite horizon. In particular, the theorem holds
when patching together ℒp-stable systems.

Theorem 1: Consider a hybrid system Σ given by (1). Let
K ≥ 0 and p ∈ [1,∞). If

(i) there exist constants K̃(�∘), ̃(�∘) such that

∥y[t∘, t
′]∥p ≤ K̃(�∘)∥x(t∘)∥+ ̃(�∘)∥![t∘, t

′]∥p (12)

for all t′ ∈ [t∘, t1] where �∘ = t1 − t∘, and there exist
constants K̃(�i), ̃(�i), i ∈ ℕ, for which

∥y[ti, t
′]∥p ≤ K̃(�i)∥x(t+i )∥+ ̃(�i)∥![ti, t

′]∥p (13)

for all t′ ∈ [ti, ti+1] where �i = ti+1 − ti, and such
that

KM := max{K̃(�∘), sup
i∈ℕ

K̃(�i)}, (14)

M := max{̃(�∘), sup
i∈ℕ

̃(�i)}, (15)

exist, and
(ii) the condition

∞∑
i=1

∥x(t+i )∥ ≤ K∥x(t∘)∥ (16)

holds,
then Σ is ℒp-stable from ! to y with the constant KM (K+1)
and gain M . For p = ∞, the same result holds with the
constant KMK and gain M when condition (16) is replaced
by supi∈ℕ ∥x(t+i )∥ ≤ K∥x(t∘)∥.

Proof: Due to space limitations, the proof of this
theorem will be included in our subsequent publications.

Remark 1: We point out that condition (i) in Theorem 1
does not simply mean that each individual system is ℒp-
stable over �∘ and �i’s as can be seen from the following.
In (14), take K̃(�∘) = 1 and K̃(�i) = i. Obviously, each of
the individual systems is ℒp-stable over �∘ and �i’s, but Σ
is not ℒp-stable since KM =∞.

Remark 2: Condition (16) is satisfied when, for example,
∥x(t+1 )∥ ≤ �∥x(t∘)∥ and ∥x(t+i+1)∥ ≤ �∥x(t+i )∥ where � ∈
[0, 1). This resembles uniformly globally exponentially stable
protocols from [6]. In scenarios with a finite number of time
horizons, � can also be greater or equal to 1.

Remark 3: Condition (16) allows for “overshoots” of x.
This gives more generality and flexibility to our approach
with respect to the dissipativity-based (see [9]) and ISS
approaches (see [4], [10] and [11]). This is a consequence
of the triggering policies that keep the derivative of storage
and Lyapunov functions always negative (or non-positive) in
the dissipativity-based and ISS approaches.

D. Extensions of Previous Work

This subsection relaxes some results from [7] and calcu-
lates ℒp-gains over a finite horizon for the hybrid system
related to the output error vector e given by (7).

Theorem 2: Suppose that there exist A ∈ A+
ne

and a
continuous ỹ : ℝ × ℝnx × ℝn! × ℝn! → ℝne

+ so that the
output error dynamics in (7a) satisfies

¯̇e = g(t, x, e, !̂p, e!) ⪯ Aē+ ỹ(t, x, !̂p, e!) (17)



Fig. 2. Interconnection of the nominal system Σn and the output error
system Σe.

for all e ∈ ℝne and all (t, x, !̂p, e!) ∈ C, where C is a
compact set. Then, the output error system is ℒp-stable from
ỹ to e over a finite horizon � > 0 with

K̃(�) :=

(
exp(∥A∥p�)− 1

p∥A∥

)1/p

, (18)

̃e(�) :=
exp(∥A∥�)− 1

∥A∥
. (19)

Proof: This proof utilizes Lemma 1 and 2 in the way
explained below. After setting � = 0 and T = 1 in the
proof of Theorem 5.1 from [7], expressions (18) and (19)
are readily obtained.

Using Lemma 1 and 2, the above theorem relaxes the pos-
itive semidefiniteness requirement posed on A in [7]. Conse-
quently, the problem of finding one such A is simplified since
A now belongs to the larger set A+

ne
. In addition, Theorem

2 allows us to obtain smaller ∥A∥. Notice that smaller ∥A∥
decreases ̃e(�) in (19) yielding less conservative �i’s (see
Section V for more).

Lemma 1: Suppose A is a real symmetric matrix. The
eigenvalue of A with the greatest absolute value is nonneg-
ative if and only if ∥ exp(A)∥ = exp(∥A∥).

Lemma 2: If A is a square matrix with nonnegative en-
tries, then the eigenvalue of A with the greatest absolute
value is nonnegative.

V. SELF-TRIGGERING

This section provides expressions for �i’s in order to keep
the closed-loop system stable in some sense for Cases 1 and
2.

Notice that we cannot change the state dynamics in (7a)
and the external input !p. The only information available to
us are measurements !̂p and ŷ. With this information we
design transmission instants ti’s and change ℒp-gains over
a finite horizon of the output error system Σe given by the
second rows in (7a) and (7b). Next, we take ỹ, obtained
when employing Theorem 2 to Σe, to be the output of the
dynamics of x in (7a). We call this system the nominal
system and denote it Σn. The interconnection of Σn and Σe
is illustrated in Figure 2. We point out that ỹ is an artificial
output introduced so that Theorem 2 can be applied.

Now we assume that Σn is ℒp-stable from (e!, e) to ỹ
with gain n for some p ∈ [1,∞]. In other words, n is a
finite number. By keeping the ℒp-gain of the output error

system Σe, denoted e, such that

e <
1

n
, (20)

stability of the closed loop is preserved due to the small-gain
theorem [16].

A. Self-triggering for Case 1

For the Case 1, the hybrid system (7) becomes

ẋ = f(t, x, e, !̂p, 0)

ė = g(t, x, e, !̂p, 0)

}
t ∈ [t∘, t1) ∪

∪
i∈ℕ

[ti, ti+1), (21a)

x(t+) = x(t)

e(t+) = 0

}
t ∈ T . (21b)

In other words, !p is known accurately at any time and the
values of u and y are received without delays and distortions
at transmission instants ti’s. Let us now apply Theorems 1
and 2 to the second equations in (21a) and (21b), i.e., to Σe.

Because of the perfect resets of e to zero in (21b) at each
ti, condition (16) is trivially satisfied. Next, by making sure
that ̃e ≤ �/n over [t∘, t1] and [ti, ti+1] for all i ∈ ℕ0,
where � ∈ (0, 1) and employing (15), condition (20) is
satisfied. Since in this paper we are interested in obtaining
intersampling intervals �∘ and �i’s as large as possible, one
chooses � as large as possible (e.g., � = 0.999). Notice that
e plays the role of M in Theorem 1. Now, assuming that
we can write the second equation in (21a) in the form of
(17), we apply Theorem 2 and obtain a stabilizing sampling
policy �i ∈ [0, �∗i ] where

�∗i =
1

∥A∥
ln

(
�
∥A∥
n

+ 1

)
. (22)

The time horizon �∘ is calculated via (22) as well.
Remark 4: It is well known that ∥A∥ is a continuous

function of its entries. If the entries of A are continuous
functions of (t, x, !̂p, e!) ∈ C, then ∥A∥ attains its maximum
and minimum on C. Hence, �∗i ’s are upper bounded by some
�∗max = supC

1
∥A∥ ln

(
�∥A∥n + 1

)
.

Remark 5: From Remark 4 and the assumption that
n is finite, we infer that there exists �∗min =

infC
1
∥A∥ ln

(
�∥A∥n + 1

)
> 0 such that ̃e(�)n ≤ � for

all � ≤ �∗min. By choosing �i = �∗i , we infer that inter-
vals �i’s between two consecutive transmission instants are
lower bounded by a strictly positive time �∗min. Hence, the
unwanted Zeno behavior [18] is avoided, and the triggering
condition (22) does not yield continuous feedback that might
be impossible to achieve.

Notice that, if x is detectable from (ỹ, e, e!), we can
analyze (x, e) due to Proposition 1. The above exposition
is summarized in the following theorems:

Theorem 3: Assume that there exist A ∈ A+
ne

and a
continuous ỹ such that the output error dynamics (7a) in Σe
satisfies (17), and assume that Σn is ℒp-stable from (e!, e)
to ỹ with gain n for some p ∈ [1,∞). If the sampling policy
is given by (22), then (ỹ(t), e(t)) of the closed-loop system
(21) is bounded and such that limt→∞(ỹ(t), e(t)) = 0. In



addition, if x is ℒp to ℒp detectable from (ỹ, e, e!), then the
equilibrium point (x, e) = 0 of the closed-loop system (21)
is globally uniformly asymptotically stable.

Proof: Recall that (22) is designed to yield (20)
where n and e are classical ℒp-gains of Σn and Σe,
respectively. Using the small gain theorem [16], we obtain
∥(ỹ[t∘, t], e[t∘, t])∥p ≤ K1∥(x∘, e∘)∥ for all t ≥ t∘ where
(x∘, e∘) is the initial condition and K1 ≥ 0. This yields
bounded (ỹ(t), e(t)) and forces (ỹ(t), e(t))→ 0 as t→∞.
When x is detectable, we obtain ∥(x[t∘, t], e[t∘, t])∥p ≤
K2∥(x∘, e∘)∥ for all t ≥ t∘ where K2 ≥ 0. From the work
in [19] (see expressions (2) and (3) in [19]) we infer that
∥(x(t), e(t))∥ ≤ �(∥(x(t∘), e(t∘))∥, t − t∘) where � is a
class-Kℒ function (refer to [16]).

Theorem 4: Assume that there exist A ∈ A+
ne

and a
continuous ỹ such that the output error dynamics (7a) in Σe
satisfies (17), and assume that Σn is ℒp-stable from (e!, e)
to ỹ with gain n for p = ∞. If the sampling policy is
given by (22), then (ỹ(t), e(t)) of the closed-loop system
(21) is bounded. In addition, if x is ℒp to ℒp detectable
from (ỹ, e, e!), then the equilibrium point (x, e) = 0 of the
closed-loop system (21) is globally uniformly stable.

Proof: Similarly to the previous proof, the small-gain
theorem yields ∥(ỹ[t∘, t], e[t∘, t])∥∞ ≤ K1∥(x∘, e∘)∥ and,
when x is detectable, ∥(x[t∘, t], e[t∘, t])∥∞ ≤ K2∥(x∘, e∘)∥
for constants K1,K2 ≥ 0 and all t ≥ t∘. Since
∥s[t∘, t]∥∞ := supt′∈[t∘,t] ∥s(t

′)∥ for a right-continuous
signal s(t), the proof is completed.

B. Self-triggering for Case 2

In this subsection, we still have e(t+) = 0 for t ∈ T , but
e! is no longer identically 0. Following the same approach
as in the previous subsection, we reach the next result:

Theorem 5: Assume that there exist A ∈ A+
ne

and a
continuous ỹ such that the output error dynamics (7a) in Σe
satisfies (17), and assume that Σn is ℒp-stable from (e!, e)
to ỹ with gain n for some p ∈ [1,∞]. If the sampling policy
is given by (22), then the closed-loop system (7) is ℒp-stable
from e! to (ỹ, e). In addition, if x is ℒp to ℒp detectable
from (ỹ, e, e!), then the closed-loop system (7) is ℒp-stable
from e! to (x, e).

Proof: This proof is similar to the proof of Theorem
3.

VI. CASE STUDY - TRAJECTORY TRACKING

We apply the methodology developed in the previous
sections to the tracking problem from [12]. The example
from [12] applies the control input

u = l(v − �x2) + g cos(x1 + xd1)−K(x2 + �x1), (23)

where K > 0 and � > 0, to the plant

ẋ1 = x2 (24a)

ẋ2 =
1

l
(−g cos(x1 + xd1) + u)− v (24b)

where l = 0.2 and g = 10. In (24), x := (x1, x2) denotes
the tracking error and the external input to the plant !p :=

(xd1, v) is a solution of the system

ẋd1 = xd2,

ẋd2 = v,

where v is an exogenous input which, along with the initial
conditions xd1(0) and xd2(0), determines the desired trajec-
tory. The authors in [12] prove that, in the case of continuous
feedback, the controller (23) renders the closed-loop system
(23) and (24) globally asymptotically stable.

Let us now choose the output of the plant to be y = x
and introduce intermittent feedback through the output error
vector e := x̂ − x = [e1 e2]T , and the input error vector
e! := !̂p − !p = [e!,1 e!,2]T . Recall that in this paper
we use the zero-order hold estimation strategy; hence, ˙̂x = 0
and ˙̂!p = 0. Next, we write the closed-loop system (23) and
(24) in the form of (7) and (17) as follows:

ė = −ẋ =
[

−x2

�−e!,2+�(e2+x2)+
K
l (e2+�e1)+�

]
(25)

¯̇e ⪯
[

0 g+K�
l

g+K�
l

K+l�
l

]
︸ ︷︷ ︸

A

ē+

[
∣x2∣

g
l ∣e!,1∣+ ∣�x2 + � − e!,2∣

]
︸ ︷︷ ︸

ỹ(t,x,!̂p,e!)

(26)

where � = g
l [cos(x1 + x̂d1 − e!,1)− cos(e1 + x1 + x̂d1)], and

� = K
l (x2 + �x1).

Detectability of x from (e, e!, ỹ) is inferred from (25) and
(26) as follows. If we are able to find k ≥ 0 such that

x21 + x22︸ ︷︷ ︸
∥x∥2

≤ k
(
ỹ21 + ỹ22︸ ︷︷ ︸
∥ỹ∥2

+ e21 + e22 + e2!,1 + e2!,2︸ ︷︷ ︸
∥(e,e!)∥2

)
(27)

for all x1, x2, ỹ1, ỹ2, e1, e2, e!,1, e!,2 ∈ ℝ, then, after inte-
grating both sides of the above inequality over [t∘, t] for
any t ≥ t∘, taking the square root and applying

√
a+ b ≤√

a+
√
b where a, b ≥ 0, we obtain

∥x[t∘, t]∥2 ≤
√
k∥ỹ[t∘, t]∥2 +

√
k∥(e, e!)[t∘, t]∥2.

In other words, the state x of the system Σn is ℒ2 to ℒ2

detectable from (ỹ, e, e!). One can verify that for both K =
7 and K = 9 the inequality (27) holds when k ≥ 9.

Next, we reconstruct the two scenarios included in [12].
However, since [12] does not provide all simulation data,
such as initial conditions and the exact form of the exogenous
inputs, we were not able to identically reconstruct these two
scenarios. In both scenarios we choose � = 1, x1(0) =
x2(0) = 1 and xd1(0) = xd2(0) = 0. Combining the approach
of [17] and the power iterations method [20], we estimate
ℒ2-gain of Σn and obtain n = 8 for K = 7 and n = 9
for K = 9. Since Σe and Σn satisfy conditions of Theorem
5 for p = 2, we can calculate a stabilizing sampling policy
�∗i via (22).

In the first scenario, K = 7 and we obtain �∗i = 0.025 s
for all i ∈ ℕ0 which corresponds to the frequency of 40 Hz.
According to [12], we take v = 0.5 sin t. In the second
scenario, K = 9 and we obtain �∗i = 0.022 s for all
i ∈ ℕ0 which corresponds to the frequency of 45 Hz.
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(a) The first scenario.
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(b) A detail from Fig. 3(a).
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(c) The second scenario.
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(d) A detail from Fig. 3(c).

Fig. 3. Signals of interest in both scenarios.

Since [12] does not provide the exact v, we take v(t) =
0.5 sin t[0,3.33)+2.5 sin t[3.33,6.66)+1.5 sin t[6.66,10] where tS
is the indicator function on a set S. In other words, tS = t
when t ∈ S and zero otherwise. The obtained ∥(x(t), e(t))∥
and ∥x(t)∥ are provided in Figure 3.

In both scenarios, our numerical results are qualitatively
rather similar to the numerical results obtained in [12].
However, the approach from [12] requires the maximal
update frequency for the first scenario to be 233 Hz (recall
that our method yields 40 Hz) while the maximal update
frequency for the second scenario is 1111 Hz (our method
yields 45 Hz). Based on the significant discrepancy between
the sampling frequencies obtained by these two approaches,
one might conclude that our approach is significantly better.
However, this conclusion is not valid since the goals and
points of view of these two methods are different. While
our goal is ℒp-stability, the goal of [12] is uniform ultimate
boundedness.

We point out that �∘ and �i’s are constant in this example
since the matrix A in (26) is constant. The matrix A is
constant because the right hand side of (26) is globally
Lipschitz in ē. Consequently, we do not have to require C in
Theorem 2 to be a compact set in order for Remarks 4 and 5
to hold. In fact, C in this example is ℝ×ℝnx ×ℝn! ×ℝn! .

VII. CONCLUSIONS

In this paper we present a methodology for self-triggered
control of nonlinear systems. Using the formalism of ℒp-
gains and ℒp-gains over a finite horizon, the small-gain
theorem is employed to prove stability, asymptotic stability
and ℒp-stability of the closed-loop system. The different
types of stability are a consequence of different assumptions
on the external input and/or noise environment causing the
mismatch between the actual external input and the measure-

ments available to the controller via feedback. The closed-
loop systems are modeled as hybrid systems, and a novel
result regarding ℒp-stability of such systems is presented.
Finally, our self-triggered sampling policy is exemplified on
a trajectory tracking controller and compared with a related
work.

For the future work, in order to obtain greater intertrans-
mission intervals, zero-order hold estimation strategies will
be replaced with model-based estimation of control signals
and plant outputs. Finally, we expect our results (with slight
modifications) to hold for ISS of hybrid systems.
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