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Self-Triggering under State-Independent

Disturbances

Xiaofeng Wang and Michael D. Lemmon

Abstract

This note studies self-triggering in sampled-data systems, where the next task release time and

finishing time are predicted based on the sampled states. We propose a self-triggering scheme that

ensures finite-gainL2 stability of the systems. This scheme relaxes the assumption in the previous work

that the magnitude of the process noise is bounded by a linearfunction of the norm of the system state.

We show that the sample periods generated by this scheme are always greater than a positive constant.

We also provide state-based deadlines for delays and propose a way that may enlarge those deadlines

without breakingL2 stability.

I. INTRODUCTION

Sampled-data systems are such systems that sample continuous signals and make control

decisions based the sampled data. Traditional approaches to implement such systems are based

on periodic task models, in which consecutive invocations of a task are released in a periodic

manner [1], [2], [3], [4], [5], [6], [7]. Periodic task models, however, may be undesirable in many

situations due to their conservativeness. Under periodic task models, the selection of sample

periods is done before the system is deployed. One thereforehas to ensure adequate behavior

over a wide range of uncertainties. As a result, these selected periods may be shorter than

necessary, which results in significant over-provisioningof the real-time system hardware. This

over-provisioning may negatively impact the scheduling ofother tasks on the same processing

system. In these applications it may be better to consider alternatives to periodic task models
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that can more effectively balance the real-time system’s computational cost against the control

system’s performance.

In recent years, sporadic task models have been considered for real-time control. A hardware

realization of such models is called event-triggering. Under event-triggering the system states

are sampled when some error signal exceeds a given threshold[8], [9], [10], [11], [12]. Event-

triggering has the ability to dynamically adjust the task periods to variations in the system

state. This “on-line” property enables event-triggering to generate longer task periods than

periodic task models [13]. One thing worth mentioning is that event-triggering requires hardware

event detectors that may be implemented using application-specific integrated circuits (ASIC)

or field-programmable gate array (FPGA) processors. In someapplications, however, it may be

unreasonable or impractical to retrofit an existing system with such “event detectors”. In these

cases, a software approach such as the self-triggered scheme may be more appropriate.

Under self-triggering the next task release time and finishing time are predicted by the

processing computer based on the sampled data. A self-triggered task model was introduced

by Velasco et al. [14] in which a heuristic rule was used to adjust task periods. Further work

was done by Lemmon et al. [15] which chose task periods based on a Lyapunov-based technique.

But the authors did not provide analytic bounds for task periods. Most recently, Wang et al. [13]

provided the first rigorous examination of what might be required to implement self-triggered

feedback control systems forL2 stability. A space-time scaling law for the execution timesof

control tasks was derived in [16] for asymptotic stability of homogeneous systems.

A critical assumption in [13] is that the magnitude of the process noise is bounded by a

linear function of the norm of the system state. It means thatthe disturbance should vanish as

the state is close to the equilibrium. Such disturbances mayarise in uncertain systems when

there are unmodeled dynamics caused by fluctuations in plantparameters. In practice, however,

the disturbances usually do not depend on the state. With those “independent” disturbances, the

self-triggering scheme in [13] cannot theoretically guaranteeL2 stability of the sampled-data

system any more. It is, therefore, important to relax this assumption so that the self-triggering

scheme can apply to a wider class of systems.

This note extends the work in [13]. We present a novel self-triggering scheme that ensures

finite-gainL2 stability of the resulting self-triggered feedback systems. This scheme pertains to

linear time-invariant systems. The task release time and finishing time are predicted as functions
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of previously sampled states. It relaxes the assumption in [13] that the magnitude of the process

noise is bounded by a linear function of the norm of the systemstate. We show that the sample

periods generated by this scheme are always greater than a positive constant. We also provide

state-based deadlines for delays and propose a way that may enlarge predicted deadlines without

breakingL2 stability of the system. Simulations show that the sample periods generated by our

scheme are longer than those generated by the scheme in [13].

This note is organized as follows. Section II introduces thesystem model. Section III presents

self-triggering schemes for sampled-data systems. Simulation results are presented in section IV

and conclusions are stated in section V.

II. SYSTEM MODEL

We consider a sampled-data implementation of linear time-invariant closed-loop systems. In

such systems, the plant’s control,u, is computed by a computer task. This task is characterized

by two monotone increasing sequences of time instants; the release time sequence{rk}∞k=0 and

the finishing time sequence{fk}∞k=0. The timerk denotes the time when thekth invocation of

a control task (also called a job) is released for execution on the computer’s central processing

unit (CPU). The timefk denotes the time when thenkth job has finished executing. Notice that

one job includes sampling the state, computing the control input, and feeding the input back to

the plant. The controlu is computed based on the last sampled state. The control signal used by

the plant is held constant by a zero-order hold (ZOH) until the next finishing timefk+1. This

means that the sampled-data system under study satisfies,

ẋt = Axt + B1ut + B2wt (1)

ut = −BT
1 Pxrk

for t ∈ [fk, fk+1) and all k ∈ N. In equation (1),x : [0,∞) → R
n is the state trajectory,

u : [0,∞) → R
m is a control input,w : [0,∞) → R

l is an exogenous disturbance function inL2

space, andP ∈ R
n×n is a symmetric positive semi-definite matrix satisfying theH∞ algebraic

Riccati equation (ARE),

0 = PA + AT P − PB1B
T
1 P + I +

1

γ2
PB2B

T
2 P (2)

for some real constantγ > 0. For notational convenience, letAcl = A−B1B
T
1 P , ek

t = xt − xrk

denote the measurement error,Tk = rk+1 − rk denote thekth inter-release time (known as
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“sample period”) andDk = fk − rk denote the time interval between thekth job’s release and

finishing time (known as “delay”).

Definition 2.1: The system (1) is said to be finite-gainL2 stable fromw to x with an induced

gain less thanγ if there exist non-negative constantsγ andδ such that
(
∫ ∞

0

‖xt‖2
2dt

)
1
2

≤ γ

(
∫ ∞

0

‖wt‖2
2dt

)
1
2

+ δ (3)

for any w satisfying
(∫∞

0
‖wt‖2

2dt
)

1
2 < ∞.

Objective:Design a self-triggering scheme to determinerk and fk such that finite-gainL2

stability can be preserved forw to x.

III. SELF-TRIGGERED FEEDBACK SYSTEMS

This section proposes a self-triggering scheme for sampled-data systems. This scheme ensures

finite-gainL2 stability of the resulting sampled-data systems. The idea is that we first seek real-

time constraints on the time instantsrk andfk such thatL2 stability of the sampled-data system

can be guaranteed; then we derive a self-triggering scheme that ensures the satisfaction of these

constraints.

Before we show the desired real-time constraints, we need a lemma to help the proof, which

provide an upper bound for the derivative of the storage function. To make the note easy to read,

we put all of the proofs in the appendix.

Lemma 3.1:Consider the sampled-data system in equation (1). LetV : R
n → R

+ be a

positive semi-definite function defined byV (x) = xT Px with the matrixP given in equation

(2). For any real constantβ ∈ (0, 1], the directional derivative ofV satisfies

V̇ ≤ −β2 ‖xt‖2
2 + γ2 ‖wt‖2

2 +
(

ek
t

)T
Mek

t − xT
rk

Nxrk
(4)

holds for all t ∈ [fk, fk+1) and allk ∈ N, whereM , N satisfy

M = (1 − β2)I + PB1B
T
1 P (5)

N =
1

2
(1 − β2)I + PB1B

T
1 P , (6)

respectively.

It is easy to see that if we can enforce

(ek
t )

T Mek
t ≤ ρ(xrk

)2 (7)
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for all t ∈ [fk, fk+1), then the inequality in equation (4) implies

V̇ ≤ −β2 ‖xt‖2
2 + γ2 ‖wt‖2

2 ,

which meansL2 stability. That is the main idea in [13]. It is, however, difficult to predict the

future time when we expect inequality (7) to be violated due to the uncertaintywt involved in

ek
t . To solve this issue, an assumption was made in [13] that‖wt‖2 ≤ W‖xt‖2 must hold for

some positive constantW ∈ R. In this way, uncertainty can be reduced. This assumption may be

justified if the noise term is generated by state-dependent modeling uncertainty, but in general if

the disturbance is independent of the process model, this assumption will be overly restrictive.

We are interested in relaxing this assumption so thatwt can be any signal inL2 space. We

are able to do this by splitting the effect that the sampled state xrk
and the noisewt have on

the errorek
t for t ∈ [fk, fk+1). In other words, we bound‖

√
Mek

t ‖2 by a functional ofw plus

another term that is only a function of the previously sampled statesxrk
andxrk−1

. Lemma 3.2

provides such a bound on‖
√

Mek
t ‖2 over [fk, fk+1).

For the notation convenience, we definez : R × N → R
n, ρ : R

n → R, µ0 : R
n → R,

µ1 : R
n × R

n → R, andα ∈ R as

zk
t =

√
Mek

t (8)

ρ(x) =
√

xT Nx (9)

µ0(xrk
) = ‖

√
MAclxrk

‖2 (10)

µ1(xrk
, xrk−1

) =
∥

∥

∥

√
M
(

Axrk
− B1B

T
1 Pxrk−1

)

∥

∥

∥

2
(11)

α = ‖
√

MA
√

M
−1‖, (12)

respectively.

Lemma 3.2:Consider the sampled-data system in equation (1). Letβ be any positive constant

in the interval(0, 1] such that the matrixM defined in equation (5) has full rank. Ifrk ≤ fk ≤
fk+1 holds for somek ∈ N, then the following inequality must hold:

∥

∥

∥

√
Mek

t

∥

∥

∥

2
≤ eα(t−fk)µ1(xrk

, xrk−1
)

α

(

eαDk − 1
)

+
µ0(xrk

)

α

(

eα(t−fk) − 1
)

+eα(t−fk)J [w; rk, fk] + J [w; fk, t] (13)

holds for all t ∈ [fk, fk+1), where

J [w; a, b] =

∫ b

a

eα(b−s)
∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds. (14)
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With the preceding lemmas, we are able to present the theoremthat gives inequality constraints

on rk andfk.

Theorem 3.3:Consider the sampled-data system in equation (1). Letβ be any positive constant

in the interval(0, 1] such that the matrixM defined in equation (5) has full rank. Given three

positive constantsǫ ∈ [0, 1], τ1, τ2 ∈ R
+ and a positive sequence{δk}∞k=0 satisfying

∑∞
k=0 δk ≤

∞, if for any k ∈ N, the following inequalities

rk ≤ fk ≤ rk+1 (15)

rk+1 − fk ≤ τ1 (16)

fk − rk ≤ τ2 (17)

σ(xrk
, xrk−1

, fk+1, fk, Dk) ≤
(

xT
rk

Nxrk
+ δk

)

(fk+1 − fk) (18)

hold, where

σ(xrk
, xrk−1

, fk+1, fk, Dk) =
2µ2

1(xrk
,xrk−1

)

α3

(

eαDk − 1
)2 (

e2α(fk+1−fk) − 1
)

+
4µ2

0(xrk
)

α2 (fk+1 − fk)

+
2µ2

0(xrk
)

α3

(

e2α(fk+1−fk) − 1
)

− 8µ2
0(xrk

)

α3

(

eα(fk+1−fk) − 1
)

,
(19)

then the sampled-data system is finite-gainL2 stable fromw to x with an induced gain less than

a positive constantη, where

η =

√

γ2α2+‖√MB2‖2
(

(e2α(τ1+τ2)−1)(e2ατ2−1)+4(eα(τ1+τ2)−1)
2
)

αβ

. (20)

Remark 3.4:The introduction ofτ1, τ2 is the safety requirement of systems. It requires the

system updates at least everyτ1 + τ2 unit-time so that some accidents can be detected. Notice

that τ1 and τ2 also affect the induced gain.

Remark 3.5:The introduction ofδk can enlarge the threshold onσ, as we can see in equation

(18). With a large threshold, we have more flexibility to choose the sampling periods and

deadlines. In the following discussion,δk is chosen in a way that can enlarge the predicted

deadlines for delays.

Theorem 3.3 provides constraints on task release and finishing time instants in equations (15) –

(18). These constraints are algebraic inequalities. Givenxrk
, xrk−1

, andDk, let ξ(xrk
, xrk−1

, Dk)

be an upper bound onfk+1−fk such that the inequality in equation (18) holds. Then with some

ǫ ∈ [0, 1], we may have a self-triggering scheme where the next releasetime rk+1 is

rk+1 = fk + min{τ1, ǫξ(xrk
, xrk−1

, Dk)} (21)
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and thek + 1st delay satisfies

Dk+1 ≤ min{τ2, (1 − ǫ)ξ(xrk
, xrk−1

, Dk)}. (22)

If we can guaranteeξ(xrk
, xrk−1

, Dk) ≥ 0 for all k ∈ N, then the scheme can ensure the

satisfaction of equations (15) – (18) and therefore the sampled-data system isL2 stable.

According to the above discussion, it is important to ensureξ(xrk
, xrk−1

, Dk) ≥ 0. Notice that

whenDk = 0, ξ(xrk
, xrk−1

, Dk) ≥ 0 always holds. WhenDk > 0, we need more constraints on

Dk besides equation (22) such thatξ(xrk
, xrk−1

, Dk) ≥ 0 holds. Another challenge lies in the

computation ofξ(xrk
, xrk−1

, Dk). It is hard to obtain the explicit form ofξ in terms ofxrk
, xrk−1

,

and Dk. As a result, the inequalities must be solved online. It requires a lot of computational

resource, which is unexpected in real-time control. An alternative way is to obtain a more

conservative self-triggering scheme that ensures the satisfaction of equation (18), but uses less

computational resource. The following theorem addresses these issues.

Theorem 3.6:Consider the sampled-data system in equation (1). Letβ be any positive constant

in the interval(0, 1] such that the matrixM defined in equation (5) has full rank. Given positive

constantsǫ ∈ [0, 1], τ1, τ2 ∈ R
+ and a positive sequence{δk}∞k=0 satisfying

∑∞
k=0 δk ≤ ∞, if

• the initial condition isr0 = f0 = 0,

• the k + 1st task release timerk+1 satisfies

rk+1 = fk + min{τ1, ǫL2(xrk
)}, (23)

for all k ∈ Z
+, whereL2 : R

n → R is defined by

L2(xrk
) =







1
α

ln
(

1 +
αρ(xrk

)√
8µ0(xrk

)

)

xrk
6= 0

∞ xrk
= 0

(24)

• the k + 1st task finishing timefk+1 satisfies

Dk+1 = fk+1 − rk+1 ≤ min
{

τ2, (1 − ǫ)L2(xrk
), L3(xrk+1

, xrk
; δk+1)

}

, (25)

whereL3 : R
n × R

n × R → R is defined by

L3(xrk+1
, xrk

; δk+1) = 1
α

ln

(

1 +
α
√

ρ2(xrk+1
)+2δk+1

√
8e

α min{τ1+τ2,L2(xrk
)}

µ1(xrk+1
,xrk

)

)

, (26)

then the sampled-data system is finite-gainL2 stable fromw to x with an induced gain less than

a positive constantη, whereη is defined in equation (20).
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Remark 3.7:In the self-triggering scheme defined by equations (23)-(26), the k + 1st task

release time is determined whent = fk. The deadline for thek + 1st task delay is determined

when t = rk+1. τ1 and τ2 are used to bound the time intervals[fk, rk+1) and [rk+1, fk+1),

respectively, for the consideration of the system security.

Remark 3.8:The prediction of the deadline may take some computational resource. One may

wonder whether it is better to use this resource to compute control input directly. This might

be true if the delays are only caused by the computation of control inputs. In many situations,

however, the computation is not the main reason to cause delays. In those cases, it is still worthy

of using some computational resource to predict deadlines.This is particularly true in networked

systems, where communication resource is much more expensive than computational resource.

Remark 3.9:By the definition ofL2, we know thatL2(xrk
) is always greater than a positive

constant. SinceTk ≥ L2(xrk
), it implies the sample periods generated by this self-triggering

scheme are always greater than a positive constant. This is important to establish because it

avoids continuously sampling.

Remark 3.10:Equation (25) impliesDk ≤ L3(xrk
, xrk−1

; δk). If we re-visit the self-triggering

scheme in equations (21) and (22), this inequality actuallyensuresξ(xrk
, xrk−1

, Dk) ≥ 0.

Remark 3.11:The introduction ofδk can increase the value ofL3(xrk
, xrk−1

; δk). This suggests

that by selecting largeδk, we can enlarge the predicted deadlines, provided that the deadlines

are dominated byL3. It would be an interesting research topic in the future on the selection of

δk to ensure the deadlines are greater than a positive constant.

IV. SIMULATIONS

In this section, we used the inverted pendulum problem in [13] to demonstrate the proposed

self-triggered scheme. The plant’s linearized state equations were

ẋt =















0 1 0 0

0 0 −m1g/m2 0

0 0 0 1

0 0 g/ℓ 0















xt +















0

1/m2

0

−1/(m2ℓ)















ut +















1

1

1

1















wt

wherem1 was the mass of the pendulum bob,m2 was the cart mass,ℓ was the length of the

pendulum arm, andg was gravitational acceleration. For these simulations, welet m1 = 1,

m2 = 10, ℓ = 3, and g = 10. The system state was the vectorx =
[

y ẏ θ θ̇
]T

wherey
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was the cart’s position andθ was the pendulum bob’s angle with respect to the vertical. The

system’s initial state was the vectorx0 =
[

0.98 0 0.2 0
]T

. The controller wasu = Kx,

whereK =
[

2 12 378 210
]

. γ was set to be 200.

We compared the sampling period generated by three different self-triggering schemes: the

scheme defined by equations (23)-(26), the scheme defined by equations (21)-(22), and the

scheme proposed in [13]. In the simulations, we assumed thatthe delays are zero. For the first

two schemes, we setτ1 = 0.3, τ2 = 0, β = 0.5, δk = 0 andǫ = 1. The induced gains in the first

two systems, therefore, are less than4926. according to equation (20).

Recall that the self-triggering scheme in [13] requires‖wt‖2 ≤ W‖xt‖2 holds for someW > 0

and thek + 1st task release,rk+1, is triggered in the following way:

rk+1 = rk +
1

α̂
ln

(

1 +
α̂‖
√

N̂xrk
‖2

‖
√

M̂Aclxrk
‖2

)

,

where

M̂ = (1 − β̂2)I + PB1B
T
1 P,

N̂ =
1

2
(1 − β̂2)I + PB1B

T
1 P,

ᾱ = ‖
√

MA
√

M
−1‖ + W‖

√
MB2‖‖

√
M

−1‖.

The induced gain of the resulting self-triggered system is less thanγ

β̂
. To make it a fair com-

parison, we set̂β = 0.0406 such that the theoretical bounds on the induced gains in the three

self-triggered feedback systems are the same.

We first ran the self-triggered systems in [13] with a disturbance satisfying‖wt‖2 ≤ 0.01‖xt‖2

(W = 0.01). Then the same disturbance was added into the other two self-triggered systems.

Figure 1 shows the periods generated by different schemes. It is obvious that the periods generated

by our self-triggering schemes, in general, are much longerthan those by the scheme in [13]. It

suggests that our schemes are not conservative. Also noticethat the scheme by equation (21)-

(22) has the longer periods than the scheme by (23)- (26). This is because the periods in the

latter scheme are basically a conservative estimate of the periods in the former scheme.

We then examined the effect ofδk on the deadlines in the self-triggered feedback scheme

in equations (23) – (26). The parameters areτ1 = 0.3, τ2 = 0.2, β = 0.5, and ǫ = 0.5. We

assumed that the delays are equal to the predicted deadlinesand wt = 0. Two different cases
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Scheme by equations (23)−(26)
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Fig. 1. A comparison of the sampling period generated by the scheme in equations (23)-(26) (circle), the scheme in equations

(21)-(22) (dot), and the scheme in [13] (cross)

were considered:δk = 0 and δk = 105

k2 . In the simulation, both self-triggered feedback systems

approached the equilibrium after the systems ran for 30 seconds. Figure 2 plots the predicted

deadlines in the systems withδk = 105

k2 (diamond) andδk = 0 (dot). It is obvious that the

predicted deadlines withδk = 105

k2 are much longer than those in the system withδk = 0. It

suggests that appropriate selection ofδk can result in longer deadlines, which might be useful

in dealing with very short deadlines. Another interesting observation is that whenk becomes

large and thereforeδk becomes small, the level of the increase in deadlines remains the same.

It suggests that our method is not only a solution of temporarily increasing deadlines. It may

work over the entire time zone. How to efficiently selectδk would be an interesting research

topic in the future.
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Fig. 2. A comparison between the predicted deadlines generated by the systems in equations (23)-(26) withδk =
105

k2 (circle)

andδk = 0 (dot)

V. CONCLUSIONS

This note proposes a self-triggering scheme that ensures finite-gainL2 stability of the resulting

self-triggered feedback systems. This scheme relaxes the assumptions in [13] that the magnitude

of the process noise is bounded by a linear function of the norm of the system state. We show

that the sample periods generated by this scheme are always greater than a positive constant.

We also provide dynamic deadlines for delays and propose a way that may enlarge predicted

deadlines without breakingL2 stability.
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APPENDIX

Proof: [Proof of Lemma 3.1] LetQ = PB1B
T
1 P . Consider the directional derivative ofV

at t ∈ [fk, fk+1):

V̇ = ∂V
∂x

(

Axt − B1B
T
1 Pxrk

+ B2wt

)

= −xT
t (I − Q)xt −

∥

∥

∥
γwt − 1

γ
BT

2 Pxt

∥

∥

∥

2

2
+ γ2 ‖wt‖2

2 − 2xT
t Qxrk

≤ −xT
t (I − Q)xt + γ2 ‖wt‖2

2 − 2xT
t Qxrk

.

Insertxt = ek
t + xrk

into the above equation to obtain

V̇ ≤ −‖xt‖2
2 +

(

ek
t + xrk

)T
Q
(

ek
t + xrk

)

− 2
(

ek
t + xrk

)T
Qxrk

+ γ2 ‖wt‖2
2

= −β2 ‖xt‖2
2 − (1 − β2) ‖xt‖2

2 +
(

ek
t

)T
Qek

t − xT
rk

Qxrk
+ γ2 ‖wt‖2

2 . (27)

Notice that

‖xt‖2
2 =

∥

∥ek
t + xrk

∥

∥

2

2
=
∥

∥ek
t

∥

∥

2

2
+ ‖xrk

‖2
2 + 2xrk

ek
t

= −
∥

∥ek
t

∥

∥

2

2
+ 1

2
‖xrk

‖2
2 +

∥

∥

∥

√
2ek

t + 1√
2
xrk

∥

∥

∥

2

2
≥ −

∥

∥ek
t

∥

∥

2

2
+ 1

2
‖xrk

‖2
2 .

(28)

Applying equation (28) into equation (27), we obtain

V̇ ≤ −β2 ‖xt‖2
2 − (1 − β2)

(

−
∥

∥ek
t

∥

∥

2

2
+ 1

2
‖xrk

‖2
2

)

+
(

ek
t

)T
Qek

t − xT
rk

Qxrk
+ γ2 ‖wt‖2

2

= −β2 ‖xt‖2
2 + γ2 ‖wt‖2

2 +
(

ek
t

)T
Mek

t − xT
rk

Nxrk
,

whereM andN are defined by equation (5) and (6), respectively.

Proof: [Proof of Lemma 3.2] Notice that

ẋt = Axt − B1B
T
1 Pxrk−1

+ B2wt, ∀t ∈ [rk, fk), and

ẋt = Axt − B1B
T
1 Pxrk

+ B2wt, ∀t ∈ [fk, fk+1)[rk, fk).

We first considerzk
t over the time interval[rk, fk). Let Φ1 =

{

t ∈ [rk, fk) :
∥

∥zk
t

∥

∥

2
= 0
}

. The

time derivative of
∥

∥zk
t

∥

∥

2
for t ∈ [rk, fk)\Φ1 satisfies

d

dt

∥

∥zk
t

∥

∥

2
≤

∥

∥

∥

√
Mėk

t

∥

∥

∥

2
=
∥

∥

∥

√
Mẋt

∥

∥

∥

2
=
∥

∥

∥

√
M
(

Axt − B1B
T
1 Pxrk−1

+ B2wt

)

∥

∥

∥

2

≤ α
∥

∥zk
t

∥

∥

2
+ µ1(xrk

, xrk−1
) +

∥

∥

∥

√
MB2

∥

∥

∥
‖wt‖2 ,

where the righthand sided derivative is used whent = rk.

Using standard comparison principle on the preceding equation over the intervalt ∈ [rk, fk)

with the initial condition
∥

∥zk
rk

∥

∥

2
= 0, we have

∥

∥zk
t

∥

∥

2
≤ µ1(xrk

, xrk−1
)

α

(

eα(t−rk) − 1
)

+

∫ t

rk

eα(t−s)
∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds (29)
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for all t ∈ [rk, fk) because
∥

∥zk
t

∥

∥

2
= 0 for all t ∈ Φ1.

Let Φ2 =
{

t ∈ [fk, fk+1) :
∥

∥zk
t

∥

∥

2
= 0
}

. The time derivative of
∥

∥zk
t

∥

∥

2
for t ∈ [fk, fk+1)\Φ2

satisfies

d

dt

∥

∥zk
t

∥

∥

2
≤ α

∥

∥zk
t

∥

∥

2
+ µ0(xrk

) +
∥

∥

∥

√
MB2

∥

∥

∥
‖wt‖2 ,

where the righthand sided derivative is used whent = fk.

Using standard comparison principle on the preceding equation over the intervalt ∈ [fk, fk+1)

with the initial condition

∥

∥zk
fk

∥

∥

2
≤ µ1(xrk

, xrk−1
)

α

(

eαDk − 1
)

+

∫ fk

rk

eα(fk−s)
∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

obtained from equation (29), we have

∥

∥zk
t

∥

∥

2
≤ eα(t−fk) µ1(xrk

, xrk−1
)

α

(

eαDk − 1
)

+ eα(t−fk)

∫ fk

rk

eα(fk−s)
∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

+
µ0(xrk

)

α

(

eα(t−fk) − 1
)

+

∫ t

fk

eα(t−s)
∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds (30)

holds for all t ∈ [fk, fk+1) since
∥

∥zk
t

∥

∥

2
= 0 for all t ∈ Φ2.

Proof: [Proof of Theorem 3.3] Since the hypotheses in lemma 3.2 hold, equation (30) holds.

By squaring both sides of the inequality in equation (30), weobtain

∥

∥zk
t

∥

∥

2

2
≤ 4

[

eα(t−fk) µ1(xrk
, xrk−1

)

α

(

eαDk − 1
)

]2

+ 4

[

µ0(xrk
)

α

(

eα(t−fk) − 1
)

]2

+4e2α(t−fk)J2[w; rk, fk] + 4J2[w; fk, t] (31)

holds for all t ∈ [fk, fk+1).

By lemma 3.1, we know

V̇ ≤ −β2 ‖xt‖2
2 + γ2 ‖wt‖2

2 + ‖zk
t ‖2

2 − xT
rk

Nxrk
(32)

holds for all t ∈ [fk, fk+1) with V (x) = xT Px. Applying equation (31) into the preceding

inequality implies that

V̇ ≤ −β2 ‖xt‖2
2 + γ2 ‖wt‖2

2 − xT
rk

Nxrk
+ 4e2α(t−fk)J2[w; rk, fk] + 4J2[w; fk, t]

+4

[

eα(t−fk) µ1(xrk
, xrk−1

)

α

(

eαDk − 1
)

]2

+ 4

[

µ0(xrk
)

α

(

eα(t−fk) − 1
)

]2
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holds for allt ∈ [fk, fk+1). Integrating both sides of the preceding inequality ont over [fk, fk+1)

yields
∫ fk+1

fk

V̇ dt ≤ −
∫ fk+1

fk

β2 ‖xt‖2
2 dt +

∫ fk+1

fk

γ2 ‖wt‖2
2 dt −

∫ fk+1

fk

xT
rk

Nxrk
dt

+

∫ fk+1

fk

4e2α(t−fk)J2[w; rk, fk]dt +

∫ fk+1

fk

4J2[w; fk, t]dt

+

∫ fk+1

fk

4

[

eα(t−fk)µ1(xrk
, xrk−1

)

α

(

eαDk − 1
)

]2

dt

+

∫ fk+1

fk

4

[

µ0(xrk
)

α

(

eα(t−fk) − 1
)

]2

dt (33)

Let us look at the last two terms in the preceding equation. Notice that
∫ fk+1

fk

4

[

eα(t−fk) µ1(xrk
, xrk−1

)

α

(

eαDk − 1
)

]2

dt +

∫ fk+1

fk

4

[

µ0(xrk
)

α

(

eα(t−fk) − 1
)

]2

dt

=
2µ2

1(xrk
, xrk−1

)

α3

(

eαDk − 1
)2 (

e2α(fk+1−fk) − 1
)

+
2µ2

0(xrk
)

α3

(

e2α(fk+1−fk) − 1
)

−8µ2
0(xrk

)

α3

(

eα(fk+1−fk) − 1
)

+
4µ2

0(xrk
)

α2
(fk+1 − fk)

≤
(

xT
rk

Nxrk
+ δk

)

(fk+1 − fk) =

∫ fk+1

fk

xT
rk

Nxrk
dt + δk(fk+1 − fk) (34)

holds, where the inequality is obtained using equation (18).

Applying equation (34), together with equations (16) and (17), into equation (33) yields
∫ fk+1

fk

V̇ dt ≤ −
∫ fk+1

fk

β2 ‖xt‖2
2 dt +

∫ fk+1

fk

γ2 ‖wt‖2
2 dt + δk(τ1 + τ2)

+

∫ fk+1

fk

4e2α(t−fk)J2[w; rk, fk]dt +

∫ fk+1

fk

4J2[w; fk, t]dt (35)

Let us now look at the fourth item in the right side of the inequality in equation (35). Using

Cauchy-Schwarz inequality, we have

J2[w; rk, fk] =

(
∫ fk

rk

eα(fk−s)
∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

)2

≤
(
∫ fk

rk

eα(fk−s)ds

)(
∫ fk

rk

eα(fk−s)
∥

∥

∥

√
MB2

∥

∥

∥

2

‖ws‖2
2 ds

)

(36)
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for all t ∈ [fk, fk+1). Therefore,
∫ fk+1

fk

4e2α(t−fk)J2[w; rk, fk]dt (37)

≤
(
∫ fk+1

fk

4e2α(t−fk)dt

)(
∫ fk

rk

e2α(fk−s)ds

)(
∫ fk

rk

∥

∥

∥

√
MB2

∥

∥

∥

2

‖ws‖2
2 ds

)

=
2

α

(

e2α(fk+1−fk) − 1
) 1

2α

(

e2α(fk−rk) − 1
)

∥

∥

∥

√
MB2

∥

∥

∥

2
∫ fk

rk

‖ws‖2
2 ds

≤ 1

α2

(

e2α(τ1+τ2) − 1
) (

e2ατ2 − 1
)

∥

∥

∥

√
MB2

∥

∥

∥

2
∫ fk

fk−1

‖ws‖2
2 ds (38)

holds, where the last inequality is obtained using equations (16) and (17).

Following the similar analysis, we obtain an upper bound on the fifth item in the right side

of the inequality in equation (35):

∫ fk+1

fk

4J2[w; fk, t]dt ≤
4
∥

∥

∥

√
MB2

∥

∥

∥

2

α2

(

eα(τ1+τ2) − 1
)2
∫ fk+1

fk

‖ws‖2
2 ds. (39)

Applying equations (38) and (39) into (35), we obtain
∫ fk+1

fk

V̇ dt ≤ −β2

∫ fk+1

fk

‖xt‖2
2 dt + γ2

∫ fk+1

fk

‖wt‖2
2 dt + δk(τ1 + τ2)

+

(

e2α(τ1+τ2) − 1
)

(e2ατ2 − 1)
∥

∥

∥

√
MB2

∥

∥

∥

2

α2

∫ fk

fk−1

‖ws‖2
2 ds

+
4
∥

∥

∥

√
MB2

∥

∥

∥

2

α2

(

eα(τ1+τ2) − 1
)2
∫ fk+1

fk

‖ws‖2
2 ds.

Summarizingk in the inequality above from0 to ∞ yields
∫ ∞

0

V̇ dt ≤ −β2

∫ ∞

0

‖xt‖2
2 dt + (τ1 + τ2)

∞
∑

k=0

δk + η2

∫ ∞

0

‖ws‖2
2 ds, (40)

whereη is defined in equation (20).

Since
∑∞

k=0 δk ≤ ∞, the inequality above is sufficient to show the sampled-datasystem is

finite-gainL2 stable fromw to x with an induced gain less thanη.

Proof: [Proof of Theorem 3.6] We will show the self-triggering scheme defined in equations

(23) and (25) satisfies equation (15) – (18) in Theorem 3.3.

It is obvious that equations (23) and (25) imply the satisfaction of the inequalities in equations

(16) and (17), respectively. By the assumption,M defined in equation (5) has full rank. As a
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result,N defined in equation (6) also has full rank andM ≥ N > 0. Therefore, by the definitions

of L2 andL3 in equations (24) and (26), we have

L2(xrk
) ≥ 1

α
ln

(

1 +
α
√

λmin(N)
√

8λmax (AT
clMAcl)

)

> 0,

L3(xrk+1
, xrk

; δk+1) ≥ 0.

Therefore, by equations (23) and (25),rk ≤ fk ≤ rk+1 holds for allk ∈ N.

We now show the satisfaction of equation (18). By equation (23) and (25), we have

fk+1 − fk ≤ min{τ1 + τ2, L2(xrk
)}, (41)

Dk ≤ L3(xrk
, xrk−1

; δk). (42)

With equations (41) and (42), we have

4e2α(t−fk)µ
2
1(xrk

, xrk−1
)

α2

(

eαDk − 1
)2 ≤ 4e2α(fk+1−fk) µ

2
1(xrk

, xrk−1
)

α2

(

eαDk − 1
)2

≤ 4e2α min{τ1+τ2,L2(xrk
)}µ2

1(xrk
, xrk−1

)

α2

(

eαDk − 1
)2 ≤ 1

2
xT

rk
Nxrk

+ δk (43)

holds for all t ∈ [fk, fk+1).

Also, equation (41) implies

4µ2
0(xrk

)

α2

(

eα(t−fk) − 1
)2 ≤ 4µ2

0(xrk
)

α2

(

eαL2(xrk
) − 1

)2 ≤ 1

2
xT

rk
Nxrk

(44)

holds for all t ∈ [fk, fk+1).

Combining equation (43) and (44) yields

4e2α(t−fk) µ
2
1(xrk

, xrk−1
)

α2

(

eαDk − 1
)2

+
4µ2

0(xrk
)

α2

(

eα(t−fk) − 1
)2 ≤ xT

rk
Nxrk

+ δk (45)

for all t ∈ [fk, fk+1).

Integrating both sides of the preceding inequality ont over [fk, fk+1) implies the satisfaction

of equation (18). Since the hypotheses in Theorem 3.3 are satisfied, we can conclude that the

sampled-data system is finite-gainL2 stable fromw to x with an induced gain less than a positive

constantη.
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