
Self-Tuned Congestion Control for Multiprocessor Networks

Mithuna Thottethodiy Alvin R. Lebecky Shubhendu S. Mukherjeez

yDepartment of Computer Science,
Duke University,

Durham, NC 27708-0129.
fmithuna,alvy g@cs.duke.edu

zVSSAD, Alpha Development Group,
Compaq Computer Corporation,

Shrewsbury, MA.
shubu.mukherjee@compaq.com

Abstract

Network performance in tightly-coupled multiprocessors
typically degrades rapidly beyond network saturation. Con-
sequently, designers must keep a network below its satura-
tion point by reducing the load on the network. Congestion
control via source throttling—a common technique to re-
duce the network load—prevents new packets from entering
the network in the presence of congestion. Unfortunately,
prior schemes to implement source throttling either lack vi-
tal global information about the network to make the cor-
rect decision (whether to throttle or not) or depend on spe-
cific network parameters, network topology, or communica-
tion patterns.

This paper presents a global-knowledge-based, self-
tuned, congestion control technique that prevents saturation
at high loads across different network configurations and
communication patterns. Our design is composed of two
key components. First, we use global information about a
network to obtain a timely estimate of network congestion.
We compare this estimate to a threshold value to determine
when to throttle packet injection. The second component is
a self-tuning mechanism that automatically determines ap-
propriate threshold values based on throughput feedback.
A combination of these two techniques provides high per-
formance under heavy load, does not penalize performance
under light load, and gracefully adapts to changes in com-
munication patterns.

1 Introduction

Tightly-coupled multiprocessors provide the perfor-
mance and ease of programming necessary for many com-
mercial and scientific applications. Their interconnection
networks provide the low latency and high bandwidth com-
munication required for a variety of workloads. The ad-

vent of multiprocessor systems built with highly aggres-
sive, out-of-order, and speculative microprocessors, simul-
taneous multithreaded processors [9], and chip multiproces-
sors [7], promises to dramatically increase the offered load
on such multiprocessor networks. Unfortunately, most mul-
tiprocessor networks suffer from tree saturation under heavy
load [22] and could become a key performance bottleneck.

Tree saturation occurs when multiple packets contend for
a single resource (e.g., a link between nodes) creating a hot-
spot. Since only one packet can use the resource, other
packets must wait. These waiting packets occupy buffers
and thus delay other packets, even though they may be des-
tined for a completely different node and share only one link
on their paths to their respective destinations. This process
continues, waiting packets delay other packets producing a
tree of waiting packets that fans out from the original hot-
spot.

The performance degradation caused by network satura-
tion can be severe, as illustrated in Figure 1. The y-axis cor-
responds to delivered bandwidth (flits/node/cycle) while the
x-axis shows offered load in terms of packet injection rate
(packets/node/cycle). The two lines correspond to different
communication patterns: randomly selecting a destination
node (random), and using the node number with its most
significant and least-significant bits switched as the destina-
tion (butterfly).

From Figure 1 we can make two important observations.
First, both communication patterns incur dramatic reduc-
tions in throughput when the network reaches saturation.
The second observation is that the network saturates at dif-
ferent points for the different communication patterns.

One way to prevent network saturation is to use source
throttling, which prevents source node packet injection
when congestion is detected. An oracle could achieve this
by knowing both the communication pattern and the packet
injection rate that maximizes performance. The challenge is
to develop a realistic implementation that can prevent net-
work saturation and adapt to variations in communication

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Self-Tuned Congestion Control for Multiprocessor Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

0

0.005

0.01

0.015

0.02

0.025

0.01 0.1

N
or

m
al

iz
ed

 A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

Random
Butterfly

Figure 1. Performance Breakdown at Network
Saturation, 16x16 2D network, adaptive rout-
ing, deadlock recovery

patterns.
This paper presents a self-tuned source throttling mecha-

nism for multiprocessor interconnection networks. Our so-
lution is comprised of two key components: a technique to
obtain global knowledge of network state and a self-tuning
mechanism to automatically determine when network satu-
ration occurs.

We use global knowledge of the number of full net-
work buffers to estimate network congestion. Global infor-
mation allows us to detect congestion earlier than alterna-
tive approaches that wait for network backpressure to cre-
ate locally observable indicators of congestion (e.g., local
buffer occupancy, timeouts). The global estimate is com-
pared against a threshold to control packet injection. If
the estimate is higher than the threshold, packet injection
is stopped. When the estimate drops below the threshold,
packet injection is resumed.

The second key aspect of our source throttling imple-
mentation is a self-tuning mechanism that monitors net-
work throughput and automatically determines the appro-
priate threshold value. This eliminates manual tuning and
allows our scheme to adjust to variations in communication
patterns.

We believe that our congestion control mechanism is
generally applicable to a broad range of packet-switched,
multiprocessor networks, including virtual cut-through [15]
networks and wormhole networks [6, 5]. However, in this
paper we evaluate the technique in the context of wormhole
switched,k-ary,n-cube networks.

Simulation results for a 16-ary,2-cube (256 node net-
work) show that our congestion control technique prevents
the severe performance degradation caused by network sat-
uration. By limiting packet injection, our scheme sustains
high throughput and low latency. Compared to an alterna-
tive approach that uses local estimates of congestion [2],

our scheme is superior because global congestion estima-
tion enables our technique to detect congestion in its early
stages. We also show that a single static threshold cannot
accommodate all communication patterns because a single
threshold overthrottles some workloads and does not pre-
vent saturation in other ones. In contrast, simulations reveal
that our self-tuning technique automatically adapts to var-
ious communication patterns, including bursts of different
patterns.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background information and discusses re-
lated work. Section Section 3 and Section Section 4 discuss
the two key innovations of this paper. Section 3 presents
our proposed global information gathering scheme. Sec-
tion 4 describes our self-tuned congestion control scheme.
Section 5 presents our experimental methodology and sim-
ulation results. Section 6 summarizes this paper.

2 Background and Related Work

High performance interconnection networks in tightly
coupled multiprocessors can be achieved by using worm-
hole [6, 5] or cut-through switching [15], adaptive rout-
ing [12], and multiple virtual channels [4]. The Cray
T3E [25] and SGI Origin [18] machines use a combination
of these techniques for their interconnection networks. In
these systems communication occurs by sending packets of
information that are routed independently through the net-
work. Each packet is composed of flits (flow control units)
that are transferred between network nodes.1

Both wormhole routing and cut-through switching can
suffer from network saturation. In wormhole switching,
when a node receives the header flit (which typically con-
tains the routing information), it immediately selects a route
and forwards the flit to the next node. This can provide very
low latency compared to store-and-forward routing where
the entire packet is received by a node before forwarding it.
However, when a packet blocks in a wormhole network, its
flits occupy buffer space across several network nodes, and
can exacerbate tree saturation. In contrast, routers using
cut-through switching buffer blocked packets in the router
itself. Nevertheless, even cut-through switching can suffer
from tree saturation when the router buffers fill up.

Adaptive routing dynamically chooses from multiple po-
tential routes based on current local network state. This can
help alleviate the effects of tree saturation experienced by
deterministic routing algorithms under heavy load, and thus
provide higher performance. Unfortunately, full adaptive
routing can cause potential deadlock cycles, which can ex-
acerbate network saturation. While adaptive routing helps

1For ease of exposition we assume each network node contains a pro-
cessor, memory and a network router.

alleviate light to moderate congestion, in this paper we fo-
cus on source-throttling as a congestion control technique
to prevent network saturation.

Virtual channels allow multiple packets to share a sin-
gle physical link, thus reducing the effects of tree satura-
tion, and can be used to eliminate deadlocks. Deadlock
avoidance schemes work by preventing the cyclic depen-
dencies between storage resources. In particular, we con-
sider a scheme that reserves a small set of virtual channels
for deadlock-free routing [8], while the remaining virtual
channels use fully adaptive routing. This technique guar-
antees forward progress, since packets routed over the spe-
cial channels will never deadlock, and eventually free up
resources for the fully adaptive channels.

Deadlock recovery [17] is an alternative to deadlock
avoidance that can potentially achieve higher performance.
Deadlock recovery uses full adaptive routing on all vir-
tual channels, detects when deadlocks occur (typically via
timeouts), then recovers by routing packets on a deadlock
free path which uses a central per-node buffer. This ap-
proach can also be imagined as containing two virtual net-
works: one can suffer deadlock and the other is guaranteed
to be deadlock-free. The main difference is that this ap-
proach uses a per-node buffer whereas the deadlock avoid-
ance scheme requires buffers per physical channel.

In either deadlock avoidance or recovery, the frequency
of deadlocks in the adaptive channels increases dramatically
when the network reaches saturation [29]. When this oc-
curs, packets are delivered over the relatively limited escape
bandwidth available on the deadlock-free paths. This causes
a sudden, severe drop in throughput and corresponding in-
crease in packet latency. Therefore, it is crucial to avoid
network saturation in these systems.

To keep the network below saturation and avoid the re-
sulting performance degradation, it is necessary to imple-
ment a congestion control mechanism. This mechanism
should be self-tuning, thus eliminating the need for a sys-
tem designer, administrator, or application programmer to
tune various parameters and allowing the system to adapt to
changes in communication patterns, load levels, and net-
work topologies. Such a self-tuned system may require
timely information about the global network state to cor-
rectly tune the congestion control algorithm.

The remainder of this section examines prior congestion
control mechanisms for tightly coupled multiprocessors in
the context of these desirable properties. We also examine
congestion control mechanisms used in LANs/WANs and
discuss the applicability of those techniques to tightly cou-
pled multiprocessors.

2.1 Related Work

Most previous work on congestion control for multipro-
cessor networks relies on estimating network congestion
independently at each node and limiting packet injection
when the network is predicted to be near saturation. This re-
duces the problem to finding a local heuristic at each node to
estimate network congestion. Lopez et al. [19, 20] use the
number of busy output virtual channels in a node to esti-
mate congestion. Baydal et al. [2] propose an approach that
counts a subset (free and useful) of virtual channel buffers
to decide whether to throttle or not. Because the above
schemes rely on local symptoms of congestion, they lack
knowledge about the global network state, and are unable
to take corrective action in a timely manner. This reduces
their effectiveness under different network load levels and
communication patterns.

Smai and Thorelli describe a form of global congestion
control [26]. A node that detects congestion (based on time-
outs) signals all the other nodes in the network to also limit
packet injection. This approach requires tuning the appro-
priate time-outs, and when the timeouts are tuned for ro-
bustness at higher loads, there is a performance penalty for
light loads. Scott and Sohi describe the use of explicit feed-
back to inform nodes when tree-saturation is imminent in
multistage interconnection networks [24]. This approach
also requires tuning of thresholds.

The technique proposed by Kim et al. [16] allows the
sender to kill any packet that has experienced more delays
than a threshold. This approach pads shorter packets to en-
sure that the sender can kill a packet at any time before its
first flit reaches the destination. This can cause larger over-
heads when short messages are sent to distant nodes.

The above techniques for congestion control in multipro-
cessor networks all attempt to prevent network saturation at
heavy loads. Unfortunately, these techniques either require
tuning, lack necessary information about a network’s global
state to take preventive actions in a timely fashion, or do not
provide high performance under all traffic patterns and of-
fered load levels.

Flit-reservation flow control is an alternative flow control
technique which improves the network utilization at which
saturation occurs [21]. It uses control flits to schedule band-
width and buffers ahead of the arrival of data-flits. This pre-
scheduling results in better re-use of buffers than waiting for
feedback from neighboring nodes to free up buffers. Basak
and Panda demonstrate that consumption channels can be a
bottleneck that can exacerbate tree saturation. They show
that saturation bandwidth can be increased by having an ap-
propriate number of consumption channels [1].

LANs (Local Area Networks) and WANs (Wide Area
Networks) use self-tuned congestion control techniques.
Various flavors of self-tuning, end-to-end congestion avoid-

ance and control techniques have been used in the TCP pro-
tocol [13, 3]. TCP’s congestion control mechanism uses
time-outs and dropped/unacknowledged packets to locally
estimate global congestion and throughput. If congestion is
detected, the size of the sliding window, which controls the
number of unacknowledged packets that can be in flight, is
reduced. Floyd and Jacobson [11] proposed a scheme where
TCP packets are dropped when a router feels that conges-
tion is imminent. Dropped packets give an early indication
to end hosts to take corrective action and scale back offered
load. Floyd [10] also proposed a modification of TCP where
“choke packets” are explicitly sent to other hosts. Ramakr-
ishnan and Jain describe a similar mechanism for DECbit to
explicitly notify congestion whereby gateways set the ECN
(Explicit Congestion Notification) bit depending on average
queue size [23].

Congestion control in ATM [14] uses explicit packets
calledResource Management (RM) cellsto propagate con-
gestion information. Switches along the packet path mod-
ify bits in the RM cells to indicate the highest data rate they
can handle. The end-hosts are limited to using the maxi-
mum data-rate indicated by the switches to not overwhelm
the network and/or switches.

The above congestion control mechanisms for LANs and
WANs are not directly applicable in multiprocessor net-
works. LANs and WANs can drop packets because higher
network layers will retransmit dropped packets for reliable
communication. The dropped packets serve as implicit hints
of network congestion. However, multiprocessor networks
are typically expected to guarantee reliable communica-
tion. Thus, additional complexity would have to be built-
in to store and retransmit dropped packets. The alternative
idea of propagating congestion information explicitly can
be used.

The challenge is in determining the appropriate set of
mechanisms and policies required to provide a self-tuned
congestion control implementation for preventing satura-
tion in multiprocessor networks. In this paper, we present
our solution for regular interconnection networks with
adaptive routing, wormhole switching, and either deadlock
recovery or deadlock avoidance.

Our solution is based on two key innovations that col-
lectively overcome the limitations of previous congestion
control techniques. First, we use aglobal knowledge based
congestion estimationthat enables a more timely estimate
of network congestion. The second component is aself-
tuningmechanism that automatically determines when sat-
uration occurs allowing us to throttle packet injection. The
next two sections elaborate on each of these key compo-
nents.

3 Global Congestion Estimation

Any congestion control implementation requires a timely
way to detect network congestion. Previous techniques es-
timate network congestion using a locally observable quan-
tity (e.g., local virtual buffer occupancy, packet timeouts).
While these estimates are correlated to network congestion,
we claim that waiting for local symptoms of network con-
gestion is less useful primarily because, by that time, the
network is already overloaded.

Consider the case when network congestion develops at
some distance from a given node. Schemes that use local
heuristics to estimate congestion rely on back-pressure to
propagate symptoms of congestion to the node (e.g. fill-
ing up of buffers, increase in queue delays, etc.). The node
takes no corrective action until congestion symptoms are
observed locally.

It is possible to detect network congestion in its early
stages by taking global conditions into account. To achieve
this, we use the fraction of full virtual channel buffers of all
nodes in the network as our metric to estimate network con-
gestion. This ensures that far away congestion is accounted
for early enough to take corrective action. However, there
is additional cost, both hardware and latency, to propagate
the global information.

Our scheme counts full buffers to estimate congestion
but does not take the distribution of these full buffers among
the nodes into account. At first glance, this appears to be a
serious limitation because our scheme is unable to distin-
guish between a case with localized congestion (i.e., a large
fraction of full buffers are in relatively few nodes in the net-
work) and a benign case (in which the same number of full
buffers are distributed more or less evenly among all the
nodes of the network). But the adaptivity of our self-tuning
mechanism reduces the impact of this problem by setting
the threshold differently in the two cases. Our mechanism
will set a higher threshold for the benign case than for the
case with localized congestion.

In the next section, we show how global information can
be gathered with reasonable cost and used to achieve a ro-
bust, self-tuned congestion control implementation.

3.1 Implementing Global Information Gather

Our technique requires that every node in the network be
aware of the aggregate number of full buffers and through-
put for the entire network. (We explain the relationship be-
tween full buffers, offered load and delivered bandwidth in
Section 4.) There are a variety of ways to implement this
all-to-all communication. In this section we discuss three
alternatives: piggy-backing, meta-packets, and a dedicated
side-band.

One approach to distribute information in the network is

to piggy-back the extra information on normal packets. This
approach has the disadvantage that it is difficult to guaran-
tee all-to-all communication. Since only nodes involved in
communication see the piggy-backed information, it is pos-
sible that some nodes will not see the information for an ex-
tended period of time, if at all. This can reduce the accuracy
of the congestion estimate, thus reducing the effectiveness
of the congestion control scheme.

An alternative approach is to send out special meta-
packets containing the congestion and throughput informa-
tion. The required all-to-all communication can be guaran-
teed by this approach. However, guaranteeing delay bounds
may involve additional complexity. Meta packets flooding
the network will also consume some of the bandwidth and
may add to the congestion. Adding a high-priority virtual
channel reserved for these meta-packets may be one way of
addressing these concerns.

For this paper, we use an exclusive side-band reserved
for communicating the congestion and throughput informa-
tion. This is the costliest implementation in terms of addi-
tional hardware and complexity. However, it is easy to guar-
antee delay bounds on all-to-all communication and it does
not affect performance of the main data network. While the
extra bandwidth available on the side-band could be used
for general packet routing, it will only postpone network
saturation for a short-time, and not provide a complete so-
lution like our congestion control scheme. From the above
discussion, we see several issues surrounding the global in-
formation gathering mechanism. Our future work includes
a more thorough examination of these issues and implemen-
tations.

The side-band incurs a neighbor-to-neighbor communi-
cation delay ofh cycles. We use adimension-wise aggrega-
tion scheme. Every node communicates its number of full
buffers and throughput in both directions along the lowest
dimension of the network. Each node that receives such
information computes the aggregate and has the aggregate
information for all its neighbors along the zeroth dimen-
sion at the end ofk=2 hops or(k=2) � h cycles. The nodes
then communicate the aggregates to neighbors along the
next higher dimension. Continuing this procedure along ev-
ery dimension, global aggregation in a full-duplex,k-ary,n-
cube network completes in(k=2) � h � n cycles. Assuming
h = 2, for our network configuration(n = 2; k = 16) it
takes 32 cycles. We refer to the time for such an all-to-all
communication as thegather-duration(g).

The mechanism described above providesg-cycle de-
layed snapshots of the network congestion everyg cycles.
Our congestion control policy requires us to compare, in ev-
ery cycle, the current estimated congestion to the threshold.
If we’re currently at timet and we have observed previous
network snapshots atS2, S1, S0 and so on, we must esti-
mate the network congestion at timet based on the previous

snap-shots of global network congestion.
The simplest solution is to use the state observed in the

immediately previous network snapshot until the next snap-
shot becomes available. We use a slightly more sophisti-
cated method to estimate network congestion that computes
a linear extrapolation based on the previous two network-
snapshots. In general, any prediction mechanism based on
previously observed network states can be used to predict
network congestion. We leave evaluation of alternative pre-
diction techniques for future work. On average, we found
the linear extrapolation technique yields an improvement in
throughput of 3% for the deadlock avoidance configuration
and 5% for the deadlock recovery configuration.

To communicate congestion information, nodes ex-
change full buffer counts. The number of bits needed to
represent this information depends on the number of buffers
in the network. We specify the network configuration we
use and the number of bits needed to represent congestion
information for that configuration in Section 5.

In summary, global measurement of virtual buffer oc-
cupancy provides an early estimate of network congestion.
This estimate is compared against a threshold to determine
if packet injection should stop or resume. Obtaining infor-
mation on the global state of the network is only part of the
solution. To translate this congestion estimate to good con-
gestion control, we have to properly choose the threshold.
Our self-tuning mechanism, described in the next section,
dynamically tunes the threshold to the appropriate values.

4 A Self-Tuning Mechanism

Proper threshold selection is a crucial component of our
congestion control implementation. Inappropriate thresh-
old values can produce unstable behavior at high loads or
unnecessarily limit performance for light loads. Further-
more, there is no single threshold that works well for all
communication patterns. This section presents a technique
to automatically determine the proper threshold value.

The goal of our self-tuning mechanism is to maximize
delivered throughput without dramatic increases in packet
latency. Therefore, we can view our task as an optimization
problem with delivered bandwidth as an objective function
dependent on the number of full virtual buffers. Consider
the relationship between offered load, full buffers and de-
livered bandwidth (See Figure 2). As offered load increases
from zero, the number of full virtual buffers and delivered
bandwidth also increase. When saturation occurs, the deliv-
ered bandwidth decreases while the number of full virtual
buffers continues to increase.

Our self-tuning technique is attempting to find the num-
ber of full virtual buffers (i.e., the threshold value) that max-
imizes delivered throughput (B in Figure 2). To achieve this,
we use a hill-climbing algorithm including a technique to

T
hr

ou
gh

pu
t

A

B

C

0 100Full Buffers (%)

Figure 2. Throughput vs. Full Buffers

Drop in Bandwidth> 25%? Currently Throttling?
Yes No

Yes Decrement Decrement
No Increment No Change

Table 1. Tuning decision table

avoid local maxima. We can obtain a measure of global net-
work throughput (the objective function) in a manner sim-
ilar to the way we obtain the global count of full virtual
buffers (see Section 3). Nodes exchange the number of flits
delivered in the pastg cycles to measure throughput. If we
consider the maximum possible delivered bandwidth of 1
flit/node/cycle, the count will not exceedg �NodeCount.

4.1 Hill Climbing

To automatically tune the threshold, we begin with an
initial value based on network parameters (e.g., 1% of all
buffers). We use intuition about the relationship between
the number of full buffers and delivered bandwidth to spec-
ify a tuning decision table that indicates when the threshold
value must be increased or decreased. Too low a value (A
or lower in Figure 2) prevents us from reaching the peak by
over throttling packet injection. In contrast, too high a value
pushes us beyond the peak (C or higher in Figure 2), caus-
ing saturation just like a network without any congestion
control.

Table 1 illustrates the tuning decision table. The two
dimensions in the table correspond to observed network
throughput and whether or not the network is currently
throttled. We make a tuning decision once everytuning pe-
riod. We say that there is a drop in bandwidth only if the
the throughput in a tuning period drops to less than a speci-
fied fraction (we use 75%) of the throughput in the previous
tuning period. We leave more complex schemes that adap-
tively modify the frequency of tuning according to network
conditions as future work.

The tuning period is an exact multiple of thegather-
duration. If the tuning period is very large, there is likely to
be slow and inefficient tuning leading to network underuti-
lization or network saturation. If it is too small, short-lived
crests and troughs in throughput could alter the estimate.
However, in our experiments, we found that, for a reason-
able range of values (32 cycles to 192 cycles) the perfor-
mance did not alter significantly. In our experiments, we
use a 96 cycle tuning period.

The tuning process proceeds as follows. If we observe
a decrease in throughput (upper row), then we always de-
crease the threshold value. The decreased throughput is a
result of either network saturation or a decrease in offered
load. If the cause is saturation, then we must reduce the
threshold value to bring the network out of saturation. If the
offered load has decreased, then it is still safe to reduce the
threshold since the system is not over-throttling.

If the system is throttling and there is no drop in through-
put, we optimistically increase the threshold. If there is no
drop in throughput after the increase, our optimism was jus-
tified and the lower threshold value was over-throttling. If
we exceed the saturation point because of the increase in
threshold, the observed bandwidth decreases and we again
reduce the threshold value. Finally, if throttling is not oc-
curring and there is no decrease in throughput, we do not
change the threshold value.

We use constant additive increments and decrements to
update the threshold value. There could be other, more so-
phisticated, algorithms to tune the threshold that improves
the tuning mechanism by reducing the time to reach the
“sweet spot”. We find constant additive tuning adequate for
effective self-tuning and do not explore other, more com-
plicated methods in this paper. For a reasonable range of
values, (1% to 4% of all buffers) performance is insensitive
(within 4%) to variations in increment/decrement values.
There is marginally better performance when the decrement
is higher than the increment. We use an increment of 1% of
all buffers and a decrement of 4% of all buffers. For our
16-ary, 2-cube network this corresponds to an increment of
30 and a decrement of 122.

Since we’re only comparing throughput observed in each
tuning periodto the throughput observed in the previous
tuning period, it is possible that if the bandwidth drop due
to saturation happens gradually, we will not treat it as suf-
ficient to trigger a decrease in threshold value. Thus, the
network “creeps” into saturation and hits a local maximum.
The hill climbing technique, as currently proposed fails to
move back from this local maximum. Increasing the thresh-
old beyond this keeps the network in saturation with no fur-
ther drop in bandwidth. In the next section, we describe
a method to scale back the threshold away from the local
maximum.

4.2 Avoiding Local Maxima

To avoid settling at local maxima, we remember the
conditions that existed when maximum throughput was
achieved. To do this, we keep track of the maximum
throughput (max) achieved during any single tuning pe-
riod and remember the corresponding number of full buffers
(Nmax) and threshold (Tmax).

If the throughput in any tune-period drops signifi-
cantly below the maximum throughput, our technique tries
to recreate the conditions that existed when maximum
throughput was achieved. We do this by setting the thresh-
old tomin(Tmax; Nmax). If Nmax is higher thanTmax, it
means that the network was throttling with a threshold value
of Tmax when it achieved the maximum observed through-
put. In this case, we set the threshold toTmax so that the
network can throttle new packets and drain existing packets
till it reaches the desired load level. If, on the other hand,
Nmax is smaller thanTmax, then setting the threshold to
Nmax is a better choice because it is possible thatTmax is
not low enough to prevent saturation. This guarantees that
we’re not stuck at a local maximum after the network satu-
rates.

It is possible that the threshold value which sustains
high throughput for one communication pattern is not low
enough to prevent saturation for another communication
pattern. Our congestion control mechanism detects and
adapts the threshold to such changes. If we find that we
reset the threshold tomin(Tmax; Nmax) for r consecutive
tuning-periods, this means that even themin(Tmax; Nmax)

value is too high to prevent saturation, and we must recom-
putemax value. In this case, we resetmax to zero and start
the maximum locating all over again. This ensures that our
threshold adapts to changing communication patterns. We
user = 5 in our experiments.

4.3 Summary

The above discussion provides a general overview of a
technique we believe can provide a robust, self-tuned con-
gestion control. Our scheme gathers full-buffer counts and
throughput measurements every 32 cycles. The full-buffer
counts are used to estimate current congestion using linear
extrapolation. This estimate is compared to a threshold to
decide whether we throttle new packets or not. We use a hill
climbing algorithm to update our threshold every 96 cycles
in increments and decrements of 1% and 4% of total buffer
count, respectively. Our hill climbing algorithm, when used
alone, is susceptible to settling on local maxima after net-
work saturation. Our scheme includes a mechanism to pre-
vent this from happening by remembering maximum (max)
observed throughput. Finally, we recompute the maximum
(max) if we reset the threshold forr = 5 consecutive tun-

ing periods.
On a high level, our scheme is somewhat analogous to

TCP’s self-tuning congestion control. Both have an idea of
what the network performance should be. Expected round-
trip time (RTT) in the case of TCP andmax throughput in
our case. Both schemes allow offered load to incrementally
increase as long as network performance is not penalized.
The sliding window size increases as long as no packets are
dropped in the case of TCP and threshold increases as long
as there is no decrease in throughput in our case. Both tech-
niques take corrective action if network performance suf-
fers. TCP reduces its window size and our scheme either
decrements the threshold or resets it tomin(Nmax; Tmax).
Finally, both schemes periodically refresh their estimate of
network performance. TCP recomputes expected round-
trip-time if packets are dropped, whereas our scheme re-
computesmax, Nmax andTmax if max is stale, i.e. if
there arer consecutive corrective actions.

5 Evaluation

This section uses simulation to evaluate our congestion
control technique. We begin by describing our evaluation
methodology. This is followed by our simulation results.

5.1 Methodology

To evaluate our congestion control scheme, we use the
flexsim [27] simulator. We simulate a 16-ary, 2-cube
(256 nodes) with full duplex physical links. Each node has
one injection channel (through which packets sent by that
node enter the network) and one delivery channel (through
which packets sent to that node exit the network). We use
three virtual channels per physical channel and edge-buffers
(buffers associated with virtual channels) which can hold
eight flits.

The router’s arbiter is a central resource which only one
packet can use at a time and there’s a one cycle routing delay
per packet header. Packets obtain control of the router’s ar-
biter on ademand-slotted round-robin distribution. This is
not a bottleneck because routing occurs only for the header
flit of a 16-flit packet. The remaining flits simply stream be-
hind the header flit along the same switch path. It takes one
cycle per flit to traverse the cross-bar switch and one cycle
per flit to traverse a physical link.

We evaluate our congestion control mechanism with
both deadlock avoidance and deadlock recovery mecha-
nisms. Deadlock avoidance uses the method proposed by
Duato [8] with one escape virtual channel using oblivious
dimension-order routing. We use the Disha [17] progres-
sive deadlock recovery scheme with a time-out of 8 cycles.

All simulations execute for 60,000 cycles. However, we
ignore the first 10,000 cycles to eliminate warm-up tran-

sients. Most results are presented in two parts: normalized
delivered throughput (accepted flits/node/cycle) and aver-
age packet latency versus offered load in terms of packet
injection rate.

The default load consists of each node generating 16
flit packets at the same fixed rate. We consider four
different communication patterns,uniform random, bit-
reversal, perfect-shuffle and butterfly. These communi-
cation patterns differ in the way a destination node is
chosen for a given source node with bit co-ordinates
(an�1; an�2; : : : ; a1; a0). The bit co-ordinates for the
destination nodes are(an�2; an�3; : : : ; a0; an�1) for per-
fect shuffle, (a0; an�2; : : : ; a1; an�1) for butterfly and
(a0; a1; : : : ; an�2; an�1) for bit-reversal. In this paper, we
present results for steady loads withuniform randomcom-
munication pattern. We also present results for a bursty load
with the various communication patterns. Results for steady
loads withbit-reversal, perfect shuffle and butterflycommu-
nication patterns are presented in greater detail in a techni-
cal report [28].

We use synthetic workload, instead of full-blown multi-
processor workloads, for three reasons. First, our simula-
tion environment cannot handle full-blown multiprocessor
workloads. Second, our packet generation frequency corre-
sponds to realistic miss rates in databases and scientific ap-
plications, which gives us confidence in our results. Third,
our synthetic workloads nicely demonstrate the problem of
network saturation and avoids interactions with application-
specific features.

For our network (with 3072 buffers), 12 bits are enough
to count all buffers in the network. Our configuration
needs 13 bits to represent the maximum possible aggregate
throughputg�NodeCount�MaxTraffic= 32�256�1 =

8192 flits). Thus, we need a total of 25 bits for the sideband
signals. However, in our technical report [28], we show that
we can send these 25 bits using 9-bit sideband channels with
very little performance degradation.

For comparison, we also simulate the At-Least-One
(ALO) [2] congestion control scheme.ALO estimates
global network congestion locally at each node. If at least
one virtual channel is free on everyuseful2 physical channel
or if at least oneusefulphysical channel has all its virtual
channels free, then packet injection is allowed. Otherwise,
new packets are throttled.

5.2 Simulation Results

The primary conclusions from our simulations are:

� Our technique provides high performance consistently
across different communication patterns and offered
load levels.

2useful is an output channel that can be used without violating the
minimal-routing constraint.

� Our technique outperforms an alternative congestion
control technique that uses local estimates of conges-
tion.

� Our self-tuning technique adapts the threshold dynam-
ically to varying workloads and to bursty traffic.

The remainder of this section elaborates on each of these
items.

5.2.1 Overall Performance

We begin by examining the performance of a complete im-
plementation, as described in Sections 3 and 4. Figure 3
shows the bandwidth and latency for auniform-randomtraf-
fic pattern for both deadlock recovery (a & b) and deadlock
avoidance (c & d). Note the logarithmic scale used on the
y-axis for the latency graphs (b & d).

The curve for the base case illustrates the network satu-
ration problem. As load increases, the network throughput
increases to a certain extent. However, at saturation, there
is a sudden drop in throughput since only the escape chan-
nels are available to drain deadlocks. The configuration
with deadlock recovery has lower bandwidth at saturation
because Disha deadlock recovery requires that a packet ob-
tain exclusive access to the deadlock-free path. In contrast
deadlock avoidance schemes can break multiple deadlock
cycles concurrently.

The results in Figure 3 clearly show the key point that
our congestion control technique (Tune) is stable at high
loads. TheALO congestion control scheme improves per-
formance in the early stages of congestion for the dead-
lock avoidance case, but it does exhibit severe performance
degradation eventually. Our scheme, however, maintains la-
tency and throughput close to the peak values.

Throughout this paper, we assume a side-band hop delay
of 2 cycles. Our technical report contains simulation results
that quantify the effect of varying this delay [28].

5.2.2 Self-Tuning

In this section, we demonstrate two important aspects about
our self-tuning technique. First, we show the importance
of having a congestion control mechanism that adapts to
the congestion characteristics of different communication
patterns. This is followed by an examination of the hill-
climbing algorithm and the scheme to avoid local maxima.

Recall from Figure 1 that saturation occurs at different
levels of offered load for random and butterfly communi-
cation patterns. These different levels of offered load cor-
respond to different buffer occupancies in the network. If
saturation was occurring at the same buffer occupancies for
different workloads, a well-chosen, single, static threshold
could prevent network saturation. To show that this is not

Deadlock Recovery

0

0.005

0.01

0.015

0.02

0.025

0.01 0.1

N
or

m
al

iz
ed

 A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

Uniform Random

Tune
Base
ALO

10

100

1000

10000

100000

0.01 0.1

A
ve

ra
ge

 L
at

en
cy

 (
C

yc
le

s)

Packet Injection Rate (Packets/node/cycle)

Uniform Random

Tune
Base
ALO

(a) Delivered Throughput vs. Offered Load (b) Average Latency vs. Offered Load

Deadlock Avoidance

0

0.005

0.01

0.015

0.02

0.025

0.01 0.1

N
or

m
al

iz
ed

 A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

Uniform Random

Tune
Base
ALO

10

100

1000

0.01 0.1

A
ve

ra
ge

 L
at

en
cy

 (
C

yc
le

s)

Packet Injection Rate (Packets/node/cycle)

Uniform Random

Tune
Base
ALO

(c) Delivered Throughput vs. Offered Load (d) Average Latency vs. Offered Load

Figure 3. Overall Performance With Random Traffic

so, Figure 5 compares the performance on the deadlock re-
covery network configuration of a congestion control mech-
anism with static thresholds to our scheme.

We consider uniform random (the four solid lines) and
butterfly (the four dashed lines) communication patterns.
We see that a static threshold of 250 (8% buffer occupancy)
works very well for random traffic but the same threshold
is unable to prevent saturation for the butterfly communi-
cation pattern. In contrast, a static threshold of 50 (1.6%
buffer occupancy) works well for the butterfly communica-
tion pattern but over-throttles the random traffic. This indi-
cates that the buffer occupancy at which the network satu-
rates is not uniform across communication patterns. There-
fore, it is necessary to have a self-tuning mechanism that
adapts the threshold as communication patterns change.

To understand the behavior of our self-tuning technique,
we analyze its operation for a specific configuration. As
stated in Section 4, we use agather-period(g) of 32 cycles,
a tuning period of 96 cycles, an increment of 1% of all vir-

tual channel buffers and a decrement of 4% of all virtual
channel buffers. The load is of uniform random distribu-
tion with a packet regeneration interval of 10 cycles and
we use the deadlock avoidance configuration. With these
parameters, Figure 4(a) shows the tuning of the threshold
over time for the duration of the simulation. Recall, the first
10,000 cycles are ignored to eliminate start-up transients.
Figure 4(b) shows the throughput achieved over the same
interval.

The hill climbing mechanism tries to increase the thresh-
old as long as there is no decrease in bandwidth and tries
to scale back when bandwidth decreases. But it can settle
down at a local maximum when the decrease in bandwidth
happens gradually. When this occurs, the network “creeps”
into saturation and throughput falls.

Without a mechanism to avoid local maxima, the hill
climbing algorithm can settle on a local maximum corre-
sponding to deep saturation. The solid line in Figure 4
shows this behavior. A gradual drop in throughput begins

0

200

400

600

800

1000

1200

1400

1600

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

0

10

20

30

40

50

T
hr

es
ho

ld
 (

B
uf

fe
r

O
cc

up
an

cy
 :

A
bs

ol
ut

e)

T
hr

es
ho

ld
 (

B
uf

fe
r

O
cc

up
an

cy
 :

P
er

ce
nt

ag
e)

Time (cycles)

Hill Climbing Only
Hill Climbing + Avoid local maxima

0

0.005

0.01

0.015

0.02

0.025

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

N
or

m
al

iz
ed

 A
cc

ep
te

d
T

hr
ou

gh
pu

t (
P

ac
ke

ts
/n

od
e/

cy
cl

e)

Time (cycles)

Hill Climbing Only
Hill Climbing + Avoid local maxima

(a) Threshold vs. Time (b) Throughput vs. Time

Figure 4. Self-Tuning Operation : An Example

0

0.005

0.01

0.015

0.02

0.025

0.01 0.1N
or

m
al

iz
ed

 A
cc

ep
te

d
T

ra
ffi

c
(P

ac
ke

ts
/n

od
e/

cy
cl

e)

Packet Injection Rate (Packets/node/cycle)

Static Threshold=250
Static Threshold=50

Tune
Base

Uniform Random
Butterfly

Figure 5. Static Threshold vs. Tuning.

at approximately 26,000 cycles. Recall that we decrement
the threshold only when there is a throughput drop of 25%
or more in any tuning period. We see, in Figure 4(a), that
although there are many decrements, the gradual nature of
the decrease in throughput results in an overall rise in the
threshold, eventually saturating the network.

The dashed line in Figure 4 shows the behavior of our
scheme to avoid local maxima. The sharp dip in the thresh-
old value (specifically the one at approximately 26,000 cy-
cles) illustrates the corrective action taken when the net-
work “creeps” towards saturation. As a result, we avoid
saturation and sustain higher throughput.

5.2.3 Bursty Traffic

To confirm that our self-tuning mechanism works well un-
der varying load, we use a bursty load created by alternat-
ing low loads and high loads. In addition, we also change
the communication pattern for each high load burst. The

0.0001

0.001

0.01

0.1

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0P
ac

ke
t I

nj
ec

tio
n

R
at

e
(P

ac
ke

ts
/c

yc
le

/n
od

e)

Time (cycles)

U
ni

fo
rm

 R
an

do
m

B
it

R
ev

er
sa

l

P
er

fe
ct

 S
hu

ffl
e

B
ut

te
rf

ly

Figure 6. Offered bursty load

offered bursty load is shown in Figure 6. In the low load
phase, the communication pattern isuniform randomand
every node tries to generate one packet every 1,500 cycle
period (corresponding to a packet injection rate of 0.00067
packets/node/cycle). In the high load phase, every node
tries to generate a packet every 15 cycles (corresponding
to a packet injection rate of 0.067 packets/node/cycle). The
communication pattern in each of these high load bursts is
different and is indicated in Figure 6.

Figure 7(a) and Figure 7(b) show the delivered through-
put with bursty load for the deadlock recovery and the dead-
lock avoidance configurations, respectively. With deadlock
recovery, the average packet latency forBase, ALO and
Tune configurations are 2838 cycles, 2571 cycles and 161
cycles respectively. With deadlock avoidance, the average
packet latency forBase, ALO andTune configurations
are 520 cycles, 509 cycles and 163 cycles respectively. In
the high-load phase, our congestion control consistently de-
livers sustained throughput and predictable latencies. The

0

0.005

0.01

0.015

0.02

0.025

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

P
ac

ke
ts

/n
od

e/
cy

cl
e)

Time (cycles)

Base
ALO
Tune

0

0.005

0.01

0.015

0.02

0.025

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

P
ac

ke
ts

/n
od

e/
cy

cl
e)

Time (cycles)

Base
ALO
Tune

(a) w/ Deadlock Recovery (b) w/ Deadlock Avoidance

Figure 7. Performance with Bursty Load : Delivered Throughput

ALO scheme and the base scheme initially ramp up the
throughput but throughput collapses soon thereafter due to
network saturation.

The deadlock recovery results exhibit an interesting phe-
nomenon in theBase andALO schemes (Figure 7a). There
are small bursts in throughput long after the offered load is
reduced. This is because the network absorbs the heavy of-
fered load but goes into deep saturation with many deadlock
cycles. We observe this happening approximately between
20,000 and 21,000 cycles in Figure 7(a). There is a period
when network packets are draining through the limited es-
cape bandwidth available (approximately between 21,000
and 27,000 cycles). It is only when the deadlock cycles
break that full adaptive routing begins again. The network
then drains quickly showing the spurt in throughput (ap-
proximately between 27,000 and 29,000 cycles).

6 Conclusion

Interconnection network saturation, and the commen-
surate decrease in performance, is a widely known prob-
lem in multiprocessor networks. Limiting packet injection
when the network is near saturation is a form of congestion
control that can prevent such severe performance degrada-
tion. Ideal congestion control implementations provide ro-
bust performance for all offered loads and do not require
any manual tuning.

The primary contribution of this paper is the develop-
ment of a robust, self-tuned congestion control technique
for preventing network saturation. Two key components
form the basis for our proposed design. First, we use global
knowledge of buffer occupancy to estimate network con-
gestion and control packet injection. When the number of
full buffers exceeds a tunablethreshold, packet injection is
stopped. When congestion subsides, the full buffer count

drops below thethresholdand packet injection restarts.
The second piece of our solution is a self-tuning mech-

anism that observes delivered network throughput to auto-
matically determine appropriate threshold values. Inappro-
priate thresholds can either over-throttle the network, un-
necessarily limiting throughput, or under-throttle and not
prevent saturation. A self-tuning mechanism is important
since no single threshold value provides the best perfor-
mance for all communication patterns.

Using simulation, we show that our design prevents net-
work saturation by limiting packet injection. The results
also show that our technique is superior to an alternative
implementation that uses local estimates of congestion be-
cause global information can detect congestion in its early
stages. We show that different communication patterns re-
quire different threshold values to prevent saturation with-
out unnecessarily limiting performance, and that our self-
tuning mechanism automatically adjusts to changes in com-
munication patterns.

Acknowledgments

We would like to thank Amin Vahdat, Jeffrey Chase,
Gershon Kedem, Kenneth Yocum, Joel Emer, Mark Hill
and the anonymous referees for their feedback and sugges-
tions to improve this paper. We would like to thank Timothy
Pinkston, Yungho Choi, and Yong Ho Song for providing us
with theflexsim network simulator and helping us debug
our simulation code. We would also like to thank Jose Du-
ato for giving us pointers to his work on network saturation.

This work supported in part by DARPA Grant DABT63-
98-1-0001, NSF Grants CDA-97-2637, CDA-95-12356,
and EIA-99-72879, Career Award MIP-97-02547, Duke
University, and an equipment donation through Intel Cor-
poration’s Technology for Education 2000 Program. The

views and conclusions contained herein are those of the au-
thors and should not be interpreted as representing the offi-
cial policies or endorsements, either expressed or implied,
of DARPA or the U.S. Government.

References

[1] D. Basak and D.K. Panda. Alleviating Consumption Chan-
nel Bottleneck in Wormhole-Routed k-ary n-cube Systems.
IEEE Transactions on Parallel and Distributed Systems,
9(5):481–496, May 1998.

[2] E. Baydal, P. Lopez, and J. Duato. A Simple and Efficient
Mechanism to Prevent Saturation in Wormhole Networks.
In Proceedings. 14th International Parallel and Distributed
Processing Symposium, pages 617–622, 2000.

[3] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End
Congestion Avoidance on a Global Internet.Journal of Se-
lected Areas in Communications, 13(8):1465–1480, October
1995.

[4] W. J. Dally. Virtual-Channel Flow Control.IEEE Trans-
actions on Parallel and Distributed Systems, 3(2):194–205,
March 1992.

[5] W. J. Dally and C. L. Seitz. The TORUS routing chip.Jour-
nal of Distributed Computing, 1(3):187–196, October 1986.

[6] W. J. Dally and C. L. Seitz. Deadlock-free message routing
in multiprocessor interconnection networks.IEEE Transac-
tions on Computers, C-36(5):547–553, May 1987.

[7] K. Diefendorff. Power4 Focuses on Memory Bandwidth.Mi-
croprocessor Report, 13(13), October 1999.

[8] J. Duato. A New Theory of Deadlock-Free Adaptive Routing
in Wormhole Networks.IEEE Transactions on Parallel and
Distributed Systems, 4(12):1320–1331, December 1993.

[9] J. S. Emer. Simultaneous Multithreading: Multiplying Alpha
Performance.Microprocessor Forum, October 1999.

[10] S. Floyd. TCP and Explicit Congestion Notification.ACM
Computer Communications Review, 24(5):10–23, October
1994.

[11] S. Floyd and V. Jacobson. Random Early Detection gate-
ways for Congestion Avoidance.IEEE/ACM Transactions
on Networking, 1(4):397–413, August 1993.

[12] P. T. Gaughan and S. Yalamanchili. Adaptive Routing Pro-
tocols for hypercube Interconnection Networks.IEEE Com-
puter, pages 12–22, May 1993.

[13] V. Jacobson. Congestion Avoidance and Control. InPro-
ceedings of ACM SIGCOMM ’88 Symposium, pages 314–
329, August 1988.

[14] R. Jain. Congestion Control and Traffic Management in
ATM networks: Recent Advances and a Survey.Computer
Networks and ISDN Systems, October 1996.

[15] P. Kermani and L. Kleinrock. Virtual Cut-Through : A New
Computer Communication Switching technique.Computer
Networks, 3:267–286, 1979.

[16] J. H. Kim, Z. Liu, and A. A. Chien. Compressionless Rout-
ing: A Framework for Adaptive and Fault-Tolerant Routing.
In Proceedings of the 21st International Symposium on Com-
puter Architecture, April 1994.

[17] Anjan K.V. and T.M. Pinkston. An Efficient, Fully Adaptive
Deadlock Recovery Scheme : Disha. InProceedings of the
22nd Annual International Symposium on Computer Archi-
tecture, pages 201–210, June 1995.

[18] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. InProceedings of the 24th Inter-
national Symposium on Computer Architecture, pages 241–
251, June 1997.

[19] P. Lopez, J. M. Martinez, and J. Duato. DRIL : Dynami-
cally Reduced Message Injection Limitation Mechanism for
Wormhole Networks. InInternational Conference on Paral-
lel Processing, pages 535–542, August 1998.

[20] P. Lopez, J. M. Martinez, J. Duato, and F. Petrini. On the
Reduction of Deadlock Frequency by Limiting Message In-
jection in Wormhole Networks. InProceedings of Paral-
lel Computer Routing and Communication Workshop, June
1997.

[21] L.-S. Peh and W.J. Dally. Flit-Reservation Flow Control.
In Proceedings of the Sixth Internation Symposium on High
Computer Architecture, pages 73–84, January 2000.

[22] G. F. Pfister and V. A. Norton. Hot-Spot Contention and
Combining in Multistage Interconnection Networks.IEEE
Transactions on Computers, C-34(10):943–948, October
1985.

[23] K.K. Ramakrishnan and R. Jain. A Binary Feedback Scheme
for Congestion Avoidance in Computer Networks.ACM
Transactions on Computer Systems, 8(2):158–181, 1990.

[24] S. Scott and G. Sohi. The Use of Feedback in Multiproces-
sors and its Application to Tree Saturation Control.IEEE
Transactions on Parallel and Distributed Systems, 1(4):385–
398, October 1990.

[25] S. L. Scott. Synchronization and Communication in the T3E
Multiprocessor. InProceedings of the Seventh Internation
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 26–36, October 1996.

[26] A. Smai and L. Thorelli. Global Reactive Congestion Con-
trol in Multicomputer Networks. In5th International Con-
ference on High Performance Computing, pages 179–186,
1998.

[27] The Superior Multiprocessor ARchiTecture (SMART) In-
terconnects Group, Electrical Engineering - Systems De-
partment, University of Southern California. FlexSim.
http://www.usc.edu/dept/ceng/pinkston/tools.html.

[28] M. Thottethodi, A. R. Lebeck, and S. S. Mukherjee. Self-
Tuned Congestion Control for Multiprocessor Networks.
Technical Report CS-2000-15, Duke University, November
2000.

[29] S. Warnakulasuriya and T.M. Pinkston. Characterization of
Deadlocks in Interconnection Networks. InProceedings of
the 11th International Parallel Processing Symposium, April
1997.

