
Self-Tuning Virtual Machines for

Predictable eScience

Sang-Min Park and Marty Humphrey

Department of Computer Science

University of Virginia

Charlottesville, VA 22904

{sp2kn | humphrey}@cs.virginia.edu

Abstract— Unpredictable access to batch-mode HPC resources is

a significant problem for emerging dynamic data-driven

applications. Although efforts such as reservation or queue-time

prediction have attempted to partially address this problem, the

approaches strictly based on space-sharing impose fundamental

limits on real-time predictability. In contrast, our earlier work

investigated the use of feedback-controlled virtual machines

(VMs), a time-sharing approach, to deliver predictable execution.

However, our earlier work did not fully address usability and

implementation efficiency. This paper presents an online,

software-only version of feedback controlled VM, called self-

tuning VM, which we argue is a practical approach for

predictable HPC infrastructure. Our evaluation using five

widely-used applications show our approach is both predictable

and practical: by simply running time-dependent jobs with our

tool, we meet a job’s deadline typically within 3% errors, and

within 8% errors for the more challenging applications.

I. INTRODUCTION

Many pioneering projects including real-time mesoscale
weather prediction [1], coastal hazard prediction [2], and
patient-specific medical modeling [3] have started to explore
opportunities and challenges that arise when scientific
modeling is used to process environmental, real-time events.
This emerging class of HPC jobs must produce results within
explicit, possibly evolving, deadlines due to dependence on
real-time data. The most difficult challenge today for such
applications is that HPC infrastructures are typically operated
in shared batch-mode and do not provide predictability both in
regard to an HPC job’s start time as well as its duration. Most
existing research in this area thus attempts to eliminate a job’s
wait time via advance reservation [4][5][6][7], despite a
potentially severe resource underutilization [7]. Moreover, a
reservation requires strict planning that can involve time-
consuming interactions between users and resource providers
(e.g., TeraGrid requires reservations be made at least one week
in advance). The sporadic nature of dynamic events may not
permit such planning.

 Our earlier results [8] introduced a fundamentally different
approach to solve HPC unpredictability. In our Compute
Throttling Framework, instead of attempting to achieve
predictability by controlling a HPC job’s wait time and
granting exclusive access to a resource, our mechanism
controls a job’s running time by hosting jobs in virtualized
resources, called performance containers, and “throttling”

up/down the job’s access to resources. We use a feedback
controller to dynamically supply/remove system resources to
the container(s). We showed that we are able to achieve
predictable run-time performance, without requiring exclusive
access to resources, and while still being reactive to unexpected
events (e.g., new job arrivals, within limits). However, the
significant limitation of [8] is that arguably only experts in
control theory were realistic candidates for using our system.
For example, our run-time system required a broad,
quantitative understanding of a target application’s behavior in
a variety of situations in order to regulate the application
progress dynamically. Sophisticated knowledge of control
theory was necessary to determine the feedback controller
parameters through a manual modeling process (e.g., Matlab).

The research reported in this paper significantly improves
the usability of our control theoretic approach while retaining
good controller performance that was the result of
comprehensive manual modeling by an expert. We achieve
usability by creating a self-tuning VM that performs
application modeling, controller design, and control, all at
runtime with no manual tuning by users. In other words, our
goal is to essentially take an off-line and frequently tedious
design process and automate it and thus turn it into an on-line
process without human intervention. The heuristics we embed
in our on-line mechanism to design the feedback controller
achieve high performance in terms of controller design metrics
(e.g., steady-state, transient behaviors) while attaining good
algorithm efficiency. The experimental evaluations across five
widely used HPC applications on an 8-core server confirm the
viability of our approach: without any tuning effort, we meet a
job’s deadline with less than 3 % errors for ADCIRC [9],
OpenLB [10], WRF [11], and less than 8 % errors for the more
challenging BLAST [12] and Montage [13]. Overall, we
believe the research reported in this paper is a practical strategy
toward building predictable, usable, and cost-effective HPC
infrastructure.

The rest of this paper is organized as follows: In section 2,
we present related work. Section 3 defines the problem and
presents the brief overview of our solution. Section 4 presents
our approach for self-tuning control in detail including model
estimation and controller design heuristics. The experimental
evaluations are presented in Section 5 and we conclude in
Section 6.

Preliminary version. Final version appears in Proceedings of 9
th
 IEEE International Symposium on

Cluster Computing and the Grid (ccGrid 2009), May 18-21, 2009, Shanghai, China.

II. RELATED WORK

Foster et al. presents General-purpose Architecture for
Reservation and Allocation (GARA) [4] in which distributed
compute and communication resources provide a reservation
capability immediately or for some future time span. Although
reservation has been implemented in modern queue managers
such as PBS and LSF (with additional research, e.g.,[5][6][7])
reservation has not been widely accepted by resource
providers, in part because of its managerial complexity and
because it can result in severe resource underutilization [6][7].
While enforcing penalties to “no-show” cases [6], or putting
humans in charge of authorizing reservations [14] might
eventually solve some part of its problems, reservation will still
require strict planning which would not be viable to dynamic
data driven applications. We believe this is the fundamental
limitation of space-sharing that makes it extremely difficult to
satisfy real-time requirements. Our research pursues an
alternative approach, based on the time-sharing principle, that
does not impose significant overhead to resource providers,
while facilitating time-dependent applications to run with
deadline guarantee.

Our research relies on modern system-level virtualization
such as Hyper-V [15] and Xen [16] to isolate performance
among concurrent applications and dynamically adjust system
resources supplied to each application. As a result, we
multiplex compute-intensive threads onto multiple cores of an
underlying system, with differentiated resource provisioning at
run-time. In the HPC community, there has been research into
the use of virtualization to O/S customization and portability,
security isolation, and fault tolerance [17][18][19]. We believe
we are one of the first to investigate virtualization as an enabler
for predictable HPC applications [8].

Control theory is one of the most widely used mathematical
frameworks to control the behavior of linear dynamic systems
in engineering [20][21]. Feedback control has been previously
applied to various applications of computing systems including
QoS for web servers [22], real-time scheduling [23], datacenter
applications [24][25]. However, most of them present control
theory as a methodology to solve problems in particular
application domain without sufficiently addressing the usability
of complex theory. While, arguably, control-theoretic schemes
could be implementable by a small group of experts (e.g., data
center administrator) for a small set of applications (e.g., web),
the wide spectrum of users and applications in HPC domain
makes it difficult to accept the theory as a practical tool. In this
paper, we argue and experimentally confirm that a control
design process can be programmed as software, and thus can be
used as a tool.

III. COMPUTE THROTTLING FRAMEWORK

To support dynamic data-driven applications, a successful

resource sharing mechanism must address two requirements:

A. The ability to dynamically regulate the completion time of

jobs at fine-granularity

B. The ability to cope with unanticipated “disturbances” that

affects a job’s performance

The first requirement is a key for balancing highly prioritized

resource provisioning to deadline-guaranteed jobs and fair-

share provisioning to best-effort jobs. By ensuring execution

finishes at the deadline, neither far earlier nor later, a system

can not only offer predictability to time-dependent jobs but

also provide a fair share of resources to more traditional batch

jobs, thereby creating a win-win solution to both users and

resource providers. The second requirement is important as

well since an application’s progress is not only affected by

provisioning computing cycles but also by other difficult-to-

control elements such as disk I/O and network load.

Milestone and Progress: In our compute throttling

framework [8], we model HPC jobs using two quantitative

metrics: milestone and progress. The milestone determines

how many computational steps should be executed before the

job terminates and the progress dictates the number of steps

within a fixed interval. A job’s total floating point instructions

is an example of milestone and executed floating point per

second is an example of progress. Unlike batch-mode resource

where implicit running time estimation is used when

requesting resources (e.g., wall-clock-time option in qsub), we

assume that an explicit milestone can represent a job’s

computational requirement. Possible sources for determining a

milestone of a job include:

• Application’s semantic: Some applications are fairly well-

defined in their resource requirements. For example, a

job’s number of raw files to process or number of input

queries can be known to users.

• Source code: Many HPC applications have a relatively

simple program structure with deeply nested loops. A

variable containing the bound of a loop, often the outer-

most one, can be the basis of a milestone.

• Linear estimation: Profiling (i.e., sample runs) and linear

estimation techniques, such as least-square regression [26],

can produce a linear model that predicts total processing

steps with respect to a quantifiable problem size.

In Section 5, we further discuss on the applications that fall

into each category.

Another metric, progress, has a relationship with milestone

and deadline as dictated by the following simple equation:
���������

	�
�����
=
������� (1)

Therefore, if we know the milestone and the deadline of a job,

we expect that the job will meet the deadline if the job

executes on average at the desired progress. To measure the

application’s progress, we created a sensor library that users

can embed into an application’s source code. The library is

implemented as an application-specific counter, which is

strategically placed in a critical path of applications (e.g.,

outer-most loop or “hot spots”). The measured progress by

sensor library is exported to the feedback controller that

allocates and releases resources as measured progress is more

or less than the target.

While our earlier work advocated the benefit of
virtualization being controlled by feedback controllers whose
property is rooted in the mature field of control theory, the
major limitation lies in the use of mathematically complex
theory for designing a resource scheduler. Arguably, an

ordinary computer/computational scientists lack the necessary
knowledge and skills for designing a feedback controller. In
our earlier study, we had to perform application modeling,
controller design, test runs in iterative fashion, until we find a
set of good control parameters for a particular application. The
steps often rely on control designer’s intuition, using graphical
techniques such as root locus [20][21] for choosing the right
control parameters. Lack of an automated, systematic approach
resulted in a time-consuming design process, which often took
days to create a feedback loop for just one application.

IV. SELF-TUNING VIRTUAL MACHINE

A. Performance Container as Resource Provisioning

Abstraction

The resource provisioning abstraction used in our compute

throttling is a virtualized resource configurable by users or

resource providers. This abstraction is different from the job

abstraction used in batch queue systems and the more recent

leasing abstraction by which users customize application

environment; however, the VM is still tightly coupled with

static resources [27]. Throughout the paper, VM

reconfiguration refers to changing a wide variety of resources

associated with a VM, and throttling specifically refers to

reconfiguration on a provisioned share of a processing unit

(e.g., 50% of a core) to a VM. In our implementation on

Hyper-V, we use Hyper-V’s management APIs to dynamically

configure a provisioned CPU share to a VM.

If a user’s job requires a particular deadline, the user’s VM

is classified as an Active VM that can change its resource

configuration at any time. The VMs that run best-effort jobs

are considered Passive VM whose resource configuration can

be changed by only resource providers. The resource

provider’s policy determines how many active VMs to be

admitted to a system at a given time. In a simple case, it will

be limited by host’s available processing unit (cores) so as not

to create a situation where multiple deadline jobs compete for

the limited cores. The active VM in fact corresponds to a self-

tuning VM in which a feedback controller regulates resource

provisioning. It is the role of Resource Coordinator [8] to

monitor the system’s provisioned resources to active VMs and

dynamically distribute the remaining pool to passive VMs. We

implement the equal-sharing of VM scheduling credits as a

simple policy for passive VMs.

B. Self-Tuning Controller

Figure 1: Block Diagram of Self-Tuning Control Loop

Once a VM is deployed on a host and authorized as an

active one, the feedback controller can request/release (throttle)

its share of system’s core. The goal of the controller is to

sustain/adapt the progress of the job at the target specified by

users (to meet the deadline). To achieve the goal, we perform

the three phases: 1) application modeling, 2) controller design,

and 3) actual control. Figure 1 illustrates the block diagram of

the self-tuning controller that runs in an active VM.

When a job starts to run, (1) the sensors embedded in the

job reports the progress (S(k)) to the Model Estimator, (2)

which then exercises the system by throttling to varying levels

and (3) estimates the model that relates the resource

consumption to measured progress. After the modeling phase,

the Control Tuner uses the model to design parameters for PI

Controller. It uses the heuristics that we present later to find

right control parameters. Once the tuning phase completes, (4)

the control parameters are set in the PI controller, which

periodically throttles to (5) track the reference progress

(REF(k)) derived to meet the job’s deadline. It uses the (6)

error (reference-measurement) in previous cycles to determine

the (7) throttling at the next cycle. (8) A moving average filter

is placed in between the controller and the job being sensed

such that measurement noise can be smoothed out. Note that

the three phases can be repeated if there’s a significant change

in the application model. For example, if the application

consists of different routines (binaries) executed in series, each

routine may invoke the three phases again.

Model Estimator: The progress of a job with respect to

provisioned resources is modeled as a first-order linear

difference equation: 	���� = � ∙ ��� − 1� + 	� ∙ ��� − 1� (2)

In the model, S(k) represent the sensed progress and C(k)

represent the provisioned share of a core (Hyper-V’s VM

scheduling cap). In the model, the previous outputs, S(k-1),

affect the current output, S(k), because there is an actuation

delay due to various disturbances such as I/O latency. When a

job is in modeling phase, model estimator directly issues

throttling (C(k)), following a low-frequency, discrete sine

waves whose amplitude is from a minimum to maximum

throttling (0-100 for Hyper-V). We found, in practice, a sine

wave with frequency=5 and period=2 (i.e., 10 different tests)

can exercise the system with sufficient excitation. After

progress measurement is obtained, Model Estimator runs least-

square regression algorithm [26] which can estimate the linear

model (values for a and b) quickly (less than a second).

PI Controller: We use a digital form of Proportional-Integral

(PI) controller [20][21] since it strikes the fine balance

between control performances and design complexity. In our

work, simple design is important criteria since the design

process must be programmed/automated. The time-domain

representation of PI control law has the form:

���� = ��� − 1� + �� + �!�"��� −	� "�� − 1� (3)

In the equation, the signal C(k) refers to a provisioned

resource and E(k) refers to an error (reference – measured

progress). KP and KI are the controller parameters that

determine how much to react given the errors at previous

cycles. The KP is a proportional term which determines the

HPC Job
with sensor

(6)
 E(k) - + (7)

C(k)
PI

Controller

Filter
(8)

S
’
(k)

Control
Tuner

(5)
REF(k)

(4) Control
Parameter

(3) App
Model

(2) Exercise
System, C(k)

Model
Estimator

S(k)

(1)

actuation (throttling) for the error in a previous cycle. The KI

is an integral term that determines the throttling for

accumulated errors in previous cycles. The controller design

reduces to choosing the right values for KP and KI that has

good control performances.

We express the variables of the closed-loop, including

reference, measured progress, error, as a signal which is a

series of values at different sample cycles. The digital control

theory defines a convenient way to encode the signals and

system’s components, called Z-transformations. Z-transform

uses the variable z to indicate time delays and encode time-

domain representation of a signal as a sum of the coefficients

of z-term. If z-transform is used to describe a system’s

component such as PI-controller, application model, we call it

transfer function that describes how an input signal is

transformed into an output. By using a transfer function,

system’s discrete components can be combined via simple

algebraic manipulations. Due to space limitation, we do not

provide a more rigorous definition of z-transform and proofs

of properties that we present hereafter. Interested readers are

referred to control textbooks [20][21].

The closed-loop (the lower part of Figure 1 with solid line)

can be integrated into a simplified transfer function as follows.

We first define the transfer function of the target system

(application model) that has time-domain representation,

���� = � ∙ ��� − 1� + � ∙ ��� − 1� where a, b are the model

parameters that Model Estimator produces:

#�$� = 	
%�&�

'�&�
=

(

&)

 (4)

The PI law (equation 3) can be similarly represented as a
transfer function:

*�$� =
'�&�

+�&�
=

�,-.,/�&),-
&)0

 (5)

We also add a moving average filter which has a time-
domain equation, �1��� = � ∙ �1��� + �1 − ������, where C is a
constant determining degree of smoothness. The equivalent

transfer function is: 2�$� =
0)3

&)3
 (6)

Finally, the overall closed-loop is reduced to a unified

transfer function:

45�$� =
%�&�

6+7�&�
=

	�&�8�&�

0.	�&�8�&�9�&�
 (7)

Control Tuner: In the on-line controller design, we draw

requirements from the four properties of closed loop:

• Stability: Control Tuner must ensure that for bounded input

(reference progress) to a closed-loop, the loop’s output

(measured progress) is bounded as well. The unstable state

refers to a situation where controller issues throttling

request that is excessively variable. According to the control

theorem, the close-loop is stable if and only if all poles of

closed-loop (FR(z)) are inside the unit circle.

• Accuracy: PI-control law achieves zero steady state error

since I-term (KI) accounts for the errors in previous history.

Thus, accuracy does not add constraint to controller design.

• Settling Time: The setting time and maximum overshoot

define the transient behavior of a closed-loop system. The

transient behavior refers to system’s reaction when there is

a change in reference or disturbances. In general, we say

system is in steady-state if the closed-loop’s output reaches

within k % of the steady state value. In this paper, we use 10%

as a threshold. In self-tuning VM, reference is changed

whenever the job’s deadline is changed. Thus, shorter

settling time is especially important if the job runs relatively

short, or frequent deadline changes are expected. Also slow

settling time leads to lagging reaction to disturbances such

as disk I/O. The input signal, reference, to our closed-loop

is a type of step, and the control theory offers a theorem that

approximate the settling time, KS, for a step input signal, as

follows: ��	 ≈
��;

<
=>>

��;	

, @ℎ���	�	B�	Cℎ�	D�����C	E�D�		

�F	Cℎ�	GD���H	D��E	�45�$�� (8)

• Maximum Overshoot: The maximum overshoot is defined

as the maximum amount by which the transient value

exceeds the steady-state value divided by the steady-state

output. We can find an example in Figure 5(d) where

measured output exceeds the reference at around 75
th

 cycles.

Smaller overshoot is desirable not only because the

overshoot is a transient error, but also can leads to output

oscillation in the following cycles. Since the closed-loop

equation (7) is in higher-order having multiple poles, the

poles of the loop can be either real or complex. If all poles

are real, the maximum overshoot can be computed as:

I = −�, BF	D�����C	E�D�	�F	GD���H	D��E	B�	J���CBK�.	
	I = 0, �Cℎ��@B�� (9)

For complex poles, we assume the largest complex poles,

p1=c+dj and p2=c-dj (note roots of quadratic polynomials

have a real part, c, and two imaginary parts with imaginary

number j). Then, the maximum overshoot can be

approximated as:

I ≈ �
N
|P|, @ℎ���	� = 	√GR + HR		�JH	S = C�J)0�

�

3
� (10)

We transform equation (5) to an equivalent form:

*�$� =
�,-.,/�&),-

&)0
= �� + �!�{

&)
UV

UVWU/

&)0
} (11)

 (KP+KI) and (
,Y

,Y.,!
) represent overall gain and zero of the PI

controller, respectively. The goal of Control Tuner is to select

values for the gain and zero, whereby subsequently KP and KI

are obtained by solving the equations (11). However, as gain

and zero are real, there are infinite possible values for them.

We use bounded search as a basic strategy, testing candidates

to 1) see if the poles of the closed-loop are all within unit

circle (to guarantee stability), 2) estimate the settling time and

overshoot, and 3) apply a rank function to choose a

combination of zero and gain that minimizes an objective

function. Figure 2 illustrates the pseudo-code of the heuristic.

The arguments to the function are maximum numbers of

candidates for zero (M) and gain (N), and the transfer function

of a model (given by Model Estimator). The return values

from the algorithm are near-optimal gain and zero, from which

KP and KI are solved.

The algorithm picks candidates of zero and gain evenly

distributed by M, N, within their valid range (line 5 and 9).

Since KP > 0 and KI > 0, the zero (
,-

,-.,/
) must be between 0

and 1. M and N must be limited to certain thresholds since

routines to find settling time (line 11) and maximum overshoot

(line 12) on z-transform equations are computationally

expensive. In our Matlab implementation, the algorithm takes

about 10 seconds for M=10, N=20. Thus, there is a trade-off

between the algorithm’s running time and the quality of output

which is controlled by M and N. For a given constraint on the

running time (e.g., 10 seconds), a good heuristic is to limit the

search space for zero and gain to where it is more likely to

produce better results. Line 2 is one such heuristic.

Figure 2: Control Tuner Heuristic

We set the smallest of zero candidates at the minimum

pole of the application model (GZ), as the zero location with

respect to the model’s minimum pole has great influence to the

settling time of the closed-loop. Figure 3 illustrates a root

locus of the closed-loop that shows the effects of the heuristic.

Root Locus is the most common, graphical technique that

plots the traces of poles and zeros of the closed-loop system as

controller’s zero and gain vary [20][21]. In the figure, the solid

line draws the branches of root locus (locations of closed-loop

pole), stemming from the three poles of open-loop

components (application model, filter, controller). The

controller’s zero is a small circle on x-axis and the three small

dots are the poles of the closed-loop that moves along the solid

lines. As we explained with equation (8), the settling time is

proportional to the largest pole of closed-loop. As we see in

the figure, zero location with respect to model’s minimum

pole (0.4) has significant influences on the possible locations

of closed loop poles: zero location at the right of minimum

pole (c) produces the pole locations that moves toward circle’s

center (smaller poles), resulting in shorter settling time.

 (a) zero < min_pole (b) zero = min_pole (c) zero > min_pole

Figure 3. Effects of zero location with respect to min. pole

At line 7, the range of gain test is reduced as well using the

stability analysis. According to the stability theorem, every

pole of closed-loop must lie within the unit circle. Using the

fixed zero candidate (zero_values(i)), we quickly test different

gain candidates to see if the resulting largest closed-loop poles

lie close to unit circle (0.95 < largest pole < 1). The stability

analysis terminates after the gain candidate satisfying the

condition is found. Using binary search, the gain location is

found typically within few tests, and set as a maximum of

possible gain range (a gain candidate larger than this will

result in unstable system).

After determining the ranges, the algorithm computes

settling time (line 11) and maximum overshoot (line 12) using

the equations (8)-(10) and stores the computed values to tables.

Finally, the rank function (line 15) chooses the best candidates

for gain and zero by examining the tables. There are many

possible strategies for implementing the rank function. An

algorithm may pick the gain/zero that results in minimum

settling time, regardless of maximum overshoot associated

with the pair, or may put more priority to maximum overshoot.

Although, theoretically, a zero-gain pair can produce

unbalanced results (e.g., short settling time-large overshoot),

we found, in practice, a good zero-gain pair tends to achieve

both. Thus in our implementation, we use simple objective

function that finds the zero-gain pair achieving the shortest

settling time while maximum overshoot is subject to a fixed

thresholds (e.g., 0.2).

V. EXPERIMENTAL EVALUATOIN

In our implementation, the Model Estimator and Control

Tuner are written in Matlab using algebraic tools for Z-

transform equations and compiled into C library using Matlab

compiler. The sensor libraries are written in C and Fortran

supporting the applications written in both languages.

A. Usability of Self-Tuning VM
Once users have an application to run with an explicit deadline,

they are expected to place sensor calls in the application’s

source code, compile the code, and run the self-tuning

controller with the two parameters, milestone and deadline.

The reference progress is derived from the two parameters

using equation (1). The sensor library reports progress

measurement to the self-tuning controller via IPC channel (e.g.,

file, shared memory). Once the self-tuning controller starts to

receive progress from the application, it performs the three

phases- application modeling, controller tuning, actual control-

in series. There are neither more inputs the user has to give to

the controller, nor any tuning to address idiosyncrasy of

controller or application.

While running the self-tuning controller with just two
inputs are very straightforward, users are still required to
undertake two extra efforts: embedding a sensor library in
existing source code and estimating the milestone (explicit
computational quantity) of the job. We discuss the difficulty of
the two efforts based on our experience with the five
applications illustrated in Table 1. As we explained earlier,
there are many possible sources for estimating the milestone of
a job. The simplest case that does not require user effort is to
estimate it from job’s known semantic such as number of raw

1 function [opt_gain, opt_zero] = ControlTuner(M, N, GZ)
2 zero_min = min (pole(Gz));
3 zero_max = 1.0;
4 zero_unit = (zero_max-zero_min) / N;
5 zero_values = zero_min:zero_unit:zero_max;
6 for i=1 to N
7 gain_max = stability_analysis(Gz, zero_values(i));
8 gain_unit = gain_max/M;
9 gain_values = 0:gain_unit:gain_max;
10 for j=1 to M
11 KS(i,j) = compute_KS(zero_values(i), gain_values(j), Gz);
12 MP(i,j) = compute_Mp(zero_values(i), gain_values(j), Gz);
13 end;
14 end;
15 [i, j]= rank (KS, MP);
16 opt_gain=gain_values(i,j);
17 opt_zero=zero_values(i,j);

data to process. We found mProject [13] belongs to the case.
Since the semantic is known, we could easily spot the location
where the sensor library should be placed. For mProject, only
one sensor call is placed after the statement processing a raw
data. The next approach requiring slightly more user effort is to
directly reading the milestone from variables of program’s
source code, often the variable containing bounds of outer-most
loop. In OpenLB [10] and ADCIRC [9], we could easily spot
the variables as they are already used by program’s debugging
routines that show progress of job’s execution. It is easy to
place sensor calls as well; we simply put the sensor calls at the
first statement of (outer-most) loop. For both applications, only
one sensor call is placed in the source code. The most difficult
case to estimate the milestone is to use profiling and linear
estimation techniques such as least-square regression. The
BLAST [12] and WRF [11] are examples. We placed sensor
calls in some (possibly many) locations throughout the source
code and run the jobs with varying problem size (e.g., query
size in BLAST, forecast hours in WRF), and establish a model
that relates the problem size to number of sensor calls. At run-
time, our automated controller designer uses the model with the
requested problem size to estimate the milestone. This requires
users to understand the structure of application source code and
spots the location where it is likely to be executed constantly
over a period. BLAST required more effort to identify the
locations; we placed three sensor calls in the source code. WRF
required only one sensor call.

 Overall, although the source code instrumentation and
milestone estimation requires a little extra effort, we believe the
usability of feedback-controlled application is significantly
improved via the automation of the controller design process.
In our earlier study without automated control, we spent more
time on application modeling and controller design than for the
sensor placement and the milestone estimation. While the
sensor placement is required only once for each application, the
controller design had to be repeated not only for each
application, but also for varying underlying resources.

B. Correctness of Self Tuning

We measure in small scale the steady-state and transient

behaviors of the applications being regulated. The resources

used in the experiments are described in Table 2. We start the

self-tuning VM which is given the target progress for tracking.

It performs model estimation, controller design, and actual

control with the sensor signal received from the application.

To measure the application’s behavior, we modulate the

reference progress. For each application, we run the same test

5 times and report average of each evaluation metric.

Moreover, to measure the effect of non-trivial disturbance, we

run another set of test with a VM that executes BLAST

concurrently. The BLAST as a disturbance generator has

sustained 6.43 MB/s read rate on the disk that it shares with

the self-tuning VM. Figure 5 and Table 3 present the results.

Among the 5 runs without disturbance, Figure 5 presents
the result that shows the third best performances in terms of
steady-state error. In each figure, the straight, dotted line
represents the reference progress, which is the target that the
controller aim to track, and the solid line represent the real
progress that we obtain from application execution. Finally, the
curved, dotted line represents the simulated progress using the

application model from Model Estimator and KP and KI
determined by Control Tuner. This illustrates what Control
Tuner predicts as application’s behavior when the controller
parameters are determined online. In each figure, the first 10
cycles show the estimation phase by Model Estimator that
measures the progress at varying levels of resource
provisioning. After the modeling phase, PI control parameters
are determined shortly and the resulting PI controller regulates
application’s progress.

Table 3 presents the results more quantitatively. The

table’s entry contains two values (average of five runs)

separated by ‘/’. The left is the result from the runs without

disk disturbance (BLAST) and the right value is obtained

when disk disturbance is introduced. The first two rows

contain the steady-state error, as defined by,

����
Z�
�[\�Z���)\�]�\��3�

\�]�\��3�
� × 100, for the references in high

(60-110
th

 cycles) and low (110-160
th

 cycles) values. The last

two rows present the settling time (to reach 10% of new

reference), for both low-high and high-low reference

transitions. The values in the parenthesis are predicted settling

times when Control Tuner determines control parameters

(there is no prediction in steady-state error because PI-

controller has zero steady state error in theory). The smaller

steady-state errors are desired as it result in meeting deadline

closely, and shorter settling time is important if computations

are short or frequent deadline changes are expected.

Figure 5 and Table 3 confirm that the four applications,

ADCIRC, BLAST, OpenLB, WRF, track the reference

progress with high accuracy. The real behaviors of application

are very close to the predicted behaviors at the time the

controller is designed online. This experimentally confirms

that the Control Tuner can produce high quality control

parameters, and the resulting PI controller ensure that it tracks

the application’s progress in reality just as predicted in design

time. However, mProject warrants more explanation. Unlike

the other applications, mProject exhibits high irregularity. The

sensors in mProject report progress whenever a raw data is

processed, however some raw data occasionally requires much

longer processing. This results in periods in which no progress

is reported (69-73
th

 cycles in Figure 5(d)). During this period,

errors are continuously accumulated within PI controller and

the large throttling values are repeatedly requested. However,

after the blocking raw data is eventually processed, it results in

errors in opposite sign since too much resource are enforced

previously. This so-called integral windup is often found in

controllers with integral term. The output fluctuation

eventually leads to more errors in meeting deadline, as we

present in the next subsection.

In addition to the major findings above, the additional

findings can be summarized as follows. For all applications,

the maximum overshoots were negligible. Disk disturbance

causes more steady-state errors especially when reference is

set higher. While the real settling times during the low-to-high

reference transition are very close to what Control Tuner

predicts, the high-to-low reference transition takes longer and

exhibit more deviation from the prediction.

Table 1. Applications in Experiments Table 2. Resource Configuration

 ADCIRC BLAST
mProject

(Montage)
OpenLB WRF

Domain

Costal

flood

modeling

Biology Astronomy
Fluid-flow

modeling

Weather

Forecast

Compute/

Data

Intensive

Compute

Intensive

Compute-

Data

Intensive

Compute-

Data

Intensive

Compute

Intensive

Compute

Intensive

Milestone
Source

code

Linear

estimation

Program

manual
Source code

Linear

estimation

Figure 5(a): ADCIRC (b): BLAST (c): OpenLB (d): mProject (e): WRF

Table 3. Steady-state and Transient Behaviors of Applications

 ADCIRC BLAST mProject OpenLB WRF

Steady-state Error (high)-% 4.8 / 6.6 2.5 / 5.7 19.5 / 12.6 6.5 / 8.4 3.4 / 6.1

Steady-state Error (low)-% 3.0 / 3.2 2.8 / 3.1 4.4 / 1.7 8.1 / 7.5 4.0 / 4.6

Settling-Time (low to high)
- cycles

7.2 (6) /
6.8 (6)

5 (4.8) /
5.8 (8.6)

13.1 (5.6) /
6 (5.1)

5.6 (5.8) /
5.8 (5.2)

6.2 (5.4) /
8.4 (5.6)

Settling-Time (high to low)
- cycles

9.6 (7) /
10.6 (7)

7 (5.4) /
6 (6)

12 (7) /
11.1 (6.4)

9.4 (6.8) /
5.8 (5.2)

6.6 (6.6) /
12.2 (6.6)

C. Meeting Deadlines on a High-end Server

We now report how closely the self-tuning VM meets the

application’s deadlines in realistic environments. For the

evaluation, we use 8-core AMD server which is highly

overloaded by HPC jobs during the experiments. We run 8

passive VMs that run best-effort jobs (WRF) concurrently

with 5 self-tuning VMs (13 VMs in total). In each self-tuning

VM, the application is run with varying deadlines presumably

requested by users. The self-tuning VM is given the deadline

and milestone of a job from which it derives the target

progress to track. In this experimental scenario, we assumed

users specify deadlines in broad range, but the earliest

deadline is chosen such that it can be met with 100% of a

system’s core. If the deadline is earlier than that, the

application will just saturate the core with constant errors

(reference > measurement) in controller. Our contribution is to

guarantee that the real execution time finishes at the deadline,

neither earlier nor later, so that we achieve both high

predictability and fair-share to best-effort jobs. In shared

resources, the jobs finished too earlier than deadline are

considered harmful as they take resource’s share that could be

consumed by other time-dependent or best-effort jobs. We are

currently working on admission controller that

deterministically accept/reject jobs with deadlines. Note that in

this experiment, all 5 applications are run simultaneously with

8 best-effort jobs, with server’s total utilization reaching

almost 100%. The experiments ran for 14 hours.

Figure 6 presents scatter plots in which the x-axis is the

requested deadline and the y-axis corresponds to the real

execution time. The linear lines illustrate the ideal results. All

applications meet the deadlines very closely. In particular,

ADCIRC, OpenLB, and WRF show almost perfect

correspondence between the deadlines and the real execution

times. Table 4 presents the results quantitatively. The average

deadline guarantee error, which is defined as

����
\[����;	��Z�)��
�����

��
�����
� × 100 , for the three applications

are less than 3 %. In other words, if the user’s requested

deadline is 1 hour, the real execution time would have less

than 2 minutes in error. The results indicate that BLAST and

Montage exhibit more errors compared to others: there could

be up to 5 minutes error for 1 hour deadline. We estimate the

milestone of BLAST using linear estimation from requested

query size. However, the estimation is not 100% accurate in

predicting the real milestone at run time. The R
2
 values from

the least-square regression is 0.92, hence it results in 6.2 %

deadline errors despite of accurate progress tracking (Figure

5(b)). The relatively high errors in Montage are due to its

irregular behaviors as we explained earlier. Overall, if an

application does not exhibit high irregularity and the estimated

milestone is accurate, the self-tuning VM can meet the

deadline with very small errors (< 3 %), as shown by ADCIRC,

OpenLB, and WRF.

One way to evaluate the performance of self-tuning is to

compare it against the manual controller tuning by control

0

10

20

30

40

1 51 101 151

P
ro

g
re

s
s

Cycles

Real progress
Reference progress
Simulated progress

1 51 101 151 1 51 101 151 1 51 101 151
1 51 101 151

 Low-end server

(Subsection B)

High-end server

(Subsection C)

CPU
Intel Dual Core 2

2.13 GHz

2 Quad Core Opteron

1.7 Ghz (8 cores)

RAM 2 GB 8 GB

DISK 10,000 RPM SATA 7,200 RPM SATA

O/S
Windows Server

2008 with Hyper-V

Windows Server

2008 with Hyper-V

VMs
1 Self tuning VM +

1 Disturbance generator

5 Self tuning VMs +

8 Best-effort VMs

experts. Since the manual tuning by people is subject to

qualitative judgment, we use our earlier results presented in [8]

for comparison, in which measured deadline-guarantee error

for WRF on the same 8-core machine. We believe the earlier

results can represent almost the best possible case with manual

tuning, as performance was our main goal. In [8], we achieved

3.4% errors, and we achieve 2.6% errors in this study, both for

WRF. This is an important evidence that show programmed

control tuning can possibly achieve better predictability, or to

be more conservative, achieve comparable predictability to

manual tuning.

 Figure 6(a). ADCIRC (b). BLAST

 (c). mProject (d). OpenLB (e). WRF

Table 4. Average Deadline Guarantee Error

 ADCIRC BLAST
mProject

(Montage)
OpenLB WRF

Error (%) 1.8 6.2 7.6 1.3 2.6

VI. CONCLUSION AND FUTURE WORK

We present self-tuning VMs as a practical approach to build

predictable HPC infrastructure. By “programming” the

controller design process, we not only achieve better usability,

but also enable highly predictable execution service. The

online heuristics whose properties are rooted in the mature

field of control theory achieves both provable correctness and

practical efficiency. Our future work includes studying how to

extend the control-theoretic scheduling to different types of

HPC applications including MPI parallel programs and loosely

coupled science workflows. We also plan to extend Self-

Tuning VMs to support admission control. .

Acknowledgements

We would like to thank to ADCIRC team for sharing their

source code with us.

References

[1] B. Plale, et. Al. Towards Dynamically Adaptive Weather Analysis

and Forecasting in LEAD. ICCS workshop on Dynamic Data

Driven Applications, Atlanta, Georgia, May 2005.

[2] SURA Coastal Ocean Observing and Prediction (SCOOP):

http://scoop.sura.org

[3] Manos, S., Zasada, S., Coveney, P. V. Life or Death Decision-making:

The Medical Case for Large-scale, On-demand Grid Computing.

CTWatch Quarterly, Volume 4, Number 1, March 2008.

[4] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt,
A. Roy. A Distributed Resource Management Architecture that

Supports Advance Reservations and Co-Allocation.

International Workshop on QoS, 1999.

[5] R.J. Al-ali, K. Amin, G.V. Laszewski, O.F. Lana, D.W. Walker, M.

Hategan, N. Zaluzec. Analysis and Provision of QoS for Distributed

Grid Applications. Journal of Grid Computing, 2004.

[6] G. Singh, C. Kesselman, E. Deelman. Adaptive Pricing for

Resource Reservations in Shared Environments. IEEE/ACM

International Conference on Grid Computing, 2007.

[7] W. Smith, I. Foster, V. Taylor. Scheduling with Advanced

Reservations. IEEE Int. Par. and Dis. Proc. Symp. 2000.

[8] S-M. Park, M. Humphrey. Feedback-Controlled Resource

Sharing for Predictable eScience. IEEE/ACM Int. Conf. for

High Performance Computing, Networking, Storage and

Analysis (SC08), Nov 15-21, 2008, Austin, Texas

[9] Coastal Circulation and Storm Surge Model: http://adcirc.org

[10] Open source lattice Boltzmann code: http://www.openlb.org

[11] The Weather Research and Forecasting Model: http://www.wrf-

model.org

[12] BLAST: Basic Local Alignment and Search Tool

(http://www.ncbi.nlm.nih.gov/blast/)

[13] Montage-An Astronomical Image Mosaic Engine:

http://montage.ipac.caltech.edu

[14] P. Beckman, S. Nadella, N. Trebon, I. Beschastnikh. SPRUCE:

A System for Supporting Urgent High-Performance Computing.

Pg 295-316 in Grid-Based Problem Solving Environments by

Springer Press, 2007.

[15] Windows Server 2008 Hyper-V.

http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx

[16] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.L. Harris, A. Ho, R.

Neugebauer, I. Pratt, A. Warfield. Xen and the Art of Virtualization.

ACM Symposium on Operating Systems Principles, 2003.

[17] R.J. Figueiredo, et. al. A Case for Grid Computing on Virtual

Machines. Int. Conf. on Dis. Comp. Sys. (ICDCS), April 2003.

[18] I. Foster, et. al. Virtual Clusters for Grid Communities. IEEE Int.

Symp. on Cluster Comp. and the Grid, May 2006.

[19] A.B. Nagarajan, F. Mueller, C. Engelmann, S. L. Scott.

Proactive Fault Tolerance for HPC with Xen Virtualization.

International Conference on Supercomputing, 2007.

[20] J.L. Hellerstein, et. al. Feedback Control of Computing

Systems. Wiley-IEEE Press, August 2004.

[21] G.F. Franklin, J.D. Powell, M. Workman. Digital Control of

Dynamic Systems. Addison Wesley, 1998.

[22] C. Lu, Y. Lu, T.F. Abdelzaher, J.A. Stankovic, S.H. Son.

Feedback Control Architecture and Design Methodology for

Service Delay Guarantees in Web Servers. IEEE Transactions

on Parallel and Distributed Systems, 17(9): 1014-1027,

September 2006.

[23] C. Lu, J.A. Stankovic, G. Tao, S.H. Son. Feedback Control Real-

Time Scheduling: Framework, Modeling, and Algorithms, Real-

Time Systems, Special Issue on Control-theoretical Approaches to

Real-Time Computing, 23(1/2): 85-126, July/September 2002.

[24] Y. Zhang, A. Bestavros, M. Guirguis, I. Matta, R. West.

Friendly Virtual Machines Leveraging a Feedback-Control

Model for Application Adaptation. ACM/Usenix International

Conference On Virtual Execution Environments (VEE), 2005.

[25] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif. On the Use of

Fuzzy Modeling in Virtualized Data Center Management.

International Conference on Autonomic Computing (ICAC), 2007.

50

100

150

200

250

50 100 150 200 250

E
x
e
c
.
T

im
e
 (

m
in

.)

deadline (min.)

Self-Tuning VM

Linear (Ideal)

50

75

100

125

150

50 75 100 125 150

50

100

150

50 100 150

25

75

125

25 75 125
25

75

125

25 75 125

[26] J.S. Milton, J.C. Arnold. Introduction to Probability and

Statistics. 4th ed. McGrawHill.

[27] B. Sotomayor, K. Keahey, I. Foster. Combining Batch

Execution and Leasing Using Virtual Machines. ACM

International Symposium on High Performance Distributed

Computing (HPDC), June 2008.

