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Abstract— Unpredictable access to batch-mode HPC resources is 

a significant problem for emerging dynamic data-driven 

applications. Although efforts such as reservation or queue-time 

prediction have attempted to partially address this problem, the 

approaches strictly based on space-sharing impose fundamental 

limits on real-time predictability. In contrast, our earlier work 

investigated the use of feedback-controlled virtual machines 

(VMs), a time-sharing approach, to deliver predictable execution. 

However, our earlier work did not fully address usability and 

implementation efficiency. This paper presents an online, 

software-only version of feedback controlled VM, called self-

tuning VM, which we argue is a practical approach for 

predictable HPC infrastructure. Our evaluation using five 

widely-used applications show our approach is both predictable 

and practical: by simply running time-dependent jobs with our 

tool, we meet a job’s deadline typically within 3% errors, and 

within 8% errors for the more challenging applications. 

I.  INTRODUCTION 

Many pioneering projects including real-time mesoscale 
weather prediction [1], coastal hazard prediction [2], and 
patient-specific medical modeling [3] have started to explore 
opportunities and challenges that arise when scientific 
modeling is used to process environmental, real-time events. 
This emerging class of HPC jobs must produce results within 
explicit, possibly evolving, deadlines due to dependence on 
real-time data. The most difficult challenge today for such 
applications is that HPC infrastructures are typically operated 
in shared batch-mode and do not provide predictability both in 
regard to an HPC job’s start time as well as its duration. Most 
existing research in this area thus attempts to eliminate a job’s 
wait time via advance reservation [4][5][6][7], despite a 
potentially severe resource underutilization [7]. Moreover, a 
reservation requires strict planning that can involve time-
consuming interactions between users and resource providers 
(e.g., TeraGrid requires reservations be made at least one week 
in advance). The sporadic nature of dynamic events may not 
permit such planning. 

 Our earlier results [8] introduced a fundamentally different 
approach to solve HPC unpredictability. In our Compute 
Throttling Framework, instead of attempting to achieve  
predictability by controlling a HPC job’s wait time and 
granting exclusive access to a resource, our mechanism 
controls a job’s running time by hosting jobs in virtualized 
resources, called performance containers, and “throttling” 

up/down the job’s access to resources. We use a feedback 
controller to dynamically supply/remove system resources to 
the container(s). We showed that we are able to achieve 
predictable run-time performance, without requiring exclusive 
access to resources, and while still being reactive to unexpected 
events (e.g., new job arrivals, within limits). However, the 
significant limitation of [8] is that arguably only experts in 
control theory were realistic candidates for using our system. 
For example, our run-time system required a broad, 
quantitative understanding of a target application’s behavior in 
a variety of situations in order to regulate the application 
progress dynamically. Sophisticated knowledge of control 
theory was necessary to determine the feedback controller 
parameters through a manual modeling process (e.g., Matlab).  

The research reported in this paper significantly improves 
the usability of our control theoretic approach while retaining 
good controller performance that was the result of 
comprehensive manual modeling by an expert. We achieve 
usability by creating a self-tuning VM that performs 
application modeling, controller design, and control, all at 
runtime with no manual tuning by users. In other words, our 
goal is to essentially take an off-line and frequently tedious 
design process and automate it and thus turn it into an on-line 
process without human intervention. The heuristics we embed 
in our on-line mechanism to design the feedback controller 
achieve high performance in terms of controller design metrics 
(e.g., steady-state, transient behaviors) while attaining good 
algorithm efficiency. The experimental evaluations across five 
widely used HPC applications on an 8-core server confirm the 
viability of our approach: without any tuning effort, we meet a 
job’s deadline with less than 3 % errors for ADCIRC [9], 
OpenLB [10], WRF [11], and less than 8 % errors for the more 
challenging BLAST [12] and Montage [13]. Overall, we 
believe the research reported in this paper is a practical strategy 
toward building predictable, usable, and cost-effective HPC 
infrastructure. 

The rest of this paper is organized as follows: In section 2, 
we present related work. Section 3 defines the problem and 
presents the brief overview of our solution. Section 4 presents 
our approach for self-tuning control in detail including model 
estimation and controller design heuristics. The experimental 
evaluations are presented in Section 5 and we conclude in 
Section 6. 
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II. RELATED WORK 

Foster et al. presents General-purpose Architecture for 
Reservation and Allocation (GARA) [4] in which distributed 
compute and communication resources provide a reservation 
capability immediately or for some future time span. Although 
reservation has been implemented in modern queue managers 
such as PBS and LSF (with additional research, e.g.,[5][6][7]) 
reservation has not been widely accepted by resource 
providers, in part because of its managerial complexity and 
because it can result in severe resource underutilization [6][7]. 
While enforcing penalties to “no-show” cases [6], or putting  
humans in charge of authorizing reservations [14] might 
eventually solve some part of its problems, reservation will still 
require strict planning which would not be viable to dynamic 
data driven applications. We believe this is the fundamental 
limitation of space-sharing that makes it extremely difficult to 
satisfy real-time requirements. Our research pursues an 
alternative approach, based on the time-sharing principle, that 
does not impose significant overhead to resource providers, 
while facilitating time-dependent applications to run with 
deadline guarantee. 

Our research relies on modern system-level virtualization 
such as Hyper-V [15] and Xen [16] to isolate performance 
among concurrent applications and dynamically adjust system 
resources supplied to each application. As a result, we 
multiplex compute-intensive threads onto multiple cores of an 
underlying system, with differentiated resource provisioning at 
run-time. In the HPC community, there has been research into 
the use of virtualization to O/S customization and portability, 
security isolation, and fault tolerance [17][18][19]. We believe 
we are one of the first to investigate virtualization as an enabler 
for predictable HPC applications [8]. 

Control theory is one of the most widely used mathematical 
frameworks to control the behavior of linear dynamic systems 
in engineering [20][21]. Feedback control has been previously 
applied to various applications of computing systems including 
QoS for web servers [22], real-time scheduling [23], datacenter 
applications [24][25]. However, most of them present control 
theory as a methodology to solve problems in particular 
application domain without sufficiently addressing the usability 
of complex theory. While, arguably, control-theoretic schemes 
could be implementable by a small group of experts (e.g., data 
center administrator) for a small set of applications (e.g., web), 
the wide spectrum of users and applications in HPC domain 
makes it difficult to accept the theory as a practical tool. In this 
paper, we argue and experimentally confirm that a control 
design process can be programmed as software, and thus can be 
used as a tool. 

III. COMPUTE THROTTLING FRAMEWORK 

To support dynamic data-driven applications, a successful 

resource sharing mechanism must address two requirements: 

A. The ability to dynamically regulate the completion time of 

jobs at fine-granularity 

B. The ability to cope with unanticipated “disturbances” that 

affects a job’s performance 

The first requirement is a key for balancing highly prioritized 

resource provisioning to deadline-guaranteed jobs and fair-

share provisioning to best-effort jobs. By ensuring execution 

finishes at the deadline, neither far earlier nor later, a system 

can not only offer predictability to time-dependent jobs but 

also provide a fair share of resources to more traditional batch 

jobs, thereby creating a win-win solution to both users and 

resource providers. The second requirement is important as 

well since an application’s progress is not only affected by 

provisioning computing cycles but also by other difficult-to-

control elements such as disk I/O and network load.  

Milestone and Progress: In our compute throttling 

framework [8], we model HPC jobs using two quantitative 

metrics: milestone and progress. The milestone determines 

how many computational steps should be executed before the 

job terminates and the progress dictates the number of steps 

within a fixed interval. A job’s total floating point instructions 

is an example of milestone and executed floating point per 

second is an example of progress. Unlike batch-mode resource 

where implicit running time estimation is used when 

requesting resources (e.g., wall-clock-time option in qsub), we 

assume that an explicit milestone can represent a job’s 

computational requirement. Possible sources for determining a 

milestone of a job include: 

• Application’s semantic: Some applications are fairly well-

defined in their resource requirements. For example, a 

job’s number of raw files to process or number of input 

queries can be known to users. 

• Source code: Many HPC applications have a relatively 

simple program structure with deeply nested loops. A 

variable containing the bound of a loop, often the outer-

most one, can be the basis of a milestone.  

• Linear estimation: Profiling (i.e., sample runs) and linear 

estimation techniques, such as least-square regression [26], 

can produce a linear model that predicts total processing 

steps with respect to a quantifiable problem size.  

In Section 5, we further discuss on the applications that fall 

into each category.  

Another metric, progress, has a relationship with milestone 

and deadline as dictated by the following simple equation: 
���������

	�
�����
= 
�������                                    (1) 

Therefore, if we know the milestone and the deadline of a job, 

we expect that the job will meet the deadline if the job 

executes on average at the desired progress. To measure the 

application’s progress, we created a sensor library that users 

can embed into an application’s source code. The library is 

implemented as an application-specific counter, which is 

strategically placed in a critical path of applications (e.g., 

outer-most loop or “hot spots”). The measured progress by 

sensor library is exported to the feedback controller that 

allocates and releases resources as measured progress is more 

or less than the target. 

While our earlier work advocated the benefit of 
virtualization being controlled by feedback controllers whose 
property is rooted in the mature field of control theory, the 
major limitation lies in the use of mathematically complex 
theory for designing a resource scheduler. Arguably, an 



 

ordinary computer/computational scientists lack the necessary 
knowledge and skills for designing a feedback controller. In 
our earlier study, we had to perform application modeling, 
controller design, test runs in iterative fashion, until we find a 
set of good control parameters for a particular application. The 
steps often rely on control designer’s intuition, using graphical 
techniques such as root locus [20][21] for choosing the right 
control parameters. Lack of an automated, systematic approach 
resulted in a time-consuming design process, which often took 
days to create a feedback loop for just one application. 

IV. SELF-TUNING VIRTUAL MACHINE 

A. Performance Container as Resource Provisioning 

Abstraction 

The resource provisioning abstraction used in our compute 

throttling is a virtualized resource configurable by users or 

resource providers. This abstraction is different from the job 

abstraction used in batch queue systems and the more recent 

leasing abstraction by which users customize application 

environment; however, the VM is still tightly coupled with 

static resources [27]. Throughout the paper, VM 

reconfiguration refers to changing a wide variety of resources 

associated with a VM, and throttling specifically refers to 

reconfiguration on a provisioned share of a processing unit 

(e.g., 50% of a core) to a VM. In our implementation on 

Hyper-V, we use Hyper-V’s management APIs to dynamically 

configure a provisioned CPU share to a VM. 

If a user’s job requires a particular deadline, the user’s VM 

is classified as an Active VM that can change its resource 

configuration at any time. The VMs that run best-effort jobs 

are considered Passive VM whose resource configuration can 

be changed by only resource providers. The resource 

provider’s policy determines how many active VMs to be 

admitted to a system at a given time. In a simple case, it will 

be limited by host’s available processing unit (cores) so as not 

to create a situation where multiple deadline jobs compete for 

the limited cores. The active VM in fact corresponds to a self-

tuning VM in which a feedback controller regulates resource 

provisioning. It is the role of Resource Coordinator [8] to 

monitor the system’s provisioned resources to active VMs and 

dynamically distribute the remaining pool to passive VMs. We 

implement the equal-sharing of VM scheduling credits as a 

simple policy for passive VMs. 

B. Self-Tuning Controller 

 
Figure 1: Block Diagram of Self-Tuning Control Loop 

Once a VM is deployed on a host and authorized as an 

active one, the feedback controller can request/release (throttle) 

its share of system’s core. The goal of the controller is to 

sustain/adapt the progress of the job at the target specified by 

users (to meet the deadline). To achieve the goal, we perform 

the three phases: 1) application modeling, 2) controller design, 

and 3) actual control. Figure 1 illustrates the block diagram of 

the self-tuning controller that runs in an active VM.  

When a job starts to run, (1) the sensors embedded in the 

job reports the progress (S(k)) to the Model Estimator, (2) 

which then exercises the system by throttling to varying levels 

and (3) estimates the model that relates the resource 

consumption to measured progress. After the modeling phase, 

the Control Tuner uses the model to design parameters for PI 

Controller. It uses the heuristics that we present later to find 

right control parameters. Once the tuning phase completes, (4) 

the control parameters are set in the PI controller, which 

periodically throttles to (5) track the reference progress 

(REF(k)) derived to meet the job’s deadline. It uses the (6) 

error (reference-measurement) in previous cycles to determine 

the (7) throttling at the next cycle. (8) A moving average filter 

is placed in between the controller and the job being sensed 

such that measurement noise can be smoothed out. Note that 

the three phases can be repeated if there’s a significant change 

in the application model. For example, if the application 

consists of different routines (binaries) executed in series, each 

routine may invoke the three phases again.  

Model Estimator: The progress of a job with respect to 

provisioned resources is modeled as a first-order linear 

difference equation: 	���� = � ∙ ��� − 1� + 	� ∙ ��� − 1�        (2) 

In the model, S(k) represent the sensed progress and C(k) 

represent the provisioned share of a core (Hyper-V’s VM 

scheduling cap). In the model, the previous outputs, S(k-1), 

affect the current output, S(k), because there is an actuation 

delay due to various disturbances such as I/O latency. When a 

job is in modeling phase, model estimator directly issues 

throttling (C(k)), following a low-frequency, discrete sine 

waves whose amplitude is from a minimum to maximum 

throttling (0-100 for Hyper-V). We found, in practice, a sine 

wave with frequency=5 and period=2 (i.e., 10 different tests) 

can exercise the system with sufficient excitation. After 

progress measurement is obtained, Model Estimator runs least-

square regression algorithm [26] which can estimate the linear 

model (values for a and b) quickly (less than a second).  

PI Controller: We use a digital form of Proportional-Integral 

(PI) controller [20][21] since it strikes the fine balance 

between control performances and design complexity. In our 

work, simple design is important criteria since the design 

process must be programmed/automated. The time-domain 

representation of PI control law has the form: 

���� = ��� − 1� + �� + �!�"��� −	� "�� − 1�    (3) 

In the equation, the signal C(k) refers to a provisioned 

resource and E(k) refers to an error (reference – measured 

progress). KP and KI are the controller parameters that 

determine how much to react given the errors at previous 

cycles. The KP is a proportional term which determines the 
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actuation (throttling) for the error in a previous cycle.  The KI 

is an integral term that determines the throttling for 

accumulated errors in previous cycles. The controller design 

reduces to choosing the right values for KP and KI that has 

good control performances.  

We express the variables of the closed-loop, including 

reference, measured progress, error, as a signal which is a 

series of values at different sample cycles. The digital control 

theory defines a convenient way to encode the signals and 

system’s components, called Z-transformations. Z-transform 

uses the variable z to indicate time delays and encode time-

domain representation of a signal as a sum of the coefficients 

of z-term. If z-transform is used to describe a system’s 

component such as PI-controller, application model, we call it 

transfer function that describes how an input signal is 

transformed into an output. By using a transfer function, 

system’s discrete components can be combined via simple 

algebraic manipulations. Due to space limitation, we do not 

provide a more rigorous definition of z-transform and proofs 

of properties that we present hereafter. Interested readers are 

referred to control textbooks [20][21].  

The closed-loop (the lower part of Figure 1 with solid line) 

can be integrated into a simplified transfer function as follows. 

We first define the transfer function of the target system 

(application model) that has time-domain representation, 

���� = � ∙ ��� − 1� + � ∙ ��� − 1�  where a, b are the model 

parameters that Model Estimator produces:  

#�$� = 	
%�&�

'�&�
=

(

&)

                        (4) 

The PI law (equation 3) can be similarly represented as a 
transfer function: 

*�$� =
'�&�

+�&�
=

�,-.,/�&),-
&)0

                 (5) 

We also add a moving average filter which has a time-
domain equation, �1��� = � ∙ �1��� + �1 − ������, where C is a 
constant determining degree of smoothness. The equivalent 

transfer function is:   2�$� =
0)3

&)3
           (6) 

Finally, the overall closed-loop is reduced to a unified 

transfer function: 

45�$� =
%�&�

6+7�&�
=

	�&�8�&�

0.	�&�8�&�9�&�
                    (7) 

Control Tuner: In the on-line controller design, we draw 

requirements from the four properties of closed loop:  

• Stability: Control Tuner must ensure that for bounded input 

(reference progress) to a closed-loop, the loop’s output 

(measured progress) is bounded as well. The unstable state 

refers to a situation where controller issues throttling 

request that is excessively variable. According to the control 

theorem, the close-loop is stable if and only if all poles of 

closed-loop (FR(z)) are inside the unit circle.  

• Accuracy: PI-control law achieves zero steady state error 

since I-term (KI) accounts for the errors in previous history. 

Thus, accuracy does not add constraint to controller design. 

• Settling Time: The setting time and maximum overshoot 

define the transient behavior of a closed-loop system. The 

transient behavior refers to system’s reaction when there is 

a change in reference or disturbances. In general, we say 

system is in steady-state if the closed-loop’s output reaches 

within k % of the steady state value. In this paper, we use 10% 

as a threshold. In self-tuning VM, reference is changed 

whenever the job’s deadline is changed. Thus, shorter 

settling time is especially important if the job runs relatively 

short, or frequent deadline changes are expected. Also slow 

settling time leads to lagging reaction to disturbances such 

as disk I/O. The input signal, reference, to our closed-loop 

is a type of step, and the control theory offers a theorem that 

approximate the settling time, KS,  for a step input signal, as 

follows: ��	 ≈
��;

<
=>>

��;	

, @ℎ���	�	B�	Cℎ�	D�����C	E�D�		

�F	Cℎ�	GD���H	D��E	�45�$��    (8) 

• Maximum Overshoot: The maximum overshoot is defined 

as the maximum amount by which the transient value 

exceeds the steady-state value divided by the steady-state 

output. We can find an example in Figure 5(d) where 

measured output exceeds the reference at around 75
th

 cycles. 

Smaller overshoot is desirable not only because the 

overshoot is a transient error, but also can leads to output 

oscillation in the following cycles. Since the closed-loop 

equation (7) is in higher-order having multiple poles, the 

poles of the loop can be either real or complex. If all poles 

are real, the maximum overshoot can be computed as:  

I = −�, BF	D�����C	E�D�	�F	GD���H	D��E	B�	J���CBK�.	
	I = 0, �Cℎ��@B��                      (9) 

For complex poles, we assume the largest complex poles, 

p1=c+dj and p2=c-dj (note roots of quadratic polynomials 

have a real part, c, and two imaginary parts with imaginary 

number j). Then, the maximum overshoot can be 

approximated as: 

I ≈ �
N
|P|, @ℎ���	� = 	√GR + HR		�JH	S = C�J)0�

�

3
�          (10) 

We transform equation (5) to an equivalent form: 

*�$� =
�,-.,/�&),-

&)0
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 (KP+KI) and ( 
,Y

,Y.,!
 ) represent overall gain and zero of the PI 

controller, respectively. The goal of Control Tuner is to select 

values for the gain and zero, whereby subsequently KP and KI 

are obtained by solving the equations (11). However, as gain 

and zero are real, there are infinite possible values for them. 

We use bounded search as a basic strategy, testing candidates 

to 1) see if the poles of the closed-loop are all within unit 

circle (to guarantee stability), 2) estimate the settling time and 

overshoot, and 3) apply a rank function to choose a 

combination of zero and gain that minimizes an objective 

function. Figure 2 illustrates the pseudo-code of the heuristic. 

The arguments to the function are maximum numbers of 

candidates for zero (M) and gain (N), and the transfer function 

of a model (given by Model Estimator). The return values 

from the algorithm are near-optimal gain and zero, from which 

KP and KI are solved.  

The algorithm picks candidates of zero and gain evenly 

distributed by M, N, within their valid range (line 5 and 9). 

Since KP > 0 and KI > 0, the zero (
,-

,-.,/
) must be between 0 



 

and 1. M and N must be limited to certain thresholds since 

routines to find settling time (line 11) and maximum overshoot 

(line 12) on z-transform equations are computationally 

expensive. In our Matlab implementation, the algorithm takes 

about 10 seconds for M=10, N=20.  Thus, there is a trade-off 

between the algorithm’s running time and the quality of output 

which is controlled by  M and N. For a given constraint on the 

running time (e.g., 10 seconds), a good heuristic is to limit the 

search space for zero and gain to where it is more likely to 

produce better results. Line 2 is one such heuristic.  

 
Figure 2: Control Tuner Heuristic 

We set the smallest of zero candidates at the minimum 

pole of the application model (GZ), as the zero location with 

respect to the model’s minimum pole has great influence to the 

settling time of the closed-loop. Figure 3 illustrates a root 

locus of the closed-loop that shows the effects of the heuristic. 

Root Locus is the most common, graphical technique that 

plots the traces of poles and zeros of the closed-loop system as 

controller’s zero and gain vary [20][21]. In the figure, the solid 

line draws the branches of root locus (locations of closed-loop 

pole), stemming from the three poles of open-loop 

components (application model, filter, controller). The 

controller’s zero is a small circle on x-axis and the three small 

dots are the poles of the closed-loop that moves along the solid 

lines. As we explained with equation (8), the settling time is 

proportional to the largest pole of closed-loop. As we see in 

the figure, zero location with respect to model’s minimum 

pole (0.4) has significant influences on the possible locations 

of closed loop poles: zero location at the right of minimum 

pole (c) produces the pole locations that moves toward circle’s 

center (smaller poles), resulting in shorter settling time.  

 
 (a) zero < min_pole     (b) zero = min_pole     (c) zero > min_pole 

Figure 3. Effects of zero location with respect to min. pole 

At line 7, the range of gain test is reduced as well using the 

stability analysis. According to the stability theorem, every 

pole of closed-loop must lie within the unit circle. Using the 

fixed zero candidate (zero_values(i)), we quickly test different 

gain candidates to see if the resulting largest closed-loop poles 

lie close to unit circle (0.95 < largest pole < 1). The stability 

analysis terminates after the gain candidate satisfying the 

condition is found. Using binary search, the gain location is 

found typically within few tests, and set as a maximum of 

possible gain range (a gain candidate larger than this will 

result in unstable system). 

After determining the ranges, the algorithm computes 

settling time (line 11) and maximum overshoot (line 12) using 

the equations (8)-(10) and stores the computed values to tables. 

Finally, the rank function (line 15) chooses the best candidates 

for gain and zero by examining the tables. There are many 

possible strategies for implementing the rank function. An 

algorithm may pick the gain/zero that results in minimum 

settling time, regardless of maximum overshoot associated 

with the pair, or may put more priority to maximum overshoot. 

Although, theoretically, a zero-gain pair can produce 

unbalanced results (e.g., short settling time-large overshoot), 

we found, in practice, a good zero-gain pair tends to achieve 

both. Thus in our implementation, we use simple objective 

function that finds the zero-gain pair achieving the shortest 

settling time while maximum overshoot is subject to a fixed 

thresholds (e.g., 0.2). 

V. EXPERIMENTAL EVALUATOIN 

In our implementation, the Model Estimator and Control 

Tuner are written in Matlab using algebraic tools for Z-

transform equations and compiled into C library using Matlab 

compiler. The sensor libraries are written in C and Fortran 

supporting the applications written in both languages. 

A. Usability of Self-Tuning VM 
Once users have an application to run with an explicit deadline, 

they are expected to place sensor calls in the application’s 

source code, compile the code, and run the self-tuning 

controller with the two parameters, milestone and deadline. 

The reference progress is derived from the two parameters 

using equation (1). The sensor library reports progress 

measurement to the self-tuning controller via IPC channel (e.g., 

file, shared memory). Once the self-tuning controller starts to 

receive progress from the application, it performs the three 

phases- application modeling, controller tuning, actual control- 

in series. There are neither more inputs the user has to give to 

the controller, nor any tuning to address idiosyncrasy of 

controller or application. 

While running the self-tuning controller with just two 
inputs are very straightforward, users are still required to 
undertake two extra efforts: embedding a sensor library in 
existing source code and estimating the milestone (explicit 
computational quantity) of the job. We discuss the difficulty of 
the two efforts based on our experience with the five 
applications illustrated in Table 1. As we explained earlier, 
there are many possible sources for estimating the milestone of 
a job. The simplest case that does not require user effort is to 
estimate it from job’s known semantic such as number of raw 

1    function [opt_gain, opt_zero] = ControlTuner(M, N, GZ) 
2       zero_min = min (pole(Gz)); 
3       zero_max = 1.0; 
4       zero_unit = (zero_max-zero_min) / N; 
5       zero_values = zero_min:zero_unit:zero_max; 
6       for i=1 to N 
7           gain_max = stability_analysis(Gz, zero_values(i)); 
8           gain_unit = gain_max/M;  
9           gain_values = 0:gain_unit:gain_max; 
10         for j=1 to M 
11             KS(i,j) = compute_KS(zero_values(i), gain_values(j), Gz); 
12            MP(i,j) = compute_Mp(zero_values(i), gain_values(j), Gz); 
13         end; 
14    end; 
15    [i, j]= rank (KS, MP); 
16    opt_gain=gain_values(i,j); 
17    opt_zero=zero_values(i,j); 



 

data to process. We found mProject [13] belongs to the case. 
Since the semantic is known, we could easily spot the location 
where the sensor library should be placed. For mProject, only 
one sensor call is placed after the statement processing a raw 
data. The next approach requiring slightly more user effort is to 
directly reading the milestone from variables of program’s 
source code, often the variable containing bounds of outer-most 
loop. In OpenLB [10] and ADCIRC [9], we could easily spot 
the variables as they are already used by program’s debugging 
routines that show progress of job’s execution. It is easy to 
place sensor calls as well; we simply put the sensor calls at the 
first statement of (outer-most) loop. For both applications, only 
one sensor call is placed in the source code. The most difficult 
case to estimate the milestone is to use profiling and linear 
estimation techniques such as least-square regression. The 
BLAST [12] and WRF [11] are examples. We placed sensor 
calls in some (possibly many) locations throughout the source 
code and run the jobs with varying problem size (e.g., query 
size in BLAST, forecast hours in WRF), and establish a model 
that relates the problem size to number of sensor calls. At run-
time, our automated controller designer uses the model with the 
requested problem size to estimate the milestone. This requires 
users to understand the structure of application source code and 
spots the location where it is likely to be executed constantly 
over a period. BLAST required more effort to identify the 
locations; we placed three sensor calls in the source code. WRF 
required only one sensor call. 

 Overall, although the source code instrumentation and 
milestone estimation requires a little extra effort, we believe the 
usability of feedback-controlled application is significantly 
improved via the automation of the controller design process. 
In our earlier study without automated control, we spent more 
time on application modeling and controller design than for the 
sensor placement and the milestone estimation. While the 
sensor placement is required only once for each application, the 
controller design had to be repeated not only for each 
application, but also for varying underlying resources.  

B. Correctness of Self Tuning 

We measure in small scale the steady-state and transient 

behaviors of the applications being regulated. The resources 

used in the experiments are described in Table 2. We start the 

self-tuning VM which is given the target progress for tracking. 

It performs model estimation, controller design, and actual 

control with the sensor signal received from the application. 

To measure the application’s behavior, we modulate the 

reference progress. For each application, we run the same test 

5 times and report average of each evaluation metric. 

Moreover, to measure the effect of non-trivial disturbance, we 

run another set of test with a VM that executes BLAST 

concurrently. The BLAST as a disturbance generator has 

sustained 6.43 MB/s read rate on the disk that it shares with 

the self-tuning VM. Figure 5 and Table 3 present the results. 

Among the 5 runs without disturbance, Figure 5 presents 
the result that shows the third best performances in terms of 
steady-state error. In each figure, the straight, dotted line 
represents the reference progress, which is the target that the 
controller aim to track, and the solid line represent the real 
progress that we obtain from application execution. Finally, the 
curved, dotted line represents the simulated progress using the 

application model from Model Estimator and KP and KI 
determined by Control Tuner. This illustrates what Control 
Tuner predicts as application’s behavior when the controller 
parameters are determined online. In each figure, the first 10 
cycles show the estimation phase by Model Estimator that 
measures the progress at varying levels of resource 
provisioning. After the modeling phase, PI control parameters 
are determined shortly and the resulting PI controller regulates 
application’s progress.  

Table 3 presents the results more quantitatively. The 

table’s entry contains two values (average of five runs) 

separated by ‘/’. The left is the result from the runs without 

disk disturbance (BLAST) and the right value is obtained 

when disk disturbance is introduced. The first two rows 

contain the steady-state error, as defined by, 

����
Z�
�[\�Z���)\�]�\��3�

\�]�\��3�
� × 100, for the references in high 

(60-110
th

 cycles) and low (110-160
th

 cycles) values. The last 

two rows present the settling time (to reach 10% of new 

reference), for both low-high and high-low reference 

transitions. The values in the parenthesis are predicted settling 

times when Control Tuner determines control parameters 

(there is no prediction in steady-state error because PI-

controller has zero steady state error in theory). The smaller 

steady-state errors are desired as it result in meeting deadline 

closely, and shorter settling time is important if computations 

are short or frequent deadline changes are expected.  

Figure 5 and Table 3 confirm that the four applications, 

ADCIRC, BLAST, OpenLB, WRF, track the reference 

progress with high accuracy. The real behaviors of application 

are very close to the predicted behaviors at the time the 

controller is designed online. This experimentally confirms 

that the Control Tuner can produce high quality control 

parameters, and the resulting PI controller ensure that it tracks 

the application’s progress in reality just as predicted in design 

time. However, mProject warrants more explanation. Unlike 

the other applications, mProject exhibits high irregularity. The 

sensors in mProject report progress whenever a raw data is 

processed, however some raw data occasionally requires much 

longer processing. This results in periods in which no progress 

is reported (69-73
th

 cycles in Figure 5(d)). During this period, 

errors are continuously accumulated within PI controller and 

the large throttling values are repeatedly requested. However, 

after the blocking raw data is eventually processed, it results in 

errors in opposite sign since too much resource are enforced 

previously. This so-called integral windup is often found in 

controllers with integral term. The output fluctuation 

eventually leads to more errors in meeting deadline, as we 

present in the next subsection.  

In addition to the major findings above, the additional 

findings can be summarized as follows. For all applications, 

the maximum overshoots were negligible. Disk disturbance 

causes more steady-state errors especially when reference is 

set higher. While the real settling times during the low-to-high 

reference transition are very close to what Control Tuner 

predicts, the high-to-low reference transition takes longer and 

exhibit more deviation from the prediction. 
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Figure 5(a): ADCIRC    (b): BLAST              (c): OpenLB          (d): mProject         (e): WRF 

Table 3. Steady-state and Transient Behaviors of Applications 

 ADCIRC BLAST mProject OpenLB WRF 

Steady-state Error (high)-% 4.8  / 6.6 2.5 / 5.7 19.5 / 12.6 6.5 / 8.4 3.4 / 6.1 

Steady-state Error (low)-% 3.0 / 3.2 2.8 / 3.1 4.4 / 1.7 8.1 / 7.5 4.0 / 4.6 

Settling-Time (low to high) 
- cycles 

7.2 (6) / 
6.8 (6) 

5 (4.8) /  
5.8 (8.6) 

13.1 (5.6) / 
6 (5.1) 

5.6 (5.8) /  
5.8 (5.2) 

6.2 (5.4) / 
8.4 (5.6) 

Settling-Time (high to low) 
- cycles 

9.6 (7) /  
10.6 (7) 

7 (5.4) /  
6 (6) 

12 (7) /  
11.1 (6.4) 

9.4 (6.8) /  
5.8 (5.2) 

6.6 (6.6) /  
12.2 (6.6) 

 

C. Meeting Deadlines on a High-end Server 

We now report how closely the self-tuning VM meets the 

application’s deadlines in realistic environments. For the 

evaluation, we use 8-core AMD server which is highly 

overloaded by HPC jobs during the experiments. We run 8 

passive VMs that run best-effort jobs (WRF) concurrently 

with 5 self-tuning VMs (13 VMs in total). In each self-tuning 

VM, the application is run with varying deadlines presumably 

requested by users. The self-tuning VM is given the deadline 

and milestone of a job from which it derives the target 

progress to track. In this experimental scenario, we assumed 

users specify deadlines in broad range, but the earliest 

deadline is chosen such that it can be met with 100% of a 

system’s core. If the deadline is earlier than that, the 

application will just saturate the core with constant errors 

(reference > measurement) in controller. Our contribution is to 

guarantee that the real execution time finishes at the deadline, 

neither earlier nor later, so that we achieve both high 

predictability and fair-share to best-effort jobs. In shared 

resources, the jobs finished too earlier than deadline are 

considered harmful as they take resource’s share that could be 

consumed by other time-dependent or best-effort jobs. We are 

currently working on admission controller that 

deterministically accept/reject jobs with deadlines. Note that in 

this experiment, all 5 applications are run simultaneously with 

8 best-effort jobs, with server’s total utilization reaching 

almost 100%. The experiments ran for 14 hours.  

Figure 6 presents scatter plots in which the x-axis is the 

requested deadline and the y-axis corresponds to the real 

execution time. The linear lines illustrate the ideal results.  All 

applications meet the deadlines very closely. In particular, 

ADCIRC, OpenLB, and WRF show almost perfect 

correspondence between the deadlines and the real execution 

times. Table 4 presents the results quantitatively. The average 

deadline guarantee error, which is defined as 
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� × 100 , for the three applications 

are less than 3 %. In other words, if the user’s requested 

deadline is 1 hour, the real execution time would have less 

than 2 minutes in error. The results indicate that BLAST and 

Montage exhibit more errors compared to others: there could 

be up to 5 minutes error for 1 hour deadline. We estimate the 

milestone of BLAST using linear estimation from requested 

query size. However, the estimation is not 100% accurate in 

predicting the real milestone at run time. The R
2
 values from 

the least-square regression is 0.92, hence it results in 6.2 % 

deadline errors despite of accurate progress tracking (Figure 

5(b)). The relatively high errors in Montage are due to its 

irregular behaviors as we explained earlier. Overall, if an 

application does not exhibit high irregularity and the estimated 

milestone is accurate, the self-tuning VM can meet the 

deadline with very small errors (< 3 %), as shown by ADCIRC, 

OpenLB, and WRF. 

One way to evaluate the performance of self-tuning is to 

compare it against the manual controller tuning by control 
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RAM 2 GB 8 GB 
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1 Self tuning VM + 
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experts. Since the manual tuning by people is subject to 

qualitative judgment, we use our earlier results presented in [8] 

for comparison, in which measured deadline-guarantee error 

for WRF on the same 8-core machine. We believe the earlier 

results can represent almost the best possible case with manual 

tuning, as performance was our main goal. In [8], we achieved 

3.4% errors, and we achieve 2.6% errors in this study, both for 

WRF. This is an important evidence that show programmed 

control tuning can possibly achieve better predictability, or to 

be more conservative, achieve comparable predictability to 

manual tuning. 

  
           Figure 6(a). ADCIRC                 (b). BLAST 

 
          (c). mProject                (d). OpenLB       (e). WRF 

Table 4. Average Deadline Guarantee Error 

 ADCIRC BLAST 
mProject 

(Montage) 
OpenLB WRF 

Error (%) 1.8 6.2 7.6 1.3 2.6 

VI. CONCLUSION AND FUTURE WORK 

We present self-tuning VMs as a practical approach to build 

predictable HPC infrastructure. By “programming” the 

controller design process, we not only achieve better usability, 

but also enable highly predictable execution service. The 

online heuristics whose properties are rooted in the mature 

field of control theory achieves both provable correctness and 

practical efficiency. Our future work includes studying how to 

extend the control-theoretic scheduling to different types of 

HPC applications including MPI parallel programs and loosely 

coupled science workflows. We also plan to extend Self-

Tuning VMs to support admission control. . 
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