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Abstract. Current wireless network power management often substantially degrades performance and may even increase overall energy

usage when used with latency-sensitive applications. We propose self-tuning power management (STPM) that adapts its behavior to the

access patterns and intent of applications, the characteristics of the network interface, and the energy usage of the platform. We have

implemented STPM as a Linux kernel module—our results show substantial benefits for distributed file systems, streaming audio, and thin-

client applications. Compared to default 802.11b power management, STPM reduces the total energy usage of an iPAQ running the Coda

distributed file system by 21% while also reducing interactive file system delay by 80%. Further, STPM adapts to diverse operating conditions:

it yields good results on both laptops and handhelds, supports 802.11b network interfaces with substantially different characteristics, and

performs well across a range of application network access patterns.
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1. Introduction

Wireless networks provide mobile computers with continuous

Internet connectivity. Yet, power management is needed to en-

sure that the network interface does not overly tax the limited

battery capacity of a mobile device. For example, our mea-

surements show that using a 802.11b network card without

power management can shorten the battery lifetime of a HP

iPAQ 3870 handheld by almost 50%.

The popular IEEE 802.11 standard [10] provides a power-

saving mode (PSM) that periodically disables the network in-

terface during periods of no activity. However, PSM does not

adapt to the power characteristics of the network interface and

mobile computer, the intent and access patterns of applica-

tions, or the needs and expectations of users. While PSM pro-

vides excellent energy conservation in some circumstances, it

can also substantially degrade interactive application perfor-

mance and even increase the energy needed to perform certain

activities. For instance, PSM causes an unacceptable 16-32x

slowdown in the time to list directories stored in NFS.

We show that different power management strategies are

needed in different circumstances. Rather than take a “one

size fits all” approach, we propose self-tuning power manage-

ment (STPM) that adapts to the characteristics of the network

interface, mobile computer, and applications. We have imple-

mented STPM as a Linux kernel module that runs on both

handhelds and laptops.

STPM differs substantially from other adaptive strategies

such as the PSPCAM mode of the Cisco Aironet 350 card [4]

and the bounded slowdown protocol of Krashinsky and

Balakrishnan [13]. STPM explicitly considers the time and

energy costs of changing power modes. These transition costs

can be quite large for current 802.11b cards—several hundred

milliseconds in most cases. STPM also explicitly considers

the base power usage of the mobile computer. Finally, STPM

provides a simple interface that allows applications to dis-

close hints about their intent in using the network interface.

For legacy applications that have not yet been modified to dis-

close such hints, STPM uses passive monitoring and heuristics

to generate hints on their behalf. STPM then tunes its power

management strategy to observed network access patterns.

Our results show that STPM provides significant energy

conservation with minimal performance impact for applica-

tions such as distributed file systems, streaming audio, and

thin-client remote X displays. For instance, STPM reduces the

total energy usage of an iPAQ running the Coda distributed file

system by 21% compared to PSM, while also reducing interac-

tive file system delay by 80%. Further, STPM shows benefits

across a diverse set of network interfaces and mobile devices.

We begin with a discussion of the limitations of current

wireless power management. Section 3 outlines the principles

we followed in the design of STPM. In Sections 4 and 5, we

describe our implementation and compare its performance and

energy conservation to that of other static and adaptive power

management strategies. Finally, we conclude with a discussion

of related and future work.

2. Motivation

Current 802.11b power management schemes can severely de-

grade the performance of latency-sensitive applications. For

example, figure 1 shows how power management affects the

time to list directories of varying sizes stored in the Network

File System (NFS) [19]. These results were generated by exe-

cuting ls on a HP iPAQ 3870 handheld with a Cisco Aironet

350 802.11b card.

The solid line at the bottom labeled “CAM” shows perfor-

mance in continuously-aware mode (i.e. without power man-

agement). The dashed line at the top labeled “PSM-static”

shows performance with the default 802.11b power saving

mode (PSM). Thedifference between these two shows that
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Figure 1. Effect of power management on NFS.

PSM causes an unacceptable 16–32 times slowdown for NFS

directory listings.

This poor performance is caused by the interaction of NFS

remote procedure calls (RPCs) and 802.11b power manage-

ment. When no packets are waiting for a mobile computer

at the wireless access point, 802.11b power management dis-

ables the network interface to extend battery lifetime. The

access point periodically sends a beacon informing the mo-

bile computer if any packets have arrived—the client interface

wakes up to listen to the beacon and goes back to sleep if no

data is waiting.

As figure 2 shows, power management delays each RPC

response at the access point until the next beacon. Since NFS

does not usually issue concurrent RPCs, only one RPC is is-

sued per beacon period. With a typical 100 ms beacon interval,

the expected delay for the first RPC is approximately 50 ms.

The delay for subsequent RPCs is almost 100 ms because

each RPC request is sent soon after the response to the previ-

ous RPC is received. Since NFS makes two RPCs, a lookup

and a getattr, for each file in the directory, the cumulative

delay is quite large.

Similar observations have led to the development of adap-

tive power management strategies that switch between CAM

and PSM depending upon traffic load [4,13]. Ideally, an adap-

tive strategy can yield good performance by switching to CAM

when data is being transferred and by switching back to PSM

when it is not. Many cards, including the Cisco Aironet 350

card, support such an adaptive mode. Our observations of the

Cisco card reveal that it switches to CAM when more than one

packet is waiting for the mobile computer at the access point,

and that it switches back to PSM after approximately 800 ms

without receiving a packet.

The dotted line labeled “PSM-adaptive” in figure 1 shows

NFS directory listing performance when the Cisco adaptive

mode is employed. For small and medium-sized directories,

performance is 26 times slower. Because RPCs are issued se-

quentially and each RPC is typically small, NFS generates

insufficient traffic to trigger a switch to CAM. For large direc-

tories, the initial read of directory data transmits enough data

to trigger the switch—however, even for 160-entry directories,

performance still lags CAM by 72% because several RPCs are

made in PSM.

Figure 2. RPC delays due to power management.

Even worse, power management may actually increase the

energy used to perform interactive tasks. Compared to CAM,

the iPAQ uses up to 17 times more energy to list NFS di-

rectories with PSM-static and up to 12 times more energy

with PSM-adaptive. Although these modes decrease the av-

erage power used by the network interface, the network in-

terface represents only a portion of total system power us-

age. Since energy usage is the integral of power over time,

the substantial increase in execution time dominates the small

decrease in power. Power management extends battery life-

time but the user accomplishes less work before the battery

expires.

Of course, this is a worst-case example. The mobile com-

puter will often be idle for a considerable amount of user think-

time; during such idle periods, power management decreases

energy usage without performance penalty. Yet, by replaying

traces of interactive file system usage, we have found that the

cost of using untuned power management during interactive

episodes often dominates the benefits realized during idle pe-

riods. For many latency-sensitive applications, untuned power

management introduces substantial performance and energy

penalties. Examples of applications that have similar com-

munication pattern include other distributed file systems such

as AFS [9] and Coda [12], applications that use a remote X

server [21] for display, and client-server systems based upon

Java RMI [26] and SOAP [2].

To solve this problem, we have built a self-tuning module

that adapts to application access patterns, network interface

characteristics, and the system on which it is running. The line

labeled “STPM” in figure 1 shows that our module decreases

the time needed to list a NFS directory by up to 23 times

compared to PSM-static and by up to 10 times compared to

PSM-adaptive. STPM also reduces energy usage by up to 12

times compared to PSM-static and up to 5 times compared to

PSM-adaptive.

3. Design principles

Self-tuning power management is based upon the following

design principles:

� Know application intent
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� Be proactive

� Respect the critical path

� Embrace the performance/energy tradeoff

� Adapt to the operating environment

3.1. Know application intent

A little information about application intent goes a long way.

For example, consider why PSM-adaptive works poorly in the

previous example. Most common applications issue file oper-

ations sequentially; thus, NFS often has only a single RPC in

flight. Further, 802.11b power management effectively limits

NFS to one RPC per beacon period. Although the data rate

of NFS is low, its data rate would increase substantially with-

out power management because several RPCs could complete

during each beacon period. However, PSM-adaptive does not

transition to CAM because it does not detect sufficient network

traffic.

An alternative strategy would be to switch to CAM when-

ever an incoming packet is received. However, this aggressive

strategy works poorly in other cases. For example, consider a

stock ticker application that receives approximately 10 pack-

ets per second. When power management is enabled, NFS

and the stock ticker receive roughly the same amount of data

per second. However, the stock ticker performance will not

improve when power management is disabled because it is

already receiving at its maximum data rate.

Without knowing application intent, it is hard to distin-

guish these two applications. If an algorithm conservatively

refuses to disable power management until a threshold data

rate is achieved, it does not disable power management for

NFS, leading to poor performance. Alternatively, if it liberally

disables power management after the receipt of a few packets,

it wastes energy by disabling power management for the stock

ticker application.

Our approach is to allow each application to disclose hints

about its intent in using the wireless network. This allows

STPM to enable power management only when appropriate.

Further, this hint-based approach helps STPM decide if the

network interface can be disabled for periods longer than the

beacon period. If each application discloses when it is trans-

ferring data and specifies the maximum delay on incoming

packet arrivals it is willing to tolerate, then STPM can disable

the network interface when it is not being used and ensure that

application delay constraints are satisfied.

The main drawback of using hints is the requirement

that applications be modified. To support legacy applications,

STPM includes a hinting module that identifies non-hinting

applications, observes their network traffic, and issues hints

on their behalf. We have chosen to implement this module at

the IP layer in order to support the widest possible range of

legacy applications. Due to the lack of application support,

the hinting module cannot precisely determine application in-

tent. Instead, it relies on heuristics to estimate the intent of the

applications.

3.2. Be proactive

If applications such as NFS were to disclose hints when each

network transfer begins and ends, a possible strategy would be

to enter CAM whenever at least one transfer is in progress and

go back to PSM when no transfers are occurring. This purely

reactive strategy requires that the transition cost of changing

modes be low.

Unfortunately, we have found the transition costs for cur-

rent 802.11b cards to be quite high. Although the device driver

may complete the system call that initiates a mode transition

in only a few tens of milliseconds, packet transmission and re-

ception is delayed for a much longer period of time following

each transition. We measured transition time for several cards

by first initiating a transition to PSM or CAM and then im-

mediately performing a single-packet ping of a nearby server.

Transition times ranged from 200 ms to 600 ms—sample re-

sults are shown in figure 6.

A purely reactive strategy increases the time to perform

a short RPC because transition time is greater than the la-

tency reduction achieved by performing the RPC in CAM.

However, a reactive strategy shows benefits for large requests.

For instance, a 4 MB TCP transfer from an iPAQ client with

an Orinoco Silver 802.11b card to a nearby server is 16%

slower with power management enabled. These results, which

confirm previously reported TCP throughput analysis [13],

indicate that there is a break-even transfer size—for transfers

larger than this size, the performance benefit of CAM out-

weighs the transition cost. The particular break-even size is

dependent upon the data rate supported by the 802.11b card in

each mode and the card’s transition costs. STPM determines

the break-even point for each card and switches to CAM when

an application discloses that a forthcoming transfer will exceed

the break-even size.

However, applications such as NFS are dominated by small

transfers. For such applications, a proactive strategy is needed

to amortize transition costs across multiple transfers. When a

proactive strategy determines that a large number of transfers

will soon occur, it switches to CAM, and then switches back to

PSM after the last transfer. In the NFS example, the cumulative

reduction in latency across all RPCs far exceeds the transition

cost of changing power modes.

Clearly, the difficulty in implementing a proactive strategy

is that it requires knowledge of the number of transfers that

will occur in the near future. Applications like NFS and the

X server do not have this information because they receive

each application request sequentially. One possible approach

would be for applications like ls and make to provide hints of

future network activity. We rejected this approach because

it requires modification of programs that are not normally

network-aware. Further, since such applications do not usu-

ally care which type of file system they are using and do not

know which blocks a file system may have cached locally, they

do not know which requests will cause network activity.

Our approach is to have network-aware processes like NFS

and the X server simply disclose the start and end of each

transfer. STPM monitors the inter-arrival time of transfer hints,
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as well as the number of transfers that are closely correlated

in time—we refer to such clusters of transfers as runs. Using

an empirically-collected distribution of run lengths, STPM

calculates the expected number of transfers in the current run

given the number that it has already been seen. It then performs

a cost-benefit analysis to determine if it should switch to CAM.

For example, STPM might decide to switch to CAM after three

short transfers occur close together, and also to switch back to

PSM when 300 ms pass without a further transfer. The details

of how this decision is made are explained in Section 4.3.

It is important to note that STPM supports both reactive

and proactive strategies. For example, consider a hypothetical

network interface that has negligible transition costs. Since

the break-even transfer size is effectively zero, STPM would

switch to CAM at the start of each transfer and return to

PSM when the transfer completes. Although STPM’s proac-

tive mechanisms would be unused, STPM would benefit fully

from the low transition costs.

3.3. Respect the critical path

Latency is often critical when data transfers are driven by an in-

teractive application. The perception threshold beyond which

delays become noticeable to human users is quite small—

typically it is cited as being between 50 ms and 200 ms [6,15].

This means that only a few small transfers in PSM can cause a

noticeable delay, and that the cumulative delay for operations

such as NFS directory listings may certainly prove frustrating

to the user. Thus, it is critical to disable power management

when the network is being used by an interactive application.

However, there is also a substantial amount of network traf-

fic for which latency is not critical. For example, the Coda

distributed file system prefetches file data from servers to

improve performance and guard against disconnection [12].

Coda also writes file modifications back to the server asyn-

chronously [18]. For both prefetching and asynchronous

writes, latency is not a critical constraint since a human user

is not waiting for the transfer to complete. Similarly, stream-

ing multimedia applications that buffer data on the client can

tolerate delays commensurate with their buffer sizes.

To differentiate between these two types of network traf-

fic, STPM enables applications to hint whether a transfer is

a foreground transfer, in which latency is a constraint, or a

background transfer that is not time-critical. In the former

case, STPM tries to both reduce transfer time and conserve

energy—in the latter case, STPM considers only energy con-

servation.

3.4. Embrace the performance/energy tradeoff

Disabling the 802.11 wireless interface reduces power con-

sumption but increases the latency of packet delivery, creating

an inherent tradeoff between performance and energy conser-

vation. While this tradeoff seems unavoidable, it is important

to evaluate it in the context of a mobile user’s activity. If the mo-

bile computer has a fully-charged battery and the user intends

to operate on battery power for only a short time, then en-

ergy conservation is unnecessary, and the user should choose

a power management strategy that maximizes performance.

However, if the mobile computer’s battery is nearly exhausted,

then energy conservation is of primary importance.

A power management policy that statically balances these

two competing goals cannot be correct in both contexts. In-

stead, a tunable strategy is needed. STPM provides a “knob”

that can be adjusted to reflect different relative priorities for

energy conservation and performance. Users can set the knob

to maximum performance when they intend to operate on bat-

tery power for only a few minutes—STPM responds by keep-

ing the wireless interface continuously active to minimize la-

tency. We envision that STPM’s knob might be set by higher-

level energy-aware OS components such as Ecosystem [28] or

Odyssey [7].

3.5. Adapt to the operating environment

To set the correct power management policy, STPM must un-

derstand not only the energy characteristics of the network

interface, but also those of the computer using the interface.

The goal of power management is to extend a mobile com-

puter’s battery lifetime—this means that the energy usage of

the entire computer must be minimized, not simply that of the

network interface.

To illustrate the difference, consider a hypothetical power

management mode that reduces network power usage by 50%

from 2 Watts to 1 Watt, but delays interactive activities by 10%.

If this mode were employed by a handheld with a base power

usage of 2 Watts, the total power of the mobile computer and

interface would be reduced by 25% from 4 Watts to 3 Watts.

Since interactive activities now take 10% longer to complete,

the total energy used for each activity would be reduced by a

still respectable 17.5%. However, if this mode were employed

by a laptop with a base power usage of 15 Watts, total power

would only be reduced by 5.9%. Further, the total energy used

to perform interactive activities would actually increase by

3.5%.

This example illustrates two points. First, when used incor-

rectly, network power management can decrease the amount

of useful work that a user can accomplish on battery power.

Second, the correct power management strategy for one de-

vice may be inappropriate for the system as a whole. STPM

avoids these pitfalls by explicitly considering the base power

usage of the mobile computer.

4. Implementation

As shown in figure 3, we have implemented self-tuning wire-

less network power management as a Linux loadable kernel

module. Applications link with a user-level library and dis-

close hints to the STPM module about their intent and ac-

tivities. The library implements the STPM API described in

Section 4.1 by first opening a Linux pseudo-device and then

making ioctls on the device whenever an application calls

a STPM function. This implementation enables the STPM
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Figure 3. STPM software architecture.

module to detect when applications terminate and cancel any

outstanding hints that the application made before exiting. Fur-

ther, the kernel implementation improves performance by min-

imizing user-kernel boundary crossings.

The STPM module has two further inputs. First, the base

power and current tradeoff between energy conservation and

performance may be set by an energy-aware operating sys-

tem [7,28] or by a user-level configuration tool. Second, for

each wireless network card, the STPM module loads a device-

specific characterization of power usage and transition costs.

Section 4.2 describes how we derive these characterizations

by executing a benchmark suite. The characterization is in-

stantiated as a code component that is loaded by the STPM

module in much the same way that the operating system loads

the device driver for the wireless network card. Currently, the

creation of each card-specific component is a manual task, but

we plan to have our benchmark suite automatically create such

components in the future.

Section 4.3 details the STPM algorithm that decides when

to transition the power mode of the wireless network card.

This algorithm is the simplest we could envision that meets

the design principles of Section 3.

In Section 4.4 we describe our support for legacy applica-

tions that have not yet been modified to disclose hints. This

support is implemented by an additional kernel module that

snoops on network traffic at the IP layer and employs heuristics

to generate hints on behalf of unmodified applications.

4.1. API

Figure 4 shows the STPM API. Applications use the

first three functions to disclose hints about wireless net-

work usage. Before each data transfer, an application calls

TransferHintBegin and specifies whether the forthcoming

transfer represents background or foreground activity. The ap-

plication may optionally specify the expected amount of data

to be sent and received. If the application leaves these values

unspecified, the forthcoming transfer is assumed to be small.

TransferHintBegin returns a unique identifier that the ap-

plication later passes to HintEnd to specify that the transfer

has completed. When an application terminates, the STPM

module ends any outstanding hints for which the application

has not called HintEnd.

Figure 4. Wireless power management API.

Processes that are listening for incoming packets may call

ListenHintBegin to specify the maximum delay due to

power management that they are willing to tolerate for incom-

ing packets. This function also returns a unique hint identifier

that may be passed to HintEnd to terminate the listen hint.

The SetKnob function adjusts the relative importance of

performance and energy conservation. The value of the knob

ranges from 0 to 100, where 0 represents maximum energy

conservation and 100 represents maximum performance. The

SetBasePower function specifies the base power usage of the

mobile computer.

4.2. Characterizing network power costs

Wireless network interfaces differ substantially in the types of

power saving modes that are supported and in the power that is

used in each mode. Several 802.11b cards have custom adap-

tive algorithms implemented in firmware—examples include

the Cisco Aironet 350 and Intel PRO/Wireless 2011B cards.

In addition, we have found that the power usage of different

cards can vary by a factor of two and that the transition cost

of switching power modes differs by as much as 150 ms.

Our approach to handling this variability is to create a

benchmark suite that can characterize the power usage of

each new network interface card that we encounter. While

running the benchmark suite, we use a digital multimeter to

sample the current drawn by a mobile computer. We remove

the batteries from the computer and sample current on the in-

put power line. Since voltage is almost constant when power

is drawn from the external power supply, current measure-

ments alone are sufficient to determine power usage. Cur-

rent samples are collected approximately 50 times per second.

Many of our benchmarks require communication with a re-

mote computer. For this purpose, we run a server program on

a nearby computer that is LAN-connected with the wireless ac-

cess point. The server program sends and receives bytes when

requested.

The benchmark suite first measures the base power of the

mobile computer—this is the power used when the machine is

idle and the network card is not inserted. For each benchmark

activity, we subtract the base power from the measured power

usage to derive the additional power consumed by the activity.

Next, the benchmark suite measures the power used by the

card in each mode. Every card that we have encountered sup-

ports at least CAM and PSM. Some support further adaptive

modes that switch between CAM and PSM depending upon

recent incoming traffic load. It may also be possible to disable

the interface without turning the card completely off. For ex-

ample, when the Cisco Aironet 350 interface is disabled, card
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Figure 5. Power usage of two 802.11b cards.

power usage is reduced by 150 mW. This saves less power

than turning the card off completely but requires less time and

energy for transitions.

The benchmark suite characterizes the cost of transitions

between each supported power mode. It first initiates a mode

transition and then exchanges a one byte ping with the server.

The reported transition time is measured from the start of the

mode change operation to the receipt of the ping response.

The energy cost of the transition is the energy consumed by

the network card during this interval (the cost of sending and

receiving a byte is not significant within the granularity of our

measurements).

The benchmark suite completes the characterization by

measuring the power used to send and receive data in each

power mode. It first sends 4 MB of data to the server us-

ing TCP and measures the average power usage. It then mea-

sures the average power used when the server retransmits the

buffer to the client. Additionally, it measures the time to per-

form each transfer, which gives us an estimate of the max-

imum data rate that can be achieved in each power mode.

Figures 5 and 6 show the results of running our benchmark

suite for the Cisco Aironet 350 and Orinoco Silver PCMCIA

cards.

Card characterization allows STPM to tune its behavior

to the specific type of network card being employed. This

modular approach means that we do not need to modify the

STPM algorithm for each new type of wireless card. The

benchmark suite takes approximately two hours to execute—

however, characterization need only be done once for each

model of wireless card. Ideally, a card manufacturer could run

the benchmark suite and provide the characterization as part

of the device driver.

4.3. Setting the power management policy

In this section, we describe the STPM algorithm. For the pur-

pose of discussion, we first assume that the network card

supports only two power modes: CAM and PSM. For such

cards, STPM must decide when to transition to CAM and

when to transition back to PSM. The next two sections de-

scribe how STPM makes these decisions. Section 4.3.3 then

discusses how we generalize STPM to support cards with more

than two power modes.

4.3.1. Transition to CAM

STPM transitions from PSM to CAM when:

� any application specifies a delay tolerance less than the

maximum latency of PSM.

� any application discloses that the forthcoming transfer will

be large enough such that the expected cost of perform-

ing the transfer in PSM is larger than the expected cost of

switching to CAM and then performing the transfer.

� any application discloses a forthcoming transfer and, based

on recent access patterns, STPM expects that there will

be enough subsequent short transfers that the cumulative

benefit of switching to CAM for the forthcoming transfers

will be greater than the transition cost.

The first case is straightforward. The maximum delay of

PSM is equal to the beacon interval, typically 100 ms. If a

listen hint is specified that is less than the beacon interval,

STPM switches from PSM to CAM.

Whenever a new transfer hint is disclosed, STPM checks

for the second case. STPM performs a cost/benefit analysis

Figure 6. Cost of mode transitions.
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by estimating the time and energy to perform the forthcoming

transfer in both PSM and CAM. Through the transfer hint,

the application has disclosed the expected number of bytes to

send, Bs , and receive, Br . The expected time, T , to perform

the transfer is:

T = L + Bs/DRs + Br/DRr (1)

where the expected data rate for sending, DRs , and receiv-

ing, DRr , data in each mode is given by the card-specific

characterization—this assumes that the wireless link is the

bandwidth bottleneck in the transfer. The expected latency,

L , is measured directly for CAM by observing the shortest

time to complete a transfer over the recent past. For PSM,

the expected latency is the CAM latency plus half the beacon

interval.

The expected energy, E , to perform the transfer is calcu-

lated using the specified base power of the mobile computer,

Pb, and the measured power usage of the card when idle, Pi ,

sending data, Ps , and receiving data, Pr . For each mode:

E = L × (Pi + Pb) + Bs/DRs × (Ps + Pb)

+ Br/DRr × (Pr + Pb) (2)

Since equation (2) includes base power, it estimates the total

energy used by the entire mobile computer, not just the network

interface.

STPM calculates the total cost of switching to CAM by

adding the estimated time and energy to perform the transfer

in CAM to the transition costs given by the card-specific char-

acterization. It compares the results to the estimated time and

energy to perform the transfer in PSM. STPM transitions the

card when it predicts that doing so will both save energy and

improve performance. However, sometimes STPM estimates

that a transition will improve either performance or energy

conservation while hurting the other goal. In such cases, it

uses the value of the knob that specifies the relative trade-

off between performance and energy conservation to decide

whether to transition the card. Given n strategies, each of which

has estimated time and energy costs, Tn and En , STPM first

calculates the mean time, T̄ , and energy, Ē , used by all strate-

gies being compared. It then calculates a relative cost for each

strategy, Cn as:

Cn = (Tn/T ) × knob + (En/E) × (100 − knob) (3)

For foreground hints, knob is the specified relative tradeoff be-

tween performance and energy conservation, ranging in value

between 0 and 100. The intuition is that the time and energy

values are first normalized by dividing them by the mean of

the time or energy values being compared, then the knob is

used to assign a relative weight for determining the final cost

of the mode. For background hints, the knob is set to 0—since

the transfer is latency-insensitive, only energy usage is con-

sidered.

In the third case, the time and energy of a single transfer

is insufficient to justify switching to CAM. However, several

subsequent transfers are expected and the time and energy

saved over all transfers is expected to exceed the transition cost.

To make this determination, STPM estimates the likelihood

that subsequent transfers will occur in the near future.

STPM generates an empirical probability distribution of

transfer hint frequency by observing the arrival of transfer

hints. It maintains a histogram of the number of foreground

transfer hints that occur closely correlated together in time.

We refer to each such group of correlated hints as a run. A

run begins when the first transfer hint is issued and ends when

150 ms pass with no foreground transfer being in progress.

We chose 150 ms to differentiate the communication patterns

of programs such as Web browsers that are driven by a human

user from those of programs such as NFS that issue multiple

sequential requests without human intervention. Our goal is to

have each run correspond to a single interactive activity such

as a NFS directory listing.

The run length is the number of foreground transfers issued

during a run. STPM maintains a 1024 bucket histogram of

observed run lengths—if a run exceeds 1024 transfers, STPM

records it as having length 1024. The histogram data is period-

ically read from a /procfile system interface and saved to disk

by a user-level daemon. When the module is first loaded, the

daemon provides the initial histogram values from the saved

data. In this fashion, STPM maintains data across reboots.

Currently, histogram entries are persistent, but we plan to

investigate how histogram values can be aged to allow the

module to adapt quicker to changes in network access patterns.

We also plan to investigate the benefits of maintaining per-

application histograms. The current approach of maintaining

a single histogram for the client allows STPM to aggregate

the access patterns of concurrently executing applications; yet,

we feel that per-application histograms might allow STPM to

adapt better to changing workloads.

We use the histogram to calculate the expected cost of

switching to CAM prior to the nth transfer in each run. The

expected time, Tn , to execute a run if a switch to CAM is done

before the nth transfer is:

Tn =

n−1∑

i=1

LPSM × P(r ≥ i) +

1024∑

i=n

LCAM × P(r ≥ i)

+ TT C × P(r ≥ n) (4)

P(r ≥ x) is the probability that a run will equal or exceed

length x—STPM derives this value from the run length his-

togram. TT C is the time to switch to CAM. The intuition behind

this equation is that STPM adds the total expected latency for

transfers performed in PSM, the expected latency for transfers

in CAM, and the expected transition time to derive the total

expected time to execute the run of transfers. Similarly, STPM

calculates the expected energy usage, En , as:

En =

n−1∑

i=1

LPSM × (PPSM idle + Pb) × P(r ≥ i)

+

1024∑

i=n

LCAM × (PCAM idle + Pb) × P(r ≥ i)

+ (ET C + (TT C × Pb)) × P(r ≥ n) (5)
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Using equations (4) and (5), STPM calculates the expected

time and energy if it switches to CAM after an application

issues the nth foreground transfer hint in a run. Addition-

ally, STPM calculates the expected time and energy if it never

switches to CAM. It uses equation (3) to compare the different

policies and chooses the one that has the minimum cost. Since

this calculation is relatively time-consuming (2 ms) and the

input data is slow to change, STPM performs this calculation

every 10 minutes.

4.3.2. Transfer to PSM

STPM transitions from CAM to PSM when no transfers are

in progress, no application has specified a delay tolerance less

than the maximum latency of PSM, and it estimates that the

network interface will be idle long enough to overcome the

transition costs of switching modes. To aid in this decision,

STPM maintains a 1024 bucket histogram of the length of

the interval between each run. Each bucket corresponds to a

100 ms period; extremely long intervals are recorded as having

the maximum value of 102.4 seconds. The interval histogram is

maintained in an identical fashion to the run length histogram

described in the previous section.

STPM transitions to PSM when it believes that the ex-

pected benefit of reduced power usage during the forthcoming

idle period most exceeds the performance and energy cost of

beginning the next run in PSM instead of CAM.

The expected time and energy to perform the next run

starting in PSM, Tinit PSM and Einit PSM , have already been

calculated—these values are the expected time and energy of

the policy chosen in Section 4.3.1. The expected time and en-

ergy to perform the next run starting in CAM, Tinit CAM and

Einit CAM , are:

Tinit CAM =

1024∑

i=1

LCAM × P(r ≥ i) (6)

Einit CAM =

1024∑

i=1

LCAM × (PCAM idle + Pb) × P(r ≥ i) (7)

These equations assume small data transfers. Therefore, trans-

fer time is dominated by latency, LCAM, and card power usage

is assumed to be close to its measured idle usage, PCAM idle.

STPM next calculates the expected time and energy costs of

switching to PSM n/10 seconds after the end of the previous

run—these values correspond to the 100 ms histogram buck-

ets. The expected time is:

Tn =

1024∑

i=1

0.1 × P(l ≥ i) + Tinit PSM × P(l ≥ n)

+ Tinit CAM × P(l < n) (8)

STPM calculates P(l ≥ n), the probability that the interval

length will be greater than n/10 seconds, using the interval

histogram. The first line of the previous equation is the ex-

pected length of the current interval, and the second line is the

expected time to perform the succeeding run. The energy cost

of switching to PSM n/10 seconds after the end of the previous

run is calculated similarly:

En =

n−1∑

i=1

0.1 × (PCAM idle + Pb) × P(l ≥ i)

+

1024∑

i=n

0.1 × (PPSM idle + Pb) × P(l ≥ i)

+ Einit PSM × P(l ≥ n) + Einit CAM × P(l < n) (9)

STPM calculates the expected time and energy costs of switch-

ing to PSM at each 100 ms interval, as well as the expected

cost of remaining in CAM. It then chooses the policy that min-

imizes equation (3). This calculation is also performed once

every ten minutes, at the same time that STPM decides when

to switch to CAM.

4.3.3. Generalizing the model

The previous two sections have shown how STPM creates a

transition policy for a card that supports only PSM and CAM.

For cards that support more than two modes, there are many

more possible policies from which STPM could choose. For

instance, after a period of time with no transfers, STPM could

transition the Cisco card from CAM to PSM, it could disable

the card, or it could decide to switch to PSM and later disable

the card if no further transfers occur for another period of

time.

Since the number of possible strategies grows exponentially

with the number of modes, we employ a heuristic to limit the

search space. STPM first calculates the lowest cost policy that

transitions to each mode. It then calculates the lowest cost

hybrid policies that switch to one mode at the time calculated

for the single-switch policy, then make a further transition at

some later time. For example, STPM might decide that the

lowest cost single-transition policy is to switch to PSM after

300 ms. It would then consider hybrid policies that switch

to PSM after 300 ms and disable the card after some further

period of time. Since most cards support only a few power

modes, this strategy is computationally feasible.

4.4. Support for unmodified applications

We cannot reasonably expect all applications to be modified to

use STPM. We must therefore support unmodified applications

as best as possible. The strategy that we employ is to identify

applications that are not disclosing hints, observe their network

traffic, and issue hints on their behalf. Clearly, unmodified ap-

plications cannot hope to realize the full benefit of STPM. Two

of the five design principles outlined in Section 3, knowing ap-

plication intent and respecting the critical path, require explicit

application hints. Since hints issued on behalf of unmodified

applications are generated using heuristics, they often will be

less accurate than hints explicitly issued by modified applica-

tions. So, we expect that STPM will provide less benefit for

unmodified applications than it provides for modified ones.

However, the remaining three design principles require no
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Figure 7. STPM for unmodified applications.

explicit application support. Thus, we expect that unmodified

applications will still benefit from STPM.

As shown in the figure 7, we support unmodified applica-

tions by inserting a hinting module into the Linux kernel. The

hinting module intercepts incoming and outgoing packets at

the IP layer by adding a protocol handler to the network stack

using the Linux dev add pack system call.

4.4.1. Detecting unmodified applications

Since the hinting module observes all network traffic on an

interface, it is able to detect the presence of unmodified appli-

cations. It maintains a hash table that maps network ports to

the processes that are reading from and writing to those ports.

When the hinting module detects a packet that is being sent

from or received by a port that is not in the hash table, it first

determines the process that is associated with the new port.

It then queries the STPM module to determine whether that

process is disclosing hints. It adds the new port to the hash

table, marking it as belonging to either a modified (hinting) or

unmodified (non-hinting) application.

After the hinting module creates a mapping of port to pro-

cess for the first packet, it can consult its hash table on the

arrival of subsequent packets to determine whether the asso-

ciated application is modified. The drawback of caching this

mapping is that the hinting module will fail to detect an unmod-

ified application that uses a port number that was previously

used by a modified application. However, we expect this case

to be extremely rare since Linux seldom reuses dynamically

allocated port numbers. We further minimize the chances of

this happening by evicting stale mapping from our hash table

after two hours. In the unlikely event that an unmodified ap-

plication is not detected, it will not benefit from using STPM.

4.4.2. Generating hints for unmodified applications

The STPM module uses hints to determine when transfers

are taking place and whether those transfers represent back-

ground or foreground activity. The hinting module generates

these hints for unmodified applications by observing the pat-

tern of incoming and outgoing packets. The hinting module

conservatively assumes that all transfers are foreground ones

Figure 8. Example of a hinting strategy.

and latency-sensitive. It further assumes that all transfers are

initiated by the mobile client. These two assumptions hold

true for many common sources of network traffic, including

communication with file, web, and mail servers.

Given these heuristics, the remaining problem faced by the

hinting module is one of determining when each transfer be-

gins and ends. Essentially, we need to define what constitutes

a transfer by only observing the network activity. The hinting

module assumes that packets with closely correlated arrival

times are part of the same transfer. Since it also assumes that

all transfers are client-initiated, outgoing network packets are

considered to be part of the request and incoming packets are

considered to be part of the response.

Specifically, the hinting module uses the expected round-

trip time (RTT) to differentiate when one transfer ends and

the next begins. If the inter-arrival time between two outgoing

packets is less than half the expected round-trip time, then the

two packets are considered to be part of the same request. We

assume that each transfer is initiated only after the previous

transfer has completed. If the gap between the two packets is

much smaller than the expected round-trip time, it is unlikely

that the second packet represents a new request issued after

receiving a response to the first packet. Of course, this heuristic

performs poorly if an application issues concurrent transfers.

In that case, higher-layer knowledge such as explicit hints is

needed to differentiate the transfers.

To illustrate this algorithm, figure 8 shows a sample time

sequence of several outgoing packets. Using the heuristic de-

scribed above, these packets are grouped into three distinct

transfers because there are two idle periods that exceed half

the expected round-trip time.

The hinting module considers all incoming packets on a net-

work port to be part of the response to the last request that was

issued. If no network activity occurs for a period that exceeds

twice the round-trip time then the current transfer is assumed

to have completed. Note that some timeout is necessary be-

cause if the last transfer is never assumed to complete, then

the STPM module will not be able to transition the network

interface to PSM.

Figure 9 shows a sample time sequence of several incoming

and outgoing packets. As in figure 8, these packets are grouped

into three distinct transfers. Since the gap between the third

and fourth outgoing packets exceeds half the expected round-

trip time, a new transfer, T2, is considered to begin with the

fourth outgoing packet. All incoming packets prior to this are

considered to be part of the first transfer, T1. Between transfers

T2 and T3 there is a long idle period. After the network has

been idle for twice the expected round-trip time, transfer T2 is

assumed to have completed; the STPM module may transition
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Figure 9. Example of hinting strategy with incoming and outgoing packets.

the network to PSM at this point. The next transfer, T3, begins

when the next outgoing packet is observed.

The hinting module estimates round-trip time for each port

using a weighted average of recent transfer times, in a manner

similar to that employed by Noble [20] and Kim [11]. Un-

fortunately, we can only heuristically determine when trans-

fers begin and end. We therefore base our estimation only

upon round-trip time observations in which we have reason-

able confidence. Specifically, we use only the round-trip time

of transfers that begin after a long idle period because we are

reasonably certain about the start time of such transfers.

Our task is complicated even further because round-trip

time depends upon the current power-saving mode of the net-

work interface. When the card is in PSM, we use the beacon

period of the access point as the expected round-trip time.

When the card is in CAM, we estimate round-trip time using

the method described above.

Figure 10 shows the pseudo code for our hinting module.

ReceivePacket is called when the hinting module observes

an incoming packet, and SendPacket is called when the mod-

ule observes an outgoing packet.

5. Evaluation

How much does self-tuning power management improve ap-

plication performance and extend mobile computer battery

lifetime?

To answer this question, we modified several network-

intensive applications to disclose hints and measured appli-

cation performance and energy usage when our self-tuning

power management algorithm was used. We compared these

results to those achieved using the static and adaptive power

management algorithms natively supported by the 802.11b

cards in figure 5.

5.1. Methodology

The primary client platform for our evaluation is a HP iPAQ

3870 running the Linux 2.4.18-rmk3 kernel. This handheld

computer has a 206 MHz StrongArm processor, 64 MB of

DRAM, and 32 MB of flash memory. The measured base

power of the iPAQ (when idle with no network card inserted) is

1.44 Watts. Unless otherwise noted, the client uses the Cisco

802.11b card described in figure 5 to communicate with a

Cisco Aironet 350 wireless access point with 100 ms beacon

interval. The server in our experiments is a Dell Precision

350 with 3.06 GHz processor and 1 GB DRAM running the

Figure 10. Pseudo code for the hinting module.

Linux 2.4.18–19.8.0 kernel—the server and access point are

connected with a 100 Mb/s switch.

The Cisco PCMCIA card supports three power modes:

CAM, where no power management is used; PSM-static,

where the card’s receiver is periodically disabled to save

power; and PSM-adaptive, which switches between PSM-

static and CAM depending upon the incoming traffic load.

Since PSM-adaptive is implemented in the card firmware, it

can change power modes faster than our STPM module—

our measurements indicate that PSM-adaptive almost always

transitions in less than 100 ms. In contrast, because STPM is

implemented as a kernel module, its transition costs are ap-

proximately 400 ms.

We investigated the benefits of self-tuning power manage-

ment for four network-intensive application scenarios: file ac-

cess using the Coda distributed file system, file access us-

ing NFS, playing streaming audio using Xmms, and hosting

thin-client remote X applications. We first ran each scenario

using the power management methods natively supported

by the 802.11b card. We then executed each scenario using

STPM.
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Unless otherwise noted, the tuning knob for STPM was set

at 50 to equally weight performance and energy conservation.

We also warmed the STPM prediction algorithm by specifying

an initial probability distribution for network accesses. The al-

ternative approach, starting with no access history, leads to a

short period of initial volatility that makes experiments less re-

peatable. Further, the warming approach better reflects STPM

steady-state performance.

To generate the initial access distribution, we replayed a

trace of distributed file system accesses using Mummert’s DF-

STrace tool [18]. This tool re-executes previously recorded

file system operations such as open and mkdir, preserving the

inter-arrival time of each system call. We replayed a 30 minute

segment of Mummert’s purcell trace—this trace captures

interactive software development activity such as file editing

and compilation. We placed the files accessed by the trace

in the Coda distributed file system [12]. During trace replay,

the STPM kernel module observed Coda’s network activity

as it communicated with a file server to read and write data.

We saved the access distribution observed by our module and

used it to warm the STPM module before the execution of each

scenario.

For each experiment, we measured application perfor-

mance using the gettimeofday system call. To obtain energy

measurements, we removed the iPAQ’s batteries and powered

the handheld through its external power supply. We sampled

the current drawn by the iPAQ approximately 50 times per

second using an Agilent 34401A digital multimeter. We cal-

culated system power usage by multiplying each current sam-

ple by the mean voltage drawn by the iPAQ—separate voltage

samples are not necessary since the variation in voltage drawn

through the external power supply is very small. The total en-

ergy consumed by the system over a specific period of time is

the sum of the power samples during that period multiplied by

the measurement interval.

Figure 11. Benefit of STPM for Coda.

5.2. Coda distributed file system

We first examined the effectiveness of STPM for Coda file

system [12] activity. Coda presents a single file system im-

age across multiple computers by reading file data accessed

by a client from remote file servers and writing modifica-

tions made on the client back to the servers. Coda caches file

data on the client to improve performance and guard against

disconnection—on the iPAQ, we used a 16 MB DRAM-based

Coda cache. Since Coda uses RPCs for communication, we

modified the Coda client to call TransferHintBegin be-

fore issuing each RPC and HintEnd after the RPC completes.

The vast majority of Coda RPCs are synchronous—for these

RPCs, we issue foreground hints. Although we issue back-

ground hints when Coda performs asynchronous writes and

prefetches, these activities occur infrequently in our experi-

ments. When Coda starts, it specifies a listen hint that is a

fraction of the RPC timeout value—this ensures that server-

initiated RPCs arrive at the client promptly. These modifica-

tions added 235 lines of source code.

To generate a realistic access pattern, we again used Mum-

mert’s purcell trace. From the trace, we selected a different

trace segment than the one that we used to warm the STPM

access history. The selected trace segment has 10,000 file op-

erations and includes, in total, 42.8 minutes of delay between

file operations. These delays typically represent user think

time, but can also reflect application processing such as the

time for gcc to compile a program. DFSTrace sleeps for the

recorded inter-arrival time before issuing the next file request,

so an infinitely fast system would complete trace replay in 42.8

minutes.

5.2.1. Handheld results

We first replayed the trace using the iPAQ handheld with the

Cisco PCMCIA card—figure 11 shows the results. Since



462 ANAND, NIGHTINGALE AND FLINN

CAM uses no power management, it yields the best possible

performance. However, its energy cost is significantly higher

than the other strategies. PSM-static (i.e. default 802.11 power

management) reduces energy usage but has very poor perfor-

mance, delaying trace execution by an additional 15 minutes.

The dashed line in the rightmost graph shows the total amount

of think time in the trace—thus, the cumulative delay added

due to file system activity and power management is shown

by the portion of each bar that exceeds the dashed line. This

delay is especially bad for interactive applications because

it represents time that the user must waste waiting for the

application making the file accesses to respond. The Cisco

card’s PSM-adaptive strategy does substantially better by dy-

namically switching between PSM and CAM depending upon

traffic load. Compared to CAM, PSM-adaptive adds only 6

minutes of cumulative delay and reduces energy usage 14%.

We next replayed the trace on the same hardware using

STPM. To provide a fair comparison with card-based power

management, we first limited STPM to use only CAM and

PSM, i.e. only those modes available to the PSM-adaptive

strategy. STPM initially chose to switch to CAM before the

3rd transfer hint in each run and to switch to PSM after 300 ms

with no foreground activity. During trace replay, STPM usually

became slightly more aggressive and switched to PSM after

only 200 ms.

Compared to PSM-static, STPM reduces cumulative delay

by 80% and energy usage by 21%. In figure 11, cumulative

delay is compared by examining the height above the dashed

line for each bar. Compared to PSM-adaptive, STPM reduces

cumulative delay by 58% and energy by 14%. Compared to

CAM, STPM adds slightly more than a minute of cumulative

delay, but reduces energy consumption by 32%. This means

that STPM allows the user to accomplish 48% more work

before the battery expires.

How much more energy reduction is feasible? The min-

imum trace execution time, 44:45 minutes, is given by the

time to execute the trace with the card in CAM. The min-

imum power usage, 1.83 Watts, occurs when the card is in

PSM and no data is sent or received. The product of these two

values, 4914 Joules, is a lower bound on the minimum en-

ergy usage achievable by an adaptive strategy that switches

between CAM and PSM. This loose lower bound shows

that an optimal strategy could at best be 10% more energy-

efficient than STPM. Further, this lower bound is unachiev-

able since it omits the cost of sending data, receiving data,

and state transitions—thus, STPM is probably much closer to

optimal.

When we allow STPM to disable the Cisco card, it reduces

energy usage by an additional 8% as shown by the bars la-

belled “STPM+” in figure 11. The mean cumulative delay in-

creases slightly but the difference between STPM and STPM+

is within experimental error. This demonstrates an important

advantage of STPM: we did not design an entirely new algo-

rithm to take advantage of the new power management mode.

We simply made the benchmark data for disabling the card

available to the STPM module and provided a function that

performed the relevant state transitions. STPM automatically

determined the instances in which the new power mode could

be profitably employed.

One downside of STPM+ is that disabling the network in-

terface prevents the client from accepting remote connections

for ssh, telnet, or similar applications. In contrast, STPM only

slightly delays such connections. To support remote connec-

tions, STPM+ could periodically poll for incoming connec-

tions at an interval specified by a global listen hint. Alterna-

tively, the client could use an external signaling mechanism

such as wake-on-wireless [23] to detect new connections and

use STPM+ to manage the interface state after connection es-

tablishment.

5.2.2. The importance of base power

To demonstrate how well STPM adapts to different hardware

platforms, we also replayed the Coda trace on an IBM T20

ThinkPad laptop computer. The base power of the laptop,

15.8 Watts, is an order of magnitude greater than that of the

iPAQ.

Figure 12 shows a disturbing result: both PSM-static and

PSM-adaptive increase the total energy used to replay the

trace! This occurs because the wireless network represents

only a small portion of the total power used by the laptop.

While switching to PSM reduces the power used by the PCM-

CIA card by 72%, it only reduces total system power by 6%.

Further, PSM-static and PSM-adaptive both increase the time

needed to complete the trace because they delay file oper-

ations. Although this increase is only about 6 minutes for

PSM-adaptive, laptop power usage exceeds 15 Watts during

such delays. Thus, as base power increases, the benefit of PSM

is less during periods without network activity, and the cost

of PSM is higher during periods with frequent network ac-

tivity. This implies that power management should be more

conservative as base power increases.

The energy usage and performance of STPM on the laptop

is shown by the fourth bar in each graph in figure 12. Because

STPM accounts for base power, it is considerably more conser-

vative when running on the laptop. On average, it only enters

PSM after 15 seconds of inactivity. This strategy works: STPM

decreases total system energy usage by 2.6% while increasing

the total time to execute the trace by only 1.5%. When STPM

is allowed to disable the card, results do not change much. The

module rarely disables the wireless card because the benefit is

so slight—disabling the card reduces system power usage by

less than 1% compared to PSM.

5.2.3. Exploiting the performance/energy tradeoff

Using the iPAQ and Cisco card, we explored the impact of

changing the performance/energy knob for STPM. Figure 13

plots the tradeoff between energy usage and the execution time

for the purcell trace. The square marks show the three native

modes supported by the Cisco card, while the circles show

STPM with five different knob settings. When the knob for

STPM is set to 100, the performance is equivalent to CAM

(PSM is employed once at the beginning of the trace, ac-

counting for a slightly lower energy usage). The remaining

four marks show that as the knob value is decreased, energy
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Figure 12. Coda results on IBM T20 laptop.

Figure 13. The performance/energy tradeoff.

conservation improves but performance is decreased. Knob

values below 70 yield an equivalent strategy to that realized

with a knob value of 0, and hence have the same performance

and energy usage.

These results have a powerful property: decreasing the knob

value never yields increased energy usage, and increasing the

knob value never yields reduced performance. It is clear that

the effect of changing the knob value is non-linear. For in-

stance, changing the knob from 100 to 95 substantially reduces

energy usage, but changing the knob value from 70 to 0 has

no effect. Partly, this occurs because STPM will not choose an

inferior strategy if another is available that is expected to yield

better performance and energy conservation. For instance, one

might expect that STPM would behave identically to PSM-

static with a knob value of 0. However, the strategy chosen by

STPM yields better performance and greater energy conser-

vation than PSM-static.

5.2.4. Benefit of application hints

We next examined the effectiveness of our hinting module

by running an unmodified version of Coda that does not dis-

close any STPM hints. The first goal for this experiment was

to determine whether STPM can improve application perfor-

mance and energy conservation even without explicit appli-

cation hints. The second goal was to quantify the additional

benefit that can be realized by modifying applications. We ran

this experiment on the iPAQ handheld using the Cisco PCM-

CIA card.

The results in figure 14 are the same as those in figure 11 ex-

cept for the additional bars labeled “STPM-unmodified” that

show results for STPM using the hinting module described in

Section 4.4.2. These results show that STPM with the hint-

ing module substantially outperforms both PSM-static and

PSM-adaptive. Compared to PSM-static, STPM-unmodified

reduces energy usage by 16% and improves latency by 72%.
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Figure 14. Benefit of the hinting module for Coda.

However, STPM-unmodified performs poorer than STPM

with explicit application hints. The unmodified version of

Coda requires 5% more energy to execute the trace and takes

8% longer. This difference can primarily be attributed to the

fact that hinting module must rely on heuristics to determine

when each transfer begins and ends. These heuristics will

sometimes be incorrect, especially when dealing with con-

current transfers. In contrast, the explicit hints provided by the

applications are always accurate.

Overall, these results show that STPM with the hinting

module is able to improve performance and save energy even

without explicit hints. This provides some evidence that the

heuristics we are employing are reasonable. During trace ex-

ecution, we found that STPM with the hinting module was

more aggressive in switching to CAM and a more conservative

in switching back to PSM. For example, STPM with explicit

hints switches to CAM after observing three transfers in a row,

STPM without hints switches to CAM after observing one or

two transfers.

We should note that Coda is a good target application for

STPM-unmodified because its behavior closely matches the

assumptions made by the hinting module. Most of Coda’s

transfers are client-initiated and the majority of transfers are

foreground requests. Still, we believe that such behavior is not

atypical for many applications important in mobile computing

today.

5.3. Network file system

Next, we examined the benefit of STPM for the Network File

System (NFS) version 2 [19]. As with Coda, NFS communica-

tion is RPC-based—we modified NFS to issue a transfer hint

before each RPC begins and end the hint when the RPC com-

pletes. Unlike Coda, NFS revalidates cached files before using

them—thus, each file access generates at least one RPC. NFS

v2 does not delay writing modifications back to the server, nor

does it prefetch whole file data. Since there are few sources of

background traffic, all hints issued are foreground ones. These

modifications added 92 lines of source code.

5.3.1. Cisco results

Figure 15 shows results from replaying the purcell trace on

the iPAQ using NFS as the underlying distributed file sys-

tem. For these experiments, we again used the Cisco PCM-

CIA card. The results for CAM and PSM-static are similar to

those for Coda. However, PSM-adaptive does slightly better

because NFS issues several concurrent RPCs for large reads

and writes. This concurrency generates sufficient network ac-

tivity for PSM-adaptive to switch immediately to CAM.

During trace execution, STPM becomes more aggressive

in switching to CAM. With Coda, STPM switches to CAM

before the third RPC; with NFS, STPM switches to CAM

before the first or second RPC by the end of the trace. During

replay, STPM learns that NFS is likely to issue many RPCs

closely correlated in time due to its revalidation strategy and a

general tendency to issue more RPCs per file operation. STPM

gradually adjusts its power management strategy as it observes

the NFS request distribution.

Using just CAM and PSM, STPM outperformed PSM-

adaptive for NFS, eliminating over 3 minutes of interactive

delay and reducing system energy usage by 6%. Using a cal-

culation similar to that in Section 5.2.1, we can derive a loose

lower bound of 4313 Joules for energy usage during NFS trace

execution—this shows that STPM energy usage is within 11%

of optimal.

When STPM was allowed to disable the Cisco card, it re-

duced energy usage by an additional 8% with no noticeable

change in performance. Compared to CAM, STPM+ reduced

iPAQ energy usage by 38%, which would allow 62% more

work on battery power.

5.3.2. Adapting to interface characteristics

We also wished to verify that STPM adapts to 802.11b cards

with significantly different attributes. For this purpose, we se-

lected the Orinoco Silver 802.11b card detailed in figure 5.

Whereas the maximum data rate for the Cisco card is 11 Mb/s,

the Orinoco card is limited to 2 Mb/s. Further, the transition

costs for the Orinoco card are lower than those for the Cisco
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Figure 15. Benefit of STPM for NFS.

card. The Orinoco card cannot be easily disabled to save power,

nor does it support an adaptive power management strategy.

Figure 16 shows the results from replaying the purcell

trace for NFS running on an iPAQ with the Orinoco card.

STPM is more aggressive for the Orinoco card—it switches to

PSM after only 200 ms compared to a waiting period of 300 ms

for the Cisco card. Since the transition costs for the Orinoco

card are lower, STPM employs power saving modes more

often. STPM significantly outperforms PSM-static, reducing

energy usage by 15% and execution time by 23%.

5.4. Xmms streaming audio

We next modified XMMS-embedded to disclose hints when

it streams live audio from an Internet server and plays it on

an iPAQ. We chose this application because its communica-

tion pattern differs significantly from the file systems that we

had explored previously. Since the data rate is low (128 Kb/s

using the streaming MP3 format), the amount of client buffer-

ing is the primary factor that determines whether power man-

agement can be used. XMMS-embedded buffers several sec-

onds of audio on the client; thus, it can tolerate the small

delays in packet arrival caused by PSM. We modified XMMS-

embedded to specify a maximum delay tolerance of 200 ms

using BeginListenHint. Our modifications added 7 lines of

source code.

As shown in figure 17, STPM reduces power usage by 25%

compared to CAM. PSM-static is the optimal strategy for this

application. However, STPM uses only 2% more energy than

PSM-static—this difference reflects the overhead of our mod-

ule. In contrast, PSM-adaptive always remains in CAM while

audio is played. Since PSM-adaptive has no knowledge of

application intent, it must assume that latency is critical for

audio streaming traffic. In our experiments, no audio packets

were dropped because application buffering was sufficient to

overcome any jitter caused by power management.

Figure 16. NFS results for Orinoco card.
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Figure 17. Benefit of STPM for Xmms.

5.5. Thin-client using remote X

Next, we examined thin-client display of remote X applica-

tions on the iPAQ. Remote display allows users to run ap-

plications that are too computationally expensive for a hand-

held, or which have not been ported to the handheld proces-

sor. We modified XFree86 4.3 to give application hints when

reading incoming messages and transmitting responses to re-

mote clients. To ensure acceptable interactive response time

for long-running remote applications, the X server specifies

a maximum delay on incoming traffic of 100 ms whenever

a remote session exists. Our modifications added 51 lines of

code.

In our experiments, we first started the Gnumeric spread-

sheet on the server with its display hosted on a remote iPAQ.

We used the iPAQ GUI to load a spreadsheet that contained

three columns with roughly 4500 data points each, as well

as two complex graphs. We then viewed the spreadsheet and

closed the application. We measured the time to perform each

action by observing network traffic on the server. We preceded

each interactive action with a pause that enabled us to deter-

mine when the action began and ended.

Figure 18 shows the cumulative time and energy to perform

all interactive activities—it does not reflect any user think time

or pause between activities. STPM is over three times more

energy efficient and six times faster than PSM-static. STPM

uses 12% less energy than PSM-adaptive and is 13% faster.

Although CAM is 25% faster and uses 28% less energy than

STPM, it uses more power during user think time. Figure 19

shows how user think-time impacts energy usage. If think time

exceeds 6.5 seconds, STPM uses less energy than CAM over

the entire interactive episode.

Figure 18. Benefit of STPM for remote X.
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Figure 19. Effect of think time on X energy usage.

6. Related work

To the best of our knowledge, STPM is the first power man-

agement algorithm to simultaneously tune its behavior to the

characteristics of the network interface, the base power us-

age of the mobile computer, and the intent and access patterns

of applications. STPM differs from previous hint-based ap-

proaches to network power management because it requires

applications to disclose only current activity, not future activ-

ity, and because it uses on-line modeling of application access

patterns to set network power management parameters.

Lu et al. have also explored the use of application hints

in power management [16]. They use a predictive policy to

estimate when to wake up the network interface. Their hints

are at a coarser granularity than those used by STPM and re-

quire applications to have knowledge of future activity: for

instance, they allow an editor to specify that it requires the

network interface over the next few minutes to auto-save a

buffer. Their work focuses on scheduling network availability

for applications with relatively flexible deadlines, while STPM

focuses on supporting latency-sensitive applications. From a

broader perspective, application hints have also been success-

fully used to improve disk power management [27] and I/O

prefetching [17,22].

Kravets and Krishnan [14] also advocate an application

level power management strategy. Their work provides a trans-

port level protocol to improve energy usage. STPM comple-

ments their solution in that it predicts opportunities for perfor-

mance improvement and energy conservation.

Wake-on-wireless [23] uses a low-power network to sig-

nal a mobile client when packets are waiting at the base

station. Current wireless network transition costs are pro-

hibitive for using this technique to disable and enable the

network card between transfers for applications like NFS.

However, wake-on-wireless seems extremely promising for

supporting incoming connections for server processes like

the X server and sshd. We can envision a hybrid strat-

egy that uses wake-on-wireless to detect incoming connec-

tions during idle periods and uses STPM to manage existing

connections.

Krashinsky’s bounded slowdown (BSD) protocol [13] dis-

ables the network interface to save power while bounding the

relative delay on transfer round-trip time. BSD differs from

STPM in that it does not explicitly consider transition costs

or the base power usage of the device. Unlike STPM, BSD

is implemented without knowledge of application intent. The

advantage of not using application hints is that BSD can show

benefit for unmodified applications. The disadvantage is that

BSD must behave conservatively, limiting the potential for

energy savings. Further, BSD requires some small modifica-

tions to the 802.11b protocol, making deployment on current

hardware more difficult.

Simunic’s TISMDP [24] operates at a coarser granularity

than STPM. TISMDP only decides when to transition from

a higher-power state to a lower-power state. It immediately

resumes upon the arrival of the next request. Thus, for inter-

mittent activity like NFS RPCs, a transition cost must be paid

for each RPC.

Chandra [3] explores how the regular nature of streaming

multimedia can be exploited to improve power management.

Stemm et al. [25] investigate methods that reduce energy con-

sumption of network interfaces for electronic mail and web

browsing applications on PDAs. Unlike STPM, both these

techniques benefit only a limited set of specific applications.

7. Future work

Adaptive methods have previously applied to disk [5,8] and

CPU [6] power management. Though these domains differ

substantially from wireless network power management, we

believe that the five design principles we have developed for

STPM can also be applied. A logical next step in this work is

therefore to apply STPM to the power management of other

devices used in mobile computers.
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In the specific case of disk power management, disk rota-

tion is typically halted in order to save power. While spinning

down the hard drive offers the opportunity for power savings

during idle periods, there is also a substantial performance and

energy transition cost that is incurred when the disk is spun

up again to service the next request. Thus, mobile disk drives

appear to offer a tradeoff between performance and energy

conservation that is similar to the tradeoff offered by wireless

network interfaces. This similarity encourages us to believe

that STPM will also show significant benefits in this domain.

A similar tradeoff exists for processor power management

when the CPU supports different clock speeds and voltages.

Reducing clock frequency and voltage conserves energy but

also adversely affects increasing interactive response time [6].

Thus, processor power management represents another arena

in which STPM may prove useful.

Finally, concurrent power management of multiple devices

remains an open research topic. Most current power manage-

ment algorithms address only a single component. As results

in this paper show, a myopic approach that optimizes the en-

ergy usage of only a single device can sometimes increase the

energy usage of the system as a whole. STPM represents a first

step toward concurrent power management of multiple devices

because it expresses power management options in the com-

mon global currency of performance and energy usage rather

than in device-specific terms.

8. Conclusion

Wireless network power management can severely degrade

the performance of latency-sensitive applications and even in-

crease the total energy needed to perform interactive activities

on a mobile computer. In order to provide significant energy

conservation without substantial performance degradation, a

power management strategy should be tuned to reflect appli-

cation intent and access patterns, as well as the power char-

acteristics of the network interface and mobile computer. It is

infeasible to expect a user to manually tune the power manage-

ment algorithm for each combination of application, network

interface, and mobile computer. Therefore, we have built a

self-tuning power management module that adapts its behav-

ior in response to a changing environment. Our results shows

that self-tuning improves both performance and energy con-

servation compared to current power management strategies.

Our Linux implementation of self-tuning power manage-

ment offers an important opportunity for future work. We plan

to deploy our module to a small user community and gather

detailed feedback about the benefits of self-tuning power man-

agement. In order to realize the full benefits of STPM, we will

need to broaden the set of applications that disclose power

management hints. Meanwhile, our hinting module is avail-

able to support applications that have not yet been modified.
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