
DOI: 10.1007/s00453-006-1211-4

Algorithmica (2007) 47: 79–96 Algorithmica
© 2006 Springer Science+Business Media, Inc.

Selfish Load Balancing and Atomic Congestion Games1

Subhash Suri,2 Csaba D. Tóth,3 and Yunhong Zhou4

Abstract. We revisit a classical load balancing problem in the modern context of decentralized systems
and self-interested clients. In particular, there is a set of clients, each of whom must choose a server from
a permissible set. Each client has a unit-length job and selfishly wants to minimize its own latency (job
completion time). A server’s latency is inversely proportional to its speed, but it grows linearly with (or, more
generally, as the pth power of) the number of clients matched to it. This interaction is naturally modeled
as an atomic congestion game, which we call selfish load balancing. We analyze the Nash equilibria of this
game and prove nearly tight bounds on the price of anarchy (worst-case ratio between a Nash solution and
the social optimum). In particular, for linear latency functions, we show that if the server speeds are relatively
bounded and the number of clients is large compared with the number of servers, then every Nash assignment
approaches social optimum. Without any assumptions on the number of clients, servers, and server speeds, the
price of anarchy is at most 2.5. If all servers have the same speed, then the price of anarchy further improves
to 1 + 2/

√
3 ≈ 2.15. We also exhibit a lower bound of 2.01. Our proof techniques can also be adapted for

the coordinated load balancing problem under L2 norm, where it slightly improves the best previously known
upper bound on the competitive ratio of a simple greedy scheme.

Key Words. Load balancing, Congestion games, Price of anarchy.

1. Introduction. Consider a set U of n selfish clients, each of whom must choose a
server from a set V , in the absence of a coordinating authority. There is a bipartite graph
G between U and V and a server j is permissible for client i only if (i, j) is an edge
in G. Each client has a unit-length job and selfishly wants to minimize its latency (job
completion time), and rationally prefers a fast server to a slower one. Servers can have
different speeds, and a server’s latency is inversely proportional to its speed, but it is an
increasing function of the server load (the number of clients served by it).

Each client independently trying to minimize its latency is essentially engaged in a
game with other selfish clients. We call this the selfish load balancing game. Unlike
traditional load balancing, however, the clients are not interested in optimizing the social
welfare (e.g., total system-wide latency). Instead, each client has its own private objective.
The stable outcomes of these interactions are the Nash Equilibria—outcomes in which
no single client can improve its latency by switching unilaterally. Centralized optimal

1 The research by the first two authors was partially supported by NSF Grants CCR-9901958 and ANI-9813723.
A preliminary version of this work has appeared in the Proceedings of the 16th ACM Symposium on Parallelism
in Algorithms and Architectures (Barcelona, 2004), pp. 188–195.
2 Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106,
USA. suri@cs.ucsb.edu.
3 Department of Mathematics, Room 2-336, MIT, Cambridge, MA 02139, USA. toth@math.mit.edu.
4 Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA. yunhong.zhou@hp.com.

Received February 10, 2005; revised August 5, 2005, September 27, 2005, and October 4, 2005. Communicated
by E. Cohen. Online publication December 20, 2006.

80 S. Suri, Cs. D. Tóth, and Y. Zhou

solutions, in general, are not stable—one or more clients may improve their latency
by switching, while worsening the latency for others. On the other hand, the cost of
Nash equilibrium solutions can be much worse than that of centralized outcomes, and
Papadimitriou [17] has coined the term “price of anarchy” to denote the worst-case ratio
between a Nash outcome and the social optimum. In this paper we give nearly tight
bounds for the price of anarchy in the selfish load balancing game.

Nash equilibrium is a compelling solution concept for decentralized systems with
self-interested players. Unfortunately, the concept is descriptive, not prescriptive: it does
not suggest algorithms for computing an equilibrium and computing Nash equilibria
remains a topic of current research. We, therefore, also investigate the following obvious
greedy strategy: clients arrive in the system online in an arbitrary order; upon arrival,
each client selects a permissible server with the least current latency, and this selection
is irrevocable. The greedy strategy is a myopic strategy—each client makes the best
choice available to it at the moment, although future choices by other clients may make
it regret that selection. While greedy does not generally lead to Nash solutions, it does
have the advantage of computational simplicity. Thus, a natural question to ask is: how
bad is the greedy assignment in the worst case?

The greedy strategy has been analyzed before in the context of centralized L2 norm
load balancing [4]—the goal there is to assign clients so as to minimize the L2 norm of
the server loads. Because the total latency of all the clients is intimately related to the
squared sum of the server loads, our techniques also lead to improved bounds for the
competitive ratio of the greedy scheme of [4]. Interestingly, the Nash solutions are strictly
better, suggesting the following conclusion: despite lack of central coordination, selfish
players find solutions that are better than greedy, which assumes centralized control but
non-selfish players.

1.1. Motivation and Model. Our load balancing game is inspired by the emerging class
of Internet-centric applications like the peer to peer (P2P) networks, but it has broader
implications for any uncoordinated distributed system. In a P2P system, for instance, data
are often replicated to enable a high level of availability and fault tolerance. Thus, users
typically have the choice of many hosts from whom to download their data; each user
wants to minimize its own latency (time to download); and there is no central authority
to dictate a user’s choice.

An instance of the load balancing game is modeled as a bipartite graph G between a
set U of n clients and a set V of m servers. A client i can be assigned to server j only
if (i, j) is an edge in G. An outcome of the game is an assignment where each client is
assigned to one of its permissible servers. Suppose server j has speed σj and is matched
to �j clients, then we assume that the response time, or latency, to each client i connected
to this server is λi = f (�j)/σj , where f is an increasing function of the load �j , and
σj is the speed of server j . In general, there are two distinct contributors to a client’s
latency: the server load and network congestion. In this paper we focus on the latency at
the server, and treat the network latency to be a constant. Because the network topology
as well as the IP route change continuously, the network latency is both unpredictable
and difficult to model. One can incorporate a simplified network latency in our model
by folding it in the server speed—then a server with a fast connection to the network
can be distinguished from a similar server with a slow link. A more accurate modeling

Selfish Load Balancing and Atomic Congestion Games 81

of the combined server and network latency seems challenging and is left for future
work.

The cost of an assignment M is the total latency of all the clients:

cost(M) =
n∑

i=1

λi =
m∑

j=1

�j f (�j)

σj
.

Under the linear model, the latency of server j is simply �j/σj . More generally, we
consider latency functions of the form �

p−1
j /σj , for any p ≥ 1. In that case the cost

of the matching is cost(M) = ∑m
j=1 �

p
j /σj , which corresponds to the pth power of the

weighted L p norm of the server loads.
A Nash equilibrium assignment is one in which no client can improve its latency by

unilaterally switching to another server. Let Mnash be a Nash solution, and let Mopt be
the (coordinated) social optimum. The price of anarchy is the worst-case bound on the
ratio between the costs of Mnash and Mopt.

1.2. Results. Our first result concerns the price of anarchy with linear latency func-
tions. We show that if the server speeds are relatively bounded and the number of clients
is large compared with the number of servers, then every Nash assignment approaches
social optimum. Without any assumptions on the number of clients, servers, and server
speeds, the price of anarchy is at most 2.5. If all servers have the same speed, then we
can improve the upper bound to (1 + 2/

√
3) ≈ 2.15. We also give a lower-bound con-

struction showing that the price of anarchy can be at least 2.01, even with equal speed
servers and linear latency functions.

We next consider higher-order monomial latency functions. In this case we measure
the L p norm of the server loads, and show that the price of anarchy is (p/log p)(1+o(1)).

We then apply our technique to reanalyze a simple but centralized greedy scheme for
load balancing. The best result known for this problem is due to Awerbuch et al. [4], who
show that the greedy scheme achieves the competitive ratio (1 + √2)2 ≈ 5.83 for the
squared L2 norm of the server loads even for the unrelated machine model. We show that
if all jobs have the same size and the servers have arbitrary speeds in the related machine
model, then the competitive ratio of the greedy scheme is at most 17/3 ≈ 5.67; more
significantly, if all the servers have the same speed, then we can improve the competitive
ratio to 2+√5 ≈ 4.24.

1.3. Related Work

Load balancing. The problem of assigning clients (jobs) to servers (machines) dates
back to the earliest days of distributed computing or scheduling, and there is an enormous
literature on it. A small sample of these results includes the following: [12], [18], and
[23] investigate the online assignment of unit length jobs under the L∞ norm; [1] and
[14] consider offline assignments of unit length jobs; [2], [6], and [8] consider the
greedy assignment of weighted jobs under the L p norm, where the client–server graph
is complete bipartite; [16] considers dynamic load balancing under the L p norm. The
work most relevant to us is the L2 norm load balancing with an arbitrary client–server
graph [4]. Because the total latency of the clients is related to the squared L2 norm of

82 S. Suri, Cs. D. Tóth, and Y. Zhou

the server loads, the setting of Awerbuch et al. [4] can be viewed as the coordinated or
centralized version of our problem.

Congestion games. The load balancing game belongs to the general class of congestion
games introduced by Rosenthal [19] in game theory. In these games, a set of players
compete for a set of resources, and the cost of each resource depends only on the number
of players using it. A key game-theoretic property of these games is that they always
have at least one pure strategy Nash equilibrium. Thus, in our work, we focus on pure
strategy Nash equilibria.

Selfish routing. In network routing games, selfish agents route their traffic between a
source–destination pair in a network, where the network delay (latency) on each link is
determined by a monotone increasing function of the load through the link. The models
considered in the literature differ in many aspects.

The price of anarchy for maximal latency was considered by Koutsoupias and Pa-
padimitriou [13]. In their model the network consists of m parallel edges between source
and destination, and every agent can use any of the links. In [9] Czumaj and Vöcking
were able to prove tight bounds for this problem. Recently, Awerbuch et al. [5] and
Gairing et al. [11] have extended these results to a model where each agent can use only
a subset of the (parallel) links, namely, a permissible set, and Fotakis et al. [10] have
showed that the same bound holds in layered networks as well.

The price of anarchy for total flow latency was considered by Roughgarden and
Tardos [22] and Roughgarden [20] in general networks. They obtained tight bounds
assuming non-atomic agents, where actions of an individual agent have negligible impact
on others. Roughgarden [21] extends these results to an atomic splittable model, where
agents control a positive fraction of the total traffic but each user’s task (flow) can be split
arbitrarily across multiple paths. Our load balancing game, by contrast, is characterized
by atomic players and unsplittable jobs: There are finitely many clients, each of whom
is wholly assigned to a single server.

Similarly to our model, Lücking et al. [15] studied the price of anarchy for total flow
latency with unsplittable flows. However, they consider only the special case where all
servers are permissible for every user. In their model they show that the price of anarchy
is less than 2, while we present a lower bound of 2.01 in the general case with arbitrary
permissible sets.

Since the conference publication of our work, Awerbuch et al. [3] and, independently,
Christodoulou and Koutsoupias [7] have generalized our results to broader classes of
congestion games. Awerbuch et al. [3] obtained a tight bound of 2.5 on the price of anarchy
for routing games in general networks with linear latency functions. Christodoulou and
Koutsoupias [7] discovered that the price of anarchy under linear latency functions is
at most 2.5 for certain congestion games where each player’s strategy is a subset of the
resources instead of a singleton set.

1.4. Organization. Our paper is organized as follows. In Section 2 we establish two
key results (Nash Condition and Nash Inequality), which are central to our analysis. In
Section 3 we prove upper bounds on the price of anarchy with linear latency functions,
and also show a lower-bound construction. In Section 4 we extend our analysis to the
latency functions under the L p norm. In Section 5 we present our improved analysis of

Selfish Load Balancing and Atomic Congestion Games 83

u u u

v v v1

1

2

2

3

3 u u u

v v v1

1

2

2

3

3 u u u

v v v1

1

2

2

3

3

(a) (b) (c)

Fig. 1. An instance (a), an optimal matching of cost 3 (b), and a Nash but not optimal matching of cost 5 (c),
assuming unit speed machines.

the greedy assignment scheme. Finally, we offer some conclusions and open problems
in Section 6.

2. Preliminaries. Our primary model is the linear latency model: if a server has load
� and speed σ then each of its � clients experiences latency λ = �/σ . If server j has load
�j and speed σj in an assignment M , then the assignment has cost

∑m
j=1 �

2
j /σj , which

is the weighted sum of the squares of server loads. We consider higher-order monomial
latency functions in Section 4.

An assignment is a Nash equilibrium if no single client can improve its latency by
unilaterally switching to another (permissible) server. Given an instance of the client–
server problem, let Mopt denote an assignment realizing the social optimum, and let
Mnash denote a Nash assignment. (See a small example in Figure 1.) For server j , let
Oj and Nj denote the set of clients assigned to j in Mopt and Mnash, respectively. We
use the shorthand notation oj = |Oj | and nj = |Nj | for the cardinalities of these
sets. The following lemma notes a simple but crucial condition imposed by a Nash
equilibrium.

LEMMA 2.1 (Nash Condition). Given an optimal assignment Mopt and a Nash assign-
ment Mnash, the following inequality holds for any two servers j, k, where σj , σk are the
speeds of these servers:

nj

σj
≤ nk + 1

σk
if Nj ∩ Ok �= ∅.(1)

PROOF. If k = j or Nj ∩ Ok = ∅, then the argument is trivially true, so assume
that k �= j and Nj ∩ Ok �= ∅. Pick an arbitrary client i ∈ Nj ∩ Ok . This client has
latency nj/σj in the Nash assignment Mnash. The server k is also permissible for i
because i ∈ Ok . By switching to k, client i can achieve latency (nk + 1)/σk . By the
equilibrium property, this latency is the same or worse than its latency in Mnash. Thus,
nj/σj ≤ (nk + 1)/σk .

This simple Nash Condition leads to the following important inequality, which is the
main basis for our upper bound analysis. (Later, we prove a similar inequality for the
greedy assignments.)

84 S. Suri, Cs. D. Tóth, and Y. Zhou

LEMMA 2.2 (Nash Inequality). Given an optimal assignment Mopt and a Nash assign-
ment Mnash, the following inequality holds:

m∑
j=1

n2
j

σj
≤

m∑
j=1

(nj + 1)oj

σj
.(2)

PROOF. Since the sets Ok , k = 1, 2, . . . ,m, partition the set of clients, we have that nj =
|Nj | =

∑m
k=1 |Nj ∩ Ok |, for every j . Similarly, we have ok = |Ok | =

∑m
j=1 |Nj ∩ Ok |,

for every k. Using these equalities, we can rewrite the total cost of a Nash assignment
as follows:

m∑
j=1

n2
j

σj
=

m∑
j=1

nj

σj

m∑
k=1

|Nj ∩ Ok | =
m∑

k=1

m∑
j=1

nj

σj
|Nj ∩ Ok |

≤
m∑

k=1

m∑
j=1

nk + 1

σk
|Nj ∩ Ok | =

m∑
k=1

nk + 1

σk

m∑
j=1

|Nj ∩ Ok |

=
m∑

k=1

(nk + 1)ok

σk
.

In this chain of inequalities, we used the fact that (nj/σj)|Nj ∩Ok | ≤ ((nk+1)/σk)|Nj ∩
Ok | for all j, k. This is trivially true if |Nj ∩ Ok | = 0; otherwise, it follows from
inequality (1).

Finally we present a technical lemma which is used later in Sections 3 and 5.

LEMMA 2.3. Let n,m be positive integers and let xj ≥ 0, σj > 0 for j = 1, . . . ,m be
arbitrary real values with

∑m
j=1 xj = n. Then the following inequalities hold:

∑m
j=1 xj/σj∑m
j=1 x2

j /σj
≤

m +
√∑m

j=1 σj
∑m

j=1 1/σj

2n
≤
(

1+
√

max
1≤ j,k≤m

σj

σk

)
m

2n
.(3)

PROOF. Let

f (x1, . . . , xm) ≡
∑m

j=1 xj/σj∑m
j=1 x2

j /σj
and c(n,m, σ) ≡

m +
√∑m

j=1 σj
∑m

j=1 1/σj

2n
.

It is sufficient to prove f (x1, . . . , xm) ≤ c(n,m, σ) because it immediately implies (3).
In the following we use the Lagrange multiplier method to prove that the maximum
value of f (x1, . . . , xm) is exactly c(n,m, σ) under the condition that

∑m
j=1 xj = n and

xj ≥ 0, j = 1, 2, . . . ,m.
Suppose that the maximum of f (x1, . . . , xm) is attained at x∗ = (x∗1 , . . . , x∗m) where

there are m ′ coordinates x∗i > 0. In the following we focus on the case where m ′ = m
as c(n,m ′, σ) is maximized when m ′ = m. In other words, we can assume that x∗j > 0

Selfish Load Balancing and Atomic Congestion Games 85

for j = 1, . . . ,m. By the Lagrange multiplier condition, there exists a multiplier λ such
that

∂ f (x∗1 , . . . , x∗m)
∂xj

= λ, ∀ j = 1, . . . ,m.

Let A(x∗) ≡ ∑m
j=1(x

∗
j)

2/σj and B(x∗) ≡ ∑m
j=1 x∗j /σj . The above equation can be

simplified to

A(x∗)− 2B(x∗)x∗j = λA2(x∗)σj , ∀ j = 1, . . . ,m.(4)

Summing up these equations for j = 1, 2, . . .m, we obtain

λ = m A(x∗)− 2nB(x∗)
A2(x∗)

∑
j σj

.

Substituting the value of λ into each equation of (4), we have

x∗j =
A(x∗)

2B(x∗)
− σj

(
m A(x∗)

2B(x∗)
∑

j σj
− n∑

j σj

)
, ∀ j = 1, . . . ,m.

By plugging in the values of x∗j for all j into A(x∗) and B(x∗), we get

A(x∗) =
m∑

j=1

(x∗j)
2

σj
= A2(x∗)

4B2(x∗)

(∑
j

1

σj
− m2∑

j σj

)
+ n2∑

j σj
,

B(x∗) =
m∑

j=1

x∗j
σj
= A(x∗)

2B(x∗)

(∑
j

1

σj
− m2∑

j σj

)
+ nm∑

j σj
.

Let z ≡ B(x∗)/A(x∗), and we get

z = (1/2z)(
∑

j (1/σj)
∑

j σj − m2)+ nm

(1/4z2)(
∑

j (1/σj)
∑

j σj − m2)+ n2
,

that is,

n2z2 − nmz − 1

4

(∑
j

1

σj

∑
j

σj − m2

)
= 0.

We solve z from the above equation and obtain z = c(n,m, σ). This completes the proof
of Lemma 2.3.

3. Bounds on the Price of Anarchy. In this section we prove upper and lower bounds
on the price of anarchy. We prove three different upper bounds. The first upper bound
(Theorem 3.1) is in terms of n (number of clients), m (number of servers), and the server
speeds. This bound is the sharpest in the limit when m/n→ 0 and the ratio between the
maximum and the minimum server speeds is bounded. For instance, if all servers have

86 S. Suri, Cs. D. Tóth, and Y. Zhou

equal speed and m/n approaches 0, then Theorem 3.1 says that every Nash approaches
the social optimum. For arbitrary values of m, n, and server speeds, our second bound
(Theorem 3.2) is the best. It shows that the price of anarchy is at most 2.5 for any choice
of n, m, and server speeds. Finally, if all servers have the same speed, then Theorem 3.3
shows that the price of anarchy is at most (1 + 2/

√
3) ≈ 2.15. We also give a lower

bound construction showing that the price of anarchy is at least 2.01, even with equal
speed servers. (This lower bound dashed our original hope that the true price of anarchy
was 2.)

THEOREM 3.1. With linear latency functions, the price of anarchy is 1 + o(1) given
that n � m and server speeds are relatively bounded. Formally, the following is true:

cost(Mnash)

cost(Mopt)
≤ 1+

m +
√∑m

j=1 σj
∑m

j=1 1/σj

n
≤ 1+

(
1+

√
max

1≤ j,k≤m

σj

σk

)
m

n
.(5)

PROOF. By using Nash Inequality (2) and the fact that nj oj ≤ (n2
j + o2

j)/2, we get

m∑
j=1

n2
j

σj
≤

m∑
j=1

(nj + 1)oj

σj
≤

m∑
j=1

1

σj

(
n2

j + o2
j

2
+ oj

)
,

m∑
j=1

n2
j

σj
≤

m∑
j=1

o2
j + 2oj

σj
,

cost(Mnash)

cost(Mopt)
=

∑m
j=1 n2

j /σj∑m
j=1 o2

j /σj
≤ 1+ 2

∑m
j=1 oj/σj∑m
j=1 o2

j /σj
.

By Lemma 2.3, we get the desired result immediately.

Next, we give an upper bound of 2.5 independent of n, m, and server speeds.

THEOREM 3.2. With linear latency functions and arbitrary values of n,m and server
speeds, the price of anarchy is cost(Mnash)/ cost(Mopt) ≤ 2.5.

PROOF. Suppose that Mopt = {Oj | 1 ≤ j ≤ m} is an optimal assignment and
Mnash = {Nj | 1 ≤ j ≤ m} is a Nash assignment. Fix an index j , it is straightforward to
verify the following equality:

oj nj = 1
3 n2

j + 3
4 o2

j − 1
3 (nj − 3

2 oj)
2.

The Nash Inequality (2) together with the above inequality implies the following:

m∑
j=1

n2
j

σj
≤

m∑
j=1

nj oj + oj

σj
=

m∑
j=1

1

σj
(1

3 n2
j + 3

4 o2
j − 1

3 (nj − 3
2 oj)

2 + oj),

m∑
j=1

n2
j

σj
≤

m∑
j=1

1

σj
(9

8 o2
j + 3

2 oj − 1
2 (nj − 3

2 oj)
2).

Selfish Load Balancing and Atomic Congestion Games 87

Thus, in order to show
m∑

j=1

n2
j

σj
≤ 5

2

m∑
j=1

o2
j

σj
,

it suffices to prove that

9
8 o2

j + 3
2 oj − 1

2 (nj − 3
2 oj)

2 ≤ 5
2 o2

j , ∀ j = 1, . . . ,m.

The preceding inequality is equivalent to the following simplified form:

oj (3− 11
4 oj) ≤ (nj − 3

2 oj)
2.

It holds trivially if either oj = 0 or oj ≥ 2. Because oj is an integer, thus the only
remaining case is oj = 1, and in this case the above inequality is equivalent to 1

4 ≤
(nj −3/2)2. Because nj is an integer, thus this holds, and the whole proof is complete.

3.1. An Improved Upper Bound for Equal Speed Servers. In this section we show a
further improvement in the upper bound when all servers have the same speed. The upper
bound in this case turns out to be 1+ 2/

√
3 ≈ 2.15, which is getting quite close to the

lower bound of 2.01, shown in the next subsection. Without loss of generality, we assume
that all servers have the unit speed. Thus, cost(Mnash) =

∑m
j=1 n2

j and cost(Mopt) =∑m
j=1 o2

j .

THEOREM 3.3. If all servers have equal speed and the latency function is linear, then
the price of anarchy is at most cost(Mnash)/ cost(Mopt) ≤ 2/

√
3+ 1 ≈ 2.15.

PROOF. In order to prove the upper bound cost(Mnash) ≤ (2/
√

3+ 1) cost(Mopt), it is
enough to prove the following:

2√
3

cost(Mnash) ≤
(

2√
3
− 1

)
cost(Mnash)+

(
2√
3
+ 1

)
cost(Mopt).(6)

By Lemma 2.2 together with σj = 1 and
∑

j oj = n, we obtain that cost(Mnash) ≤
n +∑m

j=1 nj oj . To prove (6), it is thus sufficient to show that

2√
3

(
n +

m∑
j=1

nj oj

)
≤

m∑
j=1

((
2√
3
+ 1

)
o2

j +
(

2√
3
− 1

)
n2

j

)
,

which is equivalent to the inequality

n ≤
m∑

j=1

((
1+
√

3

2

)
o2

j +
(

1−
√

3

2

)
n2

j − oj nj

)
(7)

=
m∑

j=1

(√
3+ 1

2
oj −
√

3− 1

2
nj

)2

.

88 S. Suri, Cs. D. Tóth, and Y. Zhou

Let xj = ((
√

3+ 1)/2)oj − ((
√

3− 1)/2)nj , then (7) is equivalent to the following:

n ≤
m∑

j=1

x2
j , with

m∑
j=1

xj =
√

3+ 1

2

m∑
j=1

oj −
√

3− 1

2

m∑
j=1

nj = n.(8)

We prove (8) by induction on m, which is also the number of pairs (oj , nj). The base
case, m = 1 is trivially true as x1 = n and n2 ≥ n because n is an integer. It is also easy
to verify for the case where m = 2 and there are two pairs (a, 0) and (0, a). Now assume
that m > 1 and (8) holds for any m ′ < m.

If there is no j such that oj = 0, then n =∑m
j=1 oj ≥ m, and thus

m∑
j=1

x2
j ≥

(
∑m

j=1 xj)
2

m
= n2

m
≥ n.

Similarly the above inequality holds if there is no j such that nj = 0. Now suppose
that there is one pair (oj , nj) = (a, 0) and another pair (ok, nk) = (0, b). Without loss
of generality, we assume that a ≥ b ≥ 1. If a = b, then we break the original prob-
lem into two subproblems, where the smaller one contains only two pairs (a, 0) and
(0, a). The larger subproblem has m − 2 pairs. By induction, the inequality holds for
both subproblems. If a > b, then

∑m
j=1 x2

j decreases if we break (a, 0) into two pairs
(a − b, 0) and (b, 0). Now we remove two pairs (b, 0) and (0, b) to get a subprob-
lem with m − 1 pairs. So that by induction (8) holds. This also completes the whole
proof.

The proof of Theorem 3.3 uses solely the Nash Inequality (2) and
∑m

j=1 oj =∑m
j=1 nj = n. For assignments satisfying these constraints (but are not necessarily

Nash), the bound of Theorem 3.3 is the best possible. The following set of pairs (oj , nj),
for j = 1, 2, . . . ,m, attains this bound (the values nj , however, do not correspond to a
Nash solution): Let n = a+ b+ k and m = a+ k+ 1. Consider a pairs of (1, 0), k pairs
of (1, 1), and one pair of (b, a + b). Setting k = (a − 1)(a + b), we have n = a(a + b)
and

∑
j n2

j =
∑

j oj nj + n. Now∑
j n2

j∑
j o2

j

= k + (a + b)2

a + k + b2
= 2a2 + 3ab + b2 − a − b

a2 + ab + b2 − b
.

Let b/a approximate (
√

3 − 1)/2. As a goes to infinity, the above ratio approaches
1+ 2/

√
3.

3.2. A Lower Bound. We now describe a construction showing that the worst-case
price of anarchy is at least 2.01. Our lower bound holds even if all servers have equal
speed.

THEOREM 3.4. In the worst case the following lower bound holds for the price of
anarchy:

cost(Mnash)

cost(Mopt)
> 2.01.

Selfish Load Balancing and Atomic Congestion Games 89

3V V V V

3

2 1 0

2 1 0
U U U U

V3 V V V

3

2 1 0

012 UUUU

Fig. 2. Our construction for k = 3 and (o0, o1, o2, o3) = (1, 1, 1, 1): an optimal assignment (left) and a worst-
case Nash assignment (right). Complete bipartite subgraphs of G between groups are indicated by dashed
lines.

PROOF. We first describe a general family of instances of the load balancing game with
a parameter k ∈ N, k ≥ 2. We then present one specific instance in this family for k = 7
which provides a lower bound of 2.01.

Consider an integer k ∈ N, k ≥ 2, and let Sk be the set of all monotone increasing
sequences s = (o0, o1, . . . , ok) ∈ Nk+1, where 1 ≤ o0, ok < k, and oi−1 ≤ oi ≤ oi−1+1,
for i = 1, 2, . . . , k. We construct a bipartite graph G = (U, V) for every sequence
s ∈ Sk . A simple example with k = 3 and (o0, o1, o2, o3) = (1, 1, 1, 1) is depicted in
Figure 2. Both V and U are partitioned into k + 1 groups V = V0 ∪ V1 ∪ · · · ∪ Vk

and U = U0 ∪ U1 ∪ · · · ∪ Uk . The permissible set of every u ∈ Ui is Vi ∪ Vi+1 for
i = 0, 1, . . . , k − 1, and Vk for i = k. We choose the cardinalities of Ui and Vi ,
i = 0, 1, . . . , k − 1, as follows. Let xs ∈ N be an integer specified below. We set
|Uk | = xs · ok and |Uk−1| = xs(k − ok). The remaining cardinalities are determined
by two recursion formulas: Let |Vi | = |Ui |/oi for i = k, . . . , 1, 0; and let |Ui | =
(i + 1) · |Vi+1| = (i + 1)/(oi+1) · |Ui+1| for i = k − 2, . . . , 1, 0. The solution to
this recursion gives |Vk | = xs and |Vi | = xs((k − ok)/(ok−1))

∏k−2
j=i (j + 1)/(oj+1), for

i = 0, 1, . . . , k − 1. We choose xs to be the minimum positive real number such that
every |Vi | is an integer.

Since the sequence (o0, o1, . . . , ok) is monotone increasing, an optimal solution Mopt

assigns every client of Ui to a server in Vi , and every server of Vi has load oi , for
i = 0, 1, . . . , k. We next describe a Nash solution Mnash: It assigns every job in Ui to a
server in Vi+1 for i = 0, 1, . . . , k − 1; and it assigns every job in Uk to a server in Vk .
Every server in Vi has load ni = i for i = 0, 1, . . . , k.5

For k = 7 and (o0, o1, . . . , o7) = (1, 1, 1, 1, 2, 2, 2, 2), we apply the above recur-
sion formulas with the minimum integer x = 4. We obtain (|V0|, |V1|, . . . , |V7|) =
(1800, 1800, 900, 300, 75, 30, 10, 4), a total of 4919 servers. The social costs in the two
solutions are cost(Mopt) =

∑7
i=0 |Vi | · o2

i = 5276 and cost(Mnash) =
∑7

i=0 |Vi | · i2 =
10,606; so the price of anarchy is 2+ 27/2638 > 2.01.

We have presented a lower-bound construction with k = 7 from a general family
of instances. A natural question is how far can this construction be pushed? We have
systematically tested all instances in this family up to k = 29. The construction first
yields a lower bound strictly larger than 2 for k = 6. The price of anarchy then increases
slowly and monotonically with k, reaching 2.01206694843168 when k = 29. With such

5 In the simple case where oi = 1 for all i’s, we have x = 1, and it is easy to verify that cost(Mopt) = n, and
cost(Mnash) = 2n − 1. This relatively simple construction gives a lower bound of 2−1/n, which is slightly
below 2.

90 S. Suri, Cs. D. Tóth, and Y. Zhou

a slow rate of growth, it seems unlikely to us that this construction will yield a significant
improvement over 2.01. In fact, we conjecture that an upper bound of the ratio using this
construction is 2.0121.

4. Price of Anarchy with the Lp Norm. In this section we consider higher order
monomial latency functions, and use the L p norm to measure the cost of an assignment.
For any constant p ≥ 1, we assume that a server with load � and speed σ has latency
�p−1/σ . Thus, each of the �j clients matched with server j incurs latency λj = �p−1

j /σj .
The L p norm measure of the total latency is (

∑n
i=1 λi)

1/p = (
∑m

j=1 �
p
j /σj)

1/p. The case
p = 1 is the extreme case where a server’s latency is independent of its load—in such
a case all Nash equilibria are optimal. Thus, the interesting cases are only when p > 1.
Our main result in this section shows that the price of anarchy with this latency measure
is (p/log p)(1 + o(1)). (By comparison, the greedy scheme of Awerbuch et al. [4],
discussed in the next section, has competitive ratio cp(1+ o(1)) where c ≈ 1.77.)

THEOREM 4.1. With the L p norm latency measure and arbitrary server speeds, the
price of anarchy is bounded by cost(Mnash)/ cost(Mopt) ≤ (p/log p)(1+ o(1)).

PROOF. Let Mnash be a Nash assignment and let Mopt be an optimal assignment, then
cost(Mnash) = (

∑
j n p

j /σj)
1/p and cost(Mopt) = (

∑
j op

j /σj)
1/p. Suppose that there ex-

ists a constant cp, for fixed p > 1, such that cost(Mnash) ≤ cp cost(Mopt), or, equivalently,

m∑
j=1

n p
j

σj
≤ (cp)

p
m∑

j=1

op
j

σj
⇔ p

m∑
j=1

n p
j

σj
≤ (p − 1)

m∑
j=1

n p
j

σj
+ (cp)

p
m∑

j=1

op
j

σj
.(9)

We have the following chain of inequalities:

m∑
j=1

n p
j

σj
=

m∑
j=1

n p−1
j

σj

m∑
k=1

|Nj ∩ Ok | =
m∑

k=1

m∑
j=1

n p−1
j

σj
|Nj ∩ Ok |(10)

≤
m∑

k=1

m∑
j=1

(nk + 1)p−1

σk
|Nj ∩ Ok | =

m∑
k=1

(nk + 1)p−1ok

σk
.

In the above chain of inequalities, we used the fact that (n p−1
j /σj)|Nj ∩ Ok | ≤ ((nk +

1)p−1/σk)|Nj ∩ Ok | for all j, k. This is trivial if Nj ∩ Ok = ∅; otherwise, the derivation
is similar to Nash Condition (1). Due to (10), in order for (9) to hold it is sufficient to
prove the following:

p
m∑

j=1

(nj + 1)p−1oj

σj
≤ (p − 1)

m∑
j=1

n p
j

σj
+ (cp)

p
m∑

j=1

op
j

σj
.

In fact, we prove the following much stronger inequality:

p(nj + 1)p−1oj ≤ (p − 1)n p
j + (cp)

pop
j , ∀1 ≤ j ≤ m.(11)

Selfish Load Balancing and Atomic Congestion Games 91

If oj = 0, (11) is trivially true. Thus we assume that oj ≥ 1. We rewrite (11) as
follows:

p

(
nj

oj
+ 1

oj

)p−1

− (p − 1)

(
nj

oj

)p

≤ (cp)
p.(12)

Let f (x) ≡ p(x + 1)p−1 − (p − 1)x p, x ∈ [0,∞). Since 1/oj ≤ 1, it follows that
the left side of (12) is bounded by f (nj/oj). It is easy to see that f (x) is bounded above.
Let the maximum value of f (x) be f (x0) where x0 ≥ 0, and set (cp)

p = f (x0). Since
x0 is an extreme point, it follows that f ′(x0) = 0, which means that

p(p − 1)(x0+1)p−2− p(p−1)(x0)
p−1=0, i.e., (x0+1)p−2=(x0)

p−1.(13)

It is easy to derive from (13) the following bound on x0: x0 = (p/log p)(1+ o(1)).
Now we can bound the value of cp as follows:

cp =
(

p(x0 + 1)p−1 − (p − 1)(x0)
p
)1/p = (p(x0 + 1)(x0)

p−1 − (p − 1)(x0)
p
)1/p

= x0

(
p

(
1+ 1

x0

)
− (p − 1)

)1/p

= x0

(
1+ p

x0

)1/p

≤ (1+ p)1/px0 = p

log p
(1+ o(1)).

This completes the proof of Theorem 4.1.

5. Analysis of the Greedy Scheme. The cost of an assignment is related to the squared
sum of the server loads. An elegant result of Awerbuch et al. [4] shows that a simple
online greedy scheme achieves competitive ratio (1+√2)2 ≈ 5.83 for this measure of
centralized load balancing. The greedy scheme assigns each client to a permissible server
so as to minimize the increase in the total objective. Specifically, a client is assigned to
server j that minimizes the quantity (�j + 1)2/σj − �2

j /σj = (2�j + 1)/σj .
The greedy scheme does not, in general, lead to equilibrium assignments. However,

it does have a computational advantage—it is easy to implement. While the greedy
policy above is designed for optimizing the social welfare, it is also a natural selfish
strategy. Each client is essentially choosing the best possible server at the time it makes
its selection. When all servers have equal speed, each client is simply choosing the server
with the minimum load. With arbitrary speeds, the greedy scheme asks each client to
choose the server j that minimizes (�j + 0.5)/σj ; a true selfish strategy for the client
would minimize (�j + 1)/σj . This minor change in the priority has a minuscule effect
on our bounds.

In this section we reanalyze the greedy scheme and present improved bounds on its
competitive ratio. The basis for our analysis is the following Greedy Inequality:

LEMMA 5.1 (Greedy Inequality). If servers have arbitrary speeds and the latency func-
tion is linear, then the following holds for an optimal assignment Mopt and any greedy

92 S. Suri, Cs. D. Tóth, and Y. Zhou

assignment Mgreedy, where oj = |Oj |, gj = |Gj |, and Oj (resp. Gj) is the set of clients
assigned to server j in Mopt (resp. Mgreedy):

m∑
j=1

g2
j

σj
≤

m∑
j=1

2gj oj + oj

σj
.(14)

PROOF. Suppose the clients arrive in the order 1, 2, . . . , n. Let Xi = (xi1, . . . , xim)

denote the assignment vector for the client i in Mgreedy, and let Yi = (yi1, . . . , yim) denote
the assignment vector for i in Mopt, where xi j , yi j ∈ {0, 1} and

∑m
j=1 xi j =

∑m
j=1 yi j = 1.

We use Li = (�i1, . . . , �im) to denote the load vector for the greedy scheme after the
first i clients have been assigned, for i = 0, . . . , n. Notice that L0 = (0, . . . , 0) and
Ln = (g1, . . . , gm). Since the greedy scheme minimizes the total increase in the latency
at each step, we have

m∑
j=1

�2
i j

σj
−

m∑
j=1

�2
i−1, j

σj
≤

m∑
j=1

(�i−1, j + yi j)
2

σj
−

m∑
j=1

�2
i−1, j

σj
=

m∑
j=1

y2
i j + 2yi j�i−1, j

σj
.

Summing up these increments for i from 1 to n, we get

m∑
j=1

g2
j

σj
≤

n∑
i=1

m∑
j=1

y2
i j + 2yi j�i−1, j

σj
=

m∑
j=1

n∑
i=1

yi j (yi j + 2�i−1, j)

σj

≤
m∑

j=1

n∑
i=1

yi j (1+ 2gj)

σj
=

m∑
j=1

(2gj + 1)oj

σj
.

In the above chain of inequalities, we used the fact that �i−1, j ≤ gj and yi j ≤ 1 for
all i, j ,

∑
i yi j = oj for all j . The proof is complete.

With the Greedy Inequality, we can prove the following theorem.

THEOREM 5.2. With linear latency functions, the ratio of a greedy solution to the opti-
mal solution is at most 4+o(1) assuming that n � m and the server speeds are relatively
bounded. Formally, we have the following:

cost(Mgreedy)

cost(Mopt)
≤ 4+

m +
√∑m

j=1 σj
∑m

j=1 1/σj

n
(15)

≤ 4+
(

1+
√

max
1≤ j,k≤m

σj

σk

)
m

n
.

PROOF. By using the Greedy Inequality (14) and the fact that 2gj oj ≤ 1
2 g2

j + 2o2
j , we

get

m∑
j=1

g2
j

σj
≤

m∑
j=1

2gj oj + oj

σj
≤

m∑
j=1

1

σj

(
g2

j

2
+ 2o2

j + oj

)
,

Selfish Load Balancing and Atomic Congestion Games 93

m∑
j=1

g2
j

σj
≤

m∑
j=1

4o2
j + 2oj

σj
,

cost(Mgreedy)

cost(Mopt)
=

∑m
j=1 g2

j /σj∑m
j=1 o2

j /σj
≤ 4+ 2

∑m
j=1 oj/σj∑m
j=1 o2

j /σj
.

By Lemma 2.3, we get the desired result immediately.

For arbitrary values of n,m and arbitrary server speeds, our second theorem gives an
upper bound of 17/3 ≈ 5.67, which is a slight improvement over the (

√
2+ 1)2 ≈ 5.83

bound proved in [4].

THEOREM 5.3. If servers have arbitrary speeds and the latency function is linear, then
the following bound holds: cost(Mgreedy)/ cost(Mopt) ≤ 17/3. Formally, we have

m∑
j=1

g2
j

σj
≤ 17

3

m∑
j=1

o2
j

σj
.

PROOF. It is easy to verify the following equality:

2gj oj = 2
5 g2

j + 5
2 o2

j − 2
5 (gj − 5

2 oj)
2.

From Lemma 5.1, we know that
m∑

j=1

g2
j

σj
≤

m∑
j=1

2gj oj + oj

σj
=

m∑
j=1

1

σj
(2

5 g2
j + 5

2 o2
j − 2

5 (gj − 5
2 oj)

2 + oj),

m∑
j=1

g2
j

σj
≤

m∑
j=1

1

σj
(25

6 o2
j + 5

3 oj − 2
3 (gj − 5

2 oj)
2).

In order to prove
∑m

j=1 g2
j /σj ≤ (17/3)

∑m
j=1 o2

j /σj , it is sufficient to show that

25

6
o2

j +
5

3
oj − 2

3

(
gj − 5oj

2

)2

≤ 17

3
o2

j , for all j = 1, . . . ,m.

The above inequality can be simplified to the following:

9
4 oj (

10
9 − oj) ≤ (gj − 5

2 oj)
2.

This inequality is obviously true if oj = 0 or oj ≥ 2. Since oj is an integer, there is
only one remaining case oj = 1, where the inequality simplifies to 1

4 ≤ (gj − 5
2)

2. This
holds because gj is an integer. This completes the proof.

5.1. An Improved Bound for Servers of Equal Speed. If all servers have the same speed
then we can further improve the upper bound for the greedy scheme. First, Theorem 5.2
implies that cost(Mgreedy)/ cost(Mopt) ≤ 4 + 2m/n. Thus, the competitive ratio of the
greedy scheme approaches 4 as m/n → 0; in practice, this is not a bad assumption
since the number of clients often far exceeds the number of servers. A more complicated
analysis gives an upper bound of 2+√5 ≈ 4.24 for arbitrary m, n.

94 S. Suri, Cs. D. Tóth, and Y. Zhou

THEOREM 5.4. If all servers have the same speed and the latency function is linear,
then the ratio cost(Mgreedy)/ cost(Mopt) is at most 2+√5.

PROOF. In order to prove the inequality cost(Mgreedy) ≤ (2 + √5) cost(Mopt), it is
enough to prove the following:

√
5+ 1

2
cost(Mgreedy) ≤

√
5− 1

2
cost(Mgreedy)+ (2+

√
5) cost(Mopt).(16)

Lemma 5.1, together with the fact σj = 1 and
∑

j oj = n, implies that cost(Mgreedy) ≤
n + 2

∑m
j=1 oj gj . To prove (16), it suffices to show the following:

√
5+ 1

2

(
n + 2

m∑
j=1

oj gj

)
≤

m∑
j=1

(
(2+
√

5)o2
j +
√

5− 1

2
g2

j

)
,(17)

and it is equivalent to

n ≤
m∑

j=1

(
3+√5

2
o2

j +
3−√5

2
g2

j − 2oj gj

)
(18)

=
m∑

j=1

(√
5+ 1

2
oj −
√

5− 1

2
gj

)2

.

Let xj = ((
√

5+ 1)/2)oj − ((
√

5− 1)/2)gj , then (18) is equivalent to the following:

n ≤
m∑

j=1

x2
j , with

m∑
j=1

xj =
√

5+ 1

2

m∑
j=1

oj −
√

5− 1

2

m∑
j=1

gj = n.(19)

We prove (19) by induction on m. The inductive proof is similar to the proof of (8)
in Theorem 3.3 and we omit the details. This completes the proof.

5.2. Some Lower Bounds. The bound of Theorem 5.4 is the best possible using only
the Greedy Inequality. Consider the following example: There are a pairs of (1, 0),
k pairs of (1, 1) and one pair of (b, a + b). Let k = (a − b − 1)(a + b)/2, then∑m

j=1 g2
j = 2

∑m
j=1 oj gj + n with n = a + b + k. Now∑m

j=1 g2
j∑m

j=1 o2
j

= k + (a + b)2

a + b2 + k
= 3a2 + b2 + 4ab − (a + b)

a2 + b2 + a − b
.

Let b/a approximate (
√

5 − 1)/2. As a goes to infinity, the above ratio approaches
2+√5.

The following theorem establishes that the cost of the greedy scheme is strictly more
than three times the optimal in the worst case.

THEOREM 5.5. In the worst case, cost(Mgreedy)/ cost(Mopt) ≥ 3+ 1
12 ≈ 3.08, even with

equal speed servers and linear latency functions.

Selfish Load Balancing and Atomic Congestion Games 95

PROOF. Consider the bipartite graph G = (U, V) with n = |U | = 66 and m = |V | =
64. The edge set is defined as E = {(ui , vj) | j ≥ min{i, 64}}.

The cost of an optimal assignment, which assigns job i to server min{i, 64}, is
cost(Mopt) = 63 + 9 = 72. One worst-case greedy assignment maps each client
1, 2, . . . , 64 to a permissible server minimizing the increase in L2 norm, it breaks
ties by choosing the server with higher index. Its cost amounts to cost(Mgreedy) =
16+8·22+4·32+2·42+1·52+1·92 = 222. Thus, the ratio cost(Mgreedy)/ cost(Mopt) =
3+ 1

12 ≈ 3.08 > 3.

6. Closing Remarks. The users of a decentralized systems like the Internet are some-
times best modeled as selfish and strategic players, who want to optimize their own
private utility. Our selfish load balancing game models one such fundamental situation,
where a set of clients must each choose a server. We showed that the worst-case Nash
solution of this game is within a small constant factor of the social optimum.

The sum of the clients’ latency is related to the squared sum of the server loads. In that
respect, our problem can also be viewed as the uncoordinated version of the classical
L2 norm load balancing [4]. We reanalyzed the simple online greedy scheme and gave
improved bounds on its competitive ratio.

The uncoordinated greedy scheme can also be viewed as a myopic strategy for the
clients: they choose the best server available when they arrive and are not allowed to
switch afterwards. By contrast, a Nash solution requires that clients reach a stable point,
where no client has an incentive to switch. Our analysis shows that, despite lack of central
coordination, selfish players find solutions that are better than the greedy scheme, which
assumes centralized control but non-selfish players.

Interestingly, the Nash and the greedy schemes can be viewed as two extremes of
a server switching cost model—in greedy, the cost to switch is infinite; in Nash, it is
zero. An intriguing open question is to investigate the tradeoffs of a finite switching cost.
Another open question relates to the effect of server speeds. Our upper bounds are better
for equal speed servers, but we know of no lower-bound construction that gives a worse
solution for arbitrary speeds than equal speeds. Do arbitrary speeds help or hurt the price
of anarchy? Finally, there remains a small gap between our upper and lower bounds for
the equal speed servers, and it would be interesting to determine where the truth lies.

References

[1] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling. Proc. 8th
ACM–SIAM Sympos. on Discrete Algorithms, ACM Press, New York, 1997, pp. 493–500.

[2] A. Avidor, Y. Azar, and J. Sgall. Ancient and new algorithms for load balancing in the L p norm.
Algorithmica 29(3) (2001), 422–441.

[3] B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow. Proc. 37th ACM Sympos.
on Theory of Computing, ACM Press, New York, 2005, pp. 57–66.

[4] B. Awerbuch, Y. Azar, E. F. Grove, M. Y. Kao, P. Krishnan, and J. S. Vitter. Load balancing in the L p norm.
Proc. 36th Sympos. Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1995, pp. 383–391.

[5] B. Awerbuch, Y. Azar, Y. Richter, and D. Tsur. Tradeoffs in worst-case equilibria. Proc. 1st Workshop
on Approximation and Online Algorithms, LNCS 2909, Springer-Verlag, Berlin, 2003, pp. 41–52.

96 S. Suri, Cs. D. Tóth, and Y. Zhou

[6] A. K. Chandra and C. K. Wong. Worst-case analysis of a placement algorithm related to storage
allocation. SIAM J. Comput. 4(3) (1975), 249–263.

[7] G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion games. Proc. 37th ACM
Sympos. on Theory of Computing, ACM Press, New York, 2005, pp. 67–73.

[8] R. A. Cody and E. G. Coffman. Record allocation for minimizing expected retrieval costs on drum-like
storage devices. J. ACM 23(1) (1976), 103–115.

[9] A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. Proc. 13th ACM–SIAM Sympos. on
Discrete Algorithms, ACM Press, New York, 2002, pp. 413–420 (to appear in J. Algorithms).

[10] D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows. Proc. 31st ICALP, LNCS 3142,
Springer-Verlag, Berlin, 2004, pp. 593–605.

[11] M. Gairing, T. Lücking, M. Mavronicolas, and B. Monien. Computing Nash Equilibria for scheduling
on restricted parallel links. Proc. 36th ACM Sympos. on Theory of Computing, ACM Press, New York,
2004, pp. 613-622.

[12] R. L. Graham. Bounds for certain multiprocessor anomalies. Bell System Tech. J. 45 (1966), 1563–1581.
[13] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Proc. 16th Sympos. on Theoretical Aspects

of Computer Science, LNCS 1563, Springer-Verlag, Berlin, 1999, pp. 404–413.
[14] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for scheduling unrelated parallel

machines. Math. Programm. 46(3) (1990), 259–271.
[15] T. Lücking, M. Mavronicolas, B. Monien, and M. Rode. A new model for selfish routing. Proc. 21st

STACS, LNCS 2996, Springer, Berlin, 2004, pp. 547–558.
[16] S. Muthukrishnan and R. Rajaraman. An adversarial model for distributed dynamic load balancing.

J. Interconnection Networks 3(1-2) (2002), 35-47.
[17] C. Papadimitriou. Algorithms, games, and the internet. Proc. 33rd ACM Sympos. on Theory of Com-

puting, ACM Press, New York, 2001, pp. 749–753.
[18] S. Phillips and J. Westbrook. On-line load balancing and network flow. Algorithmica 21(3) (1998),

245–261.
[19] R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory

2(1973), 65–67.
[20] T. Roughgarden. The price of anarchy is independent of the network topology. J. Comput. System Sci.

67(2) (2003), 341–364.
[21] T. Roughgarden. Selfish routing with atomic players. Proc. 16th ACM–SIAM Sympos. on Discrete

Algorithms, ACM Press, New York, 2005.
[22] T. Roughgarden and É. Tardos. How bad is selfish routing? J. ACM 49 (2002), 235–259.
[23] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on-line. SIAM J. Comput.

24(6) (1995), 1313–1331.

