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Algorithms for                
Self-Interested Agents

Our focus: problems in which multiple 
agents (people, computers, etc.) interact

Motivation: the Internet
• decentralized operation and ownership

Traditional algorithmic approach:
• agents classified as obedient or adversarial

– examples: distributed algorithms, cryptography
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Algorithms and Game Theory

Recent trend: agents have own independent 
objectives (and act accordingly)

New goal: algorithms that account for 
strategic behavior by self-interested agents

Natural tool: game theory
• theory of “rational behavior” in competitive, 

collaborative settings
– [von Neumann/Morgenstern 44]
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Objectives

This talk: understand consequences of
noncooperative behavior

• when is the cost of selfish behavior severe?
– the “price of anarchy” [Koutsoupias/Papadimitriou 99]

• what can we do about it?
– design strategies, economic incentives

Our setting: routing in a congested network
• will focus on [Roughgarden/Tardos FOCS ’00/JACM ’02]
• and also [Roughgarden STOC ’02/JCSS to appear]



5

Motivating Example

Example: one unit of traffic wants to go from 
s to t

Question: what will selfish network users do?
• assume everyone wants smallest-possible delay

s t

ℓ(x)=x

ℓ(x)=1

delay depends on congestion

no congestion effects
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Motivating Example

Claim: all traffic will take the top link.

Reason:
• Є > 0 ⇒ traffic on bottom is envious
• Є = 0 ⇒ envy-free outcome

– all traffic incurs one unit of delay

s t

ℓ(x)=x

ℓ(x)=1

Flow = 1-Є

Flow = Є
this flow   
is envious!
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Can We Do Better?

Consider instead: traffic split equally

Improvement:
• half of traffic has delay 1 (same as before)
• half of traffic has delay ½ (much improved!)

s t

ℓ(x)=x

ℓ(x)=1

Flow = ½

Flow = ½
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Braess’s Paradox

Initial Network:

s t
x 1

½

x1
½

½

½

Delay = 1.5
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Braess’s Paradox

Initial Network:          Augmented Network:

s t
x 1

½

x1
½

½

½

Delay = 1.5

s t
x 1

½

x1
½

½

½0

Now what?
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Braess’s Paradox

Initial Network:          Augmented Network:

s t
x 1

½

x1
½

½

½

Delay = 1.5 Delay = 2

s t
x 1

x1
0
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Braess’s Paradox

Initial Network:          Augmented Network:

All traffic incurs more delay! [Braess 68]

• also has physical analogs [Cohen/Horowitz 91]

s t
x 1

½

x1
½

½

½

Delay = 1.5 Delay = 2

s t
x 1

x1
0
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The Mathematical Model

• a directed graph G = (V,E)
• k source-destination pairs (s1 ,t1), …, (sk ,tk)
• a rate ri of traffic from si to ti
• for each edge e, a latency function ℓe(•)

– assumed continuous and nondecreasing

s1 t1

ℓ(x)=x Flow = ½

Flow = ½
ℓ(x)=1

Example: (k,r=1)
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Routings of Traffic

Traffic and Flows:
• fP = amount of traffic routed on si-ti path P
• flow vector f routing of traffic

Selfish routing: what flows arise as the routes 
chosen by many noncooperative agents?

s t
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Nash Flows

Some assumptions:
• agents small relative to network
• want to minimize personal latency

Def: A flow is at Nash equilibrium (or is a Nash flow) 
if all flow is routed on min-latency paths        
[given current edge congestion]

x
s t

1
Flow = .5

Flow = .5

s t
1

Flow = 0

Flow = 1
x

Example:
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Some History
• traffic model, definition of Nash flows 

given by [Wardrop 52]
– historically called user-optimal/user equilibrium

• Nash flows exist, are (essentially) unique
– due to [Beckmann et al. 56]

• Nash flows also arise via distributed 
shortest-path protocols (e.g., OSPF, BGP)
– as long as latency used for edge weights
– convergence studied in [Tsitsiklis/Bertsekas 86]



16

The Cost of a Flow
Def: the cost C(f) of flow f = sum of all   

delays incurred by traffic (aka total latency)

s t

x

1
½
½

Cost = ½•½ +½•1 = ¾
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The Cost of a Flow
Def: the cost C(f) of flow f = sum of all   

delays incurred by traffic (aka total latency)

Formally: if ℓP(f) = sum of latencies of edges 
of P (w.r.t. the flow f), then:

C(f) = ΣP fP • ℓP(f)

s ts t

x

1
½
½

Cost = ½•½ +½•1 = ¾
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Inefficiency of Nash Flows
Note: Nash flows do not minimize total latency 
• observed informally by [Pigou 1920]
• lack of coordination leads to inefficiency

• Cost of Nash flow = 1•1 + 0•1 = 1
• Cost of optimal (min-cost) flow = ½•½ +½•1 = ¾

s t

x

1
0

1 ½

½
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How Bad Is Selfish Routing?

s t

x

1
0

1 ½

½

Pigou’s example 
is simple…

Central question: How inefficient are Nash 
flows in more realistic networks?

Goal: prove that Nash flows are near-optimal 
• want laissez-faire approach to managing networks
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The Bad News
Bad Example:                (r = 1, d large)

Nash flow has cost 1, min cost ≈ 0 

⇒ Nash flow can cost arbitrarily more than 
the optimal (min-cost) flow
– even if latency functions are polynomials

s t

xd

1
0

1 1-Є

Є
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Hardware Offsets Selfishness

Approach #1: use different type of guarantee

Theorem: [Roughgarden/Tardos 00] for every    
network:

≤Nash cost at rate r opt cost at rate 2r
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Hardware Offsets Selfishness

Approach #1: use different type of guarantee

Theorem: [Roughgarden/Tardos 00] for every    
network:

≤

Also: M/M/1 fns (ℓ(x)=1/(u-x), u = capacity) ⇒

≤

Nash cost at rate r opt cost at rate 2r

Nash w/capacities 2u opt w/capacities u
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Linear Latency Functions

Approach #2: restrict class of allowable 
latency functions

Def: linear latency fn is of form ℓe(x)=aex+be

Theorem: [Roughgarden/Tardos 00] for every 
network with linear latency fns: 

≤  4/3 × cost of 
Nash flow

cost of            
opt flow
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Sources of Inefficiency

Corollary of previous Theorem:
• For linear latency fns, worst Nash/OPT 

ratio is realized in a two-link network!

• simple explanation for worst inefficiency
– confronted w/two routes, selfish users 

overcongest one of them

s t

x

1
0

1 ½

½

• Cost of Nash = 1

• Cost of OPT = ¾
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Simple Worst-Case Networks
Theorem: [Roughgarden 02] fix any class of 

latency fns, and the worst Nash/OPT ratio 
occurs in a two-node, two-link network.

• under mild assumptions (convexity, richness)
• inefficiency of Nash flows always has simple 

explanation; simple networks are worst examples
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Simple Worst-Case Networks
Theorem: [Roughgarden 02] fix any class of 

latency fns, and the worst Nash/OPT ratio 
occurs in a two-node, two-link network.

• under mild assumptions (convexity, richness)
• inefficiency of Nash flows always has simple 

explanation; simple networks are worst examples

Proof Idea: Nash flows solve a certain 
minimization problem

• not quite total latency, but close
• electrical current is physical analog
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Computing the Price of 
Anarchy

Application: worst-case examples simple ⇒
worst-case ratio is easy to calculate

Example: polynomials with degree ≤ d, 
nonnegative coeffs ⇒ price of anarchy 
Θ(d/log d)

s t

xd

1
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Hardware Offsets Selfishness

Theorem: [Roughgarden/Tardos 00] for every    
network:

≤

Corollary: networks with M/M/1 delay fns ⇒

≤

Nash cost at rate r opt cost at rate 2r

Nash w/capacities 2u opt w/capacities u
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Key Difficulty

Suppose f a Nash flow, f* an opt flow at twice 
the rate. Want to show that C(f*) ≥ C(f).

Note: cost of f can be written as

C(f) = Σe fe• ℓe(fe)

Similarly:  C(f*) = Σe f*• ℓe(f*)

Problem: what is the relation between ℓe(fe)
and ℓe(f*)?

e

e

e
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Key Trick

Idea: lower bound cost of f* using a 
different set of latency fns c such that:

• easy to lower bound cost of f* w.r.t. latency fns c
• cost of f* w.r.t. fns c ≈ cost of f* w.r.t. fns ℓ
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Key Trick

Idea: lower bound cost of f* using a 
different set of latency fns c such that:

• easy to lower bound cost of f* w.r.t. latency fns c
• cost of f* w.r.t. fns c ≈ cost of f* w.r.t. fns ℓ

The construction:

ℓe(fe)

0
0 fe

graph of ℓ

ℓe(fe)

0
0 fe

graph of c
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Lower Bounding OPT
Assume for simplicity: only one commodity.
• all traffic in Nash flow has same latency, say L
• cost of Nash flow easy to compute: C(f) = rL
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Lower Bounding OPT
Assume for simplicity: only one commodity.
• all traffic in Nash flow has same latency, say L
• cost of Nash flow easy to compute: C(f) = rL

Key observation: latency of path P w.r.t. 
latency fns c with no congestion is ℓP(f)

ℓe(fe)

0
0 fe

path latency 
in Nash flow
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Lower Bounding OPT
Assume for simplicity: only one commodity.
• all traffic in Nash flow has same latency, say L
• cost of Nash flow easy to compute: C(f) = rL

Key observation: latency of path P w.r.t. 
latency fns c with no congestion is ℓP(f)

⇒ cost of f* w.r.t. c is at least 2rL = 2C(f)

ℓe(fe)

0
0 fe

path latency 
in Nash flow
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Bounding the Overestimate
So far: cost of f* w.r.t. c is ≥ 2C(f).

Claim: (will finish proof of Thm)
[cost of f* w.r.t. c] - C(f*)   ≤   C(f).
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Bounding the Overestimate
So far: cost of f* w.r.t. c is ≥ 2C(f).

Claim: (will finish proof of Thm)
[cost of f* w.r.t. c] - C(f*)   ≤   C(f).

Reason: difference in costs on edge e is

ℓe(fe)

0
0 fe

typical value of  
ce(fe)fe - ℓe(fe)fe

* * * *

fe
*
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Bounding the Overestimate
So far: cost of f* w.r.t. c is ≥ 2C(f).

Claim: (will finish proof of Thm)
[cost of f* w.r.t. c] - C(f*)   ≤   C(f).

Reason: difference in costs on edge e is

⇒ ce(fe)fe - ℓe(fe)fe  ≤ ℓe(fe)fe

ℓe(fe)

0
0 fe

typical value of  
ce(fe)fe - ℓe(fe)fe

* * * *

fe
* sum over edges     

to get Claim* ** *
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Summary
Goal: prove that loss in network performance 

due to selfish routing is not too large.

Problem: a Nash flow can cost                    
far more than an optimal flow.

Solutions: 
• compare Nash to opt flow with extra traffic
• restrict class of allowable edge latency 

functions, obtain bounded price of anarchy

s t

xd

1
0

1 1-Є

Є
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Coping with Selfishness

Goal: design/manage networks so that  
selfish routing “not too bad”

⇒ adds algorithmic dimension

Approach #1: Network design
• want to avoid Braess’s Paradox

Results: [Roughgarden FOCS ‘01]
• Braess’s Paradox can be arbitrarily severe in 

larger networks, hard to efficiently detect
• also [Lin/Roughgarden/Tardos, in prep]

s t
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Coping with Selfishness
Approach #2: Stackelberg routing
• some traffic routed centrally, selfish users react 

to congestion accordingly
• [Roughgarden STOC ‘01]: Stackelberg routing can 

dramatically improve over the Nash flow

Approach #3: Edge pricing
• use economic incentives (taxes) to influence 

selfish behavior
• [Cole/Dodis/Roughgarden EC ‘03 + STOC ‘03]:

explore this idea for selfish routing
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Future Research
• Explore other game-theoretic environments 

using an approximation framework
– [Czumaj/Krysta/Voecking STOC ‘02], [Vetta FOCS ‘02], etc.

• Approximation algorithms for network design
– also interesting without game-theoretic constraints
– [Kumar/Gupta/Roughgarden FOCS ‘02]
– [Gupta/Kumar/Roughgarden STOC ‘03]

• Algorithms for key game-theoretic concepts
– Nash/market equilibria (e.g., [Devanur et al FOCS ‘02])
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Extensions

Fact: positive results continue to hold for:
• approximate Nash flows [RT00]

– users route on approximately min-latency paths

• finitely many agents, splittable flow [RT00]
– weakens assumption that agents are small

• “nonatomic congestion games”, games 
without combinatorial structure of a 
network [RT02]


