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Abstract

We introduce a new measure of the discrepancy in strategic games between the social
welfare in a Nash equilibrium and in a social optimum, that we call selfishness level.
It is the smallest fraction of the social welfare that needs to be offered to each player to
achieve that a social optimum is realized in a pure Nash equilibrium. The selfishness level
is unrelated to the price of stability and the price of anarchy and is invariant under positive
linear transformations of the payoff functions. Also, it naturally applies to other solution
concepts and other forms of games.

We study the selfishness level of several well-known strategic games. This allows us to
quantify the implicit tension within a game between players’ individual interests and the
impact of their decisions on the society as a whole. Our analyses reveal that the selfishness
level often provides a deeper understanding of the characteristics of the underlying game
that influence the players’ willingness to cooperate.

In particular, the selfishness level of finite ordinal potential games is finite, while that
of weakly acyclic games can be infinite. We derive explicit bounds on the selfishness level of
fair cost sharing games and linear congestion games, which depend on specific parameters
of the underlying game but are independent of the number of players. Further, we show
that the selfishness level of the n-players Prisoner’s Dilemma is c/(b(n−1)−c), where b and
c are the benefit and cost for cooperation, respectively, that of the n-players public goods
game is (1 − c

n
)/(c − 1), where c is the public good multiplier, and that of the Traveler’s

Dilemma game is 1

2
(b − 1), where b is the bonus. Finally, the selfishness level of Cournot

competition (an example of an infinite ordinal potential game), Tragedy of the Commons,
and Bertrand competition is infinite.

The intelligent way to be selfish is
to work for the welfare of others

Dalai-Lama1

1. Introduction

The discrepancy in strategic games between the social welfare in a Nash equilibrium and in
a social optimum has been long recognized by the economists. One of the flagship examples
is Cournot competition, a strategic game involving firms that simultaneously choose the

1. (Bowles, 2004, p. 109).
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production levels of a homogeneous product. The payoff functions in this game describe the
firms’ profit in the presence of some production costs, under the assumption that the price
of the product depends negatively on the total output. It is well-known (see, e.g., Jehle &
Reny, 2011, pp. 174–175) that the price in the social optimum is strictly higher than in the
Nash equilibrium, which shows that the competition between the producers of a product
drives its price down.

In computer science the above discrepancy led to the introduction of the notions of the
price of anarchy (Koutsoupias & Papadimitriou, 2009) and the price of stability (Schulz
& Moses, 2003; Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, & Roughgarden, 2008)
that measure the ratio between the social welfare in a worst and, respectively, a best Nash
equilibrium and a social optimum. This originated a huge research effort aiming at deter-
mining both ratios for specific strategic games that possess (pure) Nash equilibria.

These two notions are descriptive in the sense that they assess the existing situation.
Said differently, these notions quantify the discrepancy between the social welfare in a Nash
equilibrium and a social optimum given the initial payoff functions. In contrast, we propose
a notion that is normative in the sense that it explains how to change these payoff functions
to resolve such a discrepancy. Intuitively, we are asking the question how much of the social
welfare needs to be added to the players’ payoff functions so that their individual preferences
can bring them to an optimal outcome for the society. On an abstract level, the approach
that we propose here is related to one proposed by Axelrod (1984, p. 134), in chapter “How
to Promote Cooperation”, from where we cite: “An excellent way to promote cooperation
in a society is to teach people to care about the welfare of others.”

Our approach draws on the concept of altruistic games (see, e.g., Ledyard, 1995, and
more recently Marco & Morgan, 2007). In these games each player’s payoff is modified
by adding a positive fraction α of the social welfare in the considered joint strategy to
the original payoff. The selfishness level of a game is defined as the infimum over all
α ≥ 0 for which such a modification yields that a social optimum is realized in a pure Nash
equilibrium. The underlying property is monotonic in the sense that if for some α ≥ 0 a
social optimum is a pure Nash equilibrium, then it is also the case for every β ≥ α.

Intuitively, the selfishness level of a game can be viewed as a measure of the players’
willingness to cooperate. A low selfishness level indicates that the players are open to
align their interests in the sense that a small share of the social welfare is sufficient to
motivate them to choose a social optimum. In contrast, a high selfishness level suggests
that the players are reluctant to cooperate and a large share of the social welfare is needed
to stimulate cooperation among them. An infinite selfishness level means that cooperation
cannot be achieved through such means.

Notions like the price of stability and the price of anarchy were developed to measure
the quality of equilibria. In contrast, our notion of the selfishness level can be regarded as a
measure of willingness to cooperate. In general, these notions are incomparable (as we will
also argue formally) and provide different insights into the underlying game.

Our main motivation for analyzing the selfishness level of strategic games is to gain a
deeper understanding of the characteristics that influence the players’ willingness to coop-
erate. As it turns out, for several games studied in this paper the selfishness level provides
such insights. To illustrate this point, we briefly elaborate on our findings for the public
goods game and the fair cost sharing game.
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Selfishness Level of Strategic Games

In the public goods game there are n players who want to contribute to a public good.
Every player i chooses an amount si ∈ [0, b] that he contributes. A central authority collects
all individual contributions, multiplies their sum by c > 1 (for simplicity we assume here
that n ≥ c) and distributes the resulting amount evenly among all players. The payoff of
player i is thus pi(s) := b − si +

c
n

∑

j sj. In the (unique) Nash equilibrium, every player
attempts to “free ride” by contributing 0 to the public good (which is a dominant strategy),
while in the social optimum every player contributes the full amount of b. As we will show,
the selfishness level of this game is (1− c

n
)/(c−1). This bound suggests that the temptation

to free ride (i) increases as the number of players grows and (ii) decreases as the parameter
c increases. Both phenomena were observed by experimental economists, (see, e.g., the
discussion in Ledyard, 1995, Section III.C.2). In comparison, the price of stability (which
coincides with the price of anarchy) for this game is c.

In a fair cost sharing game every player i chooses a facility from a set of facilities Si ⊆ E
available to him (for simplicity we discuss here only the case where players choose a single
facility). The cost ce of every used facility e ∈ E is shared evenly among the players using
it. As we will prove, the selfishness level of this game is max{0, 12cmax/cmin − 1}, where
cmax and cmin refer to the largest and smallest cost of a facility, respectively. Our analysis
therefore reveals a threshold phenomenon which also makes sense intuitively: In order to
motivate cooperation among the players it is crucial to convince the players having access to
a facility with cost cmin to adhere to a social optimum. If cmax ≤ 2cmin this is easy because
in a social optimum each such player either shares the cost of a facility e with ce ≥ cmin

with at least one other player or uses a facility of cost cmin exclusively by himself. Thus, it
is in the self-interest of each player to cooperate and choose a social optimum in this case. If
cmax > 2cmin these players are reluctant to cooperate and the fraction of the social welfare
that needs to be offered to them to incite cooperation grows proportionally to cmax/cmin.
Anshelevich et al. (2008) showed that the price of stability and the price of anarchy of
this game are Hn and n, respectively, where n denotes the number of players.2 So these
measures depend on the number of players. In contrast, our notion reveals a dependency
on the discrepancy between the costs of the facilities.

A large body of literature in experimental economics indicates that players have a ten-
dency to cooperate in social dilemmas like the Prisoner’s dilemma, the Traveler’s dilemma or
the public goods game, even though such behavior is ruled out by standard game-theoretic
analysis. Several studies suggest that the willingness to cooperate depends on certain pa-
rameters of the underlying game (like group-size, magnitude of payoffs, etc.); see, e.g., Isaac
and Walker (1988), Cooper, DeJong, Forsythe, and Ross (1996), Goeree and Holt (2001),
Becker, Carter, and Naeve (2005), and Dreber, Rand, Fudenberg, and Nowak (2008). For
example, Dreber et al. observe that in the Prisoner’s dilemma the willingness to cooperate
increases with the ratio of cost over benefit for cooperation. We therefore study the selfish-
ness level of parameterized versions of these games. Our findings show that the selfishness
level also exhibits a dependency on certain parameters of the game.

In this paper, we define the selfishness level by taking pure Nash equilibrium as the
solution concept. This is in line with how the price of anarchy and price of stability were
defined originally (Koutsoupias & Papadimitriou, 2009; Schulz & Moses, 2003; Anshelevich

2. Hn denotes the nth Harmonic number.
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et al., 2008). However, the definition applies equally well to other solution concepts and
other forms of games. We discuss these matters in the final section.

1.1 Our Contributions

The main contributions presented in this paper are as follows:

1. We introduce (in Section 2) the notion of selfishness level of a game, derive some basic
properties and elaborate on some connections to other efficiency measures and models
of altruism.

In particular, we show that the selfishness level of a game is unrelated to the price
of stability and the price of anarchy. Moreover, the selfishness level is invariant un-
der positive linear transformations of the payoff functions. We also show that our
model is equivalent to other models of altruism that have been studied before. As a
consequence, our bounds on the selfishness level directly transfer to these alternative
models.

2. We derive (in Section 3) a characterization result that allows us to determine the
selfishness level of a strategic game.

Our characterization shows that the selfishness level is determined by the maximum
appeal factor of unilateral profitable deviations from specific social optima, which we
call stable. As a result, we can focus on deviations from these stable social optima
only. Intuitively, the appeal factor of a single player deviation refers to the ratio of
the gain in his payoff over the resulting loss in social welfare.

3. We use (in Section 4) our characterization result to analyze the selfishness level of
several classical strategic games.

The games that we study are fundamental and often used to illustrate the consequences
of selfish behavior and the effects of competition. A summary of our results is given
in Table 1. In particular, we derive explicit bounds on the selfishness level of fair cost
sharing games and congestion games with linear delay functions. The obtained bounds
depend on specific parameters of the underlying game, which we find informative. We
also show that these bounds are tight for certain instances.

4. We also show (in Section 5) that our selfishness level notion naturally extends to other
solution concepts and other types of games, for instance mixed Nash equilibria and
extensive games.

1.2 Related Work

There are only few articles in the algorithmic game theory literature that study the influence
of altruism in strategic games (Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, &
Papaioannou, 2010; Chen, de Keijzer, Kempe, & Schäfer, 2011; Chen & Kempe, 2008;
Elias, Martignon, Avrachenkov, & Neglia, 2010; Hoefer & Skopalik, 2009). In these works,
altruistic player behavior is modeled by altering each player’s perceived payoff in order to
account also for the welfare of others. The models differ in the way they combine the player’s
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Game Selfishness level

Ordinal potential games finite

Weakly acyclic games ∞
Fair cost sharing games (singleton) max{0, 12 cmax

cmin
− 1}†

Fair cost sharing games (integer costs) max{0, 12Lcmax − 1}†
Linear congestion games (singleton) max{0, 12

∆max−∆min

(1−δmax)amin
− 1

2}†

Linear congestion games (integer coefficients) max{0, 12(L∆max−∆min−1)}†
Prisoner’s Dilemma for n players c

b(n−1)−c
†

Public goods game max{0, 1−
c

n

c−1 }†
Traveler’s dilemma 1

2(b− 1)†

Cournout competition ∞
Tragedy of the commons ∞
Bertrand competition ∞

Table 1: Selfishness level of the games studied in this paper.
† see Section 4 for the definitions of the respective parameters of the games.

individual payoff with the payoffs of the other players. All these studies are descriptive in the
sense that they aim at understanding the impact of altruistic behavior on specific strategic
games.

Closest to our work are the articles by Elias et al. (2010) and by Chen et al. (2011).
Elias et al. study the inefficiency of equilibria in network design games (which constitute
a special case of the cost sharing games considered here) with altruistic (or, as they call
it, socially-aware) players. As we do here, they define each player’s cost function as his
individual cost plus α times the social cost. They derive lower and upper bounds on the
price of anarchy and the price of stability, respectively, of the modified game. In particular,
they show that the price of stability is at most (Hn +α)/(1 +α), where n is the number of
players.

Chen et al. (2011) introduce a framework to study the robust price of anarchy, which
refers to the worst-case inefficiency of other solution concepts such as coarse correlated
equilibria (see Roughgarden, 2009) of altruistic extensions of strategic games. In their
model, player i’s perceived cost is a convex combination of (1−γi) times his individual cost
plus γi times the social cost, where γi ∈ [0, 1] is the altruism level of player i. If all players
have a uniform altruism level γi = γ, this model relates to the one we consider here by
setting α = γ/(1 − γ) (see Section 2.3 for details). Although not being the main focus of
the paper, the authors also provide upper bounds of 2/(1 + γ) and (1 − γ)Hn + γ on the
price of stability for linear congestion games and fair cost sharing games, respectively.

Note that in all three cases mentioned above the price of stability approaches 1 as α
goes to ∞. This seems to suggest that the selfishness level of these games is ∞. However,
this is not the case as our analyses reveal.
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Two other models of altruism were proposed in the literature. Chen and Kempe (2008)
define the perceived cost of a player as (1− β) times his individual cost plus β/n times the
social cost, where β ∈ [0, 1]. Caragiannis et al. (2010) define the perceived cost of player i
as (1−δ) times his individual cost plus δ times the sum of the costs of all other players (i.e.,
excluding player i), where δ ∈ [0, 1]. Also these two models can be shown to be equivalent
to our model using simple transformations (see Section 2.3 for details).

Subsequently, we mention a few related approaches that are normative. Conceptually,
our selfishness level notion is related to the Stackelberg threshold introduced by Sharma
and Williamson (2009) (see also Kaporis & Spirakis, 2009). The authors consider network
routing games in which a fraction of β ∈ [0, 1] of the flow is first routed centrally and the
remaining flow is then routed selfishly. The Stackelberg threshold refers to the smallest
value of β that is needed to improve upon the social cost of a Nash equilibrium flow.

In a related paper, Hoefer and Skopalik (2009) study the minimum number, termed the
optimal stability threshold, of (pure) altruists that are needed in a congestion game to induce
a Nash equilibrium as a social optimum. They show that this number can be computed in
polynomial time for singleton congestion games.

In network congestion games, researchers studied the effect of imposing tolls on the edges
of the network in order to reduce the inefficiency of Nash equilibria (see, e.g., Beckmann,
McGuire, & Winsten, 1956). From a high-level perspective, these approaches can also be
regarded as normative.

Recently, Capraro (2013) proposed a new normative approach to measure incentive for
cooperation in symmetric games in which there is a tension between selfish and altruistic
behavior. The solution concept is a pure Nash equilibrium of a transformed game in which
the strategies are certain mixed strategic of the original game. These strategies depend
on the incentive and risk of deviating from cooperation in the original game. Strikingly,
Capraro’s conclusions about the influence of the parameters in the Prisoner’s Dilemma,
Traveler’s Dilemma and the public goods game are consistent with ours.

There are several other papers that propose notions allowing to assess the stability of
Nash equilibria. We mention a few of them below. Christodoulou, Koutsoupias, and Spirakis
(2011) study the inefficiency of approximate Nash equilibria in congestion games. In a
(1+ε)-approximate Nash equilibrium the cost of each player is at most (1+ε) times the cost
he experiences in every unilateral deviation. The authors derive (almost) tight bounds on
the price of stability and the price of anarchy for linear (non-atomic and atomic) congestion
games as a function of ε. In particular, they obtain a bound of min{1, (1 +

√
3)/(ε+

√
3)}

on the price of stability for atomic linear congestion games. In this context, an alternative
notion to assess the stability of Nash equilibria that comes to one’s mind is to consider the
smallest ε ≥ 0 for which a social optimum is realized as a (1 + ε)-Nash equilibrium. Note
that the above bound implies that such an ε is at most 1 for linear congestion games. We
comment on this idea in more detail in Section 5.2.

Anshelevich, Das, and Naamad (2009) consider the problem of incentivizing players to
participate in socially desirable matchings by adding switching costs to player deviations.
In their model, the additional cost that a player incurs by changing his strategy accounts
for an ε fraction of his individual cost. Adopting this viewpoint, the authors study the
inefficiency of (1 + ε)-approximate stable matchings. They derive bounds on the price of
stability and the price of anarchy of (1 + ε)-approximate stable matchings as a function of
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ε ≥ 0. Related to this work is the article of Biró, Manlove, and Mittal (2010) who study the
problem of computing an optimal matching having a minimum number of blocking pairs.

Furthermore, Balcan, Blum, and Mansour (2009) study the impact of advertising strate-
gies to players in order to induce them to select more efficient equilibria. More precisely, in
their model an authority first proposes a strategy to each player which is then accepted by
each player with probability α. Each accepting player adheres to the proposed strategy and
all remaining players play a best response (assuming that the strategies of the accepting
players are fixed). In a final step all players follow a best response dynamics until a Nash
equilibrium is reached. The authors analyze the inefficiency of the resulting equilibria for
fair cost sharing games, machine scheduling games and party affiliation games. In particu-
lar, for fair cost sharing games they show that the expected cost of the resulting equilibrium
is at most a factor O(log n/α) away from a social optimum.

2. Selfishness Level

In this section, we formally introduce our notion of selfishness level, establish some proper-
ties and relate it to other notions of altruism.

2.1 Definition

A strategic game (in short, a game) G = (N, {Si}i∈N , {pi}i∈N ) is given by a set N =
{1, . . . , n} of n > 1 players, a non-empty set of strategies Si for every player i ∈ N , and a
payoff function pi for every player i ∈ N with pi : S1 × · · · ×Sn → R. The players choose
their strategies simultaneously and every player i ∈ N aims at choosing a strategy si ∈ Si

so as to maximize his individual payoff pi(s), where s = (s1, . . . , sn).

We call s ∈ S1 × · · · ×Sn a joint strategy and denote its ith element by si. We denote
(s1, . . . , si−1, si+1, . . . , sn) by s−i and similarly with S−i. Further, we write (s′i, s−i) for
(s1, . . . , si−1, s

′
i, si+1, . . . , sn), where we assume that s′i ∈ Si. Sometimes, when focusing on

player i we write (si, s−i) instead of s.

A joint strategy s is a Nash equilibrium if for all i ∈ {1, . . . , n} and s′i ∈ Si,
pi(si, s−i) ≥ pi(s

′
i, s−i). Further, given a joint strategy s we call the sum SW (s) :=

∑n
i=1 pi(s) the social welfare of s. When the social welfare of s is maximal we call s

a social optimum.

We shall also consider a ‘cost’ variant of the games in which we use the cost functions,
written as ci, instead of the payoff functions pi. In such a setup the objective of each player
is to minimize his costs, so a joint strategy s is a Nash equilibrium if for all i ∈ {1, . . . , n}
and s′i ∈ Si, ci(si, s−i) ≤ ci(s

′
i, s−i). Further, instead of the social welfare one considers the

social cost of s, defined as SC(s) :=
∑n

i=1 ci(s).

Given a strategic game G := (N, {Si}i∈N , {pi}i∈N ) and α ≥ 0 we define the game
G(α) := (N, {Si}i∈N , {ri}i∈N ) by putting ri(s) := pi(s) + αSW (s). So when α > 0 the
payoff of each player in the G(α) game depends on the social welfare of the players. G(α)
is then an altruistic version of the game G.

Suppose now that for some α ≥ 0 a pure Nash equilibrium of G(α) is a social optimum
of G(α). Then we say that G is α-selfish. We define the selfishness level of G as

inf{α ∈ R+ | G is α-selfish}. (1)
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Here we adopt the convention that the infimum of an empty set is ∞. Further, we stipulate
that the selfishness level of G is denoted by α+ iff the selfishness level of G is α ∈ R+ but
G is not α-selfish (equivalently, the infimum does not belong to the set). We show below
(Theorem 2) that pathological infinite games exist for which the selfishness level is of this
kind; none of the other studied games is of this type.

We give some remarks before we proceed.

1. The above definitions refer to strategic games in which each player i maximizes his
payoff function pi and the social welfare of a joint strategy s is given by SW (s). These
definitions obviously apply to the case when we use cost functions and the social cost.

2. Other definitions of an altruistic version of a game are conceivable and, depending
on the underlying application, might seem more natural than the one we use here.
However, we show in Section 2.3 that our definition is equivalent to several other
models of altruism that have been proposed in the literature.

3. The selfishness level refers to the smallest α such that some Nash equilibrium in G(α)
is also a social optimum. Alternatively, one might be interested in the smallest α such
that every Nash equilibrium in G(α) corresponds to a social optimum. However, as
explained in Section 5.2, this alternative notion is not always very meaningful.

4. The definition extends in the obvious way to other solution concepts (e.g., mixed or
correlated equilibria) and other forms of games (e.g., subgame perfect equilibria in
extensive games). We briefly comment on these extensions in Section 5.

Note that the social welfare of a joint strategy s in G(α) equals (1 + αn)SW (s), so the
social optima of G and G(α) coincide. Hence we can replace in the definition of an α-selfish
game the reference to a social optimum of G(α) by one to a social optimum of G. This is
what we shall do in the proofs below.

Intuitively, a low selfishness level means that the share of the social welfare needed to
induce the players to choose a social optimum is small. This share can be viewed as an
‘incentive’ needed to realize a social optimum. Let us illustrate this definition on various
simple examples.

Example 1. Prisoner’s Dilemma

C D
C 1, 1 −1, 2
D 2,−1 0, 0

C D
C 3, 3 0, 3
D 3, 0 0, 0

Consider the Prisoner’s Dilemma game G (on the left) and the resulting game G(α)
for α = 1 (on the right). In the latter game the social optimum, (C,C), is also a Nash
equilibrium. One can easily check that for α < 1, (C,C) is also a social optimum of G(α)
but not a Nash equilibrium. So the selfishness level of this game is 1.

Example 2. Battle of the Sexes

F B
F 2, 1 0, 0
B 0, 0 1, 2
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Here each Nash equilibrium is also a social optimum, so the selfishness level of this game
is 0.

Example 3. Matching Pennies

H T
H 1,−1 −1, 1
T −1, 1 1,−1

Since the social welfare of each joint strategy is 0, for each α the game G(α) is identical
to the original game in which no Nash equilibrium exists. So the selfishness level of this
game is ∞. More generally, the selfishness level of a constant sum game is 0 if it has a Nash
equilibrium and otherwise it is ∞.

Example 4. Game with a bad Nash equilibrium
The following game results from equipping each player in the Matching Pennies game with
a third strategy E (for edge):

H T E
H 1,−1 −1, 1 −1,−1
T −1, 1 1,−1 −1,−1
E −1,−1 −1,−1 −1,−1

Its unique Nash equilibrium is (E,E). It is easy to check that the selfishness level of
this game is ∞. (This is also an immediate consequence of Theorem 4 (iii) below.)

Example 5. Game with no Nash equilibrium
Consider a game G on the left and the resulting game G(α) for α = 1 on the right.

C D
C 2, 2 2, 0
D 3, 0 1, 1

C D
C 6, 6 4, 2
D 6, 3 3, 3

The game G has no Nash equilibrium, while in the game G(1) the social optimum,
(C,C), is also a Nash equilibrium. As in the Prisoner’s Dilemma game one can easily check
that for α < 1, (C,C) is also a social optimum of G(α) but not a Nash equilibrium. So the
selfishness level of the game G is 1.

2.2 Properties

Recall that, given a finite game G that has a Nash equilibrium, its price of stability is
the ratio SW (s)/SW (s′) where s is a social optimum and s′ is a Nash equilibrium with the
highest social welfare in G. The price of anarchy is defined as the ratio SW (s)/SW (s′)
where s is a social optimum and s′ is a Nash equilibrium with the lowest social welfare in
G.

So the price of stability of G is 1 iff its selfishness level is 0. However, in general there
is no relation between these two notions. The following observation also shows that the
selfishness level of a finite game can be an arbitrary real number.
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Theorem 1. For every finite α > 0 and β > 1 there is a finite game whose selfishness level
is α and whose price of stability is β.

Proof. Consider the following generalized form, which we denote by PD(α, β), of the Pris-
oner’s Dilemma game G with x = α

α+1 :

C D
C 1, 1 0, x+ 1

D x+ 1, 0 1
β
, 1
β

In this game and in each game G(γ) with γ ≥ 0, (C,C) is the unique social optimum.
To compute the selfishness level we need to consider a game G(γ) and stipulate that (C,C)
is its Nash equilibrium. This leads to the inequality 1 + 2γ ≥ (γ + 1)(x+ 1), from which it
follows that γ ≥ x

1−x
, i.e., γ ≥ α. So the selfishness level of G is α. Moreover, its price of

stability is β, since (D,D) is the only Nash equilibrium.

The notion of the selfishness level is invariant under simple payoff transformations. It
is a direct consequence of the following observation, where given a game G and a value a
we denote by G+ a (respectively, aG) the game obtained from G by adding to each payoff
function the value a (respectively, by multiplying each payoff function by a).

Proposition 1. Consider a game G and α ≥ 0.

(i) For every a, G is α-selfish iff G+ a is α-selfish.

(ii) For every a > 0, G is α-selfish iff aG is α-selfish.

Proof. (i) It suffices to note that r[a]i(s) = ri(s)+αan+a, where ri and r[a]i are the payoff
functions of player i in the games G(α) and (G+ a)(α). So for every joint strategy s

• s is a Nash equilibrium of G(α) iff it is a Nash equilibrium of (G+ a)(α),

• s is social optimum of G(α) iff it is a social optimum of (G+ a)(α).

(ii) It suffices to note that for every a > 0, r[a]i(s) = ari(s), where this time r[a]i is the
payoff function of player i in the game (aG)(α), and argue as above.

Proposition 1 implies that the selfishness level is invariant under the game transforma-
tions of the form t(G) := aG+ b, where a > 0. This is in contrast to the notions of the price
of anarchy and the price of stability that are invariant only under the game transformations
of the form t(G) := aG, where a > 0.

Note that the selfishness level is not invariant under a multiplication of the payoff func-
tions by a value a ≤ 0. Indeed, for a = 0 each game aG has the selfishness level 0. For
a < 0 take the game G from Example 4 whose selfishness level is ∞. In the game aG the
joint strategy (E,E) is both a Nash equilibrium and a social optimum, so the selfishness
level of aG is 0.

The above proposition also allows us to frame the notion of selfishness level in the
following way. Suppose the original n-player game G is given to a game designer who has a
fixed budget of SW (s) for each joint strategy s and that the selfishness level of G is α < ∞.
How should the game designer then distribute the budget of SW (s) for each joint strategy s

216



Selfishness Level of Strategic Games

among the players such that the resulting game has a Nash equilibrium that coincides with
a social optimum? By scaling G(α) by the factor a := 1/(1 + αn) we ensure that for each
joint strategy s its social welfare in the original game G and in aG(α) is the same. Using
Proposition 1, we conclude that α is the smallest non-negative real such that aG(α) has
a Nash equilibrium that is a social optimum. The game aG(α) can then be viewed as the
intended transformation of G. That is, each payoff function pi of the game G is transformed
into the payoff function

ri(s) :=
1

1 + αn
pi(s) +

α

1 + αn
SW (s).

Let us return now to the ‘borderline case’ of the selfishness level that we denoted by
α+. We have the following result.

Theorem 2. For every α ≥ 0 there exists a game whose selfishness level is α+.

Proof. We first prove the result for α = 0. That is, we show that there exists a game that
is α-selfish for every α > 0, but is not 0-selfish. To this end we use the games PD(α, β)
defined in the proof of Theorem 1.

We construct a strategic game G = (N, {Si}i∈N , {pi}i∈N ) with two players N = {1, 2}
by combining, for an arbitrary but fixed β > 1, infinitely many PD(α, β) games with α > 0
as follows: For each α > 0 we rename the strategies of the PD(α, β) game to, respectively,
C(α) and D(α) and denote the corresponding payoff functions by pαi . The set of strategies
of each player i ∈ N is Si = {C(α) | α > 0} ∪ {D(α) | α > 0} and the payoff of i is defined
as

pi(si, s−i) :=

{

pαi (si, s−i) if {si, s−i} ⊆ {C(α), D(α)} for some α > 0

0 otherwise.

Every social optimum of G is of the form (C(α), C(α)), where α > 0. (Note that we
exploit that β > 1 here.) By the argument given in the proof of Theorem 1, (C(α), C(α))
with α > 0 is a Nash equilibrium in the game G(α) because the deviations from C(α) to a
strategy C(γ) or D(γ) with γ 6= α yield a payoff of 0. Thus, G is α-selfish for every α > 0.
Finally, observe that G is not 0-selfish because every Nash equilibrium of G is of the form
(D(α),D(α)), where α > 0.

To deal with the general case we prove two claims that are of independent interest.

Claim 1. For every game G and α ≥ 0 there is a game G′ such that G′(α) = G.

Proof. We define the payoff of player i in the game G′ by

p′i(s) := pi(s)−
α

1 + nα
SW (s),
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where pi is his payoff in the game G. Denote by SW ′(s) the social welfare of a joint strategy
s in the game G′ and by r′i the payoff function of player i in the game G′(α). Then

r′i(s) = p′i(s) + αSW ′(s)

= pi(s)−
α

1 + nα
SW (s) + α

(

SW (s)− nα

1 + nα
SW (s)

)

= pi(s) +

(

α− α

1 + nα
− nα2

1 + nα

)

SW (s)

= pi(s).

Claim 2. For every game G and α, β ≥ 0

G(α+ β) = G(α)

(

β

1 + nα

)

.

Proof. Denote by SW ′(s) the social welfare of a joint strategy s in the game G(α), by pi, ri
and r′ the payoff functions of player i in the games G, G(α), and G(α)( β

1+nα
). Then

ri(s) := pi(s) + αSW (s),

so

r′i(s) = ri(s) +
β

1 + nα
SW ′(s)

= pi(s) + αSW (s) +
β

1 + nα
(SW (s) + nαSW (s))

= pi(s) +

(

α+
β

1 + nα
+

βnα

1 + nα

)

SW (s)

= pi(s) + (α+ β)SW (s),

which proves the claim.

To prove the general case fix α ≥ 0 and β > 0 and take a game G whose selfishness level
is 0+. By Claim 1 there is a game G′ such that G′(α) = G. Then G′ is not α-selfish, since
G is not 0-selfish.

Further, by Claim 2

G′(α+ β) = G′(α)

(

β

1 + nα

)

= G

(

β

1 + nα

)

.

But by its choice the game G is β
1+nα

-selfish, so G′ is (α + β)-selfish, which concludes the
proof.
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2.3 Alternative Definitions

Our definition of the selfishness level depends on the way the altruistic versions of the
original game are defined. Three other models of altruism were proposed in the literature.
As before, let G := (N, {Si}i∈N , {pi}i∈N ) be a strategic game. Consider the following four
definitions of altruistic versions of G:

Model A (Elias et al., 2010): For every α ≥ 0, G(α) := (N, {Si}i∈N , {rαi }i∈N ) with

rαi (s) = pi(s) + αSW (s) ∀i ∈ N. (2)

Model B (Chen & Kempe, 2008): For every β ∈ [0, 1], G(β) := (N, {Si}i∈N , {rβi }i∈N )
with

rβi (s) = (1− β)pi(s) +
β

n
SW (s) ∀i ∈ N. (3)

Model C (Chen et al., 2011): For every γ ∈ [0, 1], G(γ) := (N, {Si}i∈N , {rγi }i∈N ) with

rγi (s) = (1− γ)pi(s) + γSW (s) ∀i ∈ N. (4)

Model D (Caragiannis et al., 2010): For every δ ∈ [0, 1], G(δ) := (N, {Si}i∈N , {rδi }i∈N )
with

rγi (s) = (1− δ)pi(s) + δ(SW (s)− pi(s)) ∀i ∈ N. (5)

Our selfishness level notion for Model A extends to Models B, C and D in the obvious
way: We say that G is β-selfish for some β ∈ [0, 1] iff a pure Nash equilibrium of the
altruistic version G(β) is also a social optimum. The selfishness level of G with respect

to Model B is then defined as the infimum over all β ∈ [0, 1] such that G is β-selfish. The
respective notions for Models C and D are defined analogously.

The following theorem shows that the selfishness level of a game with respect to Models
A, B, C and D relate to each other via simple transformations. (Note that for Model D this
transformation only applies for δ ∈ [0, 12 ].)

Theorem 3. Consider a strategic game G := (N, {Si}i∈N , {pi}i∈N ) and its altruistic ver-
sions defined according to Models A, B, C and D above.

(i) G is α-selfish with α ∈ R+ iff G is β-selfish with β = αn
1+αn

∈ [0, 1].

(ii) G is α-selfish with α ∈ R+ iff G is γ-selfish with γ = α
1+α

∈ [0, 1].

(iii) G is α-selfish with α ∈ R+ iff G is δ-selfish with δ = α
1+2α ∈ [0, 12 ].

Proof. We prove the following more general claim. Fix x, y > 0. For every λ ∈ [0, 1
x
], define

G(λ) := (N, {Si}i∈N , {rλi }i∈N ) with

rλi (s) = (1− xλ)pi(s) +
λ

y
SW (s). (6)

We show that G is α-selfish for α ≥ 0 iff G is λ-selfish for λ = αy
1+αxy

∈ [0, 1
x
].
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By substituting λ = αy
1+αxy

in (6), we obtain

rλi (s) =
1

1 + αxy
pi(s) +

α

1 + αxy
SW (s) =

1

1 + αxy
rαi (s).

As a consequence, since 1
1+αxy

> 0 for every α ≥ 0 the pure Nash equilibria and social

optima, respectively, of G(λ) and 1
1+αxy

G(α) coincide. Thus, G is λ-selfish iff 1
1+αxy

G is

α-selfish. Also, it follows from Proposition 1 that 1
1+αxy

G is α-selfish iff G is α-selfish.

Further, note that

lim
α→∞

αy

1 + αxy
=

1

x

(

1− lim
α→∞

1

1 + αxy

)

=
1

x
.

That is, the selfishness level of G with respect to Model A is ∞ iff the selfishness level of G
with respect to G(λ) is 1

x
.

Now, (i) follows from the above with x = 1 and y = n, (ii) follows with x = y = 1 and
(iii) follows with x = 2 and y = 1.

3. A Characterization Result

We now characterize the games with a finite selfishness level. To this end we shall need
the following notion. We call a social optimum s stable if for all i ∈ N and s′i ∈ Si the
following holds:

if (s′i, s−i) is a social optimum, then pi(si, s−i) ≥ pi(s
′
i, s−i).

In other words, a social optimum is stable if no player is better off by unilaterally deviating
to another social optimum.

It will turn out that in order to determine the selfishness level of a game we need to
consider deviations from its stable social optima. Consider a deviation s′i of player i from
a stable social optimum s. If player i is better off by deviating to s′i, then by definition the
social welfare decreases, i.e., SW (si, s−i) − SW (s′i, s−i) > 0. If in the original game this
decrease is small, while the gain for player i is large, then strategy s′i is an attractive and
socially acceptable option for player i. We define player i’s appeal factor of strategy s′i
given the social optimum s as

AFi(s
′
i, s) :=

pi(s
′
i, s−i)− pi(si, s−i)

SW (si, s−i)− SW (s′i, s−i)
.

In what follows we shall characterize the selfishness level in terms of bounds on the
appeal factors of profitable deviations from a stable social optimum. First, note the following
properties of social optima.

Lemma 1. Consider a strategic game G := (N, {Si}i∈N , {pi}i∈N ) and α ≥ 0.

(i) If s is both a Nash equilibrium of G(α) and a social optimum of G, then s is a stable
social optimum of G.
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(ii) If s is a stable social optimum of G, then s is a Nash equilibrium of G(α) iff for all
i ∈ N and s′i ∈ Ui(s), α ≥ AFi(s

′
i, s), where

Ui(s) := {s′i ∈ Si | pi(s
′
i, s−i) > pi(si, s−i)}. (7)

The set Ui(s), with the “>” sign replaced by “≥”, is called an upper contour set (see,
e.g., Ritzberger, 2002, p. 193). Note that if s is a stable social optimum, then s′i ∈ Ui(s)
implies that SW (si, s−i) > SW (s′i, s−i).

Proof. (i) Suppose that s is both a Nash equilibrium of G(α) and a social optimum of G.
Consider some joint strategy (s′i, s−i) that is a social optimum. By the definition of a Nash
equilibrium

pi(si, s−i) + αSW (si, s−i) ≥ pi(s
′
i, s−i) + αSW (s′i, s−i),

so pi(si, s−i) ≥ pi(s
′
i, s−i), as desired.

(ii) Suppose that s is a stable social optimum of G. Then s is a Nash equilibrium of
G(α) iff for all i ∈ N and s′i ∈ Si

pi(si, s−i) + αSW (si, s−i) ≥ pi(s
′
i, s−i) + αSW (s′i, s−i). (8)

If pi(si, s−i) ≥ pi(s
′
i, s−i), then (8) holds for all α ≥ 0 since s is a social optimum. If

pi(s
′
i, s−i) > pi(si, s−i), then, since s is a stable social optimum of G, we have SW (si, s−i) >

SW (s′i, s−i).

So (8) holds for all i ∈ N and s′i ∈ Si iff

α ≥ pi(s
′
i, s−i)− pi(si, s−i)

SW (si, s−i)− SW (s′i, s−i)
= AFi(s

′
i, s)

holds for all i ∈ N and s′i ∈ Ui(s).

This leads us to the following result.

Theorem 4. Consider a strategic game G := (N, {Si}i∈N , {pi}i∈N ).

(i) The selfishness level of G is finite iff a stable social optimum s exists for which α(s) :=
supi∈N, s′

i
∈Ui(s)AFi(s

′
i, s) is finite.

(ii) If the selfishness level of G is finite, then it equals mins∈SSO α(s), where SSO is the
set of stable social optima.

(iii) If G is finite, then its selfishness level is finite iff it has a stable social optimum. In
particular, if G has a unique social optimum, then its selfishness level is finite.

(iv) If β > α ≥ 0 and G is α-selfish, then G is β-selfish.

Proof. (i) and (iv) follow by Lemma 1, (ii) by (i) and Lemma 1, and (iii) by (i).

Using the above theorem we now exhibit a class of games for n players for which the
selfishness level is unbounded. In fact, the following more general result holds.
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Theorem 5. For each function f : N→ R+ there exists a class of games for n players,
where n > 1, such that the selfishness level of a game for n players equals f(n).

Proof. Assume n > 1 players and that each player has two strategies, 1 and 0. Denote by
1 the joint strategy in which each strategy equals 1 and by 1−i the joint strategy of the
opponents of player i in which each entry equals 1. The payoff for each player i is defined
as follows:

pi(s) :=











0 if s = 1

f(n) if si = 0 and ∀j < i, sj = 1

− f(n)+1
n−1 otherwise.

So when s 6= 1, pi(s) = f(n) if i is the smallest index of a player with si = 0 and otherwise

pi(s) = − f(n)+1
n−1 . Note that SW (1) = 0 and SW (s) = −1 if s 6= 1. So 1 is a unique social

optimum.
We have pi(0,1−i)− pi(1) = f(n) and SW (1)− SW (0,1−i) = 1. So by Theorem 4 (ii)

the selfishness level equals f(n).

4. Examples

We now use the above characterization result to determine or compute an upper bound on
the selfishness level of some selected games. First, we exhibit a well-known class of games
(see Monderer & Shapley, 1996) for which the selfishness level is finite.

4.1 Ordinal Potential Games

Given a game G := (N, {Si}i∈N , {pi}i∈N ), a function P : S1 × · · · × Sn → R is called an
ordinal potential function for G if for all i ∈ N , s−i ∈ S−i and si, s

′
i ∈ Si, pi(si, s−i) >

pi(s
′
i, s−i) iff P (si, s−i) > P (s′i, s−i). A game that possesses an ordinal potential function is

called an ordinal potential game.

Theorem 6. Every finite ordinal potential game has a finite selfishness level.

Proof. Each social optimum with the largest potential is a stable social optimum. So the
claim follows by Theorem 4 (ii).

In particular, every finite congestion game (see Rosenthal, 1973) has a finite selfishness
level. We shall derive explicit bounds for two special cases of these games in Sections 4.3
and 4.4.

4.2 Weakly Acyclic Games

Given a game G := (N, {Si}i∈N , {pi}i∈N ), a path in S1 × · · · ×Sn is a sequence (s1, s2, . . . )
of joint strategies such that for every k > 1 there is a player i such that sk = (s′i, s

k−1
−i ) for

some s′i 6= sk−1
i (see, e.g., Monderer & Shapley, 1996). A path is called an improvement

path if it is maximal and for all k > 1, pi(s
k) > pi(s

k−1), where i is the player who deviated
from sk−1. A game G has the finite improvement property (FIP) if every improvement
path is finite. A game G is called weakly acyclic if for every joint strategy there exists a
finite improvement path that starts at it (see, e.g., Milchtaich, 1996; Young, 1993).
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Finite games that have the FIP coincide with the ordinal potential games. So by Theo-
rem 6 these games have a finite selfishness level. In contrast, the selfishness level of a weakly
acyclic game can be infinite. Indeed, the following game is easily seen to be weakly acyclic:

H T E
H 1,−1 − 1, 1 − 1,−0.5
T − 1, 1 1,−1 − 1,−0.5
E −0.5,−1 −0.5,−1 −0.5,−0.5

Yet, on the account of Theorem 4 (iii), its selfishness level is infinite.

4.3 Fair Cost Sharing Games

In this and the next subsection we consider cost-minimization instead of payoff-maximization
games. Recall that in these games each player i wants to minimize his individual cost func-
tion ci and that the social cost is defined as SC(s) =

∑

i ci(s).

In a fair cost sharing game (see, e.g., Anshelevich et al., 2008) players allocate facilities
and share the cost of the used facilities in a fair manner. Formally, a fair cost sharing game
is given by G = (N,E, {Si}i∈N , {ce}e∈E), where N = {1, . . . , n} is the set of players, E is
the set of facilities, Si ⊆ 2E is the set of facility subsets available to player i, and ce ∈ R+

is the cost of facility e ∈ E. It is called a singleton cost sharing game if for every i ∈ N
and for every si ∈ Si: |si| = 1. For a joint strategy s ∈ S1 × · · · × Sn let xe(s) be the
number of players using facility e ∈ E, i.e., xe(s) = |{i ∈ N | e ∈ si}|. The cost of a facility
e ∈ E is evenly shared among the players using it. That is, the cost of player i is defined
as ci(s) =

∑

e∈si
ce/xe(s).

We first consider singleton cost sharing games. Let cmax = maxe∈E ce and cmin =
mine∈E ce refer to the maximum and minimum costs of the facilities, respectively.

Proposition 2. The selfishness level of a singleton cost sharing game is at most
max{0, 12 cmax

cmin
− 1}. Moreover, this bound is tight.

This result should be contrasted with the price of stability of Hn and the price of anarchy
of n for cost sharing games (Anshelevich et al., 2008). Cost sharing games admit an exact
potential function and thus by Theorem 6 their selfishness level is finite. However, as the
tight example given in the proof of Proposition 2 below shows, the selfishness level can be
arbitrarily large (as cmax/cmin → ∞) even for n = 2 players and two facilities.

In order to prove Proposition 2, we first derive an expression of the appeal factor for
arbitrary fair cost sharing games, which we then specialize to singleton cost sharing games
to prove the claim.

Let s be a stable social optimum. Note that s exists by Theorem 4 (iii) and Theorem 6.
Because we consider a cost minimization game here the appeal factor of player i is defined
as

AFi(s
′
i, s) :=

ci(si, s−i)− ci(s
′
i, s−i)

SC(s′i, s−i)− SC(si, s−i)
(9)

and the condition in Theorem 4 (i) reads α(s) := maxi∈N, s′
i
∈Ui(s)AFi(s

′
i, s), where Ui(s) :=

{s′i ∈ Si | ci(s
′
i, s−i) < ci(si, s−i)}.

223



Apt & Schäfer

Fix some player i and let s′ = (s′i, s−i) for some s′i ∈ Ui(s). We use xe and x′e to refer
to xe(s) and xe(s

′), respectively. Note that

x′e =











xe + 1 if e ∈ s′i \ si,
xe − 1 if e ∈ si \ s′i,
xe otherwise.

We have

ci(s)− ci(s
′
i, s−i) =

∑

e∈si\s′i

ce
xe

−
∑

e∈s′
i
\si

ce
xe + 1

. (10)

Further, it is not difficult to verify that

SC(s′i, s−i)− SC(s) =
∑

e∈s′
i
\si:xe=0

ce −
∑

e∈si\s′i:xe=1

ce. (11)

Thus,

AFi(s
′
i, s) =

∑

e∈si\s′i:xe≥2
ce
xe

−∑

e∈s′
i
\si:xe≥1

ce
xe+1

∑

e∈s′
i
\si:xe=0 ce −

∑

e∈si\s′i:xe=1 ce
− 1. (12)

We use the above to prove Proposition 2.

Proof of Proposition 2. Let s be a stable social optimum (which exists by Theorem 4 (iii)
and Theorem 6). If Ui(s) = ∅ for every i ∈ N then the selfishness level is 0 by Theorem 4 (ii).
Otherwise, there is some player i ∈ N with Ui(s) 6= ∅. Recall that in a singleton cost
sharing game, each player’s strategy set consists of singleton facility sets. Let si = {e} and
s′i = {e′} be the singleton sets of the facilities chosen by player i in s and in s′ = (s′i, s−i)
with s′i ∈ Ui(s). Clearly, e 6= e′.

Note that SC(s′i, s−i)−SC(s) must be positive because s′i ∈ Ui(s) and thus (11) implies
that xe′ = 0. Therefore, (10) reduces to ci(s) − ci(s

′
i, s−i) = ce/xe − ce′ . If xe = 1

then ce > ce′ because s′i ∈ Ui(s). But this is a contradiction to the assumption that
SC(s′i, s−i)− SC(s) = ce′ − ce > 0. Thus xe ≥ 2. Note that this also implies that ce > 2ce′

and thus cmax > 2cmin.

Using (12), we obtain

AFi(s
′
i, s) =

ce
xe

ce′
− 1 ≤ 1

2

cmax

cmin
− 1.

The claim now follows by Theorem 4 (ii).

The following example shows that this bound is tight. Suppose N = {1, 2}, E =
{e1, e2}, S1 = {{e1}}, S2 = {{e1}, {e2}}, ce1 = cmax and ce2 = cmin with cmax > 2cmin.
The joint strategy s = ({e1}, {e1}) is the unique social optimum with SC(s) = cmax and
c2(s) = cmax/2. Suppose player 2 deviates to s′2 = {e2}. Then SC(s′2, s1) = cmax+ cmin and
c2(s

′
2, s1) = cmin. Thus AFi(s

′
2, s) = (12cmax − cmin)/cmin = 1

2cmax/cmin − 1.
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The following example shows that a bound similar to the one above, i.e., bounding
the selfishness level in terms of the ratio cmax/cmin, does not hold for arbitrary fair cost
sharing games. In particular, it shows that the minimum difference between any two costs
of facilities (here ε) must enter a bound of the selfishness level for arbitrary fair cost sharing
games.

Example 6. Let N = {1, 2}, E = {e1, e2, e3}, S1 = {{e1}}, S2 = {{e1, e3}, {e2}}, ce1 =
cmax, ce2 = cmin+ ε for some ε > 0 and ce3 = cmin. The joint strategy s = ({e1}, {e1, e3}) is
the unique social optimum with SC(s) = cmax + cmin and c2(s) = cmax/2 + cmin. Suppose
player 2 deviates to s′2 = {e2}. Then SC(s′2, s1) = cmax + cmin + ε and c2(s

′
2, s1) = cmin + ε.

Thus AFi(s
′
2, s) = (12cmax − ε)/ε = 1

2cmax/ε− 1, which approaches ∞ as ε → 0.

We next derive a bound for arbitrary fair cost sharing games with non-negative integer
costs. Let L be the maximum number of facilities that any player can choose, i.e., L :=
maxi∈N,si∈Si

|si|.
Proposition 3. The selfishness level of a fair cost sharing game with non-negative integer
costs is at most max{0, 12Lcmax − 1}. Moreover, this bound is tight.

Proof. Let s be a stable social optimum. As in the proof of Proposition 2, if Ui(s) = ∅ for
every i ∈ N then the selfishness level is 0 by Theorem 4 (ii). Otherwise, there is some player
i ∈ N with Ui(s) 6= ∅. Let s′ = (s′i, s−i) for some s′i ∈ Ui(s). Note that the denominator
of the appeal factor in (12) is at least 1 because s is stable, s′i ∈ Ui(s) and ce ∈ N for each
e ∈ E. Thus

AFi(s
′
i, s) =

∑

e∈si\s′i: xe≥2
ce
xe

−∑

e∈s′
i
\si:xe≥1

ce
xe+1

∑

e∈s′
i
\si: xe=0 ce −

∑

e∈si\s′i:xe=1 ce
− 1

≤
∑

e∈si\s′i: xe≥2

ce
xe

− 1 ≤ 1

2
Lcmax − 1.

The claim follows by Theorem 4 (ii).
The following example shows that the bound is tight. Suppose we are given L and

cmax. Let N = {1, . . . , n} and E = {e1, . . . , en} where n = L + 1. Define Si = {{ei}} for
every i ∈ N \ {n} and Sn = {{e1, . . . , en−1}, {en}}. Let cei = cmax for every i ∈ N \ {n}
and cen = 1. The joint strategy s = ({e1}, . . . , {en−1}, {e1, . . . , en−1}) is the unique social
optimum with SC(s) = (n− 1)cmax and cn(s) = (n − 1)cmax/2. Suppose player n deviates
to s′n = {en}. Then SC(s′n, s−n) = (n− 1)cmax + 1 and cn(s

′
n, s−n) = 1. Thus AFi(s

′
n, s) =

1
2(n− 1)cmax − 1 = 1

2Lcmax − 1.

Remark 1. We can bound the selfishness level of a fair cost sharing game with non-negative
rational costs ce ∈ Q+ for every facility e ∈ E by using Proposition 3 and the following
scaling argument: Simply scale all costs to integers, e.g., by multiplying them with the
least common multiplier q ∈ N of the denominators. Note that this scaling does not change
the selfishness level of the game by Proposition 1. However, it does change the maximum
facility cost and thus q enters the bound. Also note that this scaling implicitly takes care
of the effect observed in Example 6: Suppose that cmax and cmin are integers and ǫ = 1/q
for some q ∈ N. Then all costs are multiplied by q and Proposition 3 yields a (non-tight)
bound of qcmax − 1 = cmax/ǫ− 1 on the selfishness level, which approaches ∞ as q → ∞.
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4.4 Linear Congestion Games

In a congestion game G := (N,E, {Si}i∈N , {de}e∈E) we are given a set of players N =
{1, . . . , n}, a set of facilities E with a delay function de : N → R+ for every facility e ∈ E,
and a strategy set Si ⊆ 2E for every player i ∈ N . For a joint strategy s ∈ S1 × · · · × Sn,
define xe(s) as the number of players using facility e ∈ E, i.e., xe(s) = |{i ∈ N | e ∈ si}|.
The goal of a player is to minimize his individual cost ci(s) =

∑

e∈si
de(xe(s)).

Here we call a congestion game symmetric if there is some common strategy set S ⊆ 2E

such that Si = S for all i. It is singleton if every strategy si ∈ Si is a singleton set, i.e., for
every i ∈ N and for every si ∈ Si, |si| = 1. In a linear congestion game, the delay function
of every facility e ∈ E is of the form de(x) = aex+ be, where ae, be ∈ R+ are non-negative
real numbers.

We first derive a bound on the selfishness level for symmetric singleton linear congestion
games. As it turns out, a bound similar to the one for singleton cost sharing games does
not extend to symmetric singleton linear congestion games. Instead, the crucial insight here
is that the selfishness level depends on the discrepancy between facilities in a stable social
optimum. We make this notion more precise.

Let s be a stable social optimum and let xe refer to xe(s). Define the discrepancy
between two facilities e and e′ with ae + ae′ > 0 under s as

δ(xe, xe′) =
2aexe + be
ae + ae′

− 2ae′xe′ + be′

ae + ae′
. (13)

We show below that δ(xe, xe′) ∈ [−1, 1]. Define δmax(s) as the maximum discrepancy
between any two facilities e and e′ under s with ae + ae′ > 0 and δ(xe, xe′) < 1; more
formally, let

δmax(s) = max
e,e′∈E

{δ(xe, xe′) | ae + ae′ > 0 and δ(xe, xe′) < 1}.

Let δmax be the maximum discrepancy over all stable social optima, i.e., δmax = maxs∈SSO δmax(s).
Further, let ∆max := maxe∈E(ae + be) and ∆min := mine∈E(ae + be). Moreover, let amin be
the minimum non-zero coefficient of a latency function, i.e., amin = mine∈E:ae>0 ae.

Proposition 4. The selfishness level of a symmetric singleton linear congestion game is at
most

max

{

0,
1

2

∆max −∆min

(1− δmax)amin
− 1

2

}

.

Moreover, this bound is tight.

We first prove that the discrepancy between two facilities is bounded:

Claim 3. Let s be a social optimum and e, e′ ∈ E be two facilities with ae + ae′ > 0. Then
the discrepancy between e and e′ under s satisfies δ(xe, xe′) ∈ [−1, 1].

Proof. Let t = xe + xe′ be the total number of players on facilities e and e′ under s. Note
that since s is a social optimum and strategy sets are symmetric, t is distributed among xe
and xe′ such that the social cost of these two facilities is minimized. Said differently, xe = x
minimizes the function

f(x, t) := aex
2 + bex+ ae′(t− x)2 + be′(t− x).
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It is not hard to verify that the minimum of f(x, t) (for fixed t) is attained at the (not
necessarily integral) point

x̄0 :=
2ae′t− be + be′

2(ae + ae′)
.

Because f(x, t) is a parabola with its minimum at x̄0, the integral point xe that minimizes
f(x, t) is given by the point obtained by rounding x̄0 to the nearest integer. Let xe := x̄0+

1
2δ

be this point, where δ = δ(xe, xe′) ∈ [−1, 1], and xe′ = t− xe. Note that the choice of δ is
unique, unless x̄0 is half-integral in which case δ ∈ {−1, 1}. Solving these equations for δ
yields the definition in (13).

Proof of Proposition 4. Let s be a stable social optimum. Note that s exists by Theo-
rem 4 (iii) and Theorem 6. If Ui(s) = ∅ for every i ∈ N then the selfishness level is 0 by
Theorem 4 (ii). Otherwise, there is some player i ∈ N with Ui(s) 6= ∅. Let s′ = (s′i, s−i)
for some s′i ∈ Ui(s). We use xe and x′e to refer to xe(s) and xe(s

′) for every facility e ∈ E,
respectively. Note that for every e ∈ E we have

x′e =











xe + 1 if e ∈ s′i \ si,
xe − 1 if e ∈ si \ s′i,
xe otherwise.

(14)

Let si = {e} and s′i = {e′} be the sets of facilities chosen by player i in s and s′, respectively.
Exploiting (14), we obtain

ci(si, s−i)− ci(s
′
i, s−i) = aexe + be − ae′(xe′ + 1)− be′ . (15)

Moreover,

SC(s′i, s−i)− SC(si, s−i) = ae′(2xe′ + 1) + be′ − ae(2xe − 1)− be. (16)

Note that we have ci(si, s−i) − ci(s
′
i, s−i) > 0 because s′i ∈ Ui(s) and by the definition of

Ui(s) in (7). Further, SC(s′i, s−i) − SC(si, s−i) > 0 because s is a stable social optimum
and s′i ∈ Ui(s). Thus, it must hold that ae + ae′ > 0; otherwise ae = ae′ = 0 and (15) and
(16) yield a contradiction.

Let δ = δ(xe, xe′) be the discrepancy between e and e′ under s. Note that δ ∈ [−1, 1]
by Claim 3. Using the definition of δ in (13), we can rewrite (15) and (16) as

ci(si, s−i)− ci(s
′
i, s−i) =

1
2(ae + ae′)δ +

1
2be − 1

2be′ − ae′

and
SC(s′i, s−i)− SC(si, s−i) = (1− δ)(ae + ae′).

We conclude that δ 6= 1.
Thus,

AFi(s
′
i, s) =

1

2
· (ae + ae′)δ + be − be′ − 2ae′

(1− δ)(ae + ae′)
=

1

2
· (ae + be)− (ae′ + be′)

(1− δ)(ae + ae′)
− 1

2

≤ 1

2
· ∆max −∆min

(1− δmax)amin
− 1

2
.
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The claim now follows by Theorem 4 (ii).

The following example shows that this bound is tight even for n = 2 players and two
facilities. Let N = {1, 2}, E = {e, e′} and S1 = S2 = {{e}, {e′}}. Suppose we are given
δ ∈ [0, 1) and ae′ ∈ R+. Define de(x) = (2 + δ)ae′ and de′(x) = ae′x. The joint strategy s =
({e}, {e′}) is the unique social optimum with SC(s) = (3+ δ)ae′ . Further c1(s) = (2+ δ)ae′

and c2(s) = ae′ . Suppose player 1 deviates to s′1 = {e′}. Then SC(s′1, s2) = 4ae′ and
c1(s

′
1, s2) = 2ae′ . Thus AFi(s

′
1, s) = δ/(1 − δ), which matches precisely the upper bound

given above. The case δ ∈ [−1, 0] is proven analogously.

Observe that the selfishness level depends on the ratio (∆max −∆min)/amin and 1/(1−
δmax). In particular, the selfishness level becomes arbitrarily large as δmax approaches 1.

We next derive a bound for the selfishness level of arbitrary congestion games with linear
delay functions and non-negative integer coefficients, i.e., de(x) = aex+ be with ae, be ∈ N

for every e ∈ E. Let L be the maximum number of facilities that any player can choose,
i.e., L := maxi∈N,si∈Si

|si|.

Proposition 5. The selfishness level of a linear congestion game with non-negative integer
coefficients is at most max{0, 12 (L∆max −∆min − 1)}. Moreover, this bound is tight.

For linear congestion games, the price of anarchy is known to be 5
2 (see Christodoulou &

Koutsoupias, 2005; Awerbuch, Azar, & Epstein, 2013). Our bound shows that the selfishness
level depends on the maximum number of facilities in a strategy set and the magnitude of
the coefficients of the delay functions.

Proof of Proposition 5. Let s be a stable social optimum. Note that s exists by Theorem
4 (iii) and Theorem 6. If Ui(s) = ∅ for every i ∈ N then the selfishness level is 0 by
Theorem 4 (ii). Otherwise, there is some player i ∈ N with Ui(s) 6= ∅. Let s′ = (s′i, s−i) for
some s′i ∈ Ui(s). We use xe and x′e to refer to xe(s) and xe(s

′), respectively.

Exploiting (14), we obtain

ci(si, s−i)− ci(s
′
i, s−i) =

∑

e∈si\s′i

(aexe + be)−
∑

e∈s′
i
\si

(ae(xe + 1) + be).

Similarly,

SC(s′i, s−i)− SC(si, s−i) =
∑

e∈s′
i
\si

(xe + 1)(ae(xe + 1) + be)− xe(aexe + be)

+
∑

e∈si\s′i

(xe − 1)(ae(xe − 1) + be)− xe(aexe + be)

=
∑

e∈s′
i
\si

(ae(2xe + 1) + be)−
∑

e∈si\s′i

(ae(2xe − 1) + be).

Given a congestion vector x = (xe)e∈E , define P (x) :=
∑

e∈si\s′i
(aexe + be) and Q(x) :=

∑

e∈s′
i
\si

(ae(xe + 1) + be). Note that P (x) and Q(x) are integers because ae, be ∈ N for
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every facility e ∈ E. Note that with these definitions, P (1) =
∑

e∈si\s′i
(ae + be) and

Q(0) =
∑

e∈s′
i
\si

(ae + be). We have

AFi(s
′
i, s) =

P (x)−Q(x)

2Q(x)−Q(0)− 2P (x) + P (1)
.

Because s′i ∈ Ui(s), we know that P (x) > Q(x) and 2Q(x)−Q(0) > 2P (x)− P (1). So we
obtain

Q(x) + 1 ≤ P (x) ≤ Q(x) + 1
2 (P (1)−Q(0)− 1).

Exploiting these inequalities, we obtain

AFi(s
′
i, s) ≤

1

2
(P (1) −Q(0)− 1) =

1

2

(

∑

e∈si\s′i

(ae + be)−
∑

e∈s′
i
\si

(ae + be)− 1

)

≤ 1

2
(|si \ s′i| ·∆max − |s′i \ si| ·∆min − 1).

Note that |s′i \ si| ≥ 1; otherwise, s′i ⊆ si and thus SC(s′i, s−i) ≤ SC(s) which contradicts
s′i ∈ Ui(s). The above expression is thus at most 1

2(L∆max − ∆min − 1). The claim now
follows by Theorem 4 (ii).

The following example shows that this bound is tight. Fix L, ∆max and ∆min such
that (2n − 1)∆min = L∆max + 1 for some integer n. Consider a congestion game with
N = {1, . . . , n} and E = {e1, . . . , eL+1}. Define Si = {{eL+1}} for every i ∈ N \ {n}
and Sn = {{e1, . . . , eL}, {eL+1}}. Let deL+1

(x) = ∆minx and dei(x) = ∆max for every i ∈
{1, . . . , L}. For the joint strategy s = ({eL+1}, . . . , {eL+1}, {e1, . . . , eL}) we have SC(s) =
∆min(n − 1)2 + L∆max and cn(s) = L∆max. If player n deviates to s′n = {eL+1} we
have SC(s′n, s−n) = ∆minn

2 = ∆min(n − 1)2 + ∆min(2n − 1) and cn(s
′
n, s−n) = ∆minn.

Exploiting that (2n − 1)∆min = L∆max + 1, we conclude that SC(s) < SC(s′n, s−n) and
cn(s) > cn(s

′
n, s−n) (for n ≥ 3). Thus, s is a social optimum and s′n ∈ Ui(s). We obtain

AFn(s
′
n, s) =

L∆max −∆minn

∆min(2n − 1)− L∆max
= L∆max −

1

2
(L∆max +∆min + 1)

=
1

2
(L∆max −∆min − 1).

Remark 2. We can use Proposition 5 and the scaling argument outlined in Remark 1 to
derive bounds on the selfishness level of congestion games with linear delay functions and
non-negative rational coefficients.

4.5 Prisoner’s Dilemma for n Players

We assume that each player i ∈ N = {1, . . . , n} has two strategies, 1 (cooperate) and 0
(defect). We put pi(s) := −csi+ b

∑

j 6=i sj, where b > c. Intuitively, b stands for the benefit
of cooperation and c for the cost of cooperation.

Proposition 6. The selfishness level of the n-players Prisoner’s Dilemma game is c
b(n−1)−c

.
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Intuitively, this means that when the number of players in the Prisoner’s Dilemma game
increases, a smaller share of the social welfare is needed to resolve the underlying conflict.
The same observation holds for the value of the benefit. That is, the ‘acuteness’ of the
dilemma diminishes with the number of players and also diminishes when the value of the
benefit grows. The formal reason is that the appeal factor of each unilateral deviation
from the social optimum is inversely proportional to the number of players and inversely
proportional to the benefit.

Proof. In this game s = 1 is the unique social optimum, with for each i ∈ N , pi(s) =
bn − (b + c) and SW (s) = bn2 − (b + c)n. Consider now the joint strategy (s′i, s−i) in
which player i deviates to the strategy s′i = 0. We have then pi(s

′
i, s−i) = bn − b and

SW (s′i, s−i) = bn2 − (b + c)n + c − b(n − 1). Hence AFi(s
′
i, s) =

c
b(n−1)−c

. The claim now

follows by Theorem 4 (ii).

In particular, for n = b = 2 and c = 1 we get the original Prisoner’s Dilemma game
considered in Example 1 and as already argued there the selfishness level is then 1.

4.6 Public Goods

We consider the public goods game with n players. Every player i ∈ N = {1, . . . , n} chooses
an amount si ∈ [0, b] that he contributes to a public good, where b ∈ R+ is the budget. The
game designer collects the individual contributions of all players, multiplies their sum by
c > 1 and distributes the resulting amount evenly among all players. The payoff of player
i is thus pi(s) := b− si +

c
n

∑

j∈N sj .

Proposition 7. The selfishness level of the n-players public goods game is max
{

0,
1− c

n

c−1

}

.

In this game, every player has an incentive to “free ride” by contributing 0 to the
public good (which is a dominant strategy if c ≤ n). This is exactly as in the n-players
Prisoner’s Dilemma game (where defect is a dominant strategy if c > 0). However, the
above proposition reveals that for fixed c, in contrast to the Prisoner’s Dilemma game, this
temptation becomes stronger as the number of players increases. Also, for a fixed number
of players this temptation becomes weaker as c increases.

Proof of Proposition 7. Note that SW (s) = bn+(c−1)
∑

i∈N si. The unique social optimum
of this game is therefore s = b with pi(s) = cb for every i ∈ N and SW (s) = cbn. Suppose
player i deviates from s by choosing s′i ∈ [0, b). Then pi(s

′
i, s−i) = cb+(1− c

n
)(b−s′i). Thus,

pi(s
′
i, s−i)− pi(s) = (1− c

n
)(b− s′i) and SW (s)− SW (s′i, s−i) = (c− 1)(b− s′i).

If 1 − c
n
≤ 0 then Ui(s) = ∅ and the selfishness level is zero. Otherwise, 1 − c

n
> 0 and

Ui(s) = [0, b). We conclude that in this case AFi(s
′
i, s) = (1− c

n
)/(c−1) for every s′i ∈ Ui(s).

The claim now follows by Theorem 4 (ii).
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4.7 Traveler’s Dilemma

This is a strategic game discussed by Basu (1994) with two players N = {1, 2}, strategy set
Si = {2, . . . , 100} for every player i, and payoff function pi for every i defined as

pi(s) :=











si if si = s−i

si + b if si < s−i

s−i − b otherwise,

where b > 1 is the bonus.

Proposition 8. The selfishness level of the Traveler’s Dilemma game is b−1
2 .

Proof. The unique social optimum of this game is s = (100, 100), while (2, 2) is its unique
Nash equilibrium. If player i deviates from s to a strategy s′i ≤ 99, while the other player
remains at 100, the respective payoffs become s′i+b and s′i−b, so the social welfare becomes
2s′i. So AFi(s

′
i, s) = (s′i+b−100)/(200−2s′i). The maximum, b−1

2 , is reached when s′i = 99.
So the claim follows by Theorem 4 (ii).

Intuitively, this means that as the bonus b increases a larger share of the social welfare
needs to be used to ensure cooperation.

4.8 Tragedy of the Commons

Assume that each player i ∈ N = {1, . . . , n} has the real interval [0, 1] as its set of strategies.
Each player’s strategy is his chosen fraction of a common resource. Let (see Osborne, 2005,
Exercise 63.1 and Tardos & Vazirani, 2007, pp. 6–7):

pi(s) := max
(

0, si

(

1−
n
∑

j=1

sj

))

.

This payoff function reflects the fact that player’s enjoyment of the common resource de-
pends positively from his chosen fraction of the resource and negatively from the total
fraction of the common resource used by all players. Additionally, if the total fraction of
the common resource by all players exceeds a feasible level, here 1, then player’s enjoyment
of the resource becomes zero.

Proposition 9. The selfishness level of the n-players Tragedy of the Commons game is ∞.

Intuitively, this result means that in this game no matter how much we ‘involve’ the
players in sharing the social welfare we cannot achieve that they will select a social optimum.

Proof. We first determine the stable social optima of this game. Fix a joint strategy s and
let t :=

∑

j∈N sj. If t > 1, then the social welfare is 0. So assume that t ≤ 1. Then

SW (s) = t(1 − t). This expression becomes maximal precisely when t = 1
2 and then it

equals 1
4 . So this game has infinitely many social optima and each of them is stable.

Take now a stable social optimum s. So
∑

j∈N sj =
1
2 . Fix i ∈ {1, . . . , n}. Denote si by a

and consider a strategy x of player i such that pi(x, s−i) > pi(a, s−i). Then
∑

j 6=i sj+x 6= 1
2 ,

so SW (a, s−i) > SW (x, s−i).
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We have pi(a, s−i) = a
2 and SW (a, s−i) = 1

4 . Further, pi(x, s−i) > pi(a, s−i) implies
∑

j 6=i sj + x < 1 and hence

pi(x, s−i) = x(a+ 1
2 − x) and SW (x, s−i) = (12 − a+ x)(1 − 1

2 + a− x) = 1
4 − (a− x)2.

Also x 6= a. Hence

AFi(x, s) =
pi(x, s−i)− pi(a, s−i)

SW (a, s−i)− SW (x, s−i)
=

(a− x)(x− 1
2 )

(a− x)2
=

x− 1
2

a− x
= −1 +

a− 1
2

a− x

Since pi(x, s−i)− pi(a, s−i) = (a−x)(x− 1
2) we have pi(x, s−i) > pi(a, s−i) iff a < x < 1

2
or a > x > 1

2 . But a ≤ 1
2 , since

∑

j 6=i sj+a = 1
2 . So the conjunction of pi(x, s−i) > pi(a, s−i)

and SW (x, s−i) < SW (a, s−i) holds iff a < x < 1
2 . Now maxa<x< 1

2

AFi(x, s) = ∞. But s

was an arbitrary stable social optimum, so the claim follows by Theorem 4 (i).

4.9 Cournot Competition

We consider Cournot competition for n firms with a linear inverse demand function and
constant returns to scale (see, e.g., Jehle & Reny, 2011, pp. 174–175). So we assume
that each player i ∈ N = {1, . . . , n} has a strategy set Si = R+ and payoff function
pi(s) := si(a− b

∑

j∈N sj)− csi for some given a, b, c, where a > c ≥ 0 and b > 0.
The price of the product is represented by the expression a − b

∑

j∈N sj and the pro-
duction cost corresponding to the production level si by csi. In what follows we rewrite the
payoff function as pi(s) := si(d − b

∑

j∈N sj), where d := a − c. Note that the payoffs can
be negative, which was not the case in the tragedy of the commons game. Still the proofs
are very similar for both games.

Proposition 10. The selfishness level of the n-players Cournot competition game is ∞.

Proof. We first determine the stable social optima of this game. Fix a joint strategy s and
let t :=

∑

j∈N sj. Then SW (s) = t(d − bt). This expression becomes maximal precisely

when t = d
2b . So this game has infinitely many social optima and each of them is stable.

Take now a stable social optimum s. So
∑

j∈N sj = d
2b . Fix i ∈ N . Let u :=

∑

j 6=i sj.
For every strategy z of player i

pi(z, s−i) = −bz2 + (d− bu)z and SW (z, s−i) = −bz2 + (d− 2bu)z + u(d− bu).

Denote now si by y and consider a strategy x of player i such that pi(x, s−i) > pi(y, s−i).
Then u+ x 6= d

2b , so SW (y, s−i) > SW (x, s−i).
We have

pi(x, s−i)− pi(y, s−i) = −b(x2 − y2) + (d− bu)(x− y)

= −b(x− y)(x+ y + u− d
b
) = −b(x− y)(x− d

2b),

where the last equality holds since u− d
b
= −(y+ d

2b ) on the account of the equality u+y = d
2b .

Further,

SW (y, s−i)− SW (x, s−i) = b(x2 − y2)− (d− 2bu)(x − y)

= b(x− y)(x+ y + 2u− d
b
) = b(x− y)2,
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where the last equality holds since 2u− d
b
= −2y on the account of the equality u+ y = d

2b .
We have x 6= y. Hence

AFi(x, s) =
pi(x, s−i)− pi(y, s−i)

SW (y, s−i)− SW (x, s−i)
= −x− d

2b

x− y
= −1 +

y − d
2b

y − x
.

Since pi(x, s−i)−pi(y, s−i) = b(y−x)(x− d
2b) we have pi(x, s−i)−pi(y, s−i) > 0 iff y < x <

d
2b or y > x > d

2b . But y ≤ d
2b , since u+ y = d

2b . So the conjunction of pi(x, s−i) > pi(y, s−i)

and SW (x, s−i) > SW (y, s−i) holds iff y < x < d
2b . Now supy<x< d

2b

AFi(x, s) = ∞. But s

was an arbitrary stable social optimum, so the claim follows by Theorem 4 (i).

This proof shows that for every stable social optimum s, for every player there exist
deviating strategies with an arbitrary high appeal factor. In fact, limx→y+ AFi(x, s) = ∞,
i.e., the appeal factor of the deviating strategy x converges to ∞ when it converges from
the right to the original strategy y in s.

4.10 Bertrand Competition

Next, we consider Bertrand competition, a game concerned with a simultaneous selection of
prices for the same product by two firms (see, e.g., Jehle & Reny, 2011, pp. 175–177). The
product is then sold by the firm that chose the lower price. In the case of a tie the product
is sold by both firms and the profits are split. We assume that each firm has identical
marginal costs c > 0 and no fixed cost, and that each strategy set Si equals [c, a

b
), where

c < a
b
. The payoff function for player i ∈ {1, 2} is given by

pi(si, s3−i) :=











(si − c)(a− bsi) if c < si < s3−i

1
2(si − c)(a − bsi) if c < si = s3−i

0 otherwise.

Proposition 11. The selfishness level of the Bertrand competition game is ∞.

Proof. Let d := a+bc
2b . If SW (s) > 0, then SW (s) = (s0−c)(a−bs0), where s0 := min(s1, s2).

Note that d ∈ (c, a
b
), since by the assumption bc < a. Hence s is a social optimum iff

min(s1, s2) = d.
If s is a social optimum with s1 6= s2, then player i with the larger si can profitably

deviate to s3−i (that equals d), while (s3−i, s3−i) remains a social optimum. So the only
stable social optimum is (d, d).

Fix i ∈ {1, 2}. Note that if si is slightly lower than d, then pi(si, d) > pi(d, d). Further,

lim
si→d−

(pi(si, d)− pi(d, d)) =
1
2(d− c)(a− bd), while lim

si→d−
(SW (d, d) − SW (si, d)) = 0

and SW (d, d)− SW (si, d) 6= 0 for si 6= d. Hence

sup
c<si<d

pi(si, d)− pi(d, d)

SW (d, d) − SW (si, d)
= ∞.

The claim now follows by Theorem 4 (i).
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5. Extensions and Future Research Directions

We introduced the selfishness level of a game as a new measure of discrepancy between
the social welfare in a Nash equilibrium and in a social optimum. Our studies reveal that
the selfishness level often provides deeper insights into the characteristics that influence the
players’ willingness to cooperate. We conclude by mentioning some natural extensions and
future research directions.

5.1 Extensions

The definition of the selfishness level naturally extends to other solution concepts and other
forms of games.

5.1.1 Mixed Nash Equilibria

For mixed Nash equilibria we can simply adapt our definitions by stipulating that a strategic
game G is α-selfish if a mixed Nash equilibrium of G(α) is a social optimum, where now we
also allow social optima in mixed strategies. The selfishness level of G is then defined as
before in (1).

For example, with this notion the selfishness level of the Matching Pennies game (Ex-
ample 3) is 0 since its unique mixed Nash equilibrium, (12H+ 1

2T,
1
2H + 1

2T ), is also a social
optimum. The Matching Pennies game has no pure Nash equilibrium. In contrast, the game
from Example 4 does have a pure Nash equilibrium. When we use mixed Nash equilibria
its selfishness level also becomes 0. So in both games the selfishness level changed from ∞,
when pure Nash equilibria are used, to 0, when mixed Nash equilibria are used.

Further, a finite selfishness level of a finite game can decrease when we use mixed Nash
equilibria. As an example consider the following ‘amalgamation’ of the Matching Pennies
(with payoffs increased by 2) and Prisoner’s Dilemma (with payoffs increased by 1) games:

H T C D
H 3, 1 1, 3 0, 0 0, 0
T 1, 3 3, 1 0, 0 0, 0
C 0, 0 0, 0 2, 2 0, 3
D 0, 0 0, 0 3, 0 1, 1

This game has a unique stable social optimum, (C,C), and a unique pure Nash equi-
librium, (D,D). It is easy to check using Theorem 4 (ii) that its selfishness level is 1. On
the other hand, when we use mixed Nash equilibria then the selfishness level becomes 0.
Indeed, (12H + 1

2T,
1
2H + 1

2T ) is both a mixed Nash equilibrium and a social optimum in
mixed strategies.

5.1.2 Extensive Games

We can also consider extensive games and subgame perfect equilibria. As an example
consider the six-period version of the centipede game (see, e.g., Osborne, 2005):
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1 2 1 2 1 2
(6, 5)

(1, 0) (0, 2) (3, 1) (2, 4) (5, 3) (4, 6)

C C C C C C

S S S S S S

In its unique subgame perfect equilibrium each player chooses S in every period and the
resulting payoffs are (1, 0). In contrast, the social optimum is obtained when each player
chooses C in every period and the resulting payoffs are (6, 5). We seek α such that in the
resulting game G(α) the latter pair of strategies forms a subgame perfect equilibrium. In
particular, player 2 should choose in the last round of G(α) the action C. This happens
when 5+ (6+ 5)α ≥ 6 + (4 + 6)α which holds iff α ≥ 1. Now, for α = 1 the game G(α) has
the following payoffs:

1 2 1 2 1 2
(17, 16)

(2, 1) (2, 4) (7, 5) (8, 10) (13, 11) (14, 16)

C C C C C C

S S S S S S

So in this game the pair of strategies in which each player chooses C in every period is
both a subgame perfect equilibrium and a social optimum and yields the payoffs (17, 16).
We conclude that the (appropriately adapted) selfishness level for this game is 1.

We leave for future work the study of such alternatives.

5.2 Future Research Directions

There are several intriguing questions that we left open. We discuss a few future research
directions below.

5.2.1 Abstract Games

It would be interesting to define the notion of a selfishness level for abstract games.
These are games in which the payoffs are replaced by preference relations (see Osborne &
Rubinstein, 1994). By a preference relation on a set A we mean here a linear ordering
on A. More precisely, an abstract game is defined as (N, {Si}i∈N , {�i}i∈N ) where each
�i is player’s i preference relation defined on the set S1 × · · · × Sn of joint strategies.
By a realization of an abstract game (N, {Si}i∈N , {�i}i∈N ) we mean any strategic game
(N, {Si}i∈N , {pi}i∈N ) such that for all i ∈ N and s, s′ ∈ S1 × · · · × Sn we have s �i s

′ iff
pi(s) �i pi(s

′).
Unfortunately, it is not clear how to do this. First, note that the notion of a Nash

equilibrium is well defined for abstract games. However, there is no counterpart of the
notion of a social optimum, since there is no ‘global’ preference relation on the set of joint
strategies.

It is tempting to circumvent this difficulty by defining the notion of a selfishness level of
an abstract game G using its realizations G′ and the corresponding games G′(α(G′)), where
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α(G′) is the selfishness level of G′. Unfortunately the resulting strategic games G′(α(G′)),
where G′ is a realization of G are not realizations of a single abstract game, so this ‘detour’
does not allow us to associate with the initial abstract game another one.

As an example take two realizations of the abstract Prisoner’s Dilemma game and the
corresponding games G′(α(G′)):

C D
C 2, 2 0, 3
D 3, 0 1, 1

C D
C 6, 6 3, 6
D 6, 3 3, 3

C D
C 2, 2 0, 3
D 2.5, 0 1, 1

C D
C 6, 6 3, 6
D 5, 2.5 3, 3

So both realizations have the selfishness level 1 but the transformed games do not cor-
respond to the same abstract game, since in the first transformed game we have p2(D,C) ≥
p2(D,D), while in the second one p2(D,D) > p2(D,C).

5.2.2 Selfishness Function

In our approach we assigned to each game a positive real number, its selfishness level.
A natural generalization of this idea would be to assign to each game G the function
fG : R+ → R+, where f(α) equals the price of stability of the game G(α). Then the
selfishness level of G is inf{α ∈ R+ | fG(α) = 1}.

The function fG has been studied for altruistic extensions of linear congestion games
and fair cost sharing games (Chen et al., 2011; Elias et al., 2010). However, in these papers
only upper bounds on fG are derived, which in light of the results obtained here cannot be
tight. It would be interesting to determine fG exactly for these games. This would probably
require a generalization of the characterization result presented in this paper.

5.2.3 Alternative Approach Based on the Price of Anarchy

We defined the selfishness level of a game as the smallest α such that the price of stability
of G(α) is 1. Alternatively, one might define the selfishness level as the smallest α such that
the price of anarchy of G(α) is 1. This alternative approach often yields the value ∞. Take
for instance the following coordination game G:

A B
A 1, 1 0, 0
B 0, 0 0, 0

Then for every α ≥ 0 (A,A) is a social optimum in G(α) with the social welfare 2 + 4α,
while (B,B) is a Nash equilibrium in G(α) with the social welfare 0. So this alternative
selfishness level of the game G is ∞, while the original selfishness level is of course 0.

As another example consider the game G below left and the corresponding game G(α)
below right:

A B
A 1, 1 3, 0
B 0, 3 0, 0

A B
A 1 + 2α, 1 + 2α 3 + 3α, 3 + 3α
B 3α, 3 + 3α 0, 0
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Its selfishness level is 1, since this is the smallest value α for which (A,B) is a Nash equi-
librium in G(α). On the other hand, if we focus on the price of anarchy, then we need to
choose the smallest α such that (A,A) is not a Nash equilibrium in G(α) while (A,B) is.
This is the case iff 3α > 1 + 2α, i.e., when α > 1. So this alternative selfishness level of the
game G is 1+.

In view of these examples we find this alternative approach not very promising. Still, it
might be interesting to clarify for which games it yields finite values.

5.2.4 Alternative Approach Based on Approximate Nash Equilibria

As mentioned in the related work section, an alternative approach to measure the sta-
bility of equilibria of a game is the following. Given a payoff-maximization game G =
(N, {Si}i∈N , {pi}i∈N ), we call G ε-stable for some ε ≥ 0 if there exists a social optimum s
that is also a (1 + ε)-approximate Nash equilibrium, i.e., for every player i ∈ N and every
s′i ∈ Si, (1 + ε)pi(s) ≥ pi(s

′
i, s−i).

3 We define the stability level of G as the infimum over
all ε ≥ 0 such that G is ε-stable. Intuitively, a stability level of ε means that if we alter the
players’ incentives by scaling their payoffs by a factor of (1 + ε) then a social optimum is
realized as a Nash equilibrium.

It would be interesting to study how the stability level of a game relates to its selfishness
level. Using the above definitions, it is easy to see that when a game G admits a social
optimum s such that for every player i ∈ N and every s′i ∈ Si, pi(s) ≥ SW (s)−SW (s′i, s−i),
then G is α-stable if G is α-selfish.4 Said differently, the stability level of G is at most its
selfishness level. Similarly, when the reverse inequality holds then G is ε-selfish if G is
ε-stable.

In particular, the above observation can be applied to fair cost sharing games, where
for every joint strategy s it holds that for every i ∈ N and every s′i ∈ Si, ci(s

′
i, s−i) ≥

SC(s′i, s−i) − SC(s) (see also (11) in Section 4.3). We conclude that the stability level of
a fair cost sharing game G is at most its selfishness level. As a consequence, our bounds
on the selfishness level derived in Section 4.3 extend to the stability level in this case.
Further, it is not hard to verify that the stability level for singleton cost sharing games is
at least max{0, 12cmax/cmin − 1} and for cost sharing games with integer costs is at least
max{0, 12Lcmax − 1} by considering the examples given in the proofs of Proposition 2 and
Proposition 3, respectively. Thus, for these games the stability level coincides with the
selfishness level.

However, it can be seen that these two notions do not always coincide. The public
goods game is another example where it holds that there exists a social optimum s such
that for every player i ∈ N and every s′i ∈ Si, pi(s) ≥ SW (s) − SW (s′i, s−i) (see proof of
Proposition 7). Thus, the stability level of this game is at most the selfishness level. In
fact, simple calculations show that the stability level is max{0, (1 − c

n
)/c} ≤ max{0, (1 −

c
n
)/(c− 1)}, where the latter is the selfishness level of the game.

We leave it for future work to further investigate the stability level and its relation to
the selfishness level.

3. For cost-minimization games, we require that ci(s) ≤ (1 + ε)ci(s
′

i, s−i).
4. For cost-minimization games, this inequality reads ci(s

′

i, s−i) ≥ SC(s′i, s−i)− SC(s).
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5.2.5 Other Social Welfare Functions

In this paper we exclusively concentrated on social welfare functions which are defined as
the sum of the individual payoffs of the players. We leave it for future research to study the
selfishness level of games for other social welfare functions, e.g., maximizing the minimum
payoff of all players.
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Nisan, N., Roughgarden, T., Tardos, É., & Vazirani, V. J. (Eds.), Algorithmic Game
Theory, chap. 1, pp. 3–28. Cambridge University Press.

Young, H. P. (1993). The evolution of conventions. Econometrica, 61 (1), 57–84.

240


