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ABSTRACT

We consider a market where a seller sells multiple units of a com-
modity in a social network. Each node/buyer in the social network
can only directly communicate with her neighbours, i.e. the seller
can only sell the commodity to her neighbours if she could not �nd
a way to inform other buyers. In this paper, we design a novel pro-
motion mechanism that incentivizes all buyers, who are aware of
the sale, to invite all their neighbours to join the sale, even though
there is no guarantee that their e�orts will be paid. While tradi-
tional sale promotions such as sponsored search auctions cannot
guarantee a positive return for the advertiser (the seller), our mech-
anism guarantees that the seller’s revenue is better than not using
the advertising. More importantly, the seller does not need to pay
if the advertising is not bene�cial to her.
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1 INTRODUCTION

Marketing is one of the key operations for a service or product
to survive. To do that, companies often use newspapers, tv, social
media, search engines to do advertisements. Indeed, most of the
revenue of social media and search engines comes from paid ad-
vertisements. According to Statista, Google’s ad revenue amounted
to almost 79.4 billion US dollars in 2016. However, whether all the
advertisers actually bene�t from their advertisements is not clear
and is di�cult to monitor. Although most search engines use mar-
ket mechanims like generalised second price auctions to allocate
advertisements and only charge the advertisers when users click
their ads, not all clicks lead to a purchase [2, 14]. That said, the
advertisers may pay user clicks that have no value to them.

Therefore, in this paper, we propose a novel advertising mecha-
nism for a seller (to sell services or products) that does not charge
the seller unless the advertising brings an increase in revenue. We
model all (potential) buyers of a service/product as a large social
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network where each buyer is linked with some other buyers (known
as neighbours). The seller is also located somewhere in the social
network. Before the seller �nds a way to inform more buyers about
her sale, she can only sell her products to her neighbours. In order
to attract more buyers to increase her revenue, the seller may pay
to advertise the sale via newspapers, social media, search engines
etc. to reach/inform more potential buyers in the social network.
However, if the advertisements do not bring any valuable buyers,
the seller loses the investment on the advertisements.

Our advertising mechanism does not rely on any third party
such as newspapers or search engines to do the advertisements.
The mechanism is owned by the seller. The seller just needs to invite
all her neighbours to join the sale, then her neighbours will further
invite their neighbours and so on. In the end, all buyers in the
social network will be invited to participate in the sale. Moreover,
all buyers are not paid in advance for their invitations and they
may not get paid if their invitations are not bene�cial to the seller.
Although some buyers may never get paid for their e�orts in the
advertising, they are still incentivized to do so, which is one of
the key features of our advertising mechanism. This signi�cantly
di�ers from existing advertising mechanisms used on the Internet.

More importantly, our advertising mechanism not only incen-
tivizes all buyers to do the advertising, but also guarantees that the
seller’s revenue increases. That is, her revenue is never worse than
the revenue she can get if she only sells the items to her neighbours.

A special case of this problem was investigated by Li et al. [8].
They have considered the setting when the seller sells only one
item and proposed a mechanism, called the information di�usion
mechanism, that guarantees that all buyers will truthfully report
their willing payments (i.e. valuations) and also invite all their
neighbours to join the sale. They have shown that the mechanism
gives a revenue which is at least the revenue the seller can receive
with a second price auction among only the seller’s neighbours.

This paper generalises the mechanism proposed by Li et al. [8]
to settings where the seller sells multiple items. This generalisation
still guarantees that reporting their true valuations and inviting all
their neighbours is a dominant strategy for all buyers who are aware
of the sale. Moreover, the revenue of the seller is also improved
compared with the revenue she can achieve with traditional market
mechanisms such as VCG [1, 6, 15].

Maximising the seller’s revenue has been well studied in the
literature, but the existing models assumed that the buyers are
all known to the seller and the aim is to maximize the revenue
among the �xed number of buyers. Given the number of buyers
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is �xed, if we have some prior information about their valuations,
Myerson [10] proposed a mechanism by adding a reserve price to
the original VCG mechanism. Myerson’s mechanism maximises the
seller’s revenue, but requires the distributions of buyers’ valuations
to compute the reserve price. Without any prior information about
the buyers’ valuations, we cannot design a mechanism that can
maximise the revenue in all settings (see Chapter 13 of [11] for
a detailed survey). Goldberg et al. [4, 5] have considered how to
optimize the revenue for selling multiple homogeneous items such
as digital goods like software (unlimited supply). Especially, the
seller can choose to sell less with a higher price to gain more.

In terms of incentivizing people to share information (like buyers
inviting their neighbours), there also exists a growing body of
work [3, 7, 12, 13]. Their settings are essentially di�erent from ours
however. They considered either how information is propagated in
a social network or how to design rewardmechanisms to incentivize
people to invite more people to accomplish a challenge together.
The solution o�ered by the MIT team under the DARPA Network
Challenge is a nice example, where they designed a novel reward
mechanism to share the award if they win the challenge to attract
many people via social network to join the team, which eventually
helped them to win [12].

The remainder of the paper is organized as follows. Section 2
describes the model of the advertising problem. Section 3 brie�y
reviews the mechanism proposed by Li et al. [8]. Section 4 gives
our generalisation and its key properties are analysed in Section 5.
Finally, we conclude in Section 6.

2 THE MODEL

We consider a seller s sells K ≥ 1 items in a social network. In
addition to the seller, the social network consists of n nodes denoted
by N = {1, · · · ,n}, and each node i ∈ N ∪{s} has a set of neighbours
denoted by ri ⊆ N ∪ {s}. Each i ∈ N is a buyer of the K items.

For simplicity, we assume that the K items are homogeneous
and each buyer i ∈ N requires at most one unit of the item and has
a valuation vi ≥ 0 for one or more units.

Without any advertising, seller s can only sell to her neighbours
rs as she is not aware of the rest of the network and the other
buyers also do not know the seller s . In order to maximize s’s pro�t,
it would be better if all buyers in the network could join the sale.

Traditionally, the seller may pay some of her neighbours to
advertise the sale to their neighbours, but the neighbours may
not bring any valuable buyers and cost the seller money for the
advertisement. Therefore, our goal here is to design a a kind of cost-
free advertising mechanism such that all buyers, who are aware of
the sale, are incentivized to invite all their neighbours to join the
sale with no guarantee that their e�orts will be paid. Li et al. [8]
have shown that this is achievable when K = 1. In this paper, we
generalize their approach to K ≥ 1.

Let us �rst formally describe the model. Let θi = (vi ,ri ) be the
type of buyer i ∈ N , θ = (θ1, · · · ,θn ) be the type pro�le of all
buyers and θ−i be the type pro�le of all buyers except i . θ can also
be represented by (θi ,θ−i ). Let Θi be the type space of buyer i and
Θ be the type pro�le space of all buyers.

The advertising mechanism consists of an allocation policy π

and a payment policy x . The mechanism requires each buyer, who

is aware of the sale, to report her valuation to the mechanism
and invite/inform all her neighbours about the sale. Let v ′i be the
valuation report of buyer i and r ′i ⊆ ri be the neighbours i has
invited. Let θ ′i = (v ′i ,r

′
i ) and θ ′ = (θ ′1, · · · ,θ

′
n ), where θ

′
j = nil

if j has never been invited by any of her neighbours r j or j does
not want to participate. Given the action pro�le θ ′ of all buyers,
πi (θ

′) ∈ {0,1}, 1 means that i receives one item, while 0 means i
does not receive any item. xi (θ ′) ∈ R is the payment that i pays to
the mechanism, xi (θ ′) < 0 means that i receives |xi (θ ′) | from the
mechanism.

De�nition 2.1. Given an action pro�le θ ′ of all buyers, an in-

vitation chain from the seller s to a buyer i is a buyer sequence
of (s, j1, · · · , jl , jl+1, · · · , jm ,i ) such that j1 ∈ rs , for all 1 < l ≤ m

jl ∈ r
′
jl−1

, i ∈ r ′jm and no buyer appears twice in the sequence, i.e.
it is acyclic.

A buyer cannot invite buyers who are not her neighbours and a
buyer who has never been invited by her neighbours cannot join
the sale, therefore not all action pro�les are feasible.

De�nition 2.2. Given the buyers’ type pro�le θ , an action pro�le
θ ′ is feasible if for all i ∈ N ,

• θ ′i , nil if and only if there exists an invitation chain from
the seller s to i following the action pro�le of θ ′

−i .
• if θ ′i , nil , then r ′i ⊆ ri .

Let F (θ ) be the set of all feasible action pro�les of all buyers under
type pro�le θ .

The advertising mechanism (π ,x ) is de�ned only on feasible
action pro�les. In the following, we de�ne the related properties of
the mechanism.

De�nition 2.3. An allocation π is feasible if for all θ ∈ Θ, for all
θ ′ ∈ F (θ ),

• for all i ∈ N , if θ ′i = nil , then πi (θ
′) = 0.

•
∑
i ∈N πi (θ

′) ≤ K .

A feasible allocation does not allocate items to buyers who have
never participated and it does not allocate more than K items. In
the rest of this paper, we only consider feasible allocations.

De�nition 2.4. An allocation π is e�cient if for all θ ∈ Θ, for all
θ ′ ∈ F (θ ),

π ∈ argmaxπ ′∈Π

∑

i ∈N ,θ ′i,nil

π ′i (θ
′)v ′i

where Π is the set of all feasible allocations.

Given a buyer i of type θi = (vi ,ri ) and a feasible action pro�le
θ ′, the utility of i under a mechanism (π ,x ) is quasilinear and
de�ned as:

ui (θi ,θ
′
, (π ,x )) = πi (θ

′)vi − xi (θ
′).

For simplicity, we will use ui (θi ,θ ′) to represent ui (θi ,θ ′, (π ,x )) as
(π ,x ) is clear and does not change.

We say a mechanism is individually rational if for each buyer, her
utility is non-negative when she truthfully reports her valuation,
no matter which neighbours she invites and what the others do.
That is a buyer should not lose as long as she reports her valuation
truthfully, i.e. she is not forced to invite her neighbours.
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De�nition 2.5. A mechanism (π ,x ) is individually rational (IR)
if ui (θi ,θ ′) ≥ 0 for all θ ∈ Θ, for all i ∈ N , for all θ ′ ∈ F (θ ) such
that θ ′i = (vi ,r

′
i ).

Di�erent from the traditional mechanism design settings, in this
model, we want to incentivize buyers to not only just report their
valuations truthfully, but also invite all their neighbours to join
the sale/auction (the advertising part). Therefore, we extend the
de�nition of incentive compatibility to cover the invitation of their
neighbours. Speci�cally, a mechanism is incentive compatible (or
truthful) if for all buyers who are invited by at least one of their
neighbours, reporting their valuations truthfully to the mechanism
and further inviting all their neighbours to join the sale is a domi-
nant strategy.

De�nition 2.6. A mechanism (π ,x ) is incentive compatible (IC)
if ui (θi ,θ ′) ≥ ui (θi ,θ

′′) for all θ ∈ Θ, for all i ∈ N , for all θ ′,θ ′′ ∈
F (θ ) such that θ ′i = θi .

Given a feasible action pro�le θ ′ and a mechanism (π ,x ), the
seller’s revenue generated by (π ,x ) is de�ned by the sum of all
buyers’ payments, denoted by R (π ,x ) (θ ′) =

∑
i ∈N xi (θ

′).

De�nition 2.7. A mechanism (π ,x ) is weakly budget balanced if
for all θ ∈ Θ, for all θ ′ ∈ F (θ ), R (π ,x ) (θ ′) ≥ 0.

In this paper, we design a mechanism that is IC and IR for the
buyers to help the seller propagate the sale information without
being paid in advance.

3 THE INFORMATION DIFFUSION
MECHANISM FOR K = 1

In this section, we review themechanism proposed by Li et al. [8] for
the case of K = 1. Li et al. considered an advertising mechanism
design for a seller to sell a single item in a social network. The
essence of their approach is that a buyer is only rewarded for
advertising if her invitations increase social welfare and the reward
guarantees that inviting all neighbours is a dominant strategy for
all buyers.

Their information di�usion mechanism is outlined below:

Information Di�usion Mechanism (IDM)

(1) Given a feasible action pro�le θ ′, identify the buyer
with the highest valuation, denoted by i∗.

(2) Find all di�usion critical buyers of i∗, denoted by Ci∗ .
j ∈ Ci∗ if and only if without j’s action θ ′j , there is no

invitation chain from the seller s to i∗ following θ ′
−j , i.e.

i∗ is not able to join the sale without j.
(3) For any two buyers i, j ∈ Ci∗ ∪ {i∗}, de�ne an order ≻i∗

such that i ≻i∗ j if and only if all invitation chains from
s to j contain i .

(4) For each i ∈ Ci∗∪{i∗}, if i receives the item, the payment
of i is the highest valuation report without i’s partici-
pation. Formally, let N−i be the set of buyers each of
whom has an invitation chain from s following θ ′

−i , i’s
payment to receive the item is pi =max j ∈N−i∧θ ′j,nil

v ′j .
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Figure 1: A running example of the information di�usion

mechanism, where the seller s is located at the top of the

graph and is selling one item, the value in each node is the

node’s private valuation for receiving the item, and the lines

between nodes represent neighbourhood relationship. Node

Y is the node with the highest valuation and C,K are Y ’s dif-

fusion critical buyers.

(5) The seller initially gives the item to the buyer i ranked
�rst in Ci∗ ∪ {i

∗}, let l = 1 and repeat the following
until the item is allocated.
• if i is the last ranked buyer inCi∗∪{i∗}, then i receives
the item and her payment is xi (θ ′) = pi ;
• else if v ′i = pj , where j is the (l + 1)-th ranked buyer
inCi∗∪{i∗}, then i receives the item and her payment
is xi (θ ′) = pi ;
• otherwise, i passes the item to buyer j and i’s pay-
ment is xi (θ ′) = pi − pj , where j is the (l + 1)-th
ranked buyer in Ci∗ ∪ {i∗}. Set i = j and l = l + 1.

(6) The payments of all the rest buyers are zero.

Figure 1 shows a social network example. Without any adver-
tising, the seller can only sell the item among nodes A, B and C ,
and her revenue cannot be more than 7. If A, B and C invite their
neighbours, these neighbours further invite their neighbours and
so on, then all nodes in the social network will be able to join the
sale and the seller may receive a revenue as high as the highest
valuation of the social network which is 20.

Let us run IDM on the social network given in Figure 1. Assume
that all buyers report their valuations truthfully and invite all their
neighbours, IDM runs as follows:

• Step (1) identi�es that the buyer with the highest valuation
is Y , i.e. i∗ = Y .
• Step (2) computes Ci∗ = {C,K }.
• Step (3) gives the order of Ci∗ ∪ {i∗} as C ≻i∗ K ≻i∗ i∗.
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• Step (4) de�nes the payments pi for all nodes in Ci∗ ∪ {i∗},
which are pC = 16, pK = 17 and pY = 19, the highest
valuation without C , K and Y ’s participation respectively.
• Step (5) �rst gives the item to nodeC ;C is not the last ranked
buyer in Ci∗ ∪ {i∗} and vC , pK , so C passes the item to K
and her payment is pC − pK = −1; K is not the last ranked
buyer, but vK = pY , therefore K receives the item and pays
pK .
• All the rest of the buyers, including Y , pay nothing.

In the above example, IDM allocates the item to node K and K
pays 17, but s does not receive all the payment, and she pays C
an amount of 1 for the advertising. Therefore, the seller receives a
revenue of 16 from IDM, which is more than two times the revenue
she can get without any advertising. Note that only buyer C is re-
warded for the information propagation as the other buyers are not
critical for inviting K . Li et al. showed that IDM has the following
desirable properties.

Theorem 3.1 (Li et al. [8]). IDM is incentive compatible (i.e.

reporting valuations truthfully and inviting all neighbours is a dom-

inant strategy) and individually rational. The revenue of the seller

given by IDM is at least the revenue given by VCG with the seller’s

neighbours only.

4 GENERALISED IDM FOR SELLING
MULTIPLE ITEMS

In this section, we present our generalisation of IDM for a seller to
sell multiple homogeneous items in a social network. We assume
that each buyer requires at most one item. Clearly, we cannot simply
run IDMmultiple times to solve the problem, as buyers who receive
the item earlier would pay more, which is not incentive compatible.

Before we introduce the mechanism, we need some additional
concepts.

De�nition 4.1. Given a feasible action pro�le θ ′ of all buyers,
for any two buyers i , j ∈ N such that θ ′i ,θ

′
j , nil , we say i is j’s

critical parent if without i’s participation, there exists no invitation
chain from the seller to j . If i is j’s critical parent, then j is i’s critical
child. Let Pi (θ ′) be the set of all critical parents of i and Ci (θ ′) be
the set of all critical children of i under action pro�le θ ′.

If a buyer j ∈ Pi (θ ′) does not invite any of her neighbours r j , i
cannot join the sale, while if i does not invite any of her neighbours
ri , Ci (θ ′) cannot join the sale.

De�nition 4.2. Given a feasible action pro�le θ ′ ∈ F (θ ), we
de�ne a partial order ≻θ ′ on all i, j ∈ N such that i ≻θ ′ j if and only
if i ∈ Pj (θ ′).

It is clear that if i ≻θ ′ j and j ≻θ ′ l , then i ≻θ ′ l .
Take the example given in Figure 1, if all buyers act truthfully,

i.e. θ ′ = θ , for buyer M , we have PM (θ ) = {D, I }, CM (θ ) = {O }

and D ≻θ I . Furthermore, it is easy to check that PA (θ ) = ∅ and
CA (θ ) = ∅, asA is directly linked to s and withoutA’s participation,
all other buyers can still receive invitations.

Given a feasible action pro�le θ ′, we de�ne an optimal allocation
tree based on the e�cient allocation and their critical parents.

De�nition 4.3. Given θ ′ ∈ F (θ ), an optimal allocation tree of θ ′,
denoted by T opt (θ ′), is de�ned as:
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Figure 2: The optimal allocation with �ve items, where yel-

low nodes receive items and red nodes are their critical par-

ents.
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Figure 3: The optimal allocation tree T opt (θ ) of the alloca-

tion given in Figure 2, where the weight beside each node i

indicates the number of items allocated to i and i’s critical

children Ci (θ ).

• T opt (θ ′) is rooted at s ,

• all buyers in {i ∈ N |π
ef f
i (θ ′) = 1}, denoted by N opt , and all

their critical parents Popt = ∪i ∈N opt Pi (θ
′) are the nodes

of T opt (θ ′), where πef f is an e�cient allocation,
• the path from s to each node i ∈ N opt ∪ Popt is given by
Pi (θ

′) and the order≻θ ′ in the form of (s, j1, · · · , jl , jl+1, · · · , jm ,i )
where all jl , jl+1 ∈ Pi (θ

′) and jl ≻θ ′ jl+1. If Pi (θ
′) = ∅, then

the path is (s,i ).

For each node i in T opt (θ ′), we de�ne a weight wi (T
opt (θ ′)) =

|{j ∈ N opt |j = i ∨ i ∈ Pj (θ
′)}|, which is the total number of items

allocated to i and Ci (θ ′) under the e�cient allocation πef f (θ ′). Let
Children(i ) be the set of all direct children of i in T opt (θ ′).

Take the example given in Figure 1 again, ifK = 5 and all buyers
act truthfully, we have the e�cient allocation as given in Figure 2
and its optimal allocation tree T opt (θ ) given in Figure 3.
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Now we are ready to de�ne our generalization of IDM.

Generalized Information Di�usionMechanism (GIDM)

Given the buyers’ type pro�le θ and their action θ ′ ∈ F (θ ),
compute the optimal allocation tree T opt (θ ′).

LetW be the set of buyers who receive an item in GIDM
(the winners), initiallyW = ∅. For each i ∈ W , we de�ne
GetFrom(i ) ∈ N opt to be the buyer from whom the item
was taken by i from the e�cient allocation. GetFrom(i ) = i

indicates that i takes the item from herself.

• Allocation: The allocation is done with a DFS-like pro-
cedure. Let Q be a last in �rst out (LIFO) stack, initially
Q is empty. The seller s gives wi (T

opt (θ ′)) items to
each i ∈ Children(s ) and adds all Children(s ) into Q .
Repeat the allocation process de�ned in the following
until Q is empty.
• Payment: For all i ∈ N , her payment is:





SW−Di
− (SW

−CKi
−v ′i ) if i ∈W ,

SW−Di
− SW

−CKi
if i ∈

⋃

j ∈W

Pj (θ
′) \W ,

0 otherwise.

where SW
−CKi

is de�ned in the allocation section and

SW−Di
is de�ned by a feasible allocation π as:

Maximise: SW−Di
=

∑

j ∈N−Di

πj (θ
′)v ′j

Subject to: N−Di
= N \ Di

Di = {i} ∪ Ci (θ
′)

∀j ∈ N r eceived
i ,πj (θ

′) = 1

N r eceived
i =W ∩ Pi (θ

′)

∀j ∈ N out
i ,πj (θ

′) = 0

N out
i = {j < N r eceived

i |j = GetFrom(l ),∀l ∈N r eceived
i

}

The intuition behind the allocation of GIDM is that if a buyer
does not receive an item in the e�cient allocation but her critical
children receive items, then the buyer may take an item from one
of her critical children, but not from any other buyer who is not
her critical child. Furthermore, the buyer only takes an item if her
valuation is big enough, otherwise passing it to her children gives
her a higher utility.

In the de�nition of GIDM, N r eceived
i is the set of i’s critical par-

ents who have already received an item before items are passed to i .
N out
i is the set of buyers who receive an item in the e�cient/optimal

allocation, but receive no items under GIDM as their items have
been taken by their critical parents in N r eceived

i .
Buyer i can take an item in GIDM if i receives an item in the

social-welfare-maximising allocation when buyers from CKi do
not participate, i’s critical parents who have received items, i.e.
N r eceived
i , still receive items, and all buyers in N out

i except for i
do not receive items.

The Allocation of GIDM

(1) Remove a node i from Q , add i toW if i receives an
item in the following feasible allocation π :

Maximise: SW
−CKi

=

∑

j ∈N
−CK
i

πj (θ
′)v ′j

Subject to: N
−CKi

= N \ CKi

CKi = Ci (θ
′)K ∪ P (Ci (θ

′)K ) ∪ C (P (Ci (θ
′)K ))

P (Ci (θ
′)K ) =

⋃

j ∈Ci (θ ′)K

{l |l ∈ Pj (θ
′) ∧ i ≻θ ′ l }

C (P (Ci (θ
′)K )) =

⋃

j ∈P (Ci (θ ′)K )

Cj (θ
′)

∀j ∈ N r eceived
i ,πj (θ

′) = 1

N r eceived
i =W ∩ Pi (θ

′)

∀j , i ∈ N out
i ,πj (θ

′) = 0

N out
i = {j < N r eceived

i |j = GetFrom(l ),∀l ∈N r eceived
i

}

where Ci (θ ′)K is the set of top K ranked critical chil-
dren of i according to their reported valuation (from
high to low). If |Ci (θ ′) | < K , then CKi = Ci (θ

′)K =

Ci (θ
′).

(2) If i ∈W :
• if
∑
j ∈Children (i ) w j (T

opt (θ ′)) = wi (T
opt (θ ′)) − 1,

set GetFrom(i ) = i ,
• otherwise, let ki = wi (T

opt (θ ′)), and out be
the buyer with the ki -th largest valuation re-
port in the subtree (of T opt (θ ′)) rooted at i and
wout (T

opt (θ ′)) , 0, for all j ∈ Pout (θ ′) ∪ {out }
if i ≻θ ′ j, set w j (T

opt (θ ′)) = w j (T
opt (θ ′)) − 1, and

set GetFrom(i ) = out .
(3) For each child j of i , if w j (T

opt (θ ′)) > 0, give
w j (T

opt (θ ′)) items to j and add j into Q .

Let (πGIDM ,xGIDM ) be the allocation policy and payment pol-
icy of the GIDM. It is easy to verify that GIDM is the same as IDM
when K = 1. Consider the social network given in Figure 2 with
K = 5, the GIDM runs as follows.

• Firstly it computes the optimal allocation treeT opt (θ ′)which
is depicted in Figure 3, and initializes the weightwi of each
buyer in the tree according to wi (T

opt (θ ′)). This weight
may be updated in the following process.
• Then compute the allocation of GIDM which is partially
shown in Figure 4:

(1) Firstly, the seller gives 2 items to D and 3 items to C , and
the stack Q contains C,D and the winner setW is empty
(shown in Figure 4(a)).

(2) Then buyer D is popped out of Q and is identi�ed as
a winner and added inW (shown in Figure 4(b)). Here,
D’s critical children CD (θ ′) = {H , I , J ,M ,O }, and CK

D
=

CD (θ ′)K = {H , I , J ,M ,O }. Note that Ci (θ ′)K and CKi are
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Figure 4: A running example of GIDM
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Figure 5: The outcomes of GIDM

normally not the same if the graph becomes complex.
N r eceived
D

= N out
D
= ∅. If we remove CK

D
from N , then

D will receive an item under SW
−CK

D
, so add D toW .

(3) In step (2) of the allocation process, asD did not receive an
item in the optimal allocation, we have to remove one item
initially allocated to D’s critical children by the optimal
allocation. We choose the child with the lowest valuation
among all D’s critical children who still have items, which
is buyerM , and update the weights ofM andM’s critical
parents to D (as shown in Figure 4(b)). Intuitively, D takes
the item fromM , so we set GetFrom(D) = M .

(4) In step (3) of the allocation process, D gives H one item
and adds H into Q .

(5) Then in the next iteration, buyer H is popped out and is
added intoW (as shown in Figure 4(c )). Here CK

H
= ∅,

N r eceived
H

= {D} and N out
H
= {M }.

(6) Then C is popped out and is not identi�ed as a winner.
C just gives 2 items to K and 1 item to G and adds K ,G
into Q (as shown in Figure 4(d )). It is worth mentioning

that C’s critical children CC (θ
′) = {E,F ,G,K ,L,Y ,P ,Q },

CC (θ
′)K = {G,K ,L,Y ,P }, P (CC (θ

′)K ) = {F ,K ,Y }, and
C (P (CC (θ

′)K )) = {L,Y ,P ,Q }. N r eceived
C

= N out
C
= ∅.

Thus, CK
C
= {F ,G,K ,L,Y ,P ,Q }. If we remove CK

C
from

N , SW
−CK

C
will allocate K items to {H ,M ,D,A,E}, and

therefore C cannot win.
(7) Keep checking for the rest of the buyers of K ,G,Y , we will

end up with the allocation given in Figure 5(i ).
• Lastly, compute the payments for all buyers according to the
allocation. The corresponding payments of the traders in
T opt (θ ′) are given in Figure 5(ii ). All the other buyers who
are not inW receive no items and pay zero.

5 PROPERTIES OF GIDM

In this section, we prove that our generalized information di�usion
mechanism is individually rational, incentive compatible and im-
proves the seller’s revenue, compared with the revenue the seller
can get without any advertising. Therefore, the seller is incentivized
to apply our mechanism.

Theorem 5.1. The generalized information di�usion mechanism

is individually rational.

Proof. Given the buyers’ type pro�le θ and their action pro�le
θ ′ ∈ F (θ ), to prove GIDM is individually rational, we need to
show that for all i ∈ N , ui (θi ,θ ′, (πGIDM ,xGIDM )) ≥ 0 for all
θ ′i = (vi ,r

′
i ).

From the de�nition of GIDM, for any buyer i ∈ N , we have either
ui (θi ,θ

′) = 0 or ui (θi ,θ ′) = SW−CKi
− SW−Di

. According to

the de�nitions of SW
−CKi

and SW−Di
, we have SW

−CKi
≥

SW−Di
, because N

−CKi
⊃ N−Di

and the optimization under

N
−CKi

cannot be worse than that under N−Di
. Therefore, we have

ui (θi ,θ
′) ≥ 0. □

Theorem 5.2. The generalized information di�usion mechanism

is incentive compatible, i.e. reporting valuation truthfully and inviting

all neighbours is a dominant strategy for all buyers who are aware of

the sale.

Proof. Given the buyers’ type pro�le θ and their action pro�le
θ ′ ∈ F (θ ), to prove GIDM is incentive compatible, we need to
show that for each buyer i ∈ N such that θ ′i , nil :

• �x i’s invitation to be r ′i , reporting vi truthfully maximise
i’s utility.
• �x i’s valuation report to be vi , inviting all i’s neighbours ri
maximise i’s utility.

We will prove the above for buyers in three di�erent groups:

(1) all buyers who receive one item, i.e.W .
(2) all buyers who are not inW , but are critical parents ofW ,

i.e.
⋃
i ∈W Pi (θ

′) \W .
(3) all buyers who are not in the �rst two groups.

Group (1): for each i ∈W , her utility is
ui (θi ,θ

′) = vi + (SW
−CKi

−v ′i ) − SW−Di
.

• Fix i’s invitation to be r ′i , then C
K
i is �xed.
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– If i reports vi truthfully, i.e. v ′i = vi , then ui (θi ,θ
′) =

SW
−CKi
−SW−Di

. Since SW
−CKi

is the optimal social

welfare under the constraints that i cannot in�uence, if
i can misreport v ′i to change the allocation to increase
vi + (SW

−CKi
− v ′i ), then it contradicts that SW

−CKi
is the optimal social welfare. Furthermore, SW−Di

is
independent of i and we have SW

−CKi
≥ SW−Di

as

N
−CKi

⊃ N−Di
. Therefore, i’s utility is maximised as soon

as i is still inW .
– Now if i misreportsv ′i such that i does not receive an item
and becomes a critical parent ofW in group (2). In this
case, i’s utility is ui (θi ,θ ′) = SW−CKi

− SW−Di
. Since

vi is not considered any more in SW
−CKi

, it means that

SW
−CKi

is at most the social welfare when vi is consid-

ered. Therefore, the utility is not better than reporting
vi .

– Lastly if i misreports v ′i such that i is in group (3), then
ui (θi ,θ

′) = 0, which is not better than reporting vi truth-
fully.

Therefore, �xing i’s invitation to be r ′i , reportingvi truthfully
maximizes i’s utility.
• Fix i’s valuation report to be vi , change i’s invitation to
be any subset r ′i of ri . For any θ ′i = (vi ,r

′
i ) and θ ′′i =

(vi ,r
′′
i ) such that ri ⊇ r ′i ⊃ r ′′i , then we have Ci (θ ′i ,θ

′
−i ) ⊇

Ci (θ
′′
i ,θ
′
−i ), because inviting more neighbours will bring

more buyers to join the sale. When we remove the buyers
whose valuation is among the topK largest from Ci (θ ′i ,θ

′
−i )

and Ci (θ ′′i ,θ
′
−i ) respectively, let the corresponding C

K
i be

C
K ,r ′i
i and C

K ,r ′′i
i . Since Ci (θ ′i ,θ

′
−i ) ⊇ Ci (θ

′′
i ,θ
′
−i ), we have

more buyers whose action is not nil in N
−C
K ,r ′

i
i

than those

in N
−C
K ,r ′′

i
i

. Therefore, we get SW
−C
K ,r ′

i
i

≥ SW
−C
K ,r ′′

i
i

,

i.e. SW
−C
K ,r ′

i
i

is maximised when r ′i = ri . Thus, ui (θi ,θ ′)

is maximised when θ ′i = θi .

Group (2): for each i ∈
⋃
j ∈W Pj (θ

′) \W , her utility is
ui (θi ,θ

′) = SW
−CKi

− SW−Di
.

• Fix i’s invitation to be r ′i , then C
K
i is �xed.

– If i misreports v ′i , but i is still in group (2), then ui (θi ,θ ′)
does not change, as both SW

−CKi
and SW−Di

are inde-

pendent of v ′i .
– If i misreports v ′i such that i ∈W , then ui (θi ,θ

′) = vi +

(SW
−CKi

− v ′i ) − SW−Di
. If vi + (SW

−CKi
− v ′i ) is

greater than SW
−CKi

when i reports vi , it contradicts

thatSW
−CKi

is optimal. Thus, i’s utility is not better than

reporting vi .
– i cannot misreports v ′i to become a member of group (3).
• Fix i’s valuation report to be vi , inviting all neighbours ri
maximises i’s utility. The proof is the same as the proof for
group (1).

Group (3): for each i who is not a member of group (1) or group
(2), her utility is ui (θi ,θ ′) = 0.

• Fix i’s invitation to be r ′i , i may misreport v ′i to become
a member of W . However, in this case, ui (θi ,θ ′) = vi +

(SW
−CKi

− v ′i ) − SW−Di
. We know that if i reports vi

truthfully, we have SW
−CKi

= SW−Di
. If i misreports to

get vi + (SW
−CKi

− v ′i ), then vi + (SW
−CKi

− v ′i ) must

be less than or equal to SW−Di
. Therefore, it is not worth

misreporting v ′i .
• Fix i’s valuation report to be vi , if inviting all ri does not
bring i to group (1) or group (2), then inviting less will keep
i in group (3). Therefore, inviting all ri is the best that i can
do to optimise her utility.

□

Next we show that the seller’s revenue is improved with GIDM
compared with the revenue she can get with other truthful mecha-
nisms without advertising, especially we compare it with VCG.

Without advertising, the seller can only sell the K items to her
neighbours rs . Assume that |rs | > K , then the revenue of applying
VCG among rs is RVCG = K ×vK+1, where vK+1 is the (K + 1)-
th largest valuation report among rs . Under VCG, i may improve
the revenue by selling less. No matter how many items the seller
chooses to sell under VCG, let K be the actually number of items
that the seller is selling under both VCG and GIDM.

Theorem 5.3 proves that the revenue of GIDM is not less than
the revenue of VCG when the number of neighbours of the seller is
more thanK . Note that when the number of the seller’s neighbours
is less than or equal to K , the revenue of VCG is zero.

Theorem 5.3. The revenue of the generalised information di�usion

mechanism is greater than or equal to K ×vK+1, where vK+1 is the

(K + 1)-th largest valuation report among rs , assume that |rs | > K .

Before proving the theorem, let us �rst show some relationship
between the payment of a buyer and the payments of her direct
children in the optimal allocation tree. First of all, given the buyers’
action pro�le θ ′, each buyers i’s payment under the generalised
information di�usion mechanism is equal to:





(SW−Di
−VN st il l

i
) − (SW

−CKi
−VN st il l

i
−v ′i )

if i ∈W ,

(SW−Di
−VN st il l

i
) − (SW

−CKi
−VN st il l

i
)

if i ∈
⋃

j ∈W

Pj (θ
′) \W ,

0 otherwise

where

VN st il l
i
=

∑

j ∈N st il l
i

v ′j

N st il l
i = (N opt \ (Di ∪ N out

i )) ∪ N r eceived
i

Di = {i} ∪ Ci (θ
′)

N r eceived
i =W ∩ Pi (θ

′)

N out
i = {j < N r eceived

i |j = GetFrom(l ),∀l ∈ N r eceived
i }

In the payment de�nition of GIDM, termsSW−Di
andSW

−CKi

both count the valuations of all buyers in N st il l
i . It is clear that
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|N st il l
i | = K − ki . Therefore, we can remove all the valuations of

N st il l
i from both SW−Di

and SW
−CKi

to get above form of the

payments. Following this, Lemma 5.4 shows the deeper relationship.

Lemma 5.4. Given all buyers’ action pro�le θ ′, under the gener-

alised information di�usion mechanism, for all i ∈
⋃
j ∈W Pj (θ

′) \W ,

let ki be the number of items passed to i , and there arem ≥ 1 children

of i who have received items from i denoted by {i1, · · · ,im }, and let

kil be the number of items i gives to il , we have

SW
−CKi

−VN st il l
i

≤
∑

il

(SW−Dil
−VN st il l

il

)

Proof. Given the above form of the payments, we haveSW
−CKi
−

VN st il l
i

is the sum of the top ki highest valuations among buyers

in N \ (CKi ∪N
st il l
i ). For each il , SW−Dil

−VN st il l
il

is the sum of

the top kil highest valuations among buyers in N \ (Dil ∪ N st il l
il

).

Since i <W , i.e. i does not receive any item, we have ki =
∑
il kil ,

N st il l
i ⊆ N st il l

il
and |N st il l

il
\N st il l

i | = ki −kil . SinceK ≥ ki ≥ kil ,

we have CKi ⊇
⋃
il Dil and N st il l

il
\ N st il l

i ⊂ CKi , therefore

we get Dil ∪ N st il l
il

⊆ CKi ∪ N st il l
i and N \ (Dil ∪ N st il l

il
) ⊇

N \ (CKi ∪ N st il l
i ).

Since SW
−CKi

−VN st il l
i

is the sum of the top ki highest valua-

tions in N \ (CKi ∪N
st il l
i ), while SW−Dil

−VN st il l
il

is the sum of

the top kil highest valuations in a larger set N \ (Dil ∪ N
st il l
il

), we

conclude that SW
−CKi

−VN st il l
i

≤
∑
il (SW−Dil

−VN st il l
il

). □

Following Lemma 5.4, we can further prove that for all buyers
i ∈W ,

(SW
−CKi

−VN st il l
i
−v ′i ) ≤

∑

il

(SW−Dil
−VN st il l

il

)

where ki − 1 =
∑
il kil because i receives an item. Furthermore, if

ki = 1, then i does not give any item to her children and we have
SW

−CKi
−VN st il l

i
−v ′i = 0.

Proof Theorem 5.3. Following 5.4, we conclude that for any
buyers i ∈

⋃
j ∈W Pj (θ

′) ∪W , the second term of i’s payment
(SW

−CKi
−VN st il l

i
or SW

−CKi
−VN st il l

i
−v ′i ) is either 0 or o�set

by the sum of all the �rst terms of the payments of i’s children
according to Lemma 5.4.

Therefore, the sum of all buyers’ payments is equal to
∑

i ∈Children (s )

(SW−Di
−VN st il l

i
) + ∆

where ∆ ≥ 0. It is the sum of all the �rst terms of the payments of
the seller’s direct children in the optimal allocation tree T opt (θ ′)
plus the remaining of all the o�sets.

Assume s hasm children in T opt (θ ′), denoted by {s1, · · · ,sm }.
The number of items passed to them areks1 , · · · ,ksm , where

∑
si ksi =

K . For all si ∈ {s1, · · · ,sm }, we have SW−Dsi
− VN st il l

si
is the

sum of the top ksi highest valuations among all buyers in N \

(Dsi ∪ N st il l
si ). Both Dsi and N st il l

si may contain some buyers
from s’s neighbours rs , but these two sets cannot contain all rs ,
i.e. rs ⊈ Dsi ∪ N st il l

si as there are at most K items and |rs | > K ,

i ∈ rs ∧i ⊆ Dsi ∪N
st il l
si if and only if i or one of i’s critical child has

the topK highest valuation report among all buyers N . Speci�cally,
for each si , Dsi contains at most one buyer from rs , and N st il l

si con-
tains at most K − ksi buyers from rs . Therefore, the minimum of

the top ksi highest valuations among all buyers in N \ (Dsi ∪N
st il l
si )

is at least vK+1, the top (K + 1)-th largest valuation among all
buyers in rs . Thus, we have∑

i ∈Children (s )

(SW−Di
−VN st il l

i
) + ∆ ≥ K ×vK+1

□

6 CONCLUSIONS

We have proposed an auction mechanism that gives sale promo-
tions to a seller to sell multiple homogeneous items via a social
network. It generalises the mechanism proposed by Li et al. [8] for
a single item setting. The mechanism is run by the seller, and she
does not need to pay in advance for getting the promotions. The
mechanism incentivizes all buyers who are aware of the sale to do
free promotions to their neighbours, because their promotions will
be rewarded if some buyers invited by them buy the items in the
end. Besides the free advertising part, all buyers will also truthfully
report their valuations to compete for the sale with people they
have invited. Eventually, buyers who are closer to the seller will
have a higher likelihood to win items than their children, because
their children cannot participate in the sale without their promo-
tions/invitations. This is the key to guarantee that all buyers are
happy to invite more buyers to compete with themselves for the
limited resources.

Since buyers who are closer to the sellers have the ability to
control which neighbours they want to promote to, they can also
control how the items are allocated. For example, when a seller sells
multiple identical items to �xed number of buyers, the seller can
choose to sell less with higher payments to maximise her revenue.
This also applies to the buyers in our setting and they can invite
more or less neighbours to control how many items are sold to
their children, which may give them di�erent rewards/utilities. On
the other hand, buyers’ children can also manipulate in order to
satisfy their parents’ needs. Therefore, it is extremely challenging to
de�ne a truthful mechanism in more complex settings. To prevent
buyers’ manipulations mentioned above, we have carefully chosen
the allocation and payments. In particular, the de�nition of CKi
for each buyer i in GIDM plays the essential role to stop their
manipulations. Given CKi , buyer i’s payment does not depend on
how many items her children get, therefore, she is not incentivised
to control how many items her children will get.

In this paper, we assumed that each buyer only requires at most
one item. We will easily lose the control if they require more than
one itemwith di�erent marginal valuations. O�ering truthful mech-
anisms for general combinatorial valuation settings is highly de-
manded. Furthermore, we assumed that inviting neighbours in the
social network does not incur a cost, e.g. posting an advertisement
via facebook or twitter. However, there might be a cost to do so, so
a new mechanism will be required to guarantee that buyers’ pro-
motion costs will be covered. A special social network with public
di�usion/transfer costs was studied by Li et al. [9], but covering
di�usion costs in general networks is still open.
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