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Abstract: Recently, the demineralized dentin matrix has been suggested as an alternative material to
autologous bone grafts and xenografts for clinical purposes. The aim of this study was to investi-
gate the effect of different times of demineralization on the chemical composition and the surface
morphology of dentinal particles. Extracted teeth were ground and divided into 5 groups based on
demineralization time (T0 = 0 min, T2 = 2 min, T5 = 5 min, T10 = 10 min, and T60 = 60 min) with 12%
EDTA. The analysis was performed using Fourier-Transform Mid-Infrared spectroscopy (FT-MIR)
and Scanning Electron Microscopy (SEM) (p < 0.05). The FT-MIR analysis showed a progressive
reduction of the concentration of both PO4

3− and CO3
2− in the specimens (T0 > T2 > T5 > T10 > T60).

On the contrary, the organic (protein) component did not undergo any change. The SEM examination
showed that increasing the times of demineralization resulted in a smoother surface of the dentin
particles and a higher number of dentinal tubules.

Keywords: demineralized dentin matrix; human demineralized dentin matrix; human; bone graft;
FT-MIR; SEM

1. Introduction

After tooth extraction, hard and soft tissue withstand remodeling processes. Alveolar
ridge undergoes resorption, mostly in the horizontal but also in the vertical dimension [1].
Several studies analyzed the changes after tooth extraction [2]. The majority of horizontal
and vertical changes take place during the first 3–6 months after tooth extraction and
continue through the first year [3]. In fact, the horizontal bone loss is higher on the
buccal side of the alveolar ridge than on the lingual/palatal side. On the other hand,
the vertical resorption is minor and mainly on the buccal aspect of the alveolar ridge.
This volumetric contraction of the alveolar ridge may jeopardize an appropriate implant-
supported prosthetic rehabilitation.

Several surgical techniques have been developed to reduce or, at least, minimize the
changes of soft and hard tissue following tooth loss. The main alveolar ridge preservation
techniques concern on soft-tissue preservation, hard-tissue preservation (guided bone
regeneration) and the combination of soft tissue and hard tissue preservation (socket seal
technique) [4]. Moreover, different regenerative techniques have been tested: the use of
bone grafts alone; barrier membranes alone, either resorbable or not; the combination of
barrier membranes and bone graft. Metanalyses have shown that alveolar ridge preser-
vation techniques are effective in significantly reducing vertical and horizontal alveolar
ridge contraction [5,6]. Also Troiano et al. [7] reported positive results in the use of bone
grafting and resorbable membrane compared with spontaneous healing. Autologous bone
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represents the ideal graft material due to its osteoinductive and osteoconductive proper-
ties [8]. Nevertheless, its limits are the small amount of bone graft available, the morbidity
of the donor area, and the risk of resorption of the bone graft itself. The research has led to
developing alternatives, such as allogenic grafts, alloplastic grafts, and xenogenic grafts [9].

In the past decades, the use of demineralized dentin matrix (DDM) as a potential bone
substitute has been proposed. Dentin consists of (i) 70% inorganic component (hydroxyap-
atite, tricalcium phosphate, octacalcium phosphate, and amorphous calcium phosphate);
(ii) 20% organic component (collagen I 90%, collagen III and V in small quantities, and
non-collagenic proteins); (iii) 10% water [10]. Its composition is, therefore, similar to that of
bone tissue. Dentin also contains various growth factors, such as Fibroblast Growth Factors
-2 (FGF-2), transforming growth factors-β1 (TGF-β1), insulin growth factor-1 (IGF-1) and,
above all, bone morphogenetic proteins (BMPs) involved in the osteogenesis process [10].

Through demineralization, dentin can release the growth factors [11] and consequently
express its osteoinductive and osteoconductive properties [12]. Thereby acting as a scaffold,
dentin promotes the formation of bone tissue (osteoconduction), but at the same time, it
releases the growth factors that promote the formation of bone (osteoinduction). Moreover,
different in vivo studies have reported encouraging results [13–15] that led to this material
being considered as a possible alternative to autologous bone grafts [16].

It has been shown that the preparation procedure, the shape, and the size of the
dentin particles can influence dentin’s osteoconductive and osteoinductive properties [17].
Excessive demineralization can damage the structure of the dentin and negatively affect the
composition and function of growth factors; on the other hand, a reduced demineralization
produces a scaffold with osteoconductive and osteoinductive properties [18].

The aims of this study were: (i) to examine the changes in the chemical composition of
dentin particles using Fourier-transform mid-infrared spectroscopy (FT-MIR) analysis after
different exposure times to demineralizing agent; (ii) to evaluate the surface morphology
of the dentin particles by Scanning Electron Microscopy (SEM) analysis after different
exposure times to demineralizing agent.

2. Materials and Methods
2.1. Experimental Design and Specimen Preparation

For this study, we used extracted teeth with unfavorable prognoses with the consent
of patients. The criteria for exclusion were: (i) teeth with carious lesions; (ii) teeth with root
canal treatment. After extraction of the specimens, the enamel and root cementum were
removed with a dental drill (Figure 1a). Next, each tooth was washed with physiological
solution, rinsed with an air-spray tool, and stored at −20 ◦C. The teeth were placed in a
sterile container (Figure 1b) and ground using a Smart Dentin Grinder (KometaBio Inc.,
Cresskill, NJ, USA) for 3 s (Figure 1c). Then, the dentinal powder was sieved to distinguish
two specimens with different grain sizes: the first with granules of smaller sizes (<300 µm)
(A); and the second with granules of sizes between 300 µm and 1200 µm (B). The specimens
were collected in sterile containers (Figure 1d,e). In this study, we used only the second
specimen (B), while the first was excluded (specimen A).

Following the instructions of the machine producer, the dentinal powder was im-
mersed in basic alcohol for 10 min in a sterile glass container. The basic alcohol was
composed of 0.5 M NaOH and 20% ethanol. Next, the dentinal powder was picked up and
washed two times with sterile phosphate-buffered saline solution (3 min for each wash)
(Figure 1f). The dentinal powder was washed with a physiological solution and rinsed as
much as possible.

The dentinal powder was randomly divided into five groups (0.075 g of dentin each)
based on the time of demineralization (Table 1): T2, 2 min; T5, 5 min; T10, 10 min; T60,
60 min. T0 was not-demineralized and was considered as the control group.
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Figure 1. Specimen preparation: (a) Example of the final specimens after enamel and cementum 
removal with a dental drill; (b) specimens in the sterile trituration chamber; (c) detail of Smart 
Dentin Grinder machine (KometaBio Inc., Cresskill, NJ, USA); (d) ground dentin with particle size 
less than 300 µm; (e) ground dentin with particle size between 300 µm and 1200 µm; (f) dentin 
particulate immersed in a sterile container with sterile saline solution. 

The dentinal powder was randomly divided into five groups (0.075 g of dentin each) 
based on the time of demineralization (Table 1): T2, 2 min; T5, 5 min; T10, 10 min; T60, 60 
min. T0 was not-demineralized and was considered as the control group.  

12 %EDTA was used to demineralize the dentin. Specifically, 1.7 g EDTA disodium 
salt was dissolved in 10mL distilled water at 25 °C. A saturated solution was obtained, 
from which only the supernatant was taken. Through this process, we obtained EDTA at 
12%. The choice of this concentration was made according to previous articles published 
in the literature [12,17]. An amount of 1.1 mL EDTA was applied for the established time 
using a specific tool (Vortex). Once the process was completed, EDTA was removed, and 
the specimens were stored at −20 °C. Each specimen was washed two times with a 
physiologic solution (400 µL) to stop the demineralizing process. Next, the physiologic 
solution was aspirated. 

Table 1. Group nomenclature based on demineralization process. 

Nomenclature Demineralization Process 
T0 not-demineralized 
T2 2 min in 12% EDTA dentin particles 
T5 5 min in 12% EDTA dentin particles 

T10 10 min in 12% EDTA dentin particles 
T60 60 min in 12% EDTA dentin particles 

The water had to be removed from the specimens to allow the spectrophotometry 
analysis. This process was completed by putting the specimens in a centrifuge (SpeedVac 
Concentrator, Savant SPD111V) (Figure 2a) for 30 min. The specimens were also weighed 
at different times: (i) ground and centrifuged dentin, before the demineralization process 
(D1); (ii) ground and demineralized dentin (D2); (iii) ground and centrifuged dentin after 
demineralization process (D3). 

Figure 1. Specimen preparation: (a) Example of the final specimens after enamel and cementum
removal with a dental drill; (b) specimens in the sterile trituration chamber; (c) detail of Smart Dentin
Grinder machine (KometaBio Inc., Cresskill, NJ, USA); (d) ground dentin with particle size less than
300 µm; (e) ground dentin with particle size between 300 µm and 1200 µm; (f) dentin particulate
immersed in a sterile container with sterile saline solution.

Table 1. Group nomenclature based on demineralization process.

Nomenclature Demineralization Process

T0 not-demineralized
T2 2 min in 12% EDTA dentin particles
T5 5 min in 12% EDTA dentin particles
T10 10 min in 12% EDTA dentin particles
T60 60 min in 12% EDTA dentin particles

12 %EDTA was used to demineralize the dentin. Specifically, 1.7 g EDTA disodium
salt was dissolved in 10mL distilled water at 25 ◦C. A saturated solution was obtained,
from which only the supernatant was taken. Through this process, we obtained EDTA at
12%. The choice of this concentration was made according to previous articles published
in the literature [12,17]. An amount of 1.1 mL EDTA was applied for the established
time using a specific tool (Vortex). Once the process was completed, EDTA was removed,
and the specimens were stored at −20 ◦C. Each specimen was washed two times with a
physiologic solution (400 µL) to stop the demineralizing process. Next, the physiologic
solution was aspirated.

The water had to be removed from the specimens to allow the spectrophotometry
analysis. This process was completed by putting the specimens in a centrifuge (SpeedVac
Concentrator, Savant SPD111V) (Figure 2a) for 30 min. The specimens were also weighed
at different times: (i) ground and centrifuged dentin, before the demineralization process
(D1); (ii) ground and demineralized dentin (D2); (iii) ground and centrifuged dentin after
demineralization process (D3).
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Figure 2. Instruments used in this study. (a) SpeedVac Concentrator, Savant SPD111V was used for 
the elimination of residual water; (b) FT-IR Perkin Elmer Spectrum One. Acquisition range 4000–
450 cm−1; (c) scanning electron microscope (Supra 40, Zeiss). 
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2b) (Department of Life and Environmental Sciences, Polytechnic University of Marche, 
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(Attenuate Total Reflection) with a range between 4000–600 cm−1 (spectral resolution 4 
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percentage of PO43−; band 1649 cm−1, which corresponded to the protein component and 
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Figure 2. Instruments used in this study. (a) SpeedVac Concentrator, Savant SPD111V was used
for the elimination of residual water; (b) FT-IR Perkin Elmer Spectrum One. Acquisition range
4000–450 cm−1; (c) scanning electron microscope (Supra 40, Zeiss).

2.2. FT-MIR Analysis

FT-MIR analysis was carried out using the FT-IR Perkin Elmer Spectrum One (Figure 2b)
(Department of Life and Environmental Sciences, Polytechnic University of Marche, An-
cona, Italy). The analysis of all specimens was performed in reflection UATR mode (At-
tenuate Total Reflection) with a range between 4000–600 cm−1 (spectral resolution 4 cm−1,
16 scans). The bands used for this study were: band 1021 cm−1, which indicated the
percentage of PO4

3−; band 1649 cm−1, which corresponded to the protein component and
was performed to determine the percentage of mineralization of each specimen; and band
872 cm−1, which reflected the CO3

2− percentage.

2.3. SEM Analysis

The specimens were gold-coated and analyzed through SEM (Department of Materials,
Environmental Science and Urban Planning, Polytechnic University of Marche, Ancona,
Italy). The superficial morphology of each specimen was evaluated through detector SE2
(Figure 2c) at different magnifications: (i) 400×; (ii) 2000×; (iii) 8000×.

2.4. Statistical Analysis

Statistical analysis of data included analysis of variance (ANOVA) and Tukey’s test
(p < 0.05).

3. Results
3.1. Weight Analysis of the Specimens

Table 2 shows the average weight of D1, D2 and D3.

Table 2. The weights of the specimens (expressed in g) in D1 (triturated and centrifuged dentin), D2
(triturated and demineralized dentin), and D3 (triturated, demineralized, and centrifuged dentin).

Specimen T2 T5 T10 T60

D1 0.075 g 0.075 g 0.075 g 0.075 g
D2 0.093 g 0.081 g 0.051 g 0.024 g
D3 0.061 g 0.057 g 0.034 g 0.014 g

3.2. FT-MIR

MIR spectra were acquired for each specimen in the 4000–600 cm−1 spectral range,
and NIR in the 10000–4000 cm−1 range. The main MIR absorption bands considered in
this study are shown in Figure 3, which shows the spectrum of the dentin not subjected
to demineralization (T0). Based on previous studies [19–21], the main absorption bands
analyzed in this study were: (i) ~1649 cm−1 band corresponding to the protein component
of dentin (band A); (ii) ~1021 cm−1 band corresponding to the phosphate ion PO4

3− (band
B); (iii) ~872 cm−1 band corresponding to the stretching of the carbonate CO3

2− (band C).
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compared to the 1649 cm−1 band, which corresponded to the protein component of dentin, 
and which remained constant even after the demineralization treatment. Through this 
procedure, it was possible to observe the trends of the PO43− and CO32− groups (Figure 4). 
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alization with 12% EDTA. 

 
Figure 4. Spectra of the analyzed specimens normalized at the level of the 1649 cm-1 band, which 
corresponded to the protein component of dentin. Reductions were observed in the band at 1021 
cm-1, which resembled the phosphate group, and at 872 cm-1, which corresponded to the carbonate 
group. 

The concentrations of the inorganic components of dentin (PO43− and CO32− groups) 
decreased with increasing exposure time to the demineralizing agent. The amount of the 
mineralized component of the dentin was greater in T0, followed by T2, T5, T10. The T60 
specimens were subject to the longest time of demineralization and showed the least 
amount of mineralized component. 

The ratio between band B (1021 cm−1), which described the percentage of PO43−, and 
band A (1649 cm−1), which corresponded to the protein component, was measured to de-
termine the percentage of mineralization of each specimen (Figure 5a). Band C (872 cm−1), 
which reflected the CO32− percentage, was also compared with band A (1649 cm−1), which 
corresponded to the protein component (Figure 5b). 

Figure 3. Spectrum acquired through FT-MIR analysis of dentin particles not subjected to demineral-
ization with 12% EDTA.

The variations in the MIR spectral profiles of the analyzed specimens (T0, T2, T5, T10,
T60) were acquired in the spectral range 4000–600 cm−1. Then, the spectra were normalized
compared to the 1649 cm−1 band, which corresponded to the protein component of dentin,
and which remained constant even after the demineralization treatment. Through this
procedure, it was possible to observe the trends of the PO4

3− and CO3
2− groups (Figure 4).
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Figure 4. Spectra of the analyzed specimens normalized at the level of the 1649 cm-1 band, which
corresponded to the protein component of dentin. Reductions were observed in the band at 1021 cm-1,
which resembled the phosphate group, and at 872 cm-1, which corresponded to the carbonate group.

The concentrations of the inorganic components of dentin (PO4
3− and CO3

2− groups)
decreased with increasing exposure time to the demineralizing agent. The amount of the
mineralized component of the dentin was greater in T0, followed by T2, T5, T10. The
T60 specimens were subject to the longest time of demineralization and showed the least
amount of mineralized component.

The ratio between band B (1021 cm−1), which described the percentage of PO4
3−, and

band A (1649 cm−1), which corresponded to the protein component, was measured to de-
termine the percentage of mineralization of each specimen (Figure 5a). Band C (872 cm−1),
which reflected the CO3

2− percentage, was also compared with band A (1649 cm−1), which
corresponded to the protein component (Figure 5b).
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band C (872 cm−1), which represented the CO32− group, and band A (1649 cm−1), which corresponded 
to the protein component. Different letters represent statistically significant differences (p < 0.05). 

At T0, dentin was not treated with 12% EDTA, so it was considered as the control 
group, assuming 100% mineralization. Next, we calculated the quantity of PO43− and CO32− 
as a percentage of each specimen (Figure 6). 

 
Figure 6. The graph represents the percentage of mineralization of the analyzed specimens after 
different exposure times. The blue expresses the quantity (%) of the PO43− group; the orange de-
scribes the quantity (%) of the CO32− group. 

3.3. SEM  
Finally, in this study, an SEM morphological evaluation of the specimens was per-

formed (Figure 7). For each specimen, the obtained microanalysis was derived from the 
average of the results obtained on the most representative area. The voltage used was 25 
kW, while the focal length was 15 mm. 
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Figure 5. FT-MIR Analysis. (a) The ratio between band B (1021 cm−1), which corresponded to
the PO4

3− group, and band A (1649 cm−1), which reflected the protein component; (b) the ratio
between band C (872 cm−1), which represented the CO3

2− group, and band A (1649 cm−1), which
corresponded to the protein component. Different letters represent statistically significant differences
(p < 0.05).

At T0, dentin was not treated with 12% EDTA, so it was considered as the control
group, assuming 100% mineralization. Next, we calculated the quantity of PO4

3− and
CO3

2− as a percentage of each specimen (Figure 6).
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3.3. SEM

Finally, in this study, an SEM morphological evaluation of the specimens was per-
formed (Figure 7). For each specimen, the obtained microanalysis was derived from the
average of the results obtained on the most representative area. The voltage used was
25 kW, while the focal length was 15 mm.
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Figure 7. The acquired SEM images of the specimens T0, T2, T5, T10, T60 at different magnifications:
400×, 2000×, and 8000×.

The images were acquired at different magnifications (400×, 2000×, and 8000×). This
analysis allowed us to investigate the form and number of dentinal tubules exposed on
the surface of the specimen. At 2000× magnification, it was seen that the number of the
dentinal tubules in the same surface area increased T0 < T2 < T5 < T10 < T60.

Comparing the image at 8000× magnification of T0 with the one of T60, we observed
a difference at the surface of the specimens. In the T0 specimens, the surface of the dentin
was rough and non-homogeneous, while the dentin surface of the T60 specimen was
smoother and more homogeneous. According to these results, it was assumed that the
surface roughness tended to decrease with longer exposure to the demineralizing agent.

4. Discussion

An ideal bone graft should be biocompatible, biomechanically stable, capable of de-
grading over a certain time, and exhibit osteoconductive, osteogenic, and osteoconductive
properties [22]. Although the gold standard is exemplified by autologous bone, the limited
amount of bone available, the morbidity of the donor site, and the high rate of resorption
affect its use. Therefore, alternative materials for autologous bone grafts are required.

In recent years, it has been proposed that DDM be used as a potential bone graft.
In Japan and Korea, this type of graft is widely used, as demonstrated by the number of
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scientific works published in the literature by scientific authors [23]. It has been shown that
the preparation process, the size, and shape of the dentin particles seem to influence their
osteoinductive and osteoconductive properties [17].

In summary, the concentration of the phosphate group (inorganic component of dentin,
corresponding to the spectral peak at 1021 cm−1) and the carbonate group (inorganic
component of dentin, corresponding to the spectral peak at 872 cm−1) decreased with
increasing time of demineralization (T0 > T2 > T5 > T10 > T60). In addition, with increasing
demineralization time, the number of exposed dentinal tubules in the same surface area
increased, and the particles become more homogeneous and smoother.

In the present study, the enamel and the cementum were removed from the extracted
teeth. In fact, the hydroxyapatite in the enamel is structured as highly crystalline calcium
phosphate, while the dentin contains hydroxyapatite in low crystalline calcium phosphate
form. In the first case, the high crystalline content is not easy to decompose by osteoclasts.
Consequently, the resorption rate is slow, and the material’s osteoconductivity is reduced.
On the contrary, hydroxyapatite in dentin has a low crystalline structure, and this makes
its resorption easier [11]. Bone tissues also contain low crystalline apatite. Recently, Elfana
et al. [24] performed a randomized clinical trial comparing autologous whole tooth grafts
and the autologous demineralized dentin grafts. The histological results showed a higher
amount of newly formed bone and a smaller number of remnant grafts in the autologous
demineralized dentin grafts group. The authors hypothesized that in the autologous
demineralized dentin grafts group, the lower mineral content made particle degradation
faster than that in the autologous whole tooth grafts group, and this allowed the release of
growth factors earlier.

Regarding the size of the particles, a clear consensus has not yet been reached on
which precise size is most suitable for bone grafts. Shapoff et al. [25] stated that the particle
size of bone grafts should be between 100 µm and 300 µm. Nam et al. [26] conducted an
in vivo study testing the new bone formation capabilities of DDM grafts with different
densities and particle sizes. The histomorphometric analysis demonstrated the superiority
of the specimens with grafting particles sized between 250 µm and 1000 µm and spaces
of 200 µm between the particles compared to the results obtained with grafts with larger
particles (1000–2000 µm). Koga et al. [12] reported better results in terms of new bone
formation with particle sizes between 1200 µm and 800 µm compared to those obtained
with smaller particle sizes. The authors also observed that the smaller particles underwent
faster resorption than the larger ones. Therefore, it was suggested that the larger-sized
particles (1200–800 µm) offer a greater surface area than those of smaller sizes (180–212
µm and 425–600 µm) for the adhesion of osteoprogenitor cells and osteoblasts. In addition,
the adhesion of these cells could prevent the absorption of DDM particles and start the
formation of new bone. For these reasons, in our study, demineralized dentin particles
ranging in size from 300 µm to 1200 µm were used, excluding the smaller-sized particles
(<300 µm).

Many studies have reported different tooth processing methods. Generally, there are
four main categories [17]: (i) extraction of non-collagenic proteins from dentin;
(ii) demineralization; (iii) elimination of the organic matrix (denaturation); (iv) use of tooth
particles without modification. Denaturation is a little-used method because it eliminates
the proteins in the matrix, including the growth factors responsible for the osteoinductive
capacity of the dentin itself. Currently, the most used protocol is demineralization, as
demonstrated by a large number of studies in the literature. The most used demineralizing
agents are: (i) EDTA [17,24,27]; (ii) HNO3 [12,27]; and (iii) HCl [28–30].

Demineralization does not affect the organic component of the dentin or damage
the growth factors contained therein. This process increases the osteoinductivity of the
dentin particles, since it promotes the release of growth factors [11], favors the adhesion of
osteoblasts through the exposure of collagen fibers [12], and reduces dentin’s antigenicity.
Demineralization is necessary because crystalline hydroxyapatite inhibits the release of
growth factors, such as BMPs [11]. It has been observed that the amount of time during
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which a demineralizing agent acts influences the characteristics of dentin. An excessive
demineralization can damage the dentin structure and adversely affect the composition
and function of odontogenic factors. On the other hand, a mild demineralization produces
a scaffold with poor osteoinductive capabilities [18].

Tanoue et al. [27] performed an FIB/SEM analysis of the demineralized (HNO3 2%)
dentin matrix grafted in a rat calvaria bone defect model. This method allowed the 3D
reconstruction of the interface between the implanted dentin particles and the surrounding
bone. The diameters of the exposed dental tubules averaged 3 µm. Mesenchymal cells,
such as osteoblasts and bone tissue cells, are between 10–20 µm in size, while osteoclasts
are 20–100 µm. The results of this study showed that osteocytes surrounded the grafted
dentin particles, forming a network on their surfaces. In addition, cytoplasmatic extensions
of osteocytes were observed in the dentinal tubules contained within the dentin parti-
cles. The authors also hypothesized a possible biological sequence of events that occurs
when demineralized dentin particles are grafted into the recipient site. The release of
BMPs induces mesenchymal cells to differentiate into osteoblasts, as also shown by the
immunohistochemical analysis of de Oliviera et al. [31]. These cells produce a matrix that
undergoes mineralization and forms new bone. At this point, the osteoblasts differentiate
into osteocytes, which adhere to the surface of the demineralized dentin particles, forming
a network on their surface. Cytoplasmatic extensions from the network spread into the
dentinal tubules contained within the dentin particles. Afterward, the dentin particles will
be reabsorbed and replaced by new bone, as confirmed by Kim et al. [13].

BMPs belong to the large family of TGF-β. Urist [32] was the first to describe their
biological activity. In the following years, considerable efforts were made to isolate these
growth factors and study both their in vitro and in vivo features. The BMPs promote the
differentiation of mesenchymal cells into osteoblasts and chondroblasts [33], participating
in the development of bone and cartilage [34], rather than the formation of dental hard
tissues [35]. Bessho et al. [36,37] showed that BMPs obtained from demineralized dentin
have osteoinductive properties similar to those derived from bone tissue. The BMPs in-
duced new bone formation through endochondral (indirect) and intramembranous (direct)
ossification, as shown by the histological findings of Murata et al. [30].

In our study, the dentin particles underwent a demineralization process with 12%
EDTA. This agent is widely used in endodontics as a chelating agent for the enlargement of
the canals and the removal of the smear layer. The longer the EDTA works on dentin, the
more evident its effects are on dentin, as demonstrated by the release of phosphorus [38].
The specimens in our study were divided based on the exposure time of EDTA (0 min;
2 min; 5 min; 10 min; 60 min). The effect of the demineralizing agent was demonstrated by
the analysis of the weight of the specimens, the FT-MIR analysis, and also SEM.

The weight of each specimen was lower after the demineralization process. One
of the most used methods to confirm demineralization is SEM [18]. The results of our
SEM analysis showed that the longer the EDTA was allowed to work, the less rough, or
smoother, the surfaces of the particles became. Furthermore, it was observed that the longer
the duration of demineralization, the greater the number of dentinal tubules exposed on
the same surface area of the particles.

Koga et al. [12] conducted an in vivo study comparing non-demineralized, partially
demineralized, and completely demineralized dentin specimens. Similarly to our study,
the SEM analysis showed that the surfaces of the demineralized dentin specimens were
smoother while those of the non-demineralized dentin were rougher. Interestingly, the
osteoblasts adhered only to the surfaces of demineralized dentin but not to those of non-
demineralized dentin. The authors hypothesized that the exposure of collagen fibers
following demineralization could promote the adhesion of osteoblasts. The specimens of
partially and completely demineralized dentin matrix, above all, showed greater osteogenic
power than the non-demineralized ones.

Similar SEM results were achieved by Tabatabei et al. [18] performed a SEM analysis
of dentin particles, reaching results similar to those of our study. The specimens of dem-
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ineralized dentin showed greater exposure of the dentinal tubules and smoother surfaces
compared to the non-demineralized specimens. Furthermore, the surfaces of the deminer-
alized dentin particles demonstrated better suitability for cell proliferation (human dental
pulp stem cells) than the surfaces of the non-demineralized particles. The authors also
reported that the surfaces of the demineralized dentin particles were less biocompatible
than those of the deproteinized dentin particles. It was suggested that these results were
due to the demineralization process, during which a certain amount of the proteins may
have been denatured. The authors also assumed that if the release of proteins following the
demineralization process exceeds a certain threshold, it could be unfavorable, resulting in
lethality for the cells.

The FT-MIR analysis was performed to investigate the functional groups on the sur-
faces of dentin particles [18]. This analysis offered information regarding the degree of
demineralization for each specimen. The results of our study showed that the inorganic
mineral component (CO3

2− and PO4
3−) content decreased with increasing duration of

exposure to 12% EDTA. In contrast, the protein component remained unchanged. The
reference spectra values were considered on the basis of findings from previous investiga-
tions [19–21].

Clearly, demineralization is effective but within a certain range. If the dentin is poorly
demineralized, it results in a poorly osteoinductive scaffold. Nevertheless, if the dem-
ineralization is excessive, the substrate becomes ineffective. Therefore, an appropriate
balance must be achieved. The demineralized dentine particles have a porous structure
due to the presence of the dentinal tubules. This means that the dentin particles may act
as an osteoconductive scaffold, which allows cells proliferation. Literature on the effects
of different demineralization agent exposure times on the biological properties of dentin
particles is limited. In fact, most of the studies compare specimens of demineralized dentin,
non-demineralized dentin, and deproteinized dentin. To the best of our knowledge, there
are no in vitro or in vivo studies regarding the effect of different durations of deminer-
alization on dentine particles. Although the present study has some limitations, as the
limited demineralized substances used and the possibility of inaccurate removal of enamel
and cementum from the specimens, it can be considered a pilot study for future in vivo
studies to find the best degree of demineralization that can be used as a graft material for
bone regeneration.

It seems that the use of DDM offers several advantages. Both dentin and alveolar
bone tissue derive from the neural crest and also share similarities in composition. Dentin
consists of (i) 70% inorganic components (hydroxyapatite, tricalcium phosphate, octa-
calcium phosphate, and amorphous calcium phosphate); (ii) 20% organic components
(mainly collagen I; collagen III and V in small quantities; non-collagenic proteins); and
(iii) 10% water [10]. Non-collagenous proteins of dentin are known to be involved in bone
calcification [39]. Dentin has shown not only osteoconductive but also osteoinductive
properties [11,13]. Clearly, DDM can be considered an autologous graft since it is obtained
from the extracted tooth of the same patient. Therefore, there is no risk of a cross-infection
or rejection reaction, as confirmed by retrospective clinical studies of Lee et al. [40] and
Kim et al. [41]. Although the results of in vitro and in vivo studies suggested that DDM
can be considered as an alternative to autologous bone grafts [42] and xenografts [15,43],
the number of clinical studies is still limited. Hence, further studies are still needed to
validate the performance of DDM for clinical purposes.

5. Conclusions

Demineralized dentin matrix could be considered as a suitable alternative to autol-
ogous bone grafts and xenografts. According to previous studies, an adequate balance
should be achieved in the demineralization process of dentin particles. However, due to
the lack of scientific data, this study described the chemical and surface characterization of
DDM after different demineralization processes. The following can be concluded:
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- there is a progressive reduction in the concentration of both PO4
3− and CO3

2− with
increasing demineralization time;

- the organic (protein) component does not change during the demineralization process;
- increasing the duration of demineralization results in dentin particles with smoother

surfaces and higher numbers of dentinal tubules.
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