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Abstract: This paper proposes a novel Squeeze-and-excitation-based Mask Region Convolutional
Neural Network (SEM-RCNN) for Environmental Microorganisms (EM) detection tasks. Mask
RCNN, one of the most applied object detection models, uses ResNet for feature extraction. However,
ResNet cannot combine the features of different image channels. To further optimize the feature
extraction ability of the network, SEM-RCNN is proposed to combine the different features extracted
by SENet and ResNet. The addition of SENet can allocate weight information when extracting
features and increase the proportion of useful information. SEM-RCNN achieves a mean average
precision (mAP) of 0.511 on EMDS-6. We further apply SEM-RCNN for blood-cell detection tasks on
an open source database (more than 17,000 microscopic images of blood cells) to verify the robustness
and transferability of the proposed model. By comparing with other detectors based on deep learning,
we demonstrate the superiority of SEM-RCNN in EM detection tasks. All experimental results show
that the proposed SEM-RCNN exhibits excellent performances in EM detection.

Keywords: environmental microorganisms; object detection; deep learning

1. Introduction

Environmental Microorganisms (EMs) collectively refer to all microorganisms that
have an impact on the environment, including microorganisms living in the natural environ-
ment (such as oceans and deserts) and artificial environments (such as fisheries and wheat
fields) [1]. There are about 1011 ∼ 1012 types of EMs on Earth [2]. All of them play a positive
or negative role in the task of environmental governance. For example, plant rhizosphere-
promoting bacteria can help promote plants’ healthy growth. It can also inhibit pathogenic
microorganisms that harm plants. However, harmful rhizosphere bacteria can inhibit the
normal growth of plants by producing phytotoxins [3]; the emergence of cyanobacteria
will accelerate the process of eutrophication of water bodies and damage water quality,
which will eventually lead to the death of a large number of aquatic organisms; aspidisca
has a strong sensitivity to the chemical substances contained in the water body. Therefore,
aspidisca is widely applied for evaluating the quality of the aquaculture water body in the
water aquaculture industry. To better play the role of EMs in environmental governance,
research on EM detection is essential. The methods of EM detection can be mainly grouped
into manual microscope observation methods and computer-aided detection methods.
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Manual microscope observation methods refer to the observation and record of EMs
in the field of view by an experimenter with certain professional knowledge using a
microscope. However, there exist some limitations and disadvantages with respect to
manual microscope observation methods. First, the experimenter cannot make quick
judgments and must consult many reference materials when facing a wide variety of EMs.
Second, all experimenters have to spend a substantial amount of time when learning the
basics of EMs and the operation of the microscope. Finally, the detection results obtained
by different operators might be different, and the objectivity of the detection results is
insufficient [4]. Therefore, manual microscope observation methods have great limitations
for EM detection tasks.

Compared to manual microscope observation methods, computer-aided detection
methods are more objective, accurate, and convenient. With rapid developments in com-
puter vision and deep learning technologies, computer-assisted image analysis is broadly
applied in many research fields, including fire emergency [5], histopathological image
analysis [6–9], cytopathological image analysis [10–12], object detection [13–17], microor-
ganism classification [18–23], microorganism segmentation [24–27], and microorganism
counting [28,29]. In addition, with the advancement of computer hardware and the rapid
development of computer-aided detection methods, the results obtained by computer-
aided detection methods in EM detection are improving. Currently, the most popular
computer-aided detection method is the EM detection method based on deep learning [30].
However, there is no relevant research on the detection of multi-class EMs. Therefore, we
choose some classical detectors based on deep learning for multi-class EM detection and
propose a novel detector called squeeze-and-excitation-based mask region convolutional
neural network (SEM-RCNN). The flowchart of SEM-RCNN is shown in Figure 1.

Original dataset Data processing

Data labeling

Test dataset

Validation dataset

Training dataset

Data dividing

SEM-RCNN

Detection result

SEM-RCNN

Model training

Model test

Result evaluation

EMs detection

Figure 1. The flowchart of SEM-RCNN.

In Figure 1, three main parts are contained. Part one is the original dataset part, which
includes enough images of EMs for model training and testing. We will introduce the
specific information about the original dataset in detail in the experimental section. Part
two is the data-processing part. In this part, the original dataset is firstly labeled in the
format of the object detection dataset. Then, all data are grouped into the training set,
validation set, and test set according to a certain proportion. Part three is the EM detection
part. Firstly, the original SEM-RCNN is pre-trained on Microsoft Common Objects in
Context (MS-COCO) dataset. Then the proposed model is finetuned and trained on the
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training and validation sets of EMDS-6. After that, the detection performance of the trained
model is verified on the test set. Finally, we evaluate the detection results of SEM-RCNN
by employing appropriate evaluation indicators.

The main contributions of this paper are listed as follows:

• A novel detector based on convolutional neural network (CNN): SEM-RCNN is
proposed for multi-class EM detection;

• The block of SENet is designed to combine with ResNet as the backbone of the
proposed SEM-RCNN, which can extract features with a self-attention mechanism;

• The proposed SEM-RCNN achieves the optimal detection performance both for small
(EMDS-6) and large (blood cell) datasets.

To illustrate the proposed method clearer, the structure of this paper is designed as
follows: In Section 2, the related research about computer-aided EM detection is summa-
rized; In Section 3, detailed information about SEM-RCNN is introduced; In Section 4,
the detailed operation of the experiments is introduced, including experimental data, ex-
perimental settings, evaluation criteria, detection results, and extensive experiment; In
Section 5, the paper is summarized comprehensively.

2. Related Work

In this section, we group all computer-aided EM detection methods into classical
image-processing-based methods, traditional machine-learning-based methods, and deep-
learning-based methods. The detection methods are introduced based on relevant research
studies.

2.1. Classical Image Processing Based Methods

Classical image-processing-based methods are the earliest computer-aided methods
for EM detection. Classical image-processing-based methods contain two subcategories of
detection methods, segmentation-based methods, and classification-based methods.

Thresholding-based methods are the most used technologies for image segmentation,
such as in [31–48]. Thresholding methods are the most commonly used methods in image
segmentation. In addition, thresholding methods can select an appropriate threshold for
detection according to different EMs, which gives these methods strong generalization
abilities. In [32], an area threshold was applied for Chlamydomonas and Chlamydomonas
bicuspidata detection. In [37], the multiple thresholds method was employed for motile
microorganisms. Multiple thresholds were firstly applied to binarize input images. Then,
all white regions are regarded as EMs. In [40], the color threshold was applied for tubercle
bacillus detection. In [43], adaptive threshold and global threshold were applied for
nematode detection. An adaptive threshold was employed for binarizing the original
image. Then, a global threshold was applied for extracting reference labels. By combining
these two processed images, the nematode can be detected. Among all these works,
the Otsu threshold is the most used one. In [33,42,44–46], the Otsu threshold is applied
for different EMsdetection. The main idea of Otsu was to select an optimal threshold
automatically from a gray-level histogram by a discriminant criterion [49]. The Otsu
threshold can provide good results with simple calculations. Even if the gray value of the
object to be segmented is similar to the gray value of the background, the Otsu threshold
can achieve good segmentation results. However, due to the limitation of the calculation
method, when the difference between the foreground and the background area is too large,
the Otsu threshold cannot achieve a good segmentation result [50].

Classification-based methods apply shape features, geometric features, color features,
texture features, and statistical features for EM detection, such as in [51–65]. In [51,52,55],
shape features were selected as vital information for EM detection, including contour
features, area features, squareness, angular, roundness, etc. In [56], a contour feature was
used for detecting Methanospirillum hungatei and Methanosarcina mazei. In [52], a C. elegans
nematode worm detection method based on angular features was designed. In [55], round-
ness was selected as the criterion for judging whether the detected objects are Rotavirus-A
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particles. In [57,59–63,66], geometric features were selected for EM detection. In [60],
the area was regarded as an important indicator for judging the presence of bacteriophage.
In [61], the most suitable combination of some kinds of geometric features was selected
and applied for bacilli detection. In [62,63], an automatic detection method based on
area-to-length ratio was proposed for six different airborne fungi spores. In [57,61], color
features were employed for initial screening regions containing EMs. In [64], a Anabaena
and Oscillatoria detection method based on texture features was proposed. From all these
classification based methods, we can find that shape features are the most suitable feature
for EM detection. In addition, detection methods by combining different features can
achieve improved detection performances than a single feature.

2.2. Traditional Machine-Learning-Based Methods

Since 2006, traditional machine-learning-based methods have been gradually applied
in the field of EM detection, such as in [67–79]. The main idea of this method is to determine
the EMs category according to the acquired feature information and the corresponding
network structure. In [67], a back propagation neural network was employed for bacteria
detection. After several preprocessing steps such as threshold-based segmentation and
denoising, morphological features of bacteria are extracted and then sent to a back propa-
gation neural network for detection. In [68], a genetic algorithm-neural network method
was presented for tubercle bacillus detection. By applying a color filter, moving k-means
clustering, and region growing, a suitable segmented image was obtained, which is then
sent to the color filter, moving k-means clustering and region growing for the final detection.
In [69], a probabilistic neural network is applied for pathogens detection. First, the original
image is processed by background correction and object isolation. Then, regions that
may contain pathogens were selected. At last, a probabilistic neural network is built for
pathogen detection.

Based on the research on traditional machine learning methods in this field, we
find that the most widely used classification model is the support vector machine (SVM)
classifier, mentioned in [70–79]. SVM can construct an optimal separation hyperplane in
the feature space of the data to maximize the gap between positive and negative samples
in the training set [80], which makes SVM an efficient classifier for binary classification
tasks. Furthermore, SVM can efficiently use smaller training samples. This enables SVM
in achieving higher classification accuracies on a smaller training set. Therefore, after the
development of related technologies of SVM, it has been gradually applied to the detection
of EMs. In [71], an SVM classifier is proposed for P. minimum species detection. In addition,
to improve the accuracy of the detection results, the SVM classifier is combined with a
random forest classifier. In [74], a multi-class SVM was proposed for EM detection. First,
the Sobel edge detector is applied for image segmentation. After that, shape features,
Fourier descriptors, and some other features were extracted from processed images and
then sent to a multi-class SVM for detecting EMs. In [78], an SVM classifier is applied for
planktonic organisms detection. The preprocessing step includes threshold segmentation,
robust refocusing criterion, and re-segmentation. After that, the processed image is detected
by an SVM classifier.

2.3. Deep-Learning-Based Methods

Compared with methods based on traditional machine learning, deep-learning-based
methods have the advantages of the wide range of applications and high applicability. In the
feature extraction step of detection processing, traditional machine-learning-based methods
use manual feature engineering methods, which are labor-intensive and time-consuming.
Deep-learning-based methods can achieve automatic feature learning through advanced
network structures and complex features compared to simple ones. Therefore, with the
development of deep learning technologies, increasing research about EM detection using
deep learning methods is presented, such as in [81–90]. In [81–83], CNN was employed
for EM detection. In [81], a tubercle bacillus detector was designed based on CNN. In [83],
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a CNN-based method was proposed for actinobacterial species detection. In [88], a region
convolutional neural network (R-CNN)-based detector was proposed for diatom detection.
In addition, a you only look once (YOLO)-based detector is prepared for comparisons. The
result indicates that YOLO performs better than R-CNN in diatom detection. In [84–87],
Faster R-CNN-based methods were employed for EM detection. In [85], a Faster R-CNN-
based detector was proposed for parasite egg detection. In [87], Faster R-CNN was applied
for algal detection. About 1859 samples were prepared for the test.

After consulting all these related research studies, we found that classical image-
processing-based methods were mainly used as preprocessing methods in current EM
detection studies. The most widely used methods in EM detection are traditional machine-
learning-based methods. Although there are a few studies about deep-learning-based
methods, deep-learning-based methods show great potential in EM detection. Therefore,
we designed a deep-learning-based detector for EM detection called SEM-RCNN.

3. SEM-RCNN-Based EM Detection Method

The structure of the proposed SEM-RCNN is shown in Figure 2, which mainly includes
the input step, feature extraction step, region proposal step, a mapping step between
candidate boxes and feature maps, and the output step.

Layer-by-layer
processing

Feature map_1

Feature map_2

Feature map_3

Feature map_4

Feature map_5

Class

Location

Candidate box

Down sampling

Mapping between candidate boxes
and feature maps

Input Region proposalFeature extraction

Feature
maps
selection

Output
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×
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Stage two

SER block_1 (256, 56, 128, 2)

SER block_2 (512, 28) ×	3

Stage three

SER block_1 (512, 28, 256, 2)
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+

+
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Feature map_4
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LocationFC
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Softmax
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Figure 2. The structure of SEM-RCNN.

Figure 2: (a) Input: The dataset contains images of 21 types of EMs and their corre-
sponding labeled images. There are 840 images in total, and each type has 40 original
images (Sections 4.1 and 4.2.1 for details). (b) Feature extraction: A combination network
based on SENet and feature pyramid network (FPN) is proposed for fuller and deeper
feature extraction (Section 3.1 for details). (c) Region proposal: A region proposal network
(RPN) was applied to obtain multi-candidate boxes of the object (Section 3.2 for details).
(d) Mapping between candidate boxes and feature maps: The method based on the region
of interesting align (ROI align) is applied for accurate mapping between candidate boxes
and the feature map, as well as the mapping between the feature map and the fixed size
feature map (Section 3.3 for details). (e) Output: A multi-branched structure is applied for
feature maps regression, and the combined approach of the fully connected layer, bounding
box regression, and Softmax is applied for object detection (Section 3.4 for details).
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3.1. Feature Extraction Step

The feature extraction step is the basis for deep learning to perform all tasks. There-
fore, whether a suitable feature extraction network is selected or not directly affects final
detection results. After analyzing and comparing the existing networks, we finally chose
the deep residual network (ResNet) [91] combined with a squeeze-and-excitation network
(SENet) [92] as the basic backbone, together with the feature pyramid network(FPN) [93].
ResNet can solve the degradation problem occurring in the training process of CNN. SENet
can effectively enhance the needed feature information while suppressing less useful fea-
ture information. FPN can achieve the accurate detection of multi-scale objects by making
good use of shallow feature information and deep feature information.

3.1.1. ResNet

The main contribution of ResNet concerns an inevitable problem in the training of
CNN, called the degradation problem. In general, as the number of layers of the network
model increases, the overall detection effectiveness of the CNN model improves. However,
when the number of layers deepens to a certain level, the effectiveness of the CNN model
decreases, which is the degradation problem that occurs when CNN is trained. The idea of
residual learning is introduced with conventional CNNs in ResNet to solve the degradation
problem encountered in the deep training of CNN. The structure of a residual block is
shown in Figure 3, where x denotes features learned by the shallow network; F(x) is the
residual function. The residual block allows the deep network to learn new features relative
to the shallow network continuously. From Figure 3, the actual features learned by the
network after the residual block are F(x) + x, which means that a deep network can obtain
deeper and more complex features from the features extracted by the shallow network
based on the introduction of the residual block.

Weight layer

Weight layer

x

𝐹 𝑥 + 𝑥

x

+
𝐹 𝑥

ReLU

Figure 3. The structure of residual block.

3.1.2. SENet

SENet is a network structure that focuses on enhancing data channel information and
enhancing desired feature information while suppressing less useful feature information
based on the self-attention mechanism. SE block is the basic module of SENet and can be
well integrated with many existing models. The corresponding experimental classification
and detection results show that the combination with an SE block can increase the feature
representation capability of the model and, thus, improve the classification or detection
effects of the model. The basic structure of the SE block is shown in Figure 4. Among them,
Ftr is the traditional convolution operation. X and U represent the input and output of this
convolution operation, respectively; C, W, H, C′, W′, and H′ represent the scales of data;
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function Fsq and Fex represent the two core processes of the SE block, squeeze processing
and excitation processing; X̃ represents the final output of the SE block.

C’

w’

X

H’

C

w

U

H

C

w

X

H

~
F𝑠𝑞 ⋅

1×1×𝐶

F𝑒𝑥 ⋅,𝑊

1×1×𝐶
Fscale ⋅,⋅

Ftr

Figure 4. The structure of the SE block.

In the SE process, a squeeze operation is first performed on the convolution output.
To make better use of the interconnected information between input data channels, the SE
block first uses the idea of averaging to convert the information of all pixels involved in a
plane into a specific value. The specific calculation procedure for averaging is shown in
Equation (1).

zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (1)

In Equation (1), zc represents the squeeze output of the c channel data of input data;
uc represents the c channel data of input data. It can be seen from the formula that input
data eventually become a column vector in the squeeze process. The length of this vector is
the same as the number of channels, and each data value in this vector is closely related to
the corresponding channel data.

After that, to further exploit the interlinked information between channels, SE designs
an excitation process. The equation for this process is shown in Equation (2).

s = Fex(z, W) = σ(g(z, W)) = σ(W2σ(W1z)) (2)

In Equation (2), σ is the rectified linear unit (ReLU) activation function; W1 ∈ R C
r ×C;

W2 ∈ RC× C
r ; W1 is the dimensionality reduction layer with a dimensionality reduction

ratio of r. W2 is the proportionally identical data-dimensionality increase layer. After
the excitation process, the complexity of the entire model is controlled. Moreover, vital
features are enhanced, and weak features are limited based on the self-attention mechanism.
Moreover, the generalization ability of the model is enhanced. The sigmoid function
processes the final output of the excitation process to a value between zero and one.

The final output of the SE block multiplies the value obtained after compression and
activation processing with the data of all the channels that U has. Based on such processing,
the SE block can enhance features that have a greater impact on the experimental results
while weakening features that have a smaller impact on experimental results.

3.1.3. FPN

FPN is a network component that assists CNN in detecting objects with different
scales. From the comparison of the information contained in shallow and deep features,
shallow features have richer location information and are more suitable for predicting the
location coordinates of the object; deep features have richer category information and are
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more suitable for predicting the category of the object. Therefore, a suitable combination of
shallow and deep features can achieve the accurate detection of EMs, which is the main idea
of FPN. FPN consists of three main network structures: down–up processing, up–down
processing, and horizontal linkage of feature layers, as shown in Figure 5.

Predict

Predict

Predict

1×1		Conv

Up-sampling

+

Horizontal link

From bottom
to top

From top
to bottom

Figure 5. The structure of FPN.

Down–up processing is the feedforward process of CNN. By non-stop convolutional
operations, multiple feature maps of different scales are obtained in this step. After that,
the feature maps output by the deepest level network are up-sampled by the operation
to keep the same size as the feature maps output by the previous level network. Then,
upsampled feature maps are fused with the feature maps outputted by the previous layer
network. Feature maps obtained based on FPN are richer in feature information than tradi-
tional feature maps. In addition, to better fuse the information of each map, FPN processes
the fusion between feature maps by using the horizontal linkage operation. The horizontal
linkage is performed by convolutional processing using a 1× 1-sized convolutional kernel.
In general, FPN can combine the rich location information of shallow feature maps and the
rich category information of deep feature maps to provide accurate categories and locations
of objects at different scales without increasing computational efforts.

3.1.4. Backbone of Feature Extraction Step

By fusing ResNet, SENet, and FPN, we finally design the backbone of SEM-RCNN,
as shown in Figure 6. There are mainly five steps in the red dashed box in Figure 6. In
stage one, 64 convolution kernels with a kernel size of 7 × 7 and a stride of 2, followed by
batch normalization (BN) and ReLU operations, were applied for feature extraction. Then,
max-pooling with a size of 3 × 3 and stride of 2 was applied to reduce the size of feature
maps. After that, the following four steps are based on the combination approach of SER
block_1 and SER block_2. The SER block_1 and SER block_2 are important parts of the
backbone, and its structure are shown in Figure 7. From Figure 7, we can see that the SER
block_1 is mainly used to deal with the case where the input and output dimensions are
different; the SER block_2 is mainly used to deal with the case where input and output
dimensions are the same. For the input parameters of SER block_1, the channel of the
input image is denoted as C, the width (same as height) of the input image is denoted as W,
the output channel of the feature map is denoted as C1, and the stride is denoted as s. For
example, in stage two of Figure 6, input images are processed at the size of 54 × 54 with
64 channels. Hence, in the first step of SER block_1, 64 convolution kernels with the kernel
size of 1× 1 and stride of 1 (followed by BN and ReLU operations) were applied first. Then,
the convolution kernels with the kernel size of 3 × 3 and 1 × 1 were applied sequentially to
extract the feature and to adjust channels. At the same time, the input image is processed
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by 64 × 4 convolution kernels with the kernel size of 1 × 1 and stride of 1 (right part of
SER block_1). Finally, the feature maps after global pooling and sigmoid (the left part of
SER block_1) are residually connected with the right part of SER block_1. The output size
of SER block_1 is 56 × 56 with channels of 64 × 4. The structure of SER block_2 is similar
to SER block_1, but the output size is the same as the input size. The combination method
of SER block_1 and SER block_2 repeats four times in SEM-RCNN for feature extraction.

Conv: 7×7, 64, S_2,  
BN, RELU

Max pooling: 3×3, S_2

Stage one

SER block_1 (64, 56, 64, 1)

SER block_2 (256, 56) ×	2

Stage two

SER block_1 (256, 56, 128, 2)

SER block_2 (512, 28) ×	3

Stage three

SER block_1 (512, 28, 256, 2)

SER block_2 (1024, 14) ×	5

Stage four

SER block_1 (1024, 14, 512, 2)

SER block_2 (2048, 7) ×	2

Stage five

Feature map_1

Feature map_2

Feature map_3

Feature map_4

+

+

+

Feature map_1

Feature map_2

Feature map_3

Feature map_4

Figure 6. The backbone structure of SEM-RCNN. Red dashed box is SENet and ResNet part; blue
dashed box is FPN part.

SER block_1 (C, W, C1, s) SER block_2 (C, W)

Input: (C, W, W)

Conv: 1×1, C1, S_s, BN,
RELU

Conv: 3×3, C1, S_1, BN,
RELU

Conv: 1×1, C1×4, S_1,
BN

Conv: 1×1, C1×4, S_s,
BN

+, RELU

Output: (C1×4，W/s，W/s)

Global pooling, FC, ReLU,
FC, Sigmoid

×

Input: (C, W, W)

+, RELU

Conv: 1×1, C/4, S_1, BN,
RELU

Conv: 3×3, C/4, S_1, BN,
RELU

Conv: 1×1, C, S_1,
BN

Output: (C, W, W)

Global pooling, FC, ReLU,
FC, Sigmoid

×

(a) SER block_1 (b) SER block_2

Figure 7. The structure of SER block_1 and SER block_2.
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Based on our sufficient research foundation [15,20–22,24,29], it can be found that
only a few studies employed deep learning methods to perform the detection task in
microorganism image analysis. Since the detection task in microorganism image analysis
has strong application background, almost all studies directly utilize existing deep learning
models, such as RCNN [88] and Faster R-CNN [84,85]. Different from these studies, we
proposed a novel self-attention-based two-stage detection framework, which is inspired by
ResNet, SENet, and FPN. This framework achieves state-of-the-art performances on the
detection task, which significantly promotes the development of the detection technology
in the application of microorganism image analyses.

3.2. Region Proposal Step

Generating candidate boxes for objects is an important processing step of an object
detector. In this step, a suitable target candidate frame needs to be generated based on the
input feature map. Here, we choose the region proposal network (RPN) to accomplish the
task of candidate boxes proposal for SEM-RCNN. RPN can generate prediction boxes for
objects with different scales in a short period. RPN mainly includes three processing steps:
generating anchor boxes, judging the category of generated anchor boxes, and adjusting
the position of anchor boxes. The main flow of RPN is shown in Figure 8. First, RPN
generates a certain amount of anchor boxes based on the input feature map; after that,
the generated Anchor boxes are convolved with a convolution kernel of 3× 3; then, the Soft-
max function and the border regression algorithm are used to distinguish prospect and
background of boxes and obtain position coordinates of the predicted boxes respectively;
finally, the candidate boxes are determined based on the obtained category scores and
position coordinates.

3×3 Conv

1×1 Conv

Softmax (class)

Boxes regression (location)

Feature map
Candidate boxes

Anchor boxes

…

Figure 8. The structure of RPN.

3.3. RoI Align

After obtaining suitable boxes, the detector needs to associate the obtained boxes with
feature maps. Here, RoI Align is employed to this end. The main idea of RoI Align is to
use bilinear interpolation to obtain the value of floating-point coordinates. Therefore, RoI
Align chooses to keep the floating-point coordinates in determining the corresponding area
in the feature map based on the position coordinates of the candidate box. When dividing
the area corresponding to the candidate box on the feature map equally into multiple small
fixed-size feature maps, RoI Align chooses to maintain the segmented boundaries instead
of performing quantization operations. Eventually, bilinear interpolation allows the RoI
Align to obtain the feature values corresponding to the four coordinate positions of each
small feature map.

Bilinear interpolation is the calculation of the value of a pixel point (floating point)
that does not exist in the location image from the value of a known pixel point. The bilin-
ear interpolation method can be computed by performing two horizontal interpolation
operations and then one vertical interpolation or by performing two vertical interpolation
operations and then one horizontal interpolation. Here, the specific calculation process of
the bilinear interpolation method with lateral interpolation followed by vertical interpola-
tion is introduced. The specific coordinates of Q11, Q21, Q12, Q22, R1, R2 and P involved in
the formula are shown in Figure 9.
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Figure 9. Schematic diagram of the bilinear interpolation method.

First is the first horizontal interpolation calculation, as shown in Equation (3).

f (R1) ≈
x2− x

x2− x1
f (Q11) +

x− x1
x2− x1

f (Q21) (3)

This is followed by a second horizontal interpolation calculation, as shown in
Equation (4).

f (R2) ≈
x2− x

x2− x1
f (Q12) +

x− x1
x2− x1

f (Q22) (4)

The last step is calculation of the value of P point based on the two transverse interpo-
lation results (f (R1) and f (R2)) obtained from above calculation, as shown in Equation (5).

f (P) ≈ y2− y
y2− y1

f (R1) +
y− y1
y2− y1

f (R2) (5)

3.4. Output

The final goal of SEM-RCNN is to obtain the bounding box and class of object. There-
fore, in the output part of SEM-RCNN, the feature map after RoI Align processing is first
classified using a fully connected (FC) layer. Then, the output of the coordinate information
of the object is realized by the FC layer and border regression; the output of the class infor-
mation of the object is realized by the fully connected layer and Softmax function. Finally,
the task of target detection is accomplished by combining border coordinate information
and class information, as shown in Figure 10.

RoI Align

Class

FC layer

Softmax

Location
Box

regression

Figure 10. The output part of SEM-RCNN.
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4. Experiment Results and Analysis
4.1. Dataset

We use the Environmental Microorganism Dataset Sixth Version (EMDS-6) [94]. The
original EMs images with their corresponding ground truth (GT) images of 21 types of
EMDS-6 are shown in Figure 11.

Actinophrys Arcella Aspidisca Codosiga Colpoda Epistylis Euglypha

Paramecium Rotifera Vorticlla Noctiluca Ceratium Stentor Siprostomum

K. Quadrala Euglena Gymnodinium Gonyaulax Phacus Stylonychia Synchaeta

Figure 11. The EMs images in EMDS-6. The color images above are original images and the binary
images below are the corresponding GT images.

EMDS-6 includes 21 types of EMs that have 840 original images and 840 ground truth
images, respectively, as shown in Figure 11. There are 21 categories with 40 images in
each category. In the training process, the dataset is evenly distributed to each category for
balanced training. In our work, we perform object annotation using Lambelme software
based on original and ground truth images provided by EMDS-6. Most of the images in
EMDS-6 only contain one type of EM.

4.2. Experimental Settings
4.2.1. Data Settings

For EMDS-6, each type of EM is randomly grouped into training, validation, and test
dataset with a ratio of 4:1, which means 32 images are applied for training (with 5-fold
cross validation), and the last 8 images are applied for testing. Though the dataset is small
for training a complex model, it can still achieve excellent detection performance by using
transfer learning [94].

4.2.2. Hyper-Parameter Settings

In the process of training, the proposed SEM-RCNN model is pre-trained on the
MS-COCO dataset, firstly. Then, the training step of SEM-RCNN contains two steps. The
head is frozen and trained with an epoch of 150 and a learning rate of 0.0001. After that,
the whole network is trained with an epoch of 150 and a learning rate of 0.001. The final
model parameters have the lowest loss function obtained on the validation set. There are
98,793,356 trainable parameters of SEM-RCNN in total. The intersection over union (IoU)
is the ratio of intersection and concatenation of the prediction box and true box. A result
can be considered a correct detection only if the IoU value of the prediction box is greater
than the set threshold, so the IoU threshold is a critical hyperparameter that may highly
affect the performance of the proposed model. To systematically choose the IoU threshold,
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we test the detection performance of different IoU settings using SEM-RCNN based on
SE-ResNet-101. The IoU threshold is set from 0.1 to 0.9 with the stride of 0.1, and the
average detection indices based on 5-fold cross validation are shown in Table 1.

Table 1. The average detection indices (with 5-fold cross validation) of SEM-RCNN based on different
IoU threshold settings.

IoU
Threshold Mean IoU mAP Precision Recall F1-Score

0.1 0.633 0.428 0.422 0.461 0.441
0.2 0.724 0.500 0.505 0.538 0.524
0.3 0.732 0.511 0.509 0.550 0.526
0.4 0.745 0.494 0.505 0.545 0.519
0.5 0.709 0.479 0.488 0.508 0.498
0.6 0.728 0.500 0.497 0.526 0.511
0.7 0.584 0.404 0.404 0.431 0.417
0.8 0.923 0.485 0.401 0.515 0.451
0.9 0.999 0.464 0.257 0.497 0.339

By reviewing Table 1, we find that the set of IoU thresholds is critical for the detection
performance of the proposed model. The highest mAP, Precision, Recall, and F1-score can
be obtained when the IoU threshold is set as 0.3. Though the mean IoU is higher when the
threshold is set as 0.4, 0.8, and 0.9, the other indices (such as Precision) are not satisfactory.
Therefore, by considering the aggregate detection performance, the IoU threshold is set as
0.3, which performs accurately and balanced.

4.3. Evaluation Criteria

We use mean average precision (mAP) as the evaluation metric in our experiments.
mAP, as the best evaluation metric for the target detection task, combines the accuracy of
detection category and location. The calculation of mAP is shown in Equation (6).

mAP =
1
n

n

∑
i=1

APi (6)

In Equation (6), n presents the number of classes of EMs; AP is determined by the
area under the accuracy-precision curve. The calculations of accuracy and precision are
related to true positive (TP), true negative (TN), false positive (FP), false negative (FN),
and intersection over union (IoU). The description of TP, TN, FP, and FN is shown in Table 2.
The calculations of accuracy and precision are shown in Equations (7) and (8), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Table 2. Description of TP, TN, FP, and FN.

True Label

Positive Negative

Predict label Positive TP FP
Negative FN TN

4.4. Detection Results and Analysis

The detection results of SEM-RCNN on EMDS-6 is shown in Figure 12.
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Figure 12. The detection results of SEM-RCNN on EMDS-6. The color boxes indicate the positions
predicted by SEM-RCNN, for which its captions indicate the predicted categories and the probabilities.

The loss curves while training and validation are shown in Figure 13. It shows that the
bounding box loss and classification loss curves of the proposed SEM-RCNN can converge
steadily and quickly, which indicates that the proposed SEM-RCNN model has satisfactory
performance on bounding box regression and object classification tasks.

(a) training loss (b) bounding box loss of SEM-RCNN while training (c) classification loss of SEM-RCNN while training

(d) validation loss (e) bounding box loss of SEM-RCNN while validation (f) classification loss of SEM-RCNN while validation

epoch

loss loss

epoch epoch

epochepochepoch

loss

loss loss loss

Figure 13. The loss curves of SEM-RCNN while training and validation on EMDS-6.

In order to show more intuitively how the SEM-RCNN compares with other detectors,
we compare them in the form of a table in the following. In Table 3, we compared the
average detection indices (with 5-fold cross validation) of SEM-RCNN and Mask RCNN
on EMDS-6 when combined with ResNet-50 and ResNet-101.



Appl. Sci. 2022, 12, 9902 15 of 23

Table 3. The average detection indices (with 5-fold cross validation) of SEM-RCNN and Mask RCNN.

Model Mask RCNN SEM-RCNN

Backbone ResNet-50 ResNet-101 SE-ResNet-50 SE-ResNet-101
mAP 0.440 0.488 0.450 0.511

precision 0.434 0.485 0.425 0.509
recall 0.458 0.511 0.451 0.550

F1-score 0.446 0.498 0.455 0.526

From Table 3, we can find that SEM-RCNN proposed in this paper can achieve better
detection performance than Mask RCNN both in single-object and multi-object for EM
detection. Overall, the models based on the backbone of ResNet-101 and SE-ResNet-101
perform better than those based on ResNet-50 and SE-ResNet. Compared with the original
ResNet-based Mask RCNN, the performance increment of SEM-RCNN based on deeper
SE-ResNet is much better than the Mask RCNN based on deeper ResNet both for mAP,
precision, recall, and F1-score. Moreover, the mAP of the proposed SEM-RCNN achieves
0.511, which is much better than the result of Mask RCNN. The confusion matrix of the
proposed SEM-RCNN is shown in Figure 14, showing the classification performance of the
proposed model.
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Figure 14. The confusion matrix of the detection results of SEM-RCNN on EMDS-6 (with 5-fold cross
validation). Deeper color indicates the higher classification probability.

From Figure 14, most of the test images can be classified correctly. However, there still
exists some mis-detected images. For example, 5 images of Codosiga are wrongly classified
as Epistylis, showing the large error rate of the proposed model. By referring to the images
of the two EMs in Figure 15, we find that the EMs have similar morphological features,
and both are clustered microorganisms.
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(a) Codosiga (b) Epistylis

Figure 15. The example images of Codosiga and Epistylis in EMDS-6.

Moreover, by reviewing Figure 14, we find that Stentor is easily classified as Parame-
cium, an example is shown in Figure 16. Most EMs are colorless and transparent, so the
morphological feature determines the classification result. However, though the EMs are in
variance shapes, they may perform similar shapes at different growth phases. On the other
hand, the quantity and quality of the dataset will have a greater impact on the model’s
performance. However, the satisfactory EM dataset is relatively difficult to obtain due
to some objective reasons, such as the impurities in the acquisition environment, uneven
natural light, and other adverse factors. So the model still cannot classify similar EMs
accurately due to the small dataset.

 Paramecium  Stentor

Figure 16. The example images of Stentor which are classified as Paramecium in EMDS-6.The color
boxes indicate the positions predicted by SEM-RCNN, for which its captions indicate the predicted
categories and the probabilities.

4.5. Extensive Experiment

To compare the detection performance of SEM-RCNN with existing deep learning-
based detectors, we chose several classical detectors for our experiments. Table 4 introduces
the detection results and population variances (with 5-fold cross validation) of some
classical deep-learning-based detectors.

Table 4. Detection result of some classical deep-learning-based detectors (with 5-fold cross validation).

Model Ours SSD Faster
R-CNN RetinaNet YOLOv3 YOLOv4

mAP 0.511 0.421 0.377 0.401 0.425 0.436
Varp 1.46 × 10−5 6.64 × 10−6 1.38 × 10−5 8.46 × 10−5 3.78 × 10−5 5.65 × 10−5
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From the final detection results, SEM-RCNN achieves better detection performance
than SSD, Faster R-CNN, RetinaNet, YOLOv3, and YOLOv4. The results prove that it
is feasible to improve the detection effectiveness of a detector by increasing its feature
extraction capability.

To further prove the object detection performance of the proposed SEM-RCNN model,
another dataset of EMs should be applied for the extensive experiment. However, by review-
ing our previous works about EMs image analysis and EMs dataset [15,18–22,24–26,28,29,95],
there are few proper open-access EMs dataset, which is caused by several objective reasons,
including the uneven natural lighting and too many impurities while imaging. Hence,
a dataset containing 8 types of blood cells is applied for the extensive experiment, includ-
ing erythrocytes, basophils, eosinophils, lymphocytes, monocytes, neutrophils, platelets, and im-
munoglobulins. The reasons why we choose the blood cell images consisting four aspects:
firstly, the images of EMs and blood cells are both microscopic images, which have strong
morphological and shape similarities; secondly, both of them are non-directional images,
where all objects in these images have no fixed positive direction; thirdly, both of them
can be applied for multi-class detection tasks; finally, both of them have lots of noise and
redundant impurities. Besides, the application of the blood cell image dataset can prove the
strong generalization ability of the proposed SEM-RCNN. There are 17,090 labeled blood
cell images in total, and the proposed SEM-RCNN is trained for 150 epochs with finetuning
based on the pre-trained model for MS-COCO dataset. The result is shown in Table 5. By
reviewing Table 5, we find that the proposed SEM-RCNN can achieve excellent blood cell
detection performance. Most of the evaluation metrics are more than 0.9, which performs
better than Mask RCNN significantly. The detection result is shown in Figure 17, which
shows satisfactory detection performance of the proposed SEM-RCNN.

Table 5. Detection result of SEM-RCNN for blood cell detection.

Evaluation Metrics IoU mAP Precision Recall F1-Score

SEM-RCNN 0.905 0.907 0.898 0.910 0.904
Mask RCNN 0.875 0.850 0.843 0.853 0.848

Figure 17. The results of SEM-RCNN for cell dataset detection.The color boxes indicate the positions
predicted by SEM-RCNN, for which its captions indicate the predicted categories.

5. Conclusions and Future Work

The analysis and research of EMs are essential. Therefore, a suitable method for
EM detection needs to be explored. After summarizing and analyzing the work related
to EM detection, we designed the SEM-RCNN for the detection of EMs. In terms of
applications, to fully demonstrate the feasibility of SEM-RCNN for EM detection, model
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training and testing were conducted in a small dataset of EMs and a large dataset of blood
cells, respectively. The final detection results demonstrate the feasibility of SEM-RCNN
for detecting EMs. In terms of technology, an improved method combining Mask RCNN
with SENet is proposed in this paper. To verify the feasibility of the improved method,
the detection results of SEM-RCNN and the original Mask RCNN are compared on the
EMDS-6 dataset and blood cell dataset, respectively. The comparison results showed that
the detection results of SEM-RCNN improved two to three points in mAP than that of the
original Mask RCNN. Finally, SEM-RCNN achieved a 0.511 mAP on EMDS-6 and 0.907
mAP on the blood cell dataset.

This paper fills the gap in computer-aided multi-class EM detection research. However,
considering the continuous innovation of related technologies and the challenges that need
to be faced in practical applications, there is still more research potential and room for
improvement in several aspects of this study. Regarding current research results, further
research content with respect to our work will mainly be considered from EMs data. From
the detection results on dataset EMDS-6 and blood cell dataset, it can be seen that sufficient
training data can significantly improve the detection effect of the model. In contrast,
insufficient training data can lead to poor detection effects from the model. Therefore,
in the follow-up study, we will focus part of our efforts on expanding the existing microbial
dataset to build an EMs dataset with more sufficient data and to better meet the training of
detection models.
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Abbreviations
The following abbreviations are used in this manuscript:

EMs environmental microorganisms;
CNN convolutional neural network;
MS-COCO microsoft common objects in context;
SEM-RCNN squeeze-and-excitation-based mask region convolutional neural network;
RCNN region convolutional neural network;
FC fully connected;
ReLU rectified linear unit;
BN batch normalization;
SVM support vector machine;
YOLO you only look once;
ResNet deep residual network;
SENet squeeze-and-excitation network;
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FPN feature pyramid network;
RPN region proposal network;
EMDS-6 the Environmental Microorganism Dataset Sixth Version;
mAP mean average precision;
TP true positive;
TN true negative;
FP false positive;
FN false negative;
IoU intersection over union;
GT ground truth.

Reference
1. Pepper, I.L.; Gerba, C.P.; Gentry, T.J.; Maier, R.M. Environmental Microbiology; Academic Press: Cambridge, MA, USA, 2011.
2. Locey, K.J.; Lennon, J.T. Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA 2016, 113, 5970–5975.

[CrossRef] [PubMed]
3. Nehl, D.B.; Allen, S.J.; Brown, J.F. Deleterious rhizosphere bacteria: An integrating perspective. Appl. Soil Ecol. 1997, 5, 1–20.

[CrossRef]
4. Van Deun, A.; Salim, A.H.; Cooreman, E.; Hossain, M.A.; Rema, A.; Chambugonj, N.; Hye, M.; Kawria, A.; Declercq, E. Optimal

tuberculosis case detection by direct sputum smear microscopy: How much better is more? Int. J. Tuberc. Lung Dis. 2002,
6, 222–230. [PubMed]

5. Sharma, J.; Granmo, O.C.; Goodwin, M. Emergency Analysis: Multitask Learning with Deep Convolutional Neural Networks for
Fire Emergency Scene Parsing. In Proceedings of the International Conference on Industrial, Engineering and Other Applications
of Applied Intelligent Systems, Kuala Lumpur, Malaysia, 26–29 July 2021; Springer: Cham, Switzerland, 2021; pp. 101–112.

6. Li, X.; Li, C.; Rahaman, M.M.; Sun, H.; Li, X.; Wu, J.; Yao, Y.; Grzegorzek, M. A comprehensive review of computer-aided
whole-slide image analysis: From datasets to feature extraction, segmentation, classification and detection approaches. Artif.
Intell. Rev. 2022, 55, 4809–4878. [CrossRef]

7. Li, Y.; Li, C.; Li, X.; Wang, K.; Rahaman, M.M.; Sun, C.; Chen, H.; Wu, X.; Zhang, H.; Wang, Q. A Comprehensive Review of
Markov Random Field and Conditional Random Field Approaches in Pathology Image Analysis. Arch. Comput. Methods Eng.
2021, 29, 609–639. [CrossRef]

8. Zhou, X.; Li, C.; Rahaman, M.M.; Yao, Y.; Ai, S.; Sun, C.; Wang, Q.; Zhang, Y.; Li, M.; Li, X.; et al. A comprehensive review for
breast histopathology image analysis using classical and deep neural networks. IEEE Access 2020, 8, 90931–90956. [CrossRef]

9. Li, C.; Chen, H.; Li, X.; Xu, N.; Hu, Z.; Xue, D.; Qi, S.; Ma, H.; Zhang, L.; Sun, H. A review for cervical histopathology image
analysis using machine vision approaches. Artif. Intell. Rev. 2020, 53, 4821–4862. [CrossRef]

10. Liu, W.; Li, C.; Rahaman, M.M.; Jiang, T.; Sun, H.; Wu, X.; Hu, W.; Chen, H.; Sun, C.; Yao, Y.; et al. Is the aspect ratio of cells
important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification:
From convolutional neural networks to visual transformers. Comput. Biol. Med. 2022, 141, 105026. [CrossRef]

11. Rahaman, M.M.; Li, C.; Yao, Y.; Kulwa, F.; Wu, X.; Li, X.; Wang, Q. DeepCervix: A deep learning-based framework for the
classification of cervical cells using hybrid deep feature fusion techniques. Comput. Biol. Med. 2021, 136, 104649. [CrossRef]

12. Rahaman, M.M.; Li, C.; Wu, X.; Yao, Y.; Hu, Z.; Jiang, T.; Li, X.; Qi, S. A survey for cervical cytopathology image analysis using
deep learning. IEEE Access 2020, 8, 61687–61710. [CrossRef]

13. Zou, S.; Li, C.; Sun, H.; Xu, P.; Zhang, J.; Ma, P.; Yao, Y.; Huang, X.; Grzegorzek, M. TOD-CNN: An effective convolutional neural
network for tiny object detection in sperm videos. Comput. Biol. Med. 2022, 146, 105543. [CrossRef] [PubMed]

14. Chen, A.; Li, C.; Zou, S.; Rahaman, M.M.; Yao, Y.; Chen, H.; Yang, H.; Zhao, P.; Hu, W.; Liu, W.; et al. SVIA dataset: A new dataset
of microscopic videos and images for computer-aided sperm analysis. Biocybern. Biomed. Eng. 2022, 42, 204–214. [CrossRef]

15. Ma, P.; Li, C.; Rahaman, M.M.; Yao, Y.; Zhang, J.; Zou, S.; Zhao, X.; Grzegorzek, M. A state-of-the-art survey of object detection
techniques in microorganism image analysis: From classical methods to deep learning approaches. Artif. Intell. Rev. 2022, 1–72.
[CrossRef] [PubMed]

16. Jung, H.K.; Choi, G.S. Improved YOLOv5: Efficient Object Detection Using Drone Images under Various Conditions. Appl. Sci.
2022, 12, 7255. [CrossRef]

17. Li, X.; Wang, C.; Ju, H.; Li, Z. Surface Defect Detection Model for Aero-Engine Components Based on Improved YOLOv5. Appl.
Sci. 2022, 12, 7235. [CrossRef]

18. Zhao, P.; Li, C.; Rahaman, M.; Xu, H.; Yang, H.; Sun, H.; Jiang, T.; Grzegorzek, M. A Comparative Study of Deep Learning
Classification Methods on a Small Environmental Microorganism Image Dataset (EMDS-6): From Convolutional Neural Networks
to Visual Transformers. Front. Microbiol. 2022, 13, 792166. [CrossRef]

19. Kulwa, F.; Li, C.; Zhang, J.; Shirahama, K.; Kosov, S.; Zhao, X.; Jiang, T.; Grzegorzek, M. A new pairwise deep learning feature for
environmental microorganism image analysis. Environ. Sci. Pollut. Res. 2022, 29, 51909–51926. [CrossRef]

20. Kosov, S.; Shirahama, K.; Li, C.; Grzegorzek, M. Environmental microorganism classification using conditional random fields and
deep convolutional neural networks. Pattern Recognit. 2018, 77, 248–261. [CrossRef]

http://doi.org/10.1073/pnas.1521291113
http://www.ncbi.nlm.nih.gov/pubmed/27140646
http://dx.doi.org/10.1016/S0929-1393(96)00124-2
http://www.ncbi.nlm.nih.gov/pubmed/11934140
http://dx.doi.org/10.1007/s10462-021-10121-0
http://dx.doi.org/10.1007/s11831-021-09591-w
http://dx.doi.org/10.1109/ACCESS.2020.2993788
http://dx.doi.org/10.1007/s10462-020-09808-7
http://dx.doi.org/10.1016/j.compbiomed.2021.105026
http://dx.doi.org/10.1016/j.compbiomed.2021.104649
http://dx.doi.org/10.1109/ACCESS.2020.2983186
http://dx.doi.org/10.1016/j.compbiomed.2022.105543
http://www.ncbi.nlm.nih.gov/pubmed/35483229
http://dx.doi.org/10.1016/j.bbe.2021.12.010
http://dx.doi.org/10.1007/s10462-022-10209-1
http://www.ncbi.nlm.nih.gov/pubmed/35693000
http://dx.doi.org/10.3390/app12147255
http://dx.doi.org/10.3390/app12147235
http://dx.doi.org/10.3389/fmicb.2022.792166
http://dx.doi.org/10.1007/s11356-022-18849-0
http://dx.doi.org/10.1016/j.patcog.2017.12.021


Appl. Sci. 2022, 12, 9902 20 of 23

21. Li, C.; Shirahama, K.; Grzegorzek, M. Environmental microbiology aided by content-based image analysis. Pattern Anal. Appl.
2016, 19, 531–547. [CrossRef]

22. Li, C.; Shirahama, K.; Grzegorzek, M. Application of content-based image analysis to environmental microorganism classification.
Biocybern. Biomed. Eng. 2015, 35, 10–21. [CrossRef]

23. Rahaman, M.M.; Li, C.; Yao, Y.; Kulwa, F.; Rahman, M.A.; Wang, Q.; Qi, S.; Kong, F.; Zhu, X.; Zhao, X. Identification of COVID-19
samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches. J. X-ray Sci. Technol. 2020,
28, 821–839. [CrossRef] [PubMed]

24. Zhang, J.; Li, C.; Yin, Y.; Zhang, J.; Grzegorzek, M. Applications of artificial neural networks in microorganism image analysis: A
comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual
transformer. Artif. Intell. Rev. 2022, 1–58. [CrossRef] [PubMed]

25. Kulwa, F.; Li, C.; Zhao, X.; Cai, B.; Xu, N.; Qi, S.; Chen, S.; Teng, Y. A state-of-the-art survey for microorganism image segmentation
methods and future potential. IEEE Access 2019, 7, 100243–100269. [CrossRef]

26. Zhao, P.; Li, C.; Rahaman, M.M.; Xu, H.; Ma, P.; Yang, H.; Sun, H.; Jiang, T.; Xu, N.; Grzegorzek, M. EMDS-6: Environmental
Microorganism Image Dataset Sixth Version for Image Denoising, Segmentation, Feature Extraction, Classification, and Detection
Method Evaluation. Front. Microbiol. 2022, 1334. [CrossRef] [PubMed]

27. Li, C.; Zhang, J.; Kulwa, F.; Qi, S.; Qi, Z. A SARS-CoV-2 Microscopic Image Dataset with Ground Truth Images and Visual
Features. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Nanjing, China,
16–18 October 2020; Springer: Cham, Switzerland, 2020; pp. 244–255.

28. Zhang, J.; Xu, N.; Li, C.; Rahaman, M.M.; Yao, Y.D.; Lin, Y.H.; Zhang, J.; Jiang, T.; Qin, W.; Grzegorzek, M. An application of Pixel
Interval Down-sampling (PID) for dense tiny microorganism counting on environmental microorganism images. arXiv 2022,
arXiv:2204.01341.

29. Zhang, J.; Li, C.; Rahaman, M.M.; Yao, Y.; Ma, P.; Zhang, J.; Zhao, X.; Jiang, T.; Grzegorzek, M. A Comprehensive Review of Image
Analysis Methods for Microorganism Counting: From Classical Image Processing to Deep Learning Approaches. Artif. Intell. Rev.
2022, 55, 2875–2944. [CrossRef]

30. Prada, P.; Brunel, B.; Reffuveille, F.; Gangloff, S.C. Technique Evolutions for Microorganism Detection in Complex Samples: A
Review. Appl. Sci. 2022, 12, 5892. [CrossRef]

31. Bloem, J.; Veninga, M.; Shepherd, J. Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of
dividing cells by confocal laser scanning microscopy and image analysis. Appl. Environ. Microbiol. 1995, 61, 926–936. [CrossRef]

32. Qing, S.; Wu, Y.; Juan, J.; Zhao, X.; Que, X. Application of Microscopic Color Image Processing in Algae Recognition and Statistics.
Agric. Mech. Res. 2006, 6, 199–203.

33. Zhang, C.; Chen, W.; Liu, W.; Chen, C. An automated bacterial colony counting system. In Proceedings of the 2008 IEEE
International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC 2008), Taichung, Taiwan,
11–13 June 2008; pp. 233–240.

34. Rizvandi, N.B.; Pizurica, A.; Philips, W.; Ochoa, D. Edge linking based method to detect and separate individual C. Elegans
worms in culture. In Proceedings of the 2008 Digital Image Computing: Techniques and Applications, Canberra, ACT, Australia,
1–3 December 2008; pp. 65–70.

35. Rizvandi, N.B.; Pizurica, A.; Rooms, F.; Philips, W. Skeleton analysis of population images for detection of isolated and
overlapped nematode C. elegans. In Proceedings of the 2008 16th European Signal Processing Conference, Lausanne, Switzerland,
25–29 August 2008; pp. 1–5.

36. Zhou, B.T.; Baek, J.H. Using Machine Vision to Detect Distinctive Behavioral Phenotypes of Thread-shape Microscopic Organism.
In Applications of Computational Intelligence in Biology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 161–182.

37. Wang, P.; Wen, C.; Li, W.; Chen, Y. Motile microorganism tracking system using micro-visual servo control. In Proceedings of the
2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 6–9 January 2008;
pp. 178–182.

38. Fernandez, H.; Hintea, S.; Csipkes, G.; Pellow, A.; Smith, H. Machine vision application to the detection of micro-organism in
drinking water. In Proceedings of the International Conference on Knowledge-Based and Intelligent Information and Engineering
Systems, Zagreb, Croatia, 3–5 September 2008; Springer: Cham, Switzerland, 2008; pp. 302–309.

39. Zhai, Y.; Liu, Y.; Zhou, D.; Liu, S. Automatic identification of mycobacterium tuberculosis from ZN-stained sputum smear:
Algorithm and system design. In Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, Tianjin,
China, 14–18 December 2010; pp. 41–46.

40. Raof, R.A.A.; Mashor, M.Y.; Ahmad, R.B.; Noor, S.S.M. Image segmentation of Ziehl-Neelsen sputum slide images for tubercle
bacilli detection. Image Segm. 2011, 2011, 365–378.

41. Shi, H.; Shi, Y.; Yin, Y. Food bacteria auto identification method based on image treatment. J. Jilin Univ. (Eng. Technol. Ed.) 2012,
42, 1049–1053.

42. Badsha, S.; Mokhtar, N.; Arof, H.; Lim, Y.A.L.; Mubin, M.; Ibrahim, Z. Automatic Cryptosporidium and Giardia viability detection
in treated water. EURASIP J. Image Video Process. 2013, 2013, 56. [CrossRef]
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