
 Open access Journal Article DOI:10.1177/0037549718759775

Semantic adaptation for FMI co-simulation with hierarchical simulators:
— Source link

Cláudio Gomes, Bart Meyers, Joachim Denil, Casper Thule ...+4 more authors

Institutions: University of Antwerp, Aarhus University, McGill University

Published on: 01 Mar 2019 - International Conference on Advances in System Simulation

Related papers:

 Co-Simulation: A Survey

 Error Analysis and Error Estimates for Co-Simulation in FMI for Model Exchange and Co-Simulation V2.0

 Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models

 Two Methods of Simulator Coupling

 Co-simulation: State of the art.

Share this paper:

View more about this paper here: https://typeset.io/papers/semantic-adaptation-for-fmi-co-simulation-with-hierarchical-
2t2zh0v0lj

https://typeset.io/
https://www.doi.org/10.1177/0037549718759775
https://typeset.io/papers/semantic-adaptation-for-fmi-co-simulation-with-hierarchical-2t2zh0v0lj
https://typeset.io/authors/claudio-gomes-4h3box0ara
https://typeset.io/authors/bart-meyers-14cbqvgbli
https://typeset.io/authors/joachim-denil-4uhio1r9ca
https://typeset.io/authors/casper-thule-2gv987oqlm
https://typeset.io/institutions/university-of-antwerp-2gqodjhv
https://typeset.io/institutions/aarhus-university-2s1zo7wa
https://typeset.io/institutions/mcgill-university-2kp72n3l
https://typeset.io/conferences/international-conference-on-advances-in-system-simulation-n2zycyw1
https://typeset.io/papers/co-simulation-a-survey-158xsoh6d5
https://typeset.io/papers/error-analysis-and-error-estimates-for-co-simulation-in-fmi-26aw7zhjh3
https://typeset.io/papers/functional-mockup-interface-2-0-the-standard-for-tool-4cimolga2r
https://typeset.io/papers/two-methods-of-simulator-coupling-3vxnqg084x
https://typeset.io/papers/co-simulation-state-of-the-art-xapifbybig
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/semantic-adaptation-for-fmi-co-simulation-with-hierarchical-2t2zh0v0lj
https://twitter.com/intent/tweet?text=Semantic%20adaptation%20for%20FMI%20co-simulation%20with%20hierarchical%20simulators:&url=https://typeset.io/papers/semantic-adaptation-for-fmi-co-simulation-with-hierarchical-2t2zh0v0lj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/semantic-adaptation-for-fmi-co-simulation-with-hierarchical-2t2zh0v0lj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/semantic-adaptation-for-fmi-co-simulation-with-hierarchical-2t2zh0v0lj
https://typeset.io/papers/semantic-adaptation-for-fmi-co-simulation-with-hierarchical-2t2zh0v0lj

This item is the archived peer-reviewed author-version of:

Semantic adaptation for FMI co-simulation with hierarchical simulators

Reference:
Gonçalves Gomes Claudio Angelo, Meyers Bart, Denil Joachim, Thule Casper, Lausdahl Kenneth, Vangheluw e Hans, De Meulenaere Paul.- Semantic adaptation for

FMI co-simulation w ith hierarchical simulators

Simulation - ISSN 0037-5497 - (2018), p. 1-28

Full text (Publisher's DOI): https://doi.org/10.1177/0037549718759775

Institutional repository IRUA

http://anet.uantwerpen.be/irua

Semantic Adaptation for FMI Co-simulation

with Hierarchical Simulators

Cláudio Gomes, Bart Meyers,
Joachim Denil, Casper Thule,

Kenneth Lausdahl, Hans Vangheluwe and Paul De Meulenaere

May 29, 2018

1 Introduction

The systems we engineer today are characterised by an increasing complexity.
Model-based design can boost the development of such systems by enabling
their analysis at higher levels of abstraction via simulation. However, it can
be hard to simulate the system as a whole if it is developed in a distributed
fashion, by multiple and specialized teams [1].

Two factors contribute to this difficulty: (i) specialized teams have their
own tools; and (ii) some of the components of the system are provided by
different suppliers [2], and have valuable Intellectual Property (IP).

Difficulty (i) is a natural consequence of using the most appropriate
formalism for a specific domain [3]. The same can be expected from external
suppliers. During the development process, if a team wishes to understand
how a component being developed behaves when interacting with the rest
of the system, it is useful that the tool in use can import and simulate

correctly the models created by the other teams (with different tools). As we
show shortly, it can be hard to correctly simulate imported models, as these
belong to potentially different domains, each with its own set of specialized
simulators [3].

As for difficulty (ii), if the team is using externally supplied components
and wishes to simulate them, it may not be able to import the components’
models because these contain protected IP. For the sufficiently complex
components, a “lock-in” contract can be made to allow the team access
to those models. However, the team will no longer be free to benchmark
components from different competing suppliers.

Co-simulation, with the support of the Functional Mock-up Interface
(FMI) Standard [4], is proposed as a way to promote tool interoperability
while addressing the IP protection requirement. The models are exported as
executable black boxes, that receive inputs and produce outputs, allowing

1

for the simulation of the component they stand for. In the FMI, each black
box is called a Functional Mock-up Unit (FMU), the term adopted in this
document.

The standard provides a common interface to allow a uniform communi-
cation with the black boxes, solving the combinatorial explosion of import/ex-
port formats. However, it does not ensure that the black boxes are interacted
with in a semantically correct manner.

When a team is given an FMU that does not behave as it is expected to,
we say that there is an interaction mismatch between the FMU and the rest
of the system. Interaction mismatches can be roughly classified as:
Signal Data Mismatch happens when the signals provided by the FMU

are not compatible with the ones that are expected (e.g., different
frame of reference or different physical units).

Model of Computation Mismatch happens when the provided FMU assu-
mes a different model of computation [5] than the one actually used to
compute the overall behavior of the system (e.g., FMUs exported by
a timed automata modelling and simulation tool [6, 7] have to make
assumptions about the other interacting FMUs).

Capability Mismatch happens when a given FMU lacks some capabilities
* that affect the simulation performance (e.g., FMUs that lack higher
order input extrapolation, an important capability that affects the
accuracy and stability of the co-simulation [9, 10]).

Rather than asking the original producer of the FMU to correct an inte-
raction mismatch, it can be useful that the team is able to correct it immedi-
ately. Note that any mismatch happens between a given FMU and a usage
intent, and therefore it is not necessarily the case that the best correction of
a mismatch is done by the producer (if the FMU is to be reused).

In fact, as [11, 9, 12, 13] show, some mismatches happen as a product of
the (incorrect) handling of multiple interacting FMU’s, and the correction
has to be done for that specific interaction.

The above arguments motivate the need for semantic adaptations, and
lead to the following research question:
RQ1 How can we describe the most common semantic adaptations on multi-

ple types of black box FMUs in a productive manner, and realise them
without violating modularity and transparency.

Informally, we call semantic adaptation of an FMU to the set of modifica-
tions made to the inputs/outputs and interaction with environment, of the
FMU, with the purpose of correcting an interaction mismatch. This concept
is formalized later in this work.

Productivity is related to the effort required to describe an adaptation.
Modularity refers to the fact that any FMU should be adapted by changing
how it is interacted with, and not how it is implemented. Transparency

*See [8] for an overview of capabilities of FMUs.

2

means that any tool that imports FMUs should not have to be changed in
order to import, and interact with, an adapted FMU.

The descriptions should be made in an independently developed language
because it is impractical that every tool capable of importing FMUs is able
to implement the adaptations. Furthermore, one cannot expect that any
user of an FMU has the ability to modify the importing tool to support these.
Compared to implementing these adaptations manually, a language reduces
the accidental complexity, prevents mistakes, and allows soundness analyses
to be carried out.

In this paper, we build on prior work [14, 15, 16] to define a language
that allows for the descriptions of the most common semantic adaptations
that can be used in FMI co-simulation, surveyed in [17]. A distinct feature
of the language proposed here is that it describes adaptations for groups
of interconnected FMUs in the same way as for a single FMU, thanks to a
sound definition of hierarchical co-simulation.

The definition of hierarchical co-simulation, and the semantics of the
language, are presented in a bottom up approach, as illustrated in Figure 1.
In the Background section, we introduce a co-simulation abstraction with
simulation units and how these relate to FMUs. Section “Hierarchical Co-
simulation for Semantic Adaptation” contains the formal foundations of
a special kind of simulation unit that is the template to implement any
semantic adaptation. In Section “Running Example”, a running example is
described, and in Section “A DSL for Semantic Adaptation” the language
and its semantics are described. Section “Evaluation” judges how well we
have addressed the research question. Section “Discussion and Future Work”
discusses the flaws of our approach and research opportunities. Finally,
Sections “Related Work” and “Conclusion” present the related work and
conclude, respectively.

2 Background

In this section, we introduce the concepts, terminology, and assumptions
used throughout this document. We cover co-simulation, the Functional
Mockup Interface (FMI) standard, semantic adaptation, and domain specific
languages.

2.1 Co-Simulation

We briefly summarize the main concepts related to co-simulation and we
refer the reader to [17] for a more detailed introduction of each concept.

We call dynamical system to a model that has a notion of state and rules
describing the evolution of that state across time, starting from an initial
state. Inputs and outputs can be defined, to describe the environment.

3

DSL

maps to

Init, In, MapIn,
Ctrl, MapOut, Out

Generic Hierarchical
Simulation Unituses

specializes

Simulation Unit

maps to

FMU

Section ``A DSL for Semantic Adaptation"

Section ``Hierarchical Co-simulation
 for Semantic Adaptation"

Section ``Background"

Figure 1: Overview of DSL semantics and document structure.

A simulator is an algorithm that takes a dynamical system and input
signals, as input, and computes an approximated behavior trace of the
dynamical system.

A simulation unit (also known as a simulation application [18]) is the
composition of a simulator together with a dynamical system, essentially
representing a mockup of a real system. It accepts input trajectories and
produces a behavior trace.

Simulation units (or just units) can be coupled through their inputs and
outputs. A coupling restriction (or just couplings) is an output connected
to an input. It means that the trajectory computed at that output — e.g., a
function of the continuous time — must be equal to the one computed at the
input, at all times.

The orchestrator (or master) is an algorithm that takes a set of simulation
units and their coupling restrictions — that is, a co-simulation scenario —
and computes the behavior trace of all units, trying to satisfy the coupling
restrictions. In practice, these restrictions can only be satisfied at certain
countable points in time, called communication points. These points are
agreed upon by the simulation units and the orchestrator.

A basic orchestrator will, at each communication point, copy data points
from outputs to inputs, and ask each unit to compute its own behavior trace
until the next communication point. The collective behavior trace is called
the co-simulation.

We capture the essence of a simulation unit with reference i, using the

4

discrete time system notation, in one of the following four possible ways:
〈

xi(t+ H̃i), H̃i

〉

= Fi(t,H,xi(t),ui(t+H)
︸ ︷︷ ︸

reactive

or ui(t)
︸ ︷︷ ︸

delayed

)

yi(t) = Gi(t,xi(t),ui(t))
︸ ︷︷ ︸

Mealy

or Gi(t,xi(t))
︸ ︷︷ ︸

Moore

xi(0) = Init i(ui(0))
︸ ︷︷ ︸

reactive

or Init i()
︸ ︷︷ ︸

delayed

(1)

where t denotes the simulated time, xi denotes the state vector, ui the
input vector, Init i computes the initial state, H > 0 denotes the requested
communication step size, 0 < H̃i ≤ H denotes the communication step
size taken by the unit, Fi is the state transition function, and Gi the output
function. Bold symbols will always refer to vectors in this paper.

The definition in Equation (1) covers the different kinds of simulation
units considered (based on the orchestrators surveyed in [17]): Reactive
Mealy, Reactive Moore, Delayed Mealy, and Delayed Moore. The difference
is in where and when the unit expects inputs to be provided. For example, a
delayed Moore unit can compute its output without requiring an input, and
can compute its future state (xi(t+ H̃i)) with just the current input ui(t). A
reactive Mealy unit, on the other hand: requires an initial input to compute
the initial state; and needs to know the next input in order to compute the
next state/output.

We use shortcuts such as Fi(t,H,xi(t), . . .), Gi(t, . . .), and Init i(. . .), to
denote the appropriate function depending on the kind of unit i. Furthermore,
we make the following remarks about each simulation unit i:

• Fi and Gi are mathematical functions (also denoted pure).
• The internal definition of Fi and Gi is unknown, but the kind of unit is
known.

• If
〈

·, H̃i

〉

= Fi(t,H,xi(t), . . .) and H̃i < H, then the unit rejects the

step size H requested. Furthermore, for any H̃ ≤ H̃i, we assume that
〈

·, H̃
〉

= Fi(t, H̃,xi(t), . . .).

Given a set of unique unit references D = {1, . . . , n}, a co-simulation

scenario is defined as the aggregation of each simulation unit definition, in
Equation (1), plus a coupling function that defines the input of i as a function
of the outputs of units {j : j ∈ D \ {i}}. Formally, combining the notation
used in [9, 19], a scenario is given by:























〈

xi(t+ H̃i), H̃i

〉

= Fi(t,H, . . .)

yi(t) = Gi(t, . . .)

ui = ci(y1, . . . ,yi−1,yi+1, . . . ,yn)

xi(0) = Init i(. . .)

for each i ∈ D

(2)

5

where ci denotes the coupling function, and each Fi, Gi follows one of the
definitions in Equation (1). Commonly, ci is linear and maps at most one
component of one of the inputs (the inputs/outputs are vector quantities),
onto one component of the output. We assume that ci is linear.

Let i, j ∈ D be two different units, and 0̄ be the zero matrix of appropriate
dimension. If ∂ci

∂yi

6= 0̄, then i gets part of its input from j. Informally, this
means that at least one component of ui = ci(. . .) is determined by at least
one component of yi. We say that a unit i ∈ D depends algebraically on unit
j ∈ D, with i 6= j, if i gets part of its input from j and i is not a delayed

Moore. So, e.g., if i gets part of its input from j, but it is a delayed Moore,
then i does not depend algebraically on j.

Using the algebraic dependency relationship, one can build a directed
graph — called the dataflow graph — with one node ni per simulation unit
i ∈ D, and an edge (nj , ni) between two nodes nj , ni whenever the unit
i depends algebraically on unit j. This procedure is based on the Causal
Block Diagram Simulation algorithm [20, 21]. A topological order of the
resulting graph gives an execution order that respects the units’ algebraic
dependencies.

Depending on the coupling function and on the kind of simulation units
being coupled, algebraic loops may occur. An algebraic loop includes any
input/output/state that depends on itself, at the same time point [19].

If an algebraic loop exists between the units, then it is not possible to
compute a topological ordering of the dataflow graph. For now, we assume
that such topological order can always be computed for a given co-simulation
scenario. We denote that order via a mapping σ : N → D, that returns the
unit reference σ(j) that is the j-th in the topological order. So σ(1) gives a
unit that is first in the topological order, i.e., has no algebraic dependencies.

With a well defined topological order, the orchestrator only has to provide
inputs to, execute, and get outputs from, the units in that order. Algorithm 1
formalizes what is known in the state of the art as the Gauss-Seidel orches-
trator. It computes the behavior trace of a given co-simulation scenario as
described in Equation (2). To be concise, we abbreviate the output and state
transition function calls, which depend on the kind of unit (lines 11, 19, and
21). Furthermore, the orchestrator provides the inputs (ucσ(j) or upσ(j), in
line 19) that each unit expects, working for both reactive and delayed units
alike. This is the main reason we single out this orchestrator in this work.

Without loss of generality, we assume the most basic step size control
policy in Algorithm 1: the communication step size is never increased af-
ter being rejected by some unit*. The orchestrator uses the most recent
consistent state.

*Algorithm 1 can be greatly optimized (e.g., rolling back as soon as a reject occurs).

6

2.2 Functional Mock-up Interface Standard (FMI)

The FMI standard [4] defines the interface and interaction pattern that allows
simulation units to communicate. In the standard, a simulation unit is called
a Functional Mockup Unit (FMU).

2.2.1 FMUs and Simulation units.

This subsection establishes the equivalence between FMUs and simulation
units (recall Figure 1), and the assumptions we make throughout this docu-
ment.

Given a simulation unit i (described in Equation (1)) we define its equiva-
lent FMU, and vice versa, as follows:
FMU State – The state of the FMU corresponds to the state of the unit xi.

The FMU does not make the state explicit, but instead implements
functions that can be used to set and retrieve the state.

Inputs – FMUs have input ports, each accepting a scalar quantity. Each
dimension in the input ui corresponds to one input port of the FMU.
The FMU implements functions that allow the orchestrator to set those
inputs (e.g., fmi2SetReal and fmi2SetInteger) and a single vector
quantity ui can be set via multiple calls to those functions.

Outputs – The outputs of the FMU are analogous to the inputs. To obtain
an output yi, multiple calls are made to the dedicated functions (e.g.,
fmi2GetReal and fmi2GetInteger).

Initial State – The initial state computed by the Init i function corresponds
to the computation performed by the FMU in the initialization mode.
We assume that an initial state of a unit/FMU can always be found
from the Init(. . .) function (and initial input, in case of a reactive unit).
This is in accordance with the FMI Standard, but it restricts our scope
to scenarios were the consistent initial state of one unit depends on
factors (e.g., the initial state of another unit) other than its initial inputs.

Co-simulation Step – A state transition invocation
〈

x̃i, H̃i

〉

:= Fi(t,H,xi,ui)

is mapped to (in order): an optional invocation to set the state of the
FMU to xi; multiple invocations to set the input ui; an invocation to
the fmi2DoStep function; a query to find out up to which time the FMU
computed the step (to get H̃i); and an (optional) invocation to get the
new state of the FMU x̃i. The manipulation of the state is optional
for orchestration algorithms that do not perform rollback operations.
However, in this document, we assume that the FMUs support rollback.

Output Function – If the unit is a Mealy unit, then the execution of the
output function yi := Gi(t,xi(t),ui(t)) corresponds to setting the inputs
to the FMU, and then getting the outputs. If the unit is a Moore unit,
then the outputs can be enquired without first setting the inputs.

7

It is the role of the orchestrator to set the appropriate inputs depending
on whether the FMU is reactive or delayed, or mealy and Moore.

We define the type of the FMU by applying the following rules, in order:
1. If the unit does not disclose any input-to-output feedthrough, it is

assumed to be Mealy.
2. If at least one output variable depends instantaneously on an input

variable, we assume that the unit is Mealy.
3. If the previous two do not apply, the unit is assumed to be Moore.
4. If the capability flag canInterpolateInputs is set, then the unit is re-

active.
5. Otherwise, the unit is delayed.
To establish the equivalence of the couplings restrictions of units and

those of FMUs, we note that the definition of algebraic dependency remains
the same between FMUs. Thus, the dataflow graph can be built as described
in the previous subsection.

Having established the equivalence between simulation units and FMUs,
we will henceforth use the two terms interchangeably.

2.3 Semantic Adaptation

The interface of an FMU (or of a simulation unit) comprises not only the
specification of the inputs and outputs, but also how it is to be interacted with
[14]. It may be the case that in different co-simulation scenarios, the same
FMU has to be interacted with differently (e.g., for accuracy/performance
concerns). While modifying the orchestrator to support a new interaction
pattern will solve the problem, it is not ideal since: (i) the interaction pattern
may be specific to a single FMU (therefore not reusable), and (ii) modifi-
cations to the orchestrator may require extensive testing to ensure that it
retains its correctness properties (e.g., see [22]).

Our work avoids changes to the underlying orchestration algorithm,
and focuses those changes around the FMU itself in the form of semantic
adaptations, using hierarchical co-simulation.

An adaptation targets an FMU, or group of FMUs, which we will call
the internal FMU(s), and the end result of an adaptation is a new FMU,
which we call external FMU. The external FMU interacts with the internal
FMU(s), without requiring them to be modified (modularity). The adjectives
internal and external reflect the hierarchical nature of our approach and are
illustrated in Figure 2.

We introduce below a non-exhaustive list of semantic adaptations that can
be classified according to the interaction mismatch they intent to correct:
Signal Data Mismatch: Conversion of Units and Reference Frame transla-

tion.
Model of Computation Mismatch: Hold, Quantization, Data Triggered

Execution, and Timed Transitions.

8

FMU 1

Coupling

FMU N

Internal FMUs

External FMU

Semantic Adaptation

Figure 2: Internal FMUs, External FMU, and Semantic Adaptation.

Capability Mismatch: Interpolation/Extrapolation of Inputs, Fixed Point
Iteration, Multi-Rate Adaptation, Time and Partial Derivative Adapta-
tion, Accurate Threshold Crossing, and Re-Initialisation.

See [17, 8] and references thereof, for variants of these adaptations.

2.3.1 Conversion of Units and Reference Frame Translation.

The conversion of units and reference frame adaptations, take an inter-
nal FMU and create an external FMU whose inputs/outputs are algebraic
transformations of the input/outputs of the internal FMU.

2.3.2 Interpolation/Extrapolation of Inputs.

An FMU that stands for a continuous system, such as a DC motor, approxi-
mates its behavior trace by discretizing the time continuum into a finite set
of points [23] and applying a numerical method at each of those points.

In co-simulation, when the orchestrator asks an FMU to compute the
behavior trace over an interval of time, from t to t+H, the FMU discretizes
the interval and computes the internal solution at each of these points, called
micro-steps. The most common FMUs assume that, in between t and t+H the
inputs provided by the orchestrator are constant. Naturally, for large H, this
assumption causes a significant error in the co-simulation [10, 24, 25, 26].

Instead of reducing H, it is possible to adapt the FMU to better ap-
proximate its inputs. Essentially, the external FMU discretizes the interval
t → t+H and runs the state transition function of the internal FMU multiple
times, providing an approximated input at each of the time points. The
internal FMU will still assume a constant input, but will do so in smaller
intervals of time.

2.3.3 Fixed Point Iteration.

If an algebraic loop exists, then the involved units will belong to the same
cycle in the corresponding dependency graph.

9

As proposed in [16, 8], given a co-simulation scenario (recall Equation (2))
that has one cycle involving at least two simulation units (non-trivial), it is
possible to create an external FMU that replaces all the units in the cycle.
All the couplings external to the cycle become couplings to the hierarchical
simulation unit.

At each state transition of the external FMU, a fixed point iteration
technique is applied to the inputs/outputs of the internal FMUs.

If a scenario has multiple non-trivial cycles, this adaptation can be applied
to reduce the scenario to one where all the algebraic loops are solved [16].
Algorithm 1 can then be applied to compute the co-simulation.

2.3.4 Multi-Rate Adaptation.

For FMUs simulating first order Ordinary Differential Equations (ODE), the
larger the interval between the points, the less accurate the computed
behavior trace will be [27].

The multi-rate adaptation is used to increase the accuracy while not
sacrificing the performance in a co-simulation. Applied to co-simulation, the
technique, well known in the circuit simulation domain [28], consists of a
groups of interconnected internal FMUs that communicate more frequently
[29, 16]. This can serve two purposes: optimize the communication cost
between the internal units [8], or optimize the accuracy of the co-simulation
(especially when the internal units are physically tightly coupled [17]).

Similarly to the input extrapolation adaptation, the state transition function
of the external unit instructs the internal units to perform multiple steps and
exchange values at each of those steps. The higher the rate of the adaptation,
the higher the number of internal steps performed.

This adaptation can be combined with the approximation of inputs adap-
tation, to provide for approximated inputs at each of the internal state
transition invocations.

2.3.5 Time and Partial Derivative Adaptation.

Time and partial derivative information about each simulation unit’s outputs
can be used to optimize the co-simulation process in many different ways
(e.g., see [30]).

In the FMI standard, since the FMUs can optionally provide time and
partial derivative information, it is often the case that some units do not
support it. To mitigate this, a derivative adaptation can be used to produce
an external FMU that provides (numerically estimated) partial and time
derivatives.

10

2.3.6 Accurate Threshold Crossing.

A co-simulation trace is more accurate if all units exchange values at the
time when a certain signal crosses a given threshold. The problem of accu-
rately finding that time is well known in the hybrid system simulation dom-
ain [31, 32] and many techniques exist to address it [23, 27]. In FMI co-
simulation, the most basic technique to accurately locate a crossing consists
of rejecting a step size and proposing a new one, that possibly coincides with
the threshold crossing moment.

The accurate zero crossing adaptation ensures that the external FMU
rejects the proposed step size when one of the inputs of the internal FMU
crosses a significant threshold too late [15].

2.3.7 Re-Initialisation.

An internal FMU that is expecting a smooth input signal may yield unex-
pected behavior trace when given a discontinuous signal (we consider a
discontinuous signal to be a sufficiently rapid changing one in between
co-simulation communication points) [33, 34, 10]. For example, an FMU
that is using a multi-step numerical solver which assumes the input to be
continuous (see, e.g., [35] for a possible solution to this problem).

A re-initialization adaptation ensures that the external unit: (1) locates
accurately the time of the discontinuity (e.g., in the same manner as the
accurate crossing adaptation), and (2) the external unit is properly reset
before handling the new value of the input. In the FMI standard, item (2)
requires three steps: save the unit state; reset and initialize the unit; and
restore the state.

2.3.8 Quantization.

Quantization is an adaptation commonly used to convert a continuous signal
into a discrete event one. The (continuous) set of possible input values
is discretized into regions and, during the co-simulation, whenever the
continuous signal enters a new region, an event is produced [36, 37].

In co-simulation, this adaptation transforms an internal FMU that expects
continuous inputs and produces continuous outputs, into an external FMU
that deals with events (see, e.g., [38, 39, 40, 41]).

The realization of this adaptation is very similar to the zero crossing
one, except that the thresholds to locate are induced by the input space
discretization.

2.3.9 Hold.

The hold family of adaptations can be seen as the dual of the multi-rate
adaptations.

11

If an internal FMU should run slower than the rest of the simulation units,
then it can be adapted with a hold adaptation. The external FMU will trick
the orchestrator and obey to the proposed step sizes, but will avoid executing
the internal FMU every time a step is requested. For example, if a zero order
Hold adaptation is used, then the external unit will produce an output that is
equal to the most recent output produced by the internal unit.

There are many variants of this adaptation, with varying degrees of
accuracy, borrowed from well known approximation techniques [27].

The two adaptations below are novel in FMI based co-simulation domain,
but well known in the discrete event domain.

2.3.10 Data Triggered Execution.

The data triggered execution is an adaptation most useful when the modeller
knows that a particular internal FMU will only produce relevant behavior
when certain conditions are true over its inputs. The adaptation executes
the internal FMU only when these conditions are met.

2.3.11 Timed Transitions.

The time transition adaptation can be used when the internal FMU is known
to have internal state changes, triggered after a known amount of time. The
adaptation will query the internal FMU to know when exactly should the next
state transition function call take place, and will call it only when that time
is arrived. It can be combined with the data triggered execution to achieve a
lazy execution of units.

Each of the semantic adaptations described above has many variants
that make its ad-hoc implementations not only error prone, but also tedious.
Additionally, one can extract the shared commonalities in the implementation
of all semantic adaptations. The interplay between many small variants
and shared commonalities is one of the motivating factors to use a Domain
Specific Language for the description of the adaptations.

2.4 Domain-Specific Languages

Domain-specific languages (DSLs) offer a way to deal with the essential
complexity of a given domain, while avoiding its accidental complexity [42].

We highlight two important advantages that come from the use of a DSL
in the context of our contribution:

1. The most common tasks in the target domain are performed in a very
simple, productive, and intuitive manner (for a trained domain expert) —
the descriptions made in our DSL do not deal with the idiosyncrasies of
an implementation of the FMI Standard, even though a FMI compliant
external FMU can be generated.

12

2. By maximally constraining the user, a DSL ensures that he/she makes
less mistakes and allows domain level validation — our DSL allows the
user to specify extra information that can be used to detect mistakes (a
simple validation being the compatibility of units in inputs/outputs).

3 Running Example

To showcase the language, the case study we present is adapted from a
power window system, described in [43, 44]. This system is the familiar
automated car window, which responds to the driver/passenger pressing
up/down buttons to raise/lower it. If an obstruction is detected, the window
retracts for a few moments to avoid injury. This example was chosen for its
heterogeneity and need for semantic adaptations.

power window
speed (rad/s)

controller

armature_current (A)

up (Bool)

down (Bool)
environment

passenger_up (Bool)

passenger_down (Bool)

obstacle

height (cm)

reaction_torque (N.m)passenger_stop (Bool)

driver_down (Bool)

obj_detected (Bool)
reaction_force (N)

stop (Bool)

disp (m)

u (Real)

d (Real)

displacement (rad)

FMU

Legend

input/output (kind/units)

tau (N.m)driver_up (Bool)

driver_stop (Bool)

?

?
?

?
R./MooreR./Mealy R./Moore

R./Mealy

R./Mealy

Figure 3: Power window co-simulation scenario.

3.1 The Example Scenario

Figure 3 shows the co-simulation scenario of the power window, consisting
of five FMUs, with the illustrated input and output ports. The figure is a
block representation of a co-simulation scenario as described in Equation (2).
The FMUs were produced by the authors using independent tools.

The environment FMU, coded manually, is an abstraction of the behavior
of the driver and passenger. Whenever the driver/passenger pushes a button
up/down, the respective output will pulse to signal the event. When the
button is released, the stop output pulses.

The controller FMU, produced from the Yakindu Statecharts tool, repre-
sents the software subsystem that ensures the safe operation of the window.
It gets boolean pulse inputs and decides whether the motor should go up
or down, through its boolean pulse outputs. If an object is detected (that is,
obj_detected pulses) and the passenger (or driver) has pushed the up button,
then the controller should instruct the DC motor to go down for one second.
This is done by pulsing the down output and, after 1 second, pulsing the stop

output.

13

The power is an ODE based unit, exported with OpenModelica, represen-
ting the DC motor and the up/down switched circuit that drives the motor.
Whenever the u input is bigger than 0.5, the DC motor moves the window up.
Analogously, whenever the d input is bigger than 0.5, it moves the window
down.

The window and obstacle are stateless units, coded manually, that map the
inputs to the outputs using algebraic equations. The obstacle FMU outputs a
force proportional to how compressed it is. Non-zero compression happens
only when the input displacement exceeds a given threshold (e.g., 0.45m).

An object is detected when the armature_current spikes, caused by a sudden
increase in the reaction_torque input of the DC motor, cause in turn by an
increase in the reaction_forced of the object being compressed.

As illustrated in the figure, all units in this example are reactive, so the
controller, power, window, and obstacle form a single cycle. The power and
controller are Moore and the remaining units are Mealy.

Figure 4 shows the behavior trace of the example produced via a mo-
nolithic model produced in OpenModelica [45]. In the figure, the driver
continuously pushes the up button, asking the controller to move the window
up, but the controller detects an object at about 2.5 seconds (due to the
armature current spike), which causes it to override the requests of the
driver and retract the window for 1 second.

3.2 Semantic Adaptations

The scenario presented in Figure 3 cannot be used as is to compute a co-
simulation as the one shown in Figure 4 because the FMUs are incompatible.

The adaptations that need to be made were introduced in the “Back-
ground” section, and are detailed in the list below and illustrated in Figure 5.
These will be referred to throughout this document.
lazy_sa – for controller:

• execute only if the inputs change (data triggered execution).
• execute only when its state transition needs to be called (timed

transition adaptation) due to internal triggers. In FMI, this infor-
mation can be obtained by asking controller to perform a very large
step.

• zero order hold its outputs.
controller_sa – for lazy_sa:

• map the armature_current to a boolean signal object_detected that is
true whenever there is a threshold crossing. The condition that
defines the crossing is |armature_current| > 5 * and the lazy_sa

unit should be invoked at the time of crossing.

*The value 5 is used here for the purposes of illustration. In practice, it is obtained by
calibration with the DC Motor.

14

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
Time (s)

controller
u
d

−5

0

5

10

0 1 2 3 4
Time (s)

power
armature_current

0

1

2

3

4

0 1 2 3 4
Time (s)

window_sa
window.displacement

Figure 4: Power window monolithic simulation results.

• convert output, taking into account the stop signal.
window_sa – for window:

• negate the reaction_torque value;
• convert the units of height from centimetres to metres.

power_sa – for power:
• ignore the algebraic loop between controller and power, and bet-
ween the power and window, by delaying the outputs of the power by
one co-simulation step. This effectively makes the external FMU a
delayed unit.

loop_sa – for window_sa and obstacle:
• solve the algebraic loop between obstacle and window_sa by succes-
sive substitution providing an initial guess for height.

15

rate_sa – in order to prevent divergence in the fixed point iteration caused
by the above adaptation, smaller communication step sizes should be
taken between the obstacle and the window FMUs. To this end:

• use a multi-rate adaptation, where loop_sa is executed 10 times
faster than the remaining scenario.

• interpolate the input signal motor_speed.

semantic_adaptation

power speed (rad/s)

armature_current (A)

up (Bool)

down (Bool)

tau (N.m)

obj_detected (Bool)

stop (Bool)

u (Real)

d (Real)

displacement (rad)

controller_sa

FMU

Legend

input/output (kind/units)

power_sa

Signal transform

window

obstacle

height (cm)

reaction_force (N) disp (m)

window_sa

loop_sa

controllerenvironment

passenger_up (Bool)

passenger_down (Bool)

passenger_stop (Bool)

driver_down (Bool)

driver_up (Bool)

driver_stop (Bool)

rate_sa

lazy_sa

R./MooreR./Mealy R./Moore

R./Mealy

R./Mealy

Figure 5: The modelled adaptations in the power window example.

4 Hierarchical Co-simulation for Semantic Adap-

tation

The most straightforward way of dealing with semantic adaptations is by
creating a master algorithm that implements them. There are multiple
problems with this approach: 1) it forces the master algorithm to be specific
to the scenario, which hinders the potential for reuse; and 2) it violates
the transparency principle by not allowing the FMU (plus adaptations) to
be easily imported onto other tools that perform co-simulation, such as
Simulink®, INTO-CPS [46], or DACCOSIM [47].

To avoid these problems, we implement the semantic adaptations as
FMUs, in a hierarchical way. In fact, our language defines semantic adap-
tations (plus internal FMUs) as FMUs themselves, allowing for adaptations
to be described “on top of” other adaptations. This way, the orchestrator
and semantic adaptations can be clearly separated, as well as the semantic
adaptations between themselves.

As part of our contribution, we extend the definitions provided in Section “Back-
ground” to explain what hierarchical co-simulation is, and we give an over-
view on how the main semantic adaptations are implemented.

4.1 Hierarchical Co-simulation

Before giving the formal definition of hierarchical co-simulation, we start
with an example of a “default” hierarchical co-simulation unit is and does.

16

A default hierarchical simulation unit is one that wraps a set of connected
internal units, along with their inter-dependencies, and behaves in a manner
that is indistinguishable from any other simulation unit. The internal FMUs
have internal inputs/outputs (in between the units) and external inputs/out-
puts. This is called the default hierarchical unit because it does not adapt
the behavior of the internal units. It merely wraps them.

To give details about how the default hierarchical unit is constructed,
we extend the definition of co-simulation scenario to make the distinction
between internal and external inputs. Let uext denote the input vector that
is external to the co-simulation scenario. A co-simulation scenario with
D = {1, . . . , n} units, and with external input uext , is then described as:







〈

xi(t+ H̃i), H̃i

〉

= Fi(t,H, . . .)

yi(t) = Gi(t, . . .)

ui(t) = ci(uext (t),y1(t), . . . ,yi−1(t),yi+1(t), . . . ,yn(t))

xi(0) = Init(. . .)

for each i ∈ D

(3)

Given then a co-simulation scenario as defined in Equation (3), and
assuming that the topological order σ : N → D is well defined, the default
hierarchical reactive Mealy FMU is constructed by:

1. aggregating the state xi and the previous input upi of each FMU i,
into a single entity x that becomes the state of the hierarchical unit;

2. implementing the state transition function as a single co-simulation
step of Algorithm 1.

Formally, the unit is defined as:

〈

x(t+ H̃), H̃
〉

= F (t,H,x(t),uext (t+H))

y(t) = G(t,x(t),uext (t))

x(0) = Init(uext (0))

(4)

where: x = [up1, . . . ,upn,x1, . . . ,xn]
T is the total state vector and [·]

T is
the matrix transpose operation; the initial state vector is calculated by the
Init function, defined in Algorithm 2, which finds the initial inputs and states
to each of the internal units depending on their types; uext is the external
input vector; function G is described in Algorithm 3, which computes the
outputs of all internal units from the given inputs; and function F is detailed
in Algorithm 4, which executes a single co-simulation step of Algorithm 1
and returns the minimum step size selected.

The construction of the default hierarchical reactive Moore, delayed
Mealy, or delayed Moore, is done similarly and we omit it. The next sub-
section presents similar constructions for all kinds of units, incorporating
adaptations.

17

The default hierarchical unit gives the basic transformation that underlies
the semantic adaptation of one, or a connected group of, internal FMUs. In
the subsection below, we describe the generic mechanism that enables the
creation of hierarchical units with semantic adaptations.

4.2 Generic Semantic Adaptation

Previous work [14, 15] supports the hypothesis that any semantic adaptation
can be described by the following elements, that mediate the interactions of
the external FMU with the internal units:

• external input rules, describing how the inputs provided to the external
FMU are stored in the state of the external FMU;

• internal input rules, detailing how the values stored internally are
mapped into inputs of the internal FMUs;

• control rules, determining what happens when the state transition
function of the external FMU is invoked;

• internal output rules, describing how the outputs of the internal FMUs
are stored in the state of the external FMU;

• external output rules, detailing how the values stored in the state of
the external FMU are mapped to output values of the external FMU;

This subsection formalizes how a generic external FMU incorporating the
above rules is constructed.

To formalize the above rules, we define the state of the external FMU. The
external FMU is constructed from a given co-simulation scenario, defined
in Equation (3), with D = {1, . . . , n} units and external input vector uext . Its
state is then defined as

x = [xin ,xctrl ,xout ,x1, . . . ,xn]
T

with xin , xctrl , and xout , denoting the input, output and control storage
vectors, respectively, and x1, . . . ,xn being the internal units’ states. The
vectors xin , xctrl , and xout form the semantic adaptation storage and depend
on the adaptations implemented in the external FMU.

Depending on the kind of external FMU being constructed, its initial state
is computed by

Init(uext) = [xin ,xctrl ,xout ,x1, . . . ,xn]
T

or Init() = [xin ,xctrl ,xout ,x1, . . . ,xn]
T

where Init(), to be detailed shortly, makes use of the initialization functions
Init i of the internal units to get their initial states.

We now introduce the formal representation of the semantic adaptation
rules, introduced at the beginning of this subsection:

• The application of the external input rules to the provided input is

In([xin ,xctrl ,xout]
T
,uext) = x̃in

18

• The application of the internal input rules to create the internal input
vector is denoted as

MapIn([xin ,xctrl ,xout]
T
, h, dt) = [ũ1, . . . , ũn]

T

This function is used whenever the input to any of the internal units
needs to be computed. It is used in the Ctrl rules (defined next) and
in the output function of the external unit. In most adaptations, this
function is invoked immediately before a call to the state transition
function Fi of any internal unit. In line with the FMU interface, h is the
communication step size that will be passed to the state transition Fi

invocation, dt is the displacement of the time in unit i, relative to the
external unit, and ũi denotes the vector that will be used as external
input to unit i, or ignored if the unit does not depend on the external
input. Multiple calls to this function can be made: potentially one per
internal state transition call.

• The application of the control rules, to compute the new state x̃i of each
internal unit i, the step size advanced H̃, and the new control/output
storage state x̃ctrl , x̃out of the semantic adaptation, is

Ctrl(t,H, [xin ,xctrl ,xout]
T
, [x1, . . . ,xn]

T
) =

〈

x̃ctrl , x̃out , [x̃1, . . . , x̃n]
T
, H̃

〉

This function invokes the MapIn/MapOut functions before/after a state
transition of an internal unit is invoked.

• The application of the internal output rules

MapOut([xin ,xctrl ,xout]
T
, [y1, . . . ,yn]

T
, h, dt) =

x̃out

Analogously to the MapIn, the invocation of this function is controlled
by the Ctrl . Parameters h and dt denote the communication step size,
and time displacement, passed as arguments to the most recently
invoked state transition function Fi.

• The application of the external output rules to compute the external
outputs, from the semantic adaptation state

Out([xin ,xctrl ,xout]
T
) = y

Intuitively, the internal input/output functions serve to decouple the rate
of execution of the internal units, from the rate of execution of the external
FMU.

A semantic adaptation is a concrete definition of:
• Storage structure — xin , xctrl , and xout ;
• Initialization — Init();

19

• External input rules — In;
• Internal input rules — MapIn;
• Control rules — Ctrl ;
• Internal output rules — MapOut ;
• External output rules — Out ;
We now describe how these functions are used in the specification of an

external FMU.
The generic external unit is defined exactly as a simulation unit (recall

Equation (1)):
〈

x(t+ H̃), H̃
〉

= F (t,H,x(t),uext (t+H) or uext (t))

y(t) = G(t,x(t),uext (t)) or G(t,x(t))

x(0) = Init(uext) or Init()

(5)

where x = [xin ,xctrl ,xout ,x1, . . . ,xn]
T denotes the state of the external

FMU. Both an external reactive or delayed unit has the same implementation
of F , described in Algorithm 5 (but note that the definition of Ctrl will likely
differ). The definitions of G differ for a Mealy or Moore external unit, and
are detailed in Algorithm 6.

In Algorithm 6, we stress the following:
• The definitions take into account that it may not be possible to sort
the internal units topologically, so the semantic adaptations support
dependency cycles.

• Multiple calls to G can be made without changing the state of the
external unit.

• If a Moore external FMU has at least one internal unit which depends
on external input, then this input must be stored in the input storage xin

of the semantic adaptation by the In function (Line 2 of Algorithm 5),
and then retrieved by the MapIn function (Line 8 of Algorithm 6).

To make these definitions easier to understand, we provide two examples:
the default reactive Mealy hierarchical unit presented in the sub-previous
section, and the algebraic loop semantic adaptation that involves the obstacle

and window_sa units of the power window example (loop_sa).
The default reactive Mealy hierarchical unit can be informally described

as follows:
• the state xctrl of the semantic adaptation includes the previous inputs
of the internal units;

• the Init function is analogue to the one described in Algorithm 2;
• the In, MapIn, MapOut , and Out , are roughly identity functions;
• and the Ctrl function implements the body of F , in Algorithm 4;

20

Formally, functions Init and Ctrl are defined in Algorithm 7, and:

In([xin ,xctrl ,xout]
T
,uext) = uext

MapIn([xin ,xctrl ,xout] , h, dt) =

[ũ1, . . . , ũn]
T , with ũi = xin

MapOut([xin ,xctrl ,xout]
T
, [y1, . . . ,yn]

T
, h, dt) =

[y1, . . . ,yn]
T

Out([xin ,xctrl ,xout]
T
) = xout

(6)

The second example refers to the adaptation loop_sa, which essentially
performs a fixed point iteration between the obstacle and window_sa units,
computing improved values for their input/outputs via successive substitu-
tion.

The external FMU, called loop_sa in Figure 5 is a reactive Moore unit, and
has an input uext ∈ R

2 with two dimensions — displacement and speed —
and one output – tau. Whenever the state transition of the external FMU is
called, a successive substitution is performed between the two internal units,
using the most recently found value of disp as an initial guess. Formally, let
the index 1 refer to the window_sa unit, and 2 to obstacle, so that, e.g., uc2
refers to the input to the obstacle unit. For the sake of simplicity, we assume
that the system starts with all inputs/outputs being zero. Then, the functions
that characterize the adaptation are shown in Equation (7). Note that had we
not assumed that the system starts with zero inputs/outputs, the Init would
have to compute a fixed point iteration to find a consistent initial state. This
is possible with our formalization.

The next section describes a DSL for the definition of such semantic
adaptations. The examples provided in that section clarify the need for the
semantic adaptation functions defined in the current section.

Init(uext) = [0,0,0, Init1(0), Init2(0)]
T

In([xin ,xctrl ,xout]
T
,uext) = uext

MapIn([xin ,xctrl ,xout]
T
, h, dt) = [xin ,0]

T

MapOut([xin ,xctrl ,xout]
T
, [y1,y2]

T
, h, dt) = y1

Out([xin ,xctrl ,xout]
T
) =

[

1 0 0

0 1 0

]

xout

Ctrl is defined in Algorithm 8

(7)

21

5 A DSL for Semantic Adaptation

We introduce a DSL for the specification of the set of rules introduced in
the previous section (which form a semantic adaptation). Since research in
semantic adaptation is ongoing, the language should be expressive enough to
cover future semantic adaptations. Additionally, the implementation should
not violate the modularity and transparency principles.

To these ends, the DSL — named baseSA— mixes imperative concepts
with convenient functions that perform common operations on simulation
units. A description made in this DSL can be used to generate hierarchical
units.

The language and the examples used in this paper are available for
download*.

The baseSA allows the description of the internal FMUs and their cou-
plings (that is, the internal scenario as described in Equation (3)), and how

semantic adaptation rules (Init , In, MapIn, Ctrl , MapOut , and Out), are
implemented.

The remainder of this section is organised as follows. First, the baseSA
DSL is introduced by describing the semantic adaptations of the running ex-
ample and what their intended meaning is. Then, a more detailed description
of the language (syntax and semantics) is provided.

5.1 The baseSA DSL

5.1.1 The window_sa adaptation.

1 semanticadaptationreactive mealy WindowSAwindowSA

2 at "./path/to/WindowSA.fmu"

3

4 for inner fmu Window window

5 at "./path/to/Window.fmu"

6 with input ports displacement (rad), speed (rad/s), reaction_force (N)

7 with output ports height (cm), reaction_torque (N.m)

8

9 output ports disp (m) <- window.height, tau

10

11 out rules {

12 true -> {} --> {

13 windowSA.tau := -window.reaction_force;

14 };

15 }

Listing 1: The simple data adaptation window_sa in baseSA.

Listing 1 shows the baseSA definition of the semantic adaptation that
generates the window_sa in Figure 5. The first few lines (Line 1 and 2 in the
example) of any description, declare the name of the semantic adaptation
and where the resulting external FMU will be generated.

*https://msdl.uantwerpen.be/git/claudio/HybridCosimulation

22

Following that, the internal scenario is declared. The example listing
(Lines 4 – 7) declares a single internal FMU and its ports.

baseSA descriptions work by exclusion: the user only specifies what
needs to be changed, and the rest is assumed from the information provided.
Hence, Listing 1 only needs to declare the output ports of the external
FMU (disp and tau), in Line 13, and how they get their values: disp gets its
value implicitly from the height port, and tau gets its value explicitly (via the
specification of output rules).

Lines 11–15 declare the output rules. These specify how the tau output
port of the external FMU gets its value, and this is done by assigning it the
value of the reaction_torque output port, of the window FMU. The examples
declares a single output rule, but in general multiple output rules can be
declared. In general, each output rule has three parts: a condition, a
MapOutRule part (syntactically preceded by “->”), and a OutRule part
(syntactically preceded by “–>”). The condition decides whether the rule
should be applied, and the other two parts contribute to the definition of the
corresponding functions MapOut and Out , respectively.

Following the exclusion principle, Listing 1 omits several bits of infor-
mation about the external FMU, that are required for a full definition of a
semantic adaptation: input ports; Init function; In function; MapIn function;
and Ctrl function;

In general, this information is assumed by applying multiple conventions,
detailed in Section “Semantics”. The intended behavior is to follow the
default hierarchical unit definition wherever the information is omitted
(recall Equation (6) and Algorithm 7). For the example in Listing 1, the
following is applicable:

• The external FMU (windowSA) has an input port for every input port of
any internal FMU that has no incoming connection. This means that
windowSA has three input ports, each bound to the corresponding input
port of the internal FMU window.

• Each of the input ports of the internal FMU that have no incoming
connections, gets its value from the corresponding external input port
declared by the previous convention. The implementation of bindings
is made via a storage variable. In Listing 1, this means that an extra
input rule is created to encode the transfer of values. The input storage
variables are also created.

• Any output variable bindings are realized in a manner similar to the
previous convention: add an output rule and declare the necessary
output variables to perform the transfer of values.

• Any expression referring ot the output of any internal FMU, in the
Out part of an output rule, is assumed to refer to the storage variable
with the most recent value of that output (output variables are created
for the outputs of each internal FMU). In Listing 1, this means that

23

window.reaction_force, in Line 13, gets replaced by a reference to an
output variable.

• After applying the previous two conventions, the implicit bindings are
removed.

1 semanticadaptationreactive mealy WindowSAwindowSA

2 at "./path/to/WindowSA.fmu"

3

4 for inner fmu Window window

5 at "./path/to/Window.fmu"

6 with input ports displacement (rad), speed (rad/s), reaction_force (N)

7 with output ports height (m), reaction_torque (N.m)

8

9 input ports reaction_force,

10 displacement,

11 speed

12

13 output ports disp,

14 tau

15

16 param INIT_WINDOWSA_REACTION_FORCE := 0.0,

17 INIT_WINDOWSA_DISPLACEMENT := 0.0,

18 INIT_WINDOWSA_SPEED := 0.0,

19 INIT_WINDOW_REACTION_TORQUE := 0.0,

20 INIT_WINDOW_REACTION_HEIGHT := 0.0;

21

22 control rules {

23 var H_window := do_step(window, t, H);

24 return H_window;

25 }

26

27 in var stored_windowsa_reaction_force := INIT_WINDOWSA_REACTION_FORCE,

28 stored_windowsa_displacement := INIT_WINDOWSA_DISPLACEMENT,

29 stored_windowsa_speed := INIT_WINDOWSA_SPEED;

30

31 in rules {

32 true -> {

33 stored_windowsa_reaction_force := windowSA.reaction_force;

34 stored_windowsa_displacement := windowSA.displacement;

35 stored_windowsa_speed := windowSA.speed;

36 } --> {

37 window.reaction_force := stored_windowsa_reaction_force;

38 window.displacement := stored_windowsa_displacement;

39 window.speed := stored_windowsa_speed;

40 };

41 }

42

43 out var stored_window_reaction_torque := INIT_WINDOW_REACTION_TORQUE,

44 stored_window_height := INIT_WINDOW_REACTION_HEIGHT;

45

46 out rules {

47 true -> {

48 stored_window_reaction_torque := window.reaction_torque;

49 stored_window_height := window.height;

50 } --> {

51 windowSA.disp := stored_window_height / 100;

52 };

53 true -> { } --> {

54 windowSA.tau := -stored_window_reaction_torque;

55 };

56 }

Listing 2: The adaptation window_sa in explicit form.

24

Listing 2 shows the same adaptation as Listing 1, after applying the
conventions introduced above:

• All input ports and output ports of the external FMU are declared, with
no implicit bindings defined.

• Input storage variables, and their initial values, are declared (stored_windowsa_reaction_force,
and stored_windowsa_displacement, stored_windowsa_speed). These are part of
the xin state vector of the semantic adaptation.

• Output storage variables, and their initial values, are declared (stored_window_reaction_torque
and stored_window_height), comprising part of the xout state vector.

• A parameter per storage variable is added to allow the configuration of
the initial value of that variable (technical detail: the parameters are
mapped to FMI parameters).

• Input rules, as the one in Lines 31–41, are in general comprised of two
parts: the InRule part, which in the example assigns values to the input
storage variables; and the MapInRule part, which assigns the stored
values to the input ports of the internal FMUs in the example. These
make up the respective functions In and MapIn.

• The control rules make use of the special function H_window := do_step(window,

t, H), which automatically: uses the MapIn function to compute the in-
puts to the internal FMU window, computes any extra internal input (this
applies to internal interconnected units), invokes the state transition
function of window with t and H, and invokes the MapOut function to
compute its outputs. do_step also takes into account the type (Mealy/-
Moore and reactive/delayed) of the internal unit invoked. The returned
value is the step size taken by the unit.

• Output rules defined the functions MapOut (which stores the outputs of
window in the output storage variables), and Out (which sets the outputs
of the external FMU from the output storage variables). Notice that
the conversion of units between the height and disp ports is also done.

In any baseSA description, there is no need to define explicitly the initial
state (computed by the Init function). It is inferred from the input, control
and output storage variables, plus the information about the internal units
(extracted from their xml description file).

5.1.2 The loop_sa adaptation.

1 semanticadaptationreactive moore LoopSA loop_sa

2 at "./path/to/LoopSA.fmu"

3

4 for inner fmu WindowSAwindow_sa

5 at "./path/to/WindowSA.fmu"

6 with input ports displacement (rad), speed (rad/s), reaction_force (N)

7 with output ports disp (m), tau (N.m)

8

9 for inner fmu Obstacleobstacle

10 at "./path/to/Obstacle.fmu"

11 with input ports disp (m)

25

12 with output ports reaction_force (m)

13

14 with window_sa.disp -> obstacle.disp

15 with obstacle.reaction_force -> window_sa.reaction_force

16

17 output ports tau <- window_sa.tau

18

19 param MAXITER := 10,

20 REL_TOL := 1e-05,

21 ABS_TOL := 1e-05;

22

23 control var prev_disp := 0.0;

24 control rules {

25 var repeat := false;

26 for (var iter in 0 .. MAXITER) {

27 save_state(obstacle);

28 save_state(window_sa);

29 obstacle.disp := prev_disp;

30 do_step(obstacle,t,H);

31 do_step(window_sa,t,H);

32

33 repeat := is_close(prev_disp, window_sa.disp, REL_TOL, ABS_TOL);

34 prev_disp := window_sa.disp;

35 if (repeat) {

36 break;

37 } else {

38 rollback(obstacle);

39 rollback(window_sa);

40 }

41 }

42 return H;

43 }

Listing 3: Adaptation that generates loop_sa.

Listing 3 describes the adaptation defining the external FMU loop_sa in
Figure 5. The adaptation is targeted at two internal FMUs (window_sa and
obstacle) that are interconnected as specified in Lines 14–15. In general, the
internal connectivity information is needed so that the generated code knows
how to set the inputs to the internal FMUs. The listing does not declare input
ports, therefore, according to the general conventions, the external FMU
has all the input ports that that have no incoming connections (displacement

and speed). A single output port is declared (tau), which gets its value from
the tau output of window_sa.

Notice that the external FMU is declared as reactive Moore, and that the
internal FMUs cannot be topologically sorted. Whenever this is the case,
when the external output function is called, the values of the output ports
returned (in the example, the value of tau) are the ones computed in the most
recent state transition function.

The control block of Listing 3 implements Algorithm 8 with the following
differences.

• As part of the semantics of the do_step function: the MapInRule and
MapOutRule instructions (which are implicit in Listing 3 by convention)
are executed automatically to set the inputs of the internal FMUs;
and the inputs of each FMU, if unspecified by an assignment, are set

26

according to the internal connectivity information declared in Lines
14–15.

• The convergence test (Line 33) is made only in the disp port (to simplify).
• The state manipulation of the internal FMUs is facilitated by the use of
the save_state and rollback functions.

5.1.3 The rate_sa adaptation.

1 semanticadaptationreactive moore RateSA rate_sa

2 at "./path/to/RateSA.fmu"

3

4 for inner fmu LoopSA loop_sa

5 at "./path/to/LoopSA.fmu"

6 with input ports displacement (rad), speed (rad/s)

7 with output ports tau (N.m)

8

9 input ports speed

10 output ports tau <- loop_sa.tau

11

12 param RATE := 10;

13

14 control var previous_speed := 0;

15 control rules {

16 var micro_step := H/RATE;

17 var inner_time := t;

18

19 for (var iter in 0 .. RATE) {

20 do_step(loop_sa,inner_time,micro_step);

21 inner_time := inner_time + micro_step;

22 }

23

24 previous_speed := current_speed;

25 return H;

26 }

27

28 in var current_speed := 0;

29 in rules {

30 true -> {

31 current_speed := speed;

32 } --> {

33 loop_sa.speed := previous_speed + (current_speed - previous_speed)*(dt + h);

34 };

35 }

Listing 4: Adaptation that generates rate_sa.

The rate_sa adaptation is implemented in Listing 4. It is worth noticing
the MapIn portion of the input rules, in Line 33, which calculates the inter-
polation of the speed value. This function is called whenever inputs to the
internal FMUs need to be provided, with h = micro_step being the communi-
cation step size asked to the internal FMU (micro_step refers to the argument
used in the state transition invocation, in Line 20), and dt = inner_time − t

(where inner_time is the argument used for the state transition call).
5.1.4 The lazy_sa adaptation.

1 semanticadaptationreactive moore LazySA lazy_sa

27

2 at "./path/to/LazySA.fmu"

3

4 for inner fmu Controllercontroller

5 at "./path/to/Controller.fmu"

6 with input ports obj_detected, passenger_up, passenger_down, passenger_stop, driver_up, driver_down, driver_stop

7 with output ports up, down, stop

8

9 input ports obj_detected -> controller.obj_detected,

10 passenger_up -> controller.passenger_up,

11 passenger_down -> controller.passenger_down,

12 passenger_stop -> controller.passenger_stop,

13 driver_up -> controller.driver_up,

14 driver_down -> controller.driver_down,

15 driver_stop -> controller.driver_stop

16

17 output ports up, down, stop

18

19 param INIT_OBJ_DETECTED := false,

20 INIT_PASSENGER_UP := false,

21 INIT_PASSENGER_DOWN := false,

22 INIT_PASSENGER_STOP := false,

23 INIT_DRIVER_UP := false,

24 INIT_DRIVER_DOWN := false,

25 INIT_DRIVER_STOP := false;

26

27 control var tn :=-1.0,

28 tl :=-1.0,

29 prev_obj_detected := INIT_OBJ_DETECTED,

30 prev_passenger_up := INIT_PASSENGER_UP,

31 prev_passenger_down := INIT_PASSENGER_DOWN,

32 prev_passenger_stop := INIT_PASSENGER_STOP,

33 prev_driver_up := INIT_DRIVER_UP,

34 prev_driver_down := INIT_DRIVER_DOWN,

35 prev_driver_stop := INIT_DRIVER_STOP;

36

37 control rules {

38 if (tl < 0.0){

39 tl := t;

40 }

41

42 var step_size := min(H, tn - t);

43 if (lazy_sa.obj_detected != prev_obj_detected or

44 lazy_sa.passenger_up != prev_passenger_up or

45 lazy_sa.passenger_down != prev_passenger_down or

46 lazy_sa.passenger_stop != prev_passenger_stop or

47 lazy_sa.driver_up != prev_driver_up or

48 lazy_sa.driver_down != prev_driver_down or

49 lazy_sa.driver_stop != prev_driver_stop or

50 (t+H) >= tn

51){

52 var step_to_be_done := (t+H-tl);

53 var step_done := do_step(controller, t, step_to_be_done);

54 tn := tl + step_done + get_next_time_step(controller);

55 step_size := tl + step_done - t;

56 tl := tl + step_done;

57 }

58

59 prev_obj_detected := lazy_sa.obj_detected;

60 prev_passenger_up := lazy_sa.passenger_up;

61 prev_passenger_down := lazy_sa.passenger_down;

62 prev_passenger_stop := lazy_sa.passenger_stop;

63 prev_driver_up := lazy_sa.driver_up;

64 prev_driver_down := lazy_sa.driver_down;

65 prev_driver_stop := lazy_sa.driver_stop;

66

28

67 return step_size;

68 }

Listing 5: Adaptation that generates lazy_sa.

Listing 5 implements adaptation lazy_sa. This adaptation assumes the
default mappings for the inputs, but is declares them because they are
referred to in the Ctrl block.

In general, every reference to an input port of the external FMU, made
outside of the In block, is replaced with a reference to the variable that
stores the most recently given value of that. For example, the expression
lazy_sa.obj_detected, is replaced by the variable that stores that input.

The adaptation in Listing 5 performs two tasks: it keeps track of the
previous value of each signal, and invokes the internal unit state transition
function (i.e., the do_step) whenever there is a change; and it keeps track of
the next time to execute the internal unit (assuming that no inputs change)
and invokes it when such time arrives, to cater for internal timed transitions.
At the same time, the output signals are always available (held constant)
because of the storage output variables.
5.1.5 The controller_sa.

1 semanticadaptationreactive moore ControllerSAcontroller_sa

2 at "./path/to/ControllerSA.fmu"

3

4 for inner fmu LazySA lazy

5 at "./path/to/LazySA.fmu"

6 with input ports obj_detected, passenger_up, passenger_down, passenger_stop, driver_up, driver_down, driver_stop

7 with output ports up, down, stop

8

9 input ports armature_current -> lazy.obj_detected,

10 passenger_up -> lazy.passenger_up,

11 passenger_down -> lazy.passenger_down,

12 passenger_stop -> lazy.passenger_stop,

13 driver_up -> lazy.driver_up,

14 driver_down -> lazy.driver_down,

15 driver_stop -> lazy.driver_stop

16

17 output ports u,

18 d

19

20 param RTOL := 0.0001,

21 ATOL := 1e-8,

22 T := 5.0,

23 INIT_V := 0.0;

24

25 control var c := false,

26 p_v := INIT_V;

27 control rules {

28 var step_size := H;

29 var aux_obj_detected := false;

30 var crossedTooFar := false;

31 if ((not is_close(p_v, T, RTOL, ATOL) and p_v < T)

32 and (not is_close(f_v, T, RTOL, ATOL) and f_v > T)) {

33 crossedTooFar := true;

34 var negative_value := p_v - T;

35 var positive_value := f_v - T;

36 step_size := (H * (- negative_value)) / (positive_value - negative_value);

29

37 } else {

38 if ((not is_close(p_v, T, RTOL, ATOL) and p_v < T)

39 and is_close(f_v, T, RTOL, ATOL)) {

40 c := true;

41 }

42 }

43

44 if (not crossedTooFar){

45 step_size := do_step(lazy, t, H);

46 }

47

48 if (is_close(step_size, H, RTOL, ATOL)) {

49 p_v := f_v;

50 }

51 return step_size;

52 }

53

54 in var f_v := INIT_V;

55 in rules {

56 true -> {

57 f_v := controller_sa.armature_current;

58 } --> {

59 lazy.obj_detected := c;

60 };

61 }

62

63 out rules {

64 lazy.up -> { } --> {controller_sa.u := 1.0; };

65 not lazy.up -> { } --> {controller_sa.u := 0.0; };

66

67 lazy.down -> { } --> {controller_sa.d := 1.0; };

68 not lazy.down -> { } --> {controller_sa.d := 0.0; };

69

70 lazy.stop -> { } --> {controller_sa.u := 0.0 ; controller_sa.d := 0.0; };

71 }

Listing 6: Adaptation that generates controller_sa.

The adaptation controller_sa is shown in Listing 6. The control rules apply
regula falsi to locate the crossing of the armature signal into the threshold
T.

This example shows how the conditions in the output rules can be used
to select which rules are applied. Informally, in general, at the end of each
external state transition, when MapOut is invoked, all the conditions in the
rules are evaluated. The ones that evaluate to true, are recorded as part
of the xout state. Afterwards, whenever Out is called, only the rules that
evaluated to true contribute to the output of Out .

The power_sa adaptation was omitted due to its simplicity. It declares the
external FMU as a delayed Moore and lists the output port bindings.

The above adaptations generate the FMUs for the co-simulation scenario
illustrated in Figure 5. The orchestrator in Algorithm 1 then computes the
results shown in Figure 6. Comparing these results with the ones in Figure 4,
one sees that they are similar, except for the fact that the armature current
has a higher peak in the co-simulation. This is because the threshold crossing
adaptation was disabled, since the power FMU does not support rollback.

In the following subsections, we describe the language (syntax and se-

30

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
Time (s)

controller_sa
u
d

−5

0

5

10

0 1 2 3 4
Time (s)

power_sa
armature_current

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4
Time (s)

window_sa
disp

Figure 6: Power window co-simulation results.

mantics) in more detail. The syntax is described using extended Backus–Naur
form (EBNF) [48], and the semantics are presented informally by describing
a transformation of baseSA descriptions, to the Init , In,MapIn, Ctrl ,MapOut ,
and Out functions, introduced in Section 4.2.

5.2 Syntax

The partial syntax of baseSA is detailed in Listing 7. We omit the definition
of the most common symbols:

• ID is an identifier;
• URL is a URL;
• PhysicalUnit denotes any physical unit;
• Expression is an expression that defines a value, e.g., comparison, addi-

31

tion, constant, variable reference, etc.
• Statement is a programming language statement. It includes if-statement,
static for loop, local variable declarations, assignments, references to
variables/parameters, built-in function calls, etc.

1 SemanticAdaptation = ’semantic’, ’adaptation’, KindInput, KindOutput, UnitName, UnitInstance,

2 ’at’, URL,

3 InnerUnits,

4 ’input’, ’ports’, Port, {’,’, Port},

5 ’output’, ’ports’, Port, {’,’, Port},

6 {ParamDeclarations},[ControlRuleBlock],[InRulesBlock],[OutRulesBlock];

7 KindInput = ’reactive’ | ’delayed’;

8 KindOutput = ’moore’ | ’mealy’

9 UnitName = ID;

10 UnitInstance = ID;

11 InnerUnits = {’for’, InnerUnit} {’with’, Connection};

12 InnerUnit = ’inner’, ’fmu’, UnitName, UnitInstance,

13 ’at’, URL,

14 ’with’, ’input’, ’ports’, Port, {’,’, Port},

15 ’with’, ’output’, ’ports’, Port, {’,’, Port},

16 Port = ID, [’(’, PhysicalUnit, ’)’], [PortBinding];

17 PortBinding = (’->’, ID) | (’<-’, ID);

18 Connection = ID, ’->’, ID;

19 ParamDeclarations = ’param’, SingleDeclaration, {’,’, SingleDeclaration};

20 SingleDeclaration = ID ’:=’ Expression;

21 ControlRuleBlock = {’control’, VarDeclarations}, ControlRule;

22 VarDeclarations = ’var’, SingleDeclaration, {’,’, SingleDeclaration};

23 ControlRule = ’control’, ’rules’, ’{’, {Statement}, ’}’;

24 InRulesBlock = {’in’, VarDeclarations}, ’in’ ’rules’, ’{’, {DataRule}, ’}’;

25 DataRule = RuleCondition, "->", InRule, "-->", MapInRule, ’;’;

26 RuleCondition = BooleanExpression;

27 InRule = ’{’, {Statement}, ’}’;

28 MapInRule = ’{’, {Statement}, ’}’;

29 OutRulesBlock = RuleCondition, "->", MapOutRule, "-->", OutRule, ’;’;

Listing 7: The (partial) EBNF grammar of baseSA.

Table 1 summarizes the special functions and variables.
The full grammar definition, and an editor of baseSA descriptions, develo-

ped with Xtext [49], is available for download *. Figure 7 shows the editor
interface.

5.3 Semantics

In this subsection, we define the semantics by describing informally how
each syntactic construction in baseSA is mapped to the definition of Init , In,
MapIn, Ctrl , MapOut , and Out functions, introduced in Section “Hierarchical
Co-simulation for Semantic Adaptation” (recall Figure 1). This is done in two
stages: first we detail how any baseSA description is reduced to its explicit
form; and then we describe how each baseSA description in explicit form
can be mapped to the semantic functions.

*https://msdl.uantwerpen.be/git/claudio/HybridCosimulation

32

Figure 7: The baseSA editor.

5.3.1 Reduction to Explicit Form.

Let sa be the name of a given baseSA description. For the sake of brevity, we
make the assumption that every port has a unique name (this is not assumed
by the code generator).

In order to reduce the given baseSA description to its explicit form, the
following rules are applied in order, with the description resulting from the
application of one rule being used in the next rule.
AddInPorts – For each input port ip of any internal FMU f that has no

incoming connections, create an external input port declaration ip ->

f.ip, if there is none already declared with the same name.
AddInParams – For each external input port declaration ip, create a para-

meter declaration INIT_SA_IP := v (if it does not exist already), where v

is the default value of the parameter.
AddInVars – For each declared external input port ip, declare an input

variable stored_sa_ip := INIT_SA_IP (if it does not exist) with initial value
equal to the corresponding declared parameter in the previous rule.

AddInRule – Prepend a new rule to the input rules block, with a true con-
dition, and: in the InRule part, for each declared external input port
ip, add an assignment stored_sa_ip := sa.ip; in the MapInRule part, for
each input binding declared ip -> f.ip, create an assignment f.ip := ip.
If units need to be converted, the right hand side of the assignment is
replaced accordingly.

RemoveInBindings – For each input binding declared ip -> f.ip, replace
it by just ip. Any physical unit declaration is also removed.

AddOutPorts – If no output ports are declared, create an output port decla-
ration op <- f.op per output port op of each internal unit f.

AddOutParams – Analogous to AddInParams: for each output port de-

33

claration op of each internal FMU f, create a parameter declaration
INIT_F_OP := v (if such parameter does not exist), with vbeing the default
value.

AddOutVars – Analogous to AddInVars: for each output port declaration
op of each internal FMU f, create an output variable declaration sto-

red_f_op := INIT_F_OP, if it does not exist already.
AddOutRule – Prepend a new output rule to the output rules block, with

a true condition, and: in the MapOutRule part, add an assignment
stored_f_op := f.op, per output port op of each internal unit f; in the
OutRule part, for each output binding op <- f.op declared, add an as-
signment sa.op := f.op. If units need to be converted, the assignment is
replaced accordingly.

RemoveOutBindings – Analogous to RemoveInBindings: for each de-
clared output binding op <- f.op, remove the binding (and any unit
declaration), leaving just the output declaration op.

CreateCtrlRules – If there is no control rules block declared, create one,
and: compute the topological order σ of the internal scenario (if it
cannot be computed, abort with an error); for each internal unit decla-
ration f, in topological order, append var Hf := do_step(f, t, H); append
(at the end of the block) either return H_f if there is only one internal
FMU, or return min(H1, ..., Hn), where Hi refers to each of the local
variables declared in the previous assignments.

ImplementInternalBinding – For each connection in the internal scena-
rio f1.op -> f2.ip, locate the do_step(f2, ...) instruction in the control
rules block. Before this instruction, if there is no assignment of
the form f2.ip := ..., insert f2.ip := f1.op immediately before the in-
struction do_step(f2, ...).

ReplacePortsRefsByVars – For every input rule, go through theMapInRule

part and replace every reference to an external input port ip, by a
reference to the stored_sa_ip input variable. In the control rules block,
replace every reference to an output port op of an internal unit f by a
reference to the corresponding storage variable stored_f_op. For each
output rule, in the OutRule part, replace any reference to an output
port op of an internal unit f by a reference to the corresponding storage
variable stored_f_op.

Listing 2 is the result of applying the above rules to Listing 1.

5.3.2 Mapping to Generic Semantic Adaptation.

Given a baseSA description in explicit form, we now explain how it is mapped
to the formal definition of a generic external unit. In the generic external
unit definition (recall Equation (5)), the elements that need to be defined are:

• The space of xin , xctrl , and xout ;
• Init(uext) or Init(), depending on the kind of external unit;

34

• In([xin ,xctrl ,xout]
T
,uext);

• MapIn([xin ,xctrl ,xout]
T
, h, dt);

• Ctrl(t,H, [xin ,xctrl ,xout]
T
, [x1, . . . ,xn]

T
);

• MapOut([xin ,xctrl ,xout]
T
, [y1, . . . ,yn]

T
, h, dt);

• Out([xin ,xctrl ,xout]
T
);

Each of the above elements are now defined.
Part of xin is determined by the input variables declared: xin has one

dimension per declared input variable. The type of the dimension (real,
boolean, etc. . .) corresponds to the type of the declared variable. In addition,
xin has one boolean dimension per input rule. For example, is there are
three numeric variables declared, and one input rule, then xin ∈ R

3 × Bool .
Analogously to xin , xout has one dimension per declared output variable,

and an additional boolean dimension per declared output rule.
The control storage vector xctrl has one dimension per declared control

variable. Additionally, if the semantic adaptation is a reactive one and the
initial baseSA description (not the explicit one) does not include any control
rules, the xctrl has one dimension per internal delayed unit.

The external input function

In([xin ,xctrl ,xout]
T
,uext) = x̃in

is defined to perform the the following steps in order:
1. Evaluate all conditions of the input rules in the order that they are

declared, and for each condition, mark the corresponding location of
x̃in with the outcome (true or false).

2. For the input rules whose conditions evaluated to true in the previous
step, execute the InRule part, in the order that the rules are declared
(this computes the remainder of x̃in).

Function

MapIn([xin ,xctrl ,xout]
T
, h, dt) = [ũ1, . . . , ũn]

T

executes the MapInRule part of the input rules whose condition evaluated
to true (this information is stored in xin) in order of their declaration. The
executed input port assignments form [ũ1, . . . , ũn]

T .
Function

MapOut([xin ,xctrl ,xout]
T
, [y1, . . . ,yn]

T
, h, dt) = x̃out

is analogous to In. It evaluates all the conditions of the output rules in the
order that they are declared, and for each of those conditions, marks the
appropriate location of x̃out with the outcome of the condition evaluation.
Then it computes the remaining portion of x̃out by executing theMapOutRule

part of each of the output rules whose conditions evaluated to true.
Function

Out([xin ,xctrl ,xout]
T
) = y

35

is analogous to MapIn. It executes the OutRule part of the output rules
whose condition evaluated to true (in the order in which they are declared)
to compute the output vector y.

The role of the initialization function (derived automatically from the
baseSA description) is to find a consistent initial state, defining the initial
values of the storage vectors xin , xout , and xctrl . If the semantic adaptation
is declared as reactive, then Init requires the initial input, according to
Equation (1).

First, the parts of xin , xctrl , and xout that correspond to the declared
input/control/output variables are initialized according to the initial value
that is declared for them.

If it exists, the part of xctrl that corresponds to the previous inputs to the
internal units is initialized by compting the initial input to all the internal
units in the topological order (such order exists by assumption). This is
similar to Algorithm 2, except that the functions In, MapIn, and MapOut , are
invoked to adapt any external input to the internal units, and initialize the
condition flags.

Function
Ctrl(t,H, [xin ,xctrl ,xout]

T
, [x1, . . . ,xn]

T
) =

〈

x̃ctrl , x̃out , [x̃1, . . . , x̃n]
T
, H̃

〉

runs the instructions declared in the control rules block, in the order that
they are declared. The assignments performed to control variables make up
part of the output vector x̃ctrl . The executed assignments to the input ports
of each internal FMU i, up to the instruction do_step(i , ti , hi), make up part
of the unit input vector ui.

Any variable reference in the control rules block refers to the most
recently given value of that variable.

Each instruction do_step(i , ti , hi) maps to the following steps, performed
in Ctrl :

• Invoke MapIn function to compute the external input of unit i:

[. . . , ũi, . . .]
T
:=

MapIn([xin , x̃ctrl ,xout]
T
, hi, ti − t)

(8)

Note that x̃ctrl represents the control state vector that was affected by
the assignments made since the beginning of the execution of the Ctrl

function. xin and xout represent the (unchanged) vector provided as
input to Ctrl .

• Merge the input vector ui computed by previous assignments with ũi

to form the unit input uci;
• Invoke the state transition function of the unit:

〈

x̃i, H̃i

〉

:= Fi(t,H,xi,uci or upi) (9)

36

• Get the output of the unit:

yi := Gi(t+ H̃i, x̃i,uci) or Gσ(j)(t+ H̃i, x̃i) (10)

• Invoke the MapOut function to compute an updated output storage
vector:

x̃out :=

MapOut([xin , x̃ctrl ,xout]
T
, [y1, . . . ,yn]

T
, hi, ti − t)

(11)

Finally, upon returning, if the external FMU is a reactive unit, and the
initial baseSA description does not declare a control rules block, Ctrl stores
the most recent inputs provided to each delayed internal units in the x̃ctrl

vector, to be used as delayed inputs in a subsequent external state transition
call. This instruction is similar to Line 29 of Algorithm 7.

6 Evaluation

In this section, we judge how well our approach answers the research
question posed in this work.

The requirements set by the research question are:
Productivity – Does the language have impact in the productivity of its

users?
Expressivity – Is the language expressive enough to cover current and

future needs?
Modularity – Does the internal FMUs need to be changed?
Transparency – Does the external FMU behave exactly as an FMU?

6.1 Productivity

In general, DSLs have the potential to boost its users’ productivity [50, 42].
For baseSA, we describe an early experiment to assess the productivity.

6.1.1 Goals.

Productivity is measured by comparing the time it takes for a trained user to:
(1) create an external FMU using our DSL; and (2) code the same external
FMU.

As a surrogate measure, we compare the approximate number of lines of
code (LOC) required for a semantic adaptation coded by hand, with the LOC
of the corresponding semantic adaptation expressed in baseSA.

37

6.1.2 Experimental Setup.

As part of the development of the code generator, all semantic adaptations
identified in Figure 5, except the rate_sa, were coded by hand and the effort
taken was recorded.

6.1.3 Results.

Table 2 shows the adaptation, the approximated lines of code (LOC), and the
effort in coding the semantic adaptations in C.

As Table 2 shows, even though the semantic adaptations differ in com-
plexity, they have a similar number of LOC. This is evidence that there is a
large portion of code dedicated to common FMI-related management tasks.
With baseSA, the user does not have to code:

• Memory management – The inputs, outputs, and local variables, of the
external FMU are stored in dynamically allocated memory.

• Variable de-referencing – To set/get values to/from an internal FMU, a
list of value references (integers which identify a variable) has to be
provided. Any mistake here may cause the internal FMU to give wrong
results, but not necessarily crash, which makes it hard to debug.

• State management – The external FMU has to support rollback, and for
that, the state variables must be properly serialized and de-serialized.
In the case study, each semantic adaptation requires approximately
140 LOC to implement the set/get state.

• Consistent inputs management – The external FMU which is reactive
and has internal delayed units, has to keep track of the previous inputs
to these.

6.1.4 Threats to Validity.

LOC is only a surrogate measure for the productivity of a DSL, albeit a
common one [51], and depends on the programmer. However, the tasks
described in the above list are handled automatically by the code generator
of baseSA.

The values provided in Table 2 lack external validation. We intend to
perform a second round of experiments, where we will ask a participant to
code a semantic adaptation, then train him/her, and measure the effort it
takes to code the same adaptation, in baseSA.

6.2 Expressivity

The baseSA DSL is imperative in the sense that it describes how the semantic
adaptations are performed. However, it forces a structure in the definition of
the semantic adaptations, aided by the distinction between data (input/output

38

rules) and control adaptations. We argue that this structure does not restrict
the expressiveness of the semantic adaptations.

To provide evidence for this, we describe how the adaptations used in
the case study are representative of the semantic adaptations and coupling
algorithms surveyed in [17].
Extrapolation/interpolation schemes These techniques, used in [27, 33,

34, 10, 52, 53, 54], are similar to the rate_sa.
Jacobi-based orchestration This orchestration algorithm, used in [11, 55,

56, 47, 57, 58, 59, 60], is similar to the Gauss-seidel coupling except
that it assumes that all units are delayed. A way to implement it as a
semantic adaptation is to define a control rule that sets explicitly the
inputs to the internal FMUs, and then invokes the do_step function on
them.

Algebraic constraint couplings This coupling technique, reported in [61,
24, 25, 30], can be implemented by a fixed point iteration (recall adap-
tation loop_sa) and extra algebraic computations on the units inputs and
outputs.

Semi-implicit coupling These techniques, presented in [62, 63, 25, 64,
65], are similar to the ones above, except they perform two iterations
only.

Error control Richard extrapolation [47, 9, 66] can be implemented by
creating a semantic adaptation which runs a whole scenario at twice
the rate of the original one; Multi-order input extrapolation [67, 59]
amounts to implementing two approximation schemes (see item above)
and run in parallel; Embedded method [68] requires that a semantic
adaptation is implemented to perform a discretized numerical integra-
tion of some of the signals in the internal scenario; Energy based [69]
techniques can be implementing by coding semantic adaptations which
monitor for energy dissipativity in some of the signals in the internal
FMUs.

We do restrict the expressiveness of the language, with the intent of
guaranteing that it terminates:

• No function definitions are allowed;
• No recursive definitions of semantic adaptations are allowed;
• For loops must have a static range.

These restrictions make expressing some of the above techniques more
cumbersome, but not impossible.

6.3 Modularity

The simulation unit specification, introduced in Equation (1) was shown to
be a valid abstraction of an implementation of an FMU in Section “Back-
ground”. Furthermore, it is clear that changing the implementation of any

39

of the functions Init , G, F implies a change in the FMU implementation. In
Section “Semantics”, these functions are invoked as part of the implementa-
tion of each semantic adaptation, but never changed, thus showing that the
corresponding FMU implementations are not affected by the implementation
of the language.

6.4 Transparency

Section “Hierarchical Co-simulation for Semantic Adaptation” describes how
a generic semantic adaptation forms a simulation unit that obeys the defini-
tion in Equation (1) (see Equation (5)). Furthermore, Section “Semantics”
describes how a baseSA is implemented by “filling in” the semantic adap-
tation functions, that are used in Section “Hierarchical Co-simulation for
Semantic Adaptation”. The semantics does not require the hierarchical unit
definition, in Equation (5), to be changed. Therefore, our approach does not
violate transparency.

7 Discussion and Future Work

This section discusses some of the characteristics and limitations of our
contribution, and research opportunities for the future.

Automatic Semantic Adaptation Identification. Throughout this work,
we assumed that the user knows that an adaptation is required in order
to make the co-simulation possible. An interesting research direction is
to explore what means can be employed in trying to identify the need for
specific semantic adaptations.

Runtime Performance. Despite not being our primary goal, the perfor-
mance of the generated FMU should be similar to a custom coded one. To
this end, the code generator under development performs most tasks at
compile time. However, we have not carried out any experiments to measure
the performance of the generated code.

A research direction is to explore how to merge multiple adaptations,
to avoid generating the intermediate hierarchical FMUs. For example, in
Figure 5, adaptations loop_sa and rate_sa could be merged into one single
adaptation, provided that the user has no intention of using loop_sa for
other purposes. However, while it is clear what the result should be for
this example, in general this is non-trivial task: When can two arbitrary

adaptations be merged?

Solving this problem brings a performance benefit, but also provides
new insights into the nature of adaptations. In addition, one can ask: If

40

two semantic adaptations can be combined, are they commutative? This
question is important because it allows us to optimize: if there is a semantic
adaptations which will cause rollbacks, we want it to be the first to execute,
to avoid wasting computation. An example of this is the controller_sa, which
performs the crossing location before the lazy_sa gets the opportunity to
run.

Trying to answer the above questions will inevitably lead to another
question: what is the right level of abstraction to analyse the combination of

semantic adaptations? This question is related to the next discussion topic.

Usability and Productivity. As part of trying to find out what the right
level of abstraction to analyze semantic adaptations is, we are developing
a new language that allows for a more declarative description of semantic
adaptations. This language, as opposed to baseSA, allows for a much more
concise description of the most common semantic adaptations by just enu-
merating what semantic adaptations should be used to form the external
FMU.

The descriptions made in this language compile to baseSA, whose role is
to provide a solid foundation.

The main benefits of using this language are:
1. The user does not to know how semantic adaptations are implemented.
2. It is minimal, meaning that it enables the user to specify common

semantic adaptations (e.g., multi-rate, successive substitution) as con-
cisely as describing them in natural language;

3. It further restricts the user into using well known semantic adaptations,
which prevents mistakes.

4. It may provide insight into the research questions identified in the
previous subsection.

1 importPowerWindowModel

2

3 semanticadaptationreactive moore RateLoopSArate_loop

4 at "./path/to/RateLoopSA.fmu"

5 for fmu WindowSA windowSA, Obstacleobstacle

6 successivesubstitutionstarts at height with absolutetolerance = 1e-8 and relativetolerance = 0.0001

7 multiply rate 10 times with first order interpolation

Listing 8: Example description in higher level semantic adaptation DSL.

Listing 8 shows an example of what such DSL looks like. The syntax
reuses part of the syntax of baseSA. The description of the FMUs can be
done in a separate module, which is then imported (Line 1). For this example,
the FMUs are described as in Lines 4–15 of Listing 3. After the preliminaries,
the description of each semantic adaptation occupies one line (Line 6 for
loop_sa, and Line 7 for rate_sa). In this language, adaptations are applied in
order, meaning that the outer most adaptation is the multi-rate one.

41

Each adaptation has some degree of configuration. For example, the
multi-rate is configurable with an input approximation adaptation. This
highlights another interesting research direction, related to the combination
of semantic adaptations: how and when can semantic adaptations interface

with each other? In this example, it is clear that any input approximation
adaptations can complement a multi-rate adaptation, but what are the essen-
tial characteristics of input approximation and multi-rate adaptations, that
make them so compatible? The same question applies to output approxima-
tion adaptations (the family of Hold adaptations) and the lazy related ones.
A possible direction to explore is to look at the object oriented world, and
study how can semantic adaptations define interfaces and specialization, so
that their interaction is well defined.

Discrete Event FMU Implementation. The current version of the FMI
standard (version 2.0) lacks essential features to enable accurate hybrid
co-simulation (see, e.g., [70, 71, 72, 73, 74]).

Until new extensions are made, there are many different ways in which
a cyber system (e.g., a state chart) can be simulated in an FMU [75, 74,
76, 7, 77, 73]. At least one of the implementations the authors used before
(the Stategraph [7]), already includes semantic adaptations, to facilitate its
integration with the FMI.

Our work shows that, when implementing an FMU that simulates a cyber
system, it is best to leave as many semantic adaptations as possible out. The
more adaptations an FMU already contains, the harder it is to adapt it to
other contexts.

8 Related Work

Outside the context of FMI, the problem of composing and adapting operati-
onal semantics of multiple languages is discussed in [78, 79, 80, 81, 82, 14,
83, 84] and references therein.

Within the context of FMI, we can divide the related works in two catego-
ries: (A) those whose prime purpose is to describe co-simulation scenarios;
and (B) those that target the description of orchestration algorithms. Both
these categories do not target primarily the description of semantic adaptati-
ons, but can potentially be extended to include simple descriptions. Due to
our pure hierarchical co-simulation approach, our contribution complements
any of these works.

Under Category (A), we highlight [16], [46], [47], and [85]. These works
introduce a language for the description of a co-simulation scenario, with
the purpose of running a co-simulation. The work in [46, 47] assumes that a
generic orchestration algorithm is used, whereas [16, 85] aim at generating
an orchestrator that is specific to the scenario described. Our DSL allows for

42

the description of a co-simulation scenario, and a specific master algorithm
can be generated from that description.

DACCOSIM [47] follows a related approach with respect to hierarchical
co-simulation, allowing the scenario to grouped by computational nodes. In
contrast to our work, this hierarchy is computational and not functional.
Moreover, it is not transparent, as the distinction is made between local
(internal to computational nodes) and global orchestrators. Nevertheless,
each FMU is wrapped with code that performs error control, highlighting
the need for semantic adaptation.

In Category (B), we highlight [85], [22], and [86].
The work in [85] allows the description of master algorithms using the

Business Process Modelling Notation. We argue that the visual notation
for the description of an orchestration algorithm works well for simple
cases, with two units. However, when multiple semantic adaptations become
necessary, or the number of simulation units increases, the visual notation
rapidly becomes cluttered. The work does not describe any intention of
using the notation to describe semantic adaptations, but the notation has
an extension mechanism that can in principle be used to describe simple
semantic adaptations.

The most related to our own is [86]. It introduces an object oriented
framework for co-simulation that allows for both the development of FMUs,
as well as for orchestration algorithms, in C++. Class specialization is
used extensively to maximize reuse, sharing some of the benefits with our
contribution. The main difference to our work is the level of abstraction and
the intention to use semantic adaptations. While their work is capable of
expressing semantic adaptations, our work is targeted towards that purpose.
One can position their work as helping develop FMUs for simulators that
need to support the FMI Standard, and our work can be used to adapt already
existing FMUs. Furthermore, the description of a complex adaptations such
as rate_sa is more compact in our DSL.

9 Conclusion

This paper addressed the problem of describing the most common semantic
adaptations on multiple types of black box simulation units in a productive
manner while avoiding the modification of the units (modularity) and tools
for co-simulation (transparency).

To make this possible, we propose a DSL, available for download*, that
is both expressive (due to its imperative nature) but also productive (due
to its conventions and high level constructs). Each description refers to a
group of interconnected FMUs and dictates how those FMUs interact with

*https://msdl.uantwerpen.be/git/claudio/HybridCosimulation

43

the environment.
The essential mechanism that enables the semantic adaptations is the

concept of hierarchical co-simulation, formalized in this work. The meaning
of each adaptation is given by mapping it onto hierarchical co-simulation
units, which in turn is mapped to units and FMUs, as illustrated in Figure 1.

The main distinguishing factor from the related work, is our focus in
semantic adaptations for FMI based co-simulation, which imposes the modu-
larity and transparency requirements.

This work opens up new opportunities for research into semantic adap-
tations, for example, how to find higher levels of abstraction to describe
semantic adaptations, and explore how different semantic adaptations can
interface and complement each other. We intend to explore these in the
future.

References

[1] Nielsen CB, Larsen PG, Fitzgerald J et al. Systems of Systems En-
gineering: Basic Concepts, Model-Based Techniques, and Research
Directions. ACM Computing Surveys 2015; 48(2): 18:1—-18:41. DOI:
10.1145/2794381.

[2] Van der Auweraer H, Anthonis J, De Bruyne S et al. Virtual en-
gineering at work: the challenges for designing mechatronic pro-
ducts. Engineering with Computers 2013; 29(3): 389–408. DOI:
10.1007/s00366-012-0286-6.

[3] Vangheluwe H, De Lara J and Mosterman PJ. An introduction to multi-
paradigm modelling and simulation. In AI, Simulation and Planning in

High Autonomy Systems. SCS, pp. 9–20.

[4] Blockwitz T, Otter M, Akesson J et al. Functional Mockup Interface 2.0:
The Standard for Tool independent Exchange of Simulation Models. In
9th International Modelica Conference. Munich, Germany: Linköping
University Electronic Press, pp. 173–184. DOI:10.3384/ecp12076173.

[5] Lee EA and Sangiovanni-Vincentelli A. A framework for comparing
models of computation. Transactions on Computer-Aided Design of

Integrated Circuits and Systems 1998; 17(12): 1217–1229. DOI:10.
1109/43.736561.

[6] Tripakis S. Bridging the semantic gap between heterogeneous mo-
deling formalisms and FMI. In International Conference on Embed-

ded Computer Systems: Architectures, Modeling, and Simulation (SA-

MOS). Samos, Greece: IEEE. ISBN 978-1-4673-7311-1, pp. 60–69.

44

DOI:10.1109/SAMOS.2015.7363660. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=7363660.

[7] Otter M, Malmheden M, Elmqvist H et al. A New Formalism for Mo-
deling of Reactive and Hybrid Systems. In 7th International Modelica

Conference. Como, Italy: Linköping University Electronic Press; Linkö-
pings universitet, pp. 364–377. DOI:10.3384/ecp09430108.

[8] Gomes C. Foundations for Continuous Time Hierarchical Co-simulation.
In ACM Student Research Competition (ACM/IEEE 19th International

Conference on Model Driven Engineering Languages and Systems).
Saint Malo, France: ACM New York, NY, USA, p. to appear.

[9] Arnold M, Clauß C and Schierz T. Error Analysis and Error Estimates
for Co-simulation in FMI for Model Exchange and Co-Simulation v2.0.
In Schöps S, Bartel A, Günther M et al. (eds.) Progress in Differential-

Algebraic Equations. Berlin, Heidelberg: Springer Berlin Heidelberg.
ISBN 978-3-662-44926-4, pp. 107–125. DOI:10.1007/978-3-662-44926-
4_6.

[10] Busch M. Continuous approximation techniques for co-simulation met-
hods: Analysis of numerical stability and local error. ZAMM - Journal

of Applied Mathematics and Mechanics 2016; 96(9): 1061–1081. DOI:
10.1002/zamm.201500196.

[11] Bastian J, Clauß C, Wolf S et al. Master for Co-Simulation Using FMI. In
8th International Modelica Conference. Dresden, Germany: Linköping
University Electronic Press, Linköpings universitet, pp. 115–120. DOI:
10.3384/ecp11063115.

[12] Gomes C, Karalis P, Navarro-López EM et al. Approximated Sta-
bility Analysis of Bi-modal Hybrid Co-simulation Scenarios. In 1st

Workshop on Formal Co-Simulation of Cyber-Physical Systems. Trento,
Italy: Springer, Cham. ISBN 978-3-319-74781-1, pp. 345–360. DOI:
10.1007/978-3-319-74781-1_24. URL http://link.springer.com/10.

1007/978-3-319-74781-1{_}24.

[13] Gomes C, Legat B, Jungers RM et al. Stable Adaptive Co-simulation : A
Switched Systems Approach. In IUTAM Symposium on Co-Simulation

and Solver Coupling. 1, Darmstadt, Germany, p. to appear.

[14] Meyers B, Denil J, Boulanger F et al. A DSL for Explicit Semantic
Adaptation. In Moreira A, Schätz B, Gray J et al. (eds.) 7th International

Workshop on Multi-Paradigm Modeling. Number 1112 in CEUR Works-
hop Proceedings, Miami, United States: Springer, Berlin, Heidelberg,
pp. 47–56.

45

[15] Denil J, Meyers B, De Meulenaere P et al. Explicit Semantic Adaptation
of Hybrid Formalisms for FMI Co-Simulation. In Fernando Barros,
Wang MH, Prähofer H et al. (eds.) Symposium on Theory of Modeling &

Simulation: DEVS Integrative M&S Symposium. Alexandria, Virginia:
Society for Computer Simulation International San Diego, CA, USA, pp.
99–106.

[16] Van Acker B, Denil J, Meulenaere PD et al. Generation of an Optimised
Master Algorithm for FMI Co-simulation. In Barros F, Wang MH, Präho-
fer H et al. (eds.) Symposium on Theory of Modeling & Simulation-DEVS

Integrative. Alexandria, Virginia, USA: Society for Computer Simulation
International San Diego, CA, USA, pp. 946–953.

[17] Gomes C, Thule C, Broman D et al. Co-simulation: State of the
art. Technical report, 2017. URL http://arxiv.org/abs/1702.00686.
1702.00686.

[18] 1730-2010 - IEEE Recommended Practice for Distributed Simulation
Engineering and Execution Process (DSEEP). IEEE Std 1730-2010

(Revision of IEEE Std 15163-2003) 2011; : 1–79DOI:10.1109/IEEESTD.
2011.5706287.

[19] Kübler R and Schiehlen W. Two Methods of Simulator Coupling. Mat-

hematical and Computer Modelling of Dynamical Systems 2000; 6(2):
93–113. DOI:10.1076/1387-3954(200006)6:2;1-M;FT093.

[20] Posse E, de Lara J and Vangheluwe H. Processing causal block dia-
grams with graphgrammars in atom3. In Workshop on Applied Graph

Transformation (AGT). Grenoble, France: Springer, Berlin, Heidelberg,
pp. 23–34.

[21] Gomes C, Denil J and Vangheluwe H. Causal-Block Diagrams. Technical
report, University of Antwerp, 2016. URL http://msdl.cs.mcgill.

ca/people/claudio/pub/Gomes2016a.pdf.

[22] Gheorghe L, Bouchhima F, Nicolescu G et al. A Formalization of Glo-
bal Simulation Models for Continuous/Discrete Systems. In Summer

Computer Simulation Conference. SCSC ’07, San Diego, CA, USA: So-
ciety for Computer Simulation International San Diego, CA, USA. ISBN
1-56555-316-0, pp. 559–566.

[23] Cellier FE and Kofman E. Continuous System Simulation. Springer
Science & Business Media, 2006. ISBN 9780387261027.

[24] Arnold M. Stability of Sequential Modular Time Integration Methods
for Coupled Multibody System Models. Journal of Computational and

Nonlinear Dynamics 2010; 5(3): 9. DOI:10.1115/1.4001389.

46

[25] Schweizer B, Lu D and Li P. Co-simulation method for solver coupling
with algebraic constraints incorporating relaxation techniques. Multi-

body System Dynamics 2016; 36(1): 1–36. DOI:10.1007/s11044-015-
9464-9.

[26] Andersson C. Methods and Tools for Co-Simulation of Dynamic Systems

with the Functional Mock-up Interface. PhD Thesis, Lund University,
2016.

[27] Burden RL and Faires JD. Numerical Analysis. 9 ed. Cengage Learning,
2010. ISBN 0538733519.

[28] Lelarasmee E, Ruehli AE and Sangiovanni-Vincentelli AL. The Waveform
Relaxation Method for Time-Domain Analysis of Large Scale Integrated
Circuits. In IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, volume 1. ISBN 0278-00701, pp. 131–145. DOI:
10.1109/TCAD.1982.1270004.

[29] González F, Naya MÁ, Luaces A et al. On the effect of multirate co-
simulation techniques in the efficiency and accuracy of multibody sy-
stem dynamics. Multibody System Dynamics 2011; 25(4): 461–483.
DOI:10.1007/s11044-010-9234-7.

[30] Sicklinger S, Belsky V, Engelmann B et al. Interface Jacobian-based Co-
Simulation. International Journal for Numerical Methods in Engineering

2014; 98(6): 418–444. DOI:10.1002/nme.4637.

[31] Zhang F, Yeddanapudi M and Mosterman PJ. Zero-Crossing Loca-
tion and Detection Algorithms For Hybrid System Simulation. In
IFAC Proceedings Volumes, volume 41. Seoul, Korea: Elsevier Ltd,
pp. 7967–7972. DOI:10.3182/20080706-5-KR-1001.01346. URL http:

//linkinghub.elsevier.com/retrieve/pii/S1474667016402296.

[32] Mosterman PJ. An Overview of Hybrid Simulation Phenomena and
Their Support by Simulation Packages. In Vaandrager FW and van
Schuppen JH (eds.) Hybrid Systems: Computation and Control SE - 17,
Lecture Notes in Computer Science, volume 1569. Berg en Dal, The
Netherlands: Springer Berlin Heidelberg. ISBN 978-3-540-65734-7, pp.
165–177. DOI:10.1007/3-540-48983-5_17.

[33] Dronka S and Rauh J. Co-simulation-interface for user-force-elements.
In SIMPACK user meeting. Baden-Baden, Germany.

[34] Busch M. Zur effizienten Kopplung von Simulationsprogrammen. PhD
Thesis, Kassel university, 2012.

47

[35] Andersson C, Führer C and Åkesson J. Efficient Predictor for
Co-Simulation with Multistep Sub-System Solvers. Technical Re-
port 1, 2016. URL http://lup.lub.lu.se/record/dbaf9c49-b118-

4ff9-af2e-e1e3102e5c22.

[36] Kofman E and Junco S. Quantized-state systems: a DEVS Approach for
continuous system simulation. Transactions of The Society for Modeling

and Simulation International 2001; 18(3): 123–132.

[37] Bolduc JS and Vangheluwe H. Expressing ODE models as DEVS: Quan-
tization approaches. In Barros F and Giambiasi N (eds.) AI, Simulation

and Planning in High Autonomy Systems. Lisbon, Portugal: IEEE, pp.
163–169.

[38] Awais MU, Palensky P, Elsheikh A et al. The high level architecture
RTI as a master to the functional mock-up interface components. In
International Conference on Computing, Networking and Communica-

tions. San Diego, USA: IEEE. ISBN 978-1-4673-5288-8, pp. 315–320.
DOI:10.1109/ICCNC.2013.6504102.

[39] Bolduc JS and Vangheluwe H. Mapping ODES to DEVS: Adaptive
quantization. In Summer Computer Simulation Conference. Montreal,
Quebec, Canada: Society for Computer Simulation International. ISBN
0094-7474, pp. 401–407.

[40] Camus B, Galtier V, Caujolle M et al. Hybrid Co-simulation of FMUs
using DEV&DESS in MECSYCO. In Symposium on Theory of Modeling &

Simulation - DEVS Integrative M&S Symposium (TMS/DEVS 16). Pasa-
dena, CA, United States: Society for Computer Simulation International
San Diego, CA, USA, p. No. 8.

[41] Quesnel G, Duboz R, Versmisse D et al. DEVS coupling of spatial and
ordinary differential equations: VLE framework. In Open International

Conference on Modeling and Simulation, volume 5. Citeseer, pp. 281–
294.

[42] Kelly S and Tolvanen JP. Domain-specific modeling: enabling full code

generation. John Wiley & Sons, 2008. ISBN 0470249250.

[43] Prabhu SM and Mosterman PJ. Modeling, Simulating, and Validating
a Power Window System Using a Model-Based Design Approach.
URL https://fr.mathworks.com/company/newsletters/articles/

modeling-simulating-and-validating-a-power-window-system-

using-a-model-based-design-approach.html.

[44] Denil J. Design, Verification and Deployment of Software Intensive Sys-

tems - A multiparadigm approach. PhD Thesis, University of Antwerp,
2013.

48

[45] Fritzson P, Aronsson P, Pop A et al. OpenModelica - A free open-
source environment for system modeling, simulation, and teaching.
In Conference on Computer Aided Control System Design, Interna-

tional Conference on Control Applications, International Symposium

on Intelligent Control. Munich, Germany: IEEE, pp. 1588–1595. DOI:
10.1109/CACSD-CCA-ISIC.2006.4776878. URL http://ieeexplore.

ieee.org/document/4776878/.

[46] Larsen PG, Fitzgerald J, Woodcock J et al. Integrated tool chain for
model-based design of Cyber-Physical Systems: The INTO-CPS project.
In 2nd International Workshop on Modelling, Analysis, and Control of

Complex CPS (CPS Data). Vienna, Austria: IEEE. ISBN 978-1-5090-
1154-4, pp. 1–6. DOI:10.1109/CPSData.2016.7496424.

[47] Galtier V, Vialle S, Dad C et al. FMI-Based Distributed Multi-Simulation
with DACCOSIM. In Spring Simulation Multi-Conference. Alexandria,
Virginia, USA: Society for Computer Simulation International San Diego,
CA, USA. ISBN 978-1-5108-0105-9, pp. 804–811.

[48] Wirth N. Extended backus-naur form (EBNF), 1996.

[49] Xtext - Language Engineering for Everyone. URL https://eclipse.

org/Xtext/index.html.

[50] Kieburtz RB, McKinney L, Bell JM et al. A software engineering ex-
periment in software component generation. In 18th international

conference on Software engineering. Berlin, Germany: IEEE Computer
Society, pp. 542–552.

[51] Boehm BW, Abts C, Brown AW et al. Software cost estimation with

Cocomo II. Prentice Hall, 2000. ISBN 0130266922.

[52] Ben Khaled A, Duval L, Gaïd MEMB et al. Context-based polynomial
extrapolation and slackened synchronization for fast multi-core simu-
lation using FMI. In 10th International Modelica Conference. Lund,
Sweden: Linköping University Electronic Press, pp. 225–234.

[53] Stettinger G, Horn M, Benedikt M et al. Model-based coupling ap-
proach for non-iterative real-time co-simulation. In European Control

Conference (ECC). Strasbourg, France: IEEE, pp. 2084–2089. DOI:
10.1109/ECC.2014.6862242.

[54] Brembeck J, Pfeiffer A, Fleps-Dezasse M et al. Nonlinear State Esti-
mation with an Extended FMI 2.0 Co-Simulation Interface. In 10th

International Modelica Conference. Lund, Sweden: Linköping Uni-
versity Electronic Press; Linköpings universitet, pp. 53–62. DOI:
10.3384/ecp1409653.

49

[55] Friedrich M. Parallel Co-Simulation for Mechatronic Systems. PhD
Thesis, Fakultät für Maschinenwesen, 2011.

[56] Krammer M, Fritz J and Karner M. Model-Based Configuration of Auto-
motive Co-Simulation Scenarios. In 48th Annual Simulation Symposium.
Alexandria, Virginia: Society for Computer Simulation International
San Diego, CA, USA. ISBN 978-1-5108-0099-1, pp. 155–162.

[57] Enge-Rosenblatt O, Clauß C, Schneider A et al. Functional Digital
Mock-up and the Functional Mock-up Interface–Two Complementary
Approaches for a Comprehensive Investigation of Heterogeneous Sy-
stems. In 8th International Modelica Conference. Dresden, Germany:
Linköping University Electronic Press; Linköpings universitet, pp. 748–
755.

[58] Gu B and Asada HH. Co-simulation of algebraically coupled dynamic
subsystems. In American Control Conference, volume 3. Arlington, VA,
USA: IEEE. ISBN 0743-1619 VO - 3, pp. 2273–2278. DOI:10.1109/ACC.
2001.946089.

[59] Busch M and Schweizer B. An explicit approach for controlling the
macro-step size of co-simulation methods. In 7th European Nonlinear

Dynamics. Rome, Italy: European Mechanics Society. ISBN 978-88-
906234-2-4, pp. 24–29.

[60] Wetter M. Co-simulation of building energy and control systems with
the Building Controls Virtual Test Bed. Journal of Building Performance

Simulation 2010; 4(3): 185–203. DOI:10.1080/19401493.2010.518631.

[61] Gu B and Asada HH. Co-Simulation of Algebraically Coupled Dynamic
Subsystems Without Disclosure of Proprietary Subsystem Models. Jour-
nal of Dynamic Systems, Measurement, and Control 2004; 126(1): 1.
DOI:10.1115/1.1648307.

[62] Schweizer B and Lu D. Semi-implicit co-simulation approach for solver
coupling. Archive of Applied Mechanics 2014; 84(12): 1739–1769.
DOI:10.1007/s00419-014-0883-5.

[63] Schweizer B, Li P, Lu D et al. Stabilized implicit co-simulation met-
hods: solver coupling based on constitutive laws. Archive of Applied

Mechanics 2015; 85(11): 1559–1594. DOI:10.1007/s00419-015-0999-2.

[64] Schweizer and Lu D. Predictor/corrector co-simulation approaches for
solver coupling with algebraic constraints. ZAMM - Journal of Applied

Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik

und Mechanik 2015; 95(9): 911–938. DOI:10.1002/zamm.201300191.

50

[65] Schweizer B and Lu D. Stabilized index-2 co-simulation approach for
solver coupling with algebraic constraints. Multibody System Dynamics

2015; 34(2): 129–161. DOI:10.1007/s11044-014-9422-y.

[66] Arnold M, Hante S and Köbis MA. Error analysis for co-simulation
with force-displacement coupling. PAMM 2014; 14(1): 43–44. DOI:
10.1002/pamm.201410014.

[67] Busch M and Schweizer B. Coupled simulation of multibody and fi-
nite element systems: an efficient and robust semi-implicit coupling
approach. Archive of Applied Mechanics 2012; 82(6): 723–741. DOI:
10.1007/s00419-011-0586-0.

[68] Hoepfer M. Towards a Comprehensive Framework for Co- Simulation

of Dynamic Models With an Emphasis on Time Stepping. PhD Thesis,
Georgia Institute of Technology, 2011.

[69] Sadjina S, Kyllingstad LT, Skjong S et al. Energy conservation and power
bonds in co-simulations: non-iterative adaptive step size control and
error estimation. Engineering with Computers 2017; 33(3): 607–620.
DOI:10.1007/s00366-016-0492-8.

[70] Broman D, Brooks C, Greenberg L et al. Determinate composition of
FMUs for co-simulation. In Eleventh ACM International Conference on

Embedded Software. Montreal, Quebec, Canada: IEEE Press Piscata-
way, NJ, USA. ISBN 978-1-4799-1443-2, p. Article No. 2.

[71] Broman D, Greenberg L, Lee EA et al. Requirements for Hybrid Co-
simulation Standards. In 18th International Conference on Hybrid

Systems: Computation and Control. HSCC ’15, Seattle, Washington:
ACM New York, NY, USA. ISBN 978-1-4503-3433-4, pp. 179–188. DOI:
10.1145/2728606.2728629.

[72] Centomo S, Deantoni J and de Simone R. Using SystemC Cyber Models
in an FMI Co-Simulation Environment: Results and Proposed FMI
Enhancements. In Euromicro Conference on Digital System Design

(DSD). Limassol, Cyprus: IEEE. ISBN 978-1-5090-2817-7, pp. 318–
325. DOI:10.1109/DSD.2016.86. URL http://ieeexplore.ieee.org/

document/7723569/.

[73] Cremona F, Lohstroh M, Broman D et al. Step Revision in Hybrid Co-
simulation with FMI. In 14th ACM-IEEE International Conference on

formal Methods and Models for System Design. Kanpur, India: IEEE.

[74] Feldman YA, Greenberg L and Palachi E. Simulating Rhapsody SysML
Blocks in Hybrid Models with FMI. In 10th International Modelica

Conference. Lund, Sweden: Linköping University Electronic Press, pp.
43–52. DOI:10.3384/ecp1409643.

51

[75] Tripakis S, Broman D and Sciences C. Bridging the Semantic Gap
Between Heterogeneous Modeling Formalisms and FMI. Technical
report, 2014.

[76] Pohlmann U, Schäfer W, Reddehase H et al. Generating Functional
Mockup Units from Software Specifications. In 9th International MO-

DELICA Conference. 078, Munich, Germany: Linköping University
Electronic Press; Linköpings universitet, pp. 765–774. DOI:10.3384/
ecp12076765. URL http://www.ep.liu.se/ecp/article.asp?issue=

076{%}26article=78.

[77] Cremona F, Lohstroh M, Tripakis S et al. FIDE: an FMI integrated
development environment. In 31st Annual ACM Symposium on Applied

Computing. SAC ’16, Pisa, Italy: ACM New York, NY, USA. ISBN
9781450337397, pp. 1759–1766. DOI:10.1145/2851613.2851677.

[78] Lacoste-Julien S, Vangheluwe H, de Lara J et al. Meta-modelling hybrid
formalisms. In IEEE International Symposium on Computer Aided

Control Systems Design. New Orleans, LA, USA: IEEE. ISBN VO -, pp.
65–70. DOI:10.1109/CACSD.2004.1393852.

[79] Davis II J, Goel M, Hylands C et al. Overview of the Ptolemy project.
Technical report, 1999. URL http://ptolemy.eecs.berkeley.edu/.

[80] Vara Larsen ME, De Antoni J, Combemale B et al. A Behavioral Coor-
dination Operator Language (BCOoL). In 18th International Confe-

rence on Model Driven Engineering Languages and Systems (MODELS).
Ottawa, ON, Canada: IEEE. ISBN 978-1-4673-6908-4, pp. 186–195.
DOI:10.1109/MODELS.2015.7338249.

[81] Deantoni J. Modeling the Behavioral Semantics of Heterogeneous
Languages and their Coordination. In Architecture-Centric Virtual

Integration (ACVI). Venice, Italy: IEEE. ISBN 978-1-5090-2488-9, pp.
12–18. DOI:10.1109/ACVI.2016.9. URL http://ieeexplore.ieee.org/
document/7510564/.

[82] Mustafiz S, Gomes C, Barroca B et al. Modular Design of Hybrid Lan-
guages by Explicit Modeling of Semantic Adaptation. In Proceedings

of the Symposium on Theory of Modeling & Simulation: DEVS Inte-

grative M&S Symposium. DEVS ’16, Pasadena, California: IEEE, pp.
29:1—-29:8. DOI:10.23919/TMS.2016.7918835.

[83] Boulanger F, Hardebolle C, Jacquet C et al. Semantic Adaptation for
Models of Computation. In 11th International Conference on Application
of Concurrency to System Design (ACSD). Newcastle Upon Tyne, UK:
IEEE. ISBN 1550-4808 VO -, pp. 153–162. DOI:10.1109/ACSD.2011.17.

52

[84] Boulanger F and Hardebolle C. Simulation of Multi-Formalism Models
with ModHel’X. In 1st International Conference on Software Testing,

Verification, and Validation. Lillehammer, Norway: IEEE Computer
Society. ISBN VO -, pp. 318–327. DOI:10.1109/ICST.2008.15.

[85] Campagna D, Kavka C, Turco A et al. Solving time-dependent cou-
pled systems through FMI co-simulation and BPMN process orches-
tration. In IEEE International Symposium on Systems Engineering

(ISSE). Edinburgh, Scotland: IEEE. ISBN 978-1-5090-0793-6, pp. 1–8.
DOI:10.1109/SysEng.2016.7753140. URL http://ieeexplore.ieee.

org/document/7753140/.

[86] Aslan M, Durak U and Taylan K. MOKA: An Object-Oriented Framework
for FMI Co-Simulation. In Conference on Summer Computer Simulation.
Chicago, Illinois: Society for Computer Simulation International San
Diego, CA, USA, pp. 1–8.

53

Algorithm 1: Gauss-seidel orchestrator for co-simulation scenarios can
be topologically sorted.

Data: The stop time T , a starting communication step size Ĥ, and a set of unit
references D = {1, . . . , n}.

1 t := 0 ; // Simulation time

2 H := Ĥ ; // Communication step size

// Initialize variables

3 for i = 1, . . . , n do

4 xi := 0 ; // State vector

5 uci := yi := 0 ; // Current I/O variables

6 upi := 0 ; // Previous input variables

7 end

// Compute initial states

8 for j = 1, . . . , n do

9 ucσ(j) := cσ(j)(y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn) ;
10 xσ(j) := Initσ(j)(ucσ(j)) or Initσ(j)()

11 yσ(j) := Gσ(j)(t,xσ(j),ucσ(j)) or Gσ(j)(t,xσ(j));
12 upσ(j) := ucσ(j) ;

13 end

14 while t < T do

15 accepted := false ;
16 while not accepted do

17 for j ∈ (1, . . . , n) do

18 ucσ(j) := cσ(j)(y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn) ;

19

〈

x̃σ(j), H̃σ(j)

〉

:= Fσ(j)(t,H,xσ(j),ucσ(j) or upσ(j)) ;

20 yσ(j) := Gσ(j)(t+ H̃σ(j),xσ(j),ucσ(j))

21 or Gσ(j)(t+ H̃σ(j),xσ(j));

22 end

23 H̃ := mini∈D(H̃i) ;

24 if H̃ < H then

25 H := H̃ ;
26 else

27 accepted := true ;
28 end

29 end

// Commit state and update I/O

30 for j = 1, . . . , n do

31 xi := x̃i ;
32 upi := uci ;

33 end

34 t := t+H ; // Advance time

35 end

54

Algorithm 2: Init function of the default hierarchical reactive Mealy,
described in Equation (4).

1 Function Init(uext)

2 for i = 1, . . . , n do

3 xi := upi := yi := 0 ;
4 end

5 for j ∈ (1, . . . , n) do

6 upσ(j) := cσ(j)(uext ,y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);

7 xσ(j) := Initσ(j)(upσ(j)) or Initσ(j)() ;

8 yσ(j) := Gσ(j)(0,xσ(j),upσ(j))

9 or Gσ(j)(0,xσ(j));

10 end

11 return [up1, . . . ,upn,x1, . . . ,xn]
T ;

12 end

Algorithm 3: Output function of the default hierarchical reactive Mealy,
described in Equation (4).

1 Function G(t, [up1, . . . ,upn,x1, . . . ,xn]
T
,uext)

2 for i = 1, . . . , n do

3 uci := yi := 0 ;
4 end

5 for j ∈ (1, . . . , n) do

6 ucσ(j) := cσ(j)(uext ,y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);
7 yσ(j) := Gσ(j)(t,xσ(j),ucσ(j))

8 or Gσ(j)(t,xσ(j));

9 end

10 return [y1, . . . ,yn]
T ;

11 end

55

Algorithm 4: State transition function of the default hierarchical re-
active Mealy, described in Equation (4).

1 Function F (t,H, [up1, . . . ,upn,x1, . . . ,xn]
T
,uext)

2 for i = 1, . . . , n do

3 uci := yi := 0 ;
4 end

5 for j ∈ (1, . . . , n) do

6 ucσ(j) := cσ(j)(uext ,y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);

7

〈

x̃σ(j), H̃σ(j)

〉

:= Fσ(j)(t,H,xσ(j),ucσ(j) or upσ(j)) ;

8 yσ(j) := Gσ(j)(t+ H̃σ(j), x̃σ(j),ucσ(j))

9 or Gσ(j)(t+ H̃σ(j), x̃σ(j));

10 end

11 H̃ := mini∈D(H̃i);

12 return
〈

[uc1, . . . ,ucn, x̃1, . . . , x̃n]
T
, H̃

〉

;

13 end

Algorithm 5: State transition function of the generic external FMU,
defined in Equation (5).

1 Function F (t,H, [xin ,xctrl ,xout ,x1, . . . ,xn]
T
,uext)

2 x̃in := In([xin ,xctrl ,xout]
T
,uext);

3

〈

x̃ctrl , x̃out , [x̃1, . . . , x̃n]
T
, H̃

〉

:=

Ctrl(t,H, [x̃in ,xctrl ,xout]
T
, [x1, . . . ,xn]

T
);

4 return
〈

[x̃in , x̃ctrl , x̃out , x̃1, . . . , x̃n]
T
, H̃

〉

;

5 end

56

Algorithm 6: Output functions of the generic external FMU, per kind
of unit, defined in Equation (5).

1 Function G(t, [xin ,xctrl ,xout ,x1, . . . ,xn]
T
,uext)

2 x̃in := In([xin ,xctrl ,xout]
T
,uext);

3 if σ is defined then

4 for i = 1, . . . , n do

5 uci := yi := ỹi := 0;
6 end

7 for j ∈ (1, . . . , n) do

8 [ũ1, . . . , ũn]
T
:= MapIn([x̃in ,xctrl ,xout]

T
, 0, 0);

9 ucσ(j) := cσ(j)(ũσ(j),y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);
10 yσ(j) := Gσ(j)(t,xσ(j),ucσ(j))

11 or Gσ(j)(t,xσ(j));

12 x̃out := MapOut([x̃in ,xctrl ,xout]
T
, [y1, . . . ,yn]

T
, 0, 0);

13 end

14 else

15 x̃out := xout ;
16 end

17 y := Out([x̃in ,xctrl , x̃out]
T
);

18 return y;

19 end

20 Function G(t, [xin ,xctrl ,xout ,x1, . . . ,xn]
T
)

21 if σ is defined then

22 for i = 1, . . . , n do

23 uci := yi := ỹi := 0;
24 end

25 for j ∈ (1, . . . , n) do

26 [ũ1, . . . , ũn]
T
:= MapIn([xin ,xctrl ,xout]

T
, 0, 0);

27 ucσ(j) := cσ(j)(ũσ(j),y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);
28 yσ(j) := Gσ(j)(t,xσ(j),ucσ(j))

29 or Gσ(j)(t,xσ(j));

30 x̃out := MapOut([xin ,xctrl ,xout]
T
, [y1, . . . ,yn]

T
, 0, 0);

31 end

32 else

33 x̃out := xout ;
34 end

35 y := Out([xin ,xctrl , x̃out]
T
);

36 return y;

37 end

57

Algorithm 7: Init and Ctrl functions of the default reactive Mealy
hierarchical unit.

1 Function Init(uext)

2 for i = 1, . . . , n do

3 xi := upi := yi := 0 ;
4 end

5 for j ∈ (1, . . . , n) do

6 upσ(j) := cσ(j)(uext ,y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);

7 xσ(j) := Initσ(j)(upσ(j)) or Initσ(j)() ;

8 yσ(j) := Gσ(j)(0,xσ(j),upσ(j))

9 or Gσ(j)(0,xσ(j));

10 end

11 xin := xout := 0 ;

12 xctrl := [up1, . . . ,upn]
T ;

13 return [xin ,xctrl ,xout ,x1, . . . ,xn]
T ;

14 end

15 Function Ctrl(t,H,
〈

xin , [up1, . . . ,upn]
T
,xout

〉

, [x1, . . . ,xn]
T
)

16 xctrl := [up1, . . . ,upn]
T ;

17 for i = 1, . . . , n do

18 uci := yi := 0;
19 end

20 for j ∈ (1, . . . , n) do

21 [ũ1, . . . , ũn]
T
:= MapIn([xin ,xctrl ,xout]

T
, 0, 0);

22 ucσ(j) := cσ(j)(ũσ(j),y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);

23

〈

x̃σ(j), H̃σ(j)

〉

:= Fσ(j)(t,H,xσ(j),ucσ(j) or upσ(j)) ;

24 yσ(j) := Gσ(j)(t+ H̃σ(j), x̃σ(j),ucσ(j))

25 or Gσ(j)(t+ H̃σ(j), x̃σ(j));

26 x̃out := MapOut([xin ,xctrl ,xout]
T
, [y1, . . . ,yn]

T
, 0, 0);

27 end

28 H̃ := mini∈D(H̃i);

29 return
〈

[uc1, . . . ,ucn]
T
, x̃out , [x̃1, . . . , x̃n]

T
, H̃

〉

;

30 end

58

Algorithm 8: Ctrl function of external FMU loop_sa, illustrated in Fi-
gure 5.

1 Function Ctrl(t,H, [xin ,yp1,xout]
T
, [x1,x2]

T
)

2 u1 := 0;
3 y1 := yp1;
4 u2 := yp2 := y2 := 0;

5 [ũ1, ũ2]
T
:= MapIn([xin ,yp1,xout]

T
, 0, 0);

6 for i ∈ (1, . . . ,MAX _ITERATIONS) do

7 u2 := c2(ũ2,y1);

8

〈

x̃2, H̃2

〉

:= F2(t,H,x2,u2) ;

9 y2 := G2(t+ H̃2, x̃2,u2);
10 u1 := c1(ũ1,y2);

11

〈

x̃1, H̃1

〉

:= F1(t,H,x1,u1) ;

12 y1 := G1(t+ H̃1, x̃1,u1);
13 if ‖y1 − yp1‖ ≈ 0 and ‖y2 − yp2‖ ≈ 0 then

14 x̃out := MapOut([xin ,xctrl ,xout]
T
, [y1,y2]

T
, 0, 0);

15 break;

16 else

17 yp1 := y1;
18 yp2 := y2;

19 end

20 return
〈

y1, x̃out , [x̃1, x̃2]
T
, H

〉

;

21 end

59

Table 1: List of built-in symbols and their meaning.

Symbol Availability Description

t ∈ R ControlRule

(Ctrl)
Argument provided in the state
transition function of the exter-
nal FMU.

H ∈ R ControlRule

(Ctrl)
Co-simulation step size passed
as argument to the state tran-
sition function of the external
FMU.

do_step(fmu, ti , h) ∈ R ControlRule

(Ctrl)
Asks an internal FMU to per-
form a co-simulation step and
returns the size of the compu-
ted interval.

h ∈ R MapInRule,
MapOutRule

(MapIn,MapOut)

Co-simulation step size passed
as argument to the state tran-
sition function of the internal
FMU.

dt ∈ R MapInRule,
MapOutRule

(MapIn,MapOut)

Let ti denote the time given
as argument to the state tran-
sition function of an internal
FMU. Then dt = ti − t.

save_state(fmu) ControlRule

(Ctrl)
Stores the state of an internal
FMU.

rollback(fmu) ControlRule

(Ctrl)
Rolls back an internal FMU to
the last saved state.

is_close(x , y , rtol , atol) ∈ Bool Everywhere Approximate equality.

get_next_time_step(fmu) ∈ R Everywhere Returns the maximum time
step an internal FMU is willing
to accept.

sin, cos,min, . . . Everywhere Implements the corresponding
mathematical function.

60

Table 2: Effort in hand-coding hierarchical semantic adaptations.

Semantic Adaptation LOC Effort (man-hour)

lazy_sa 700 9

controller_sa 750 24

power_sa 680 16

window_sa 690 8

loop_sa 690 16

Total 3510 73

61

