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1 Introduction

The systems we engineer today are characterised by an increasing complexity.
Model-based design can boost the development of such systems by enabling
their analysis at higher levels of abstraction via simulation. However, it can
be hard to simulate the system as a whole if it is developed in a distributed
fashion, by multiple and specialized teams [1].

Two factors contribute to this difficulty: (i) specialized teams have their
own tools; and (ii) some of the components of the system are provided by
different suppliers [2], and have valuable Intellectual Property (IP).

Difficulty (i) is a natural consequence of using the most appropriate
formalism for a specific domain [3]. The same can be expected from external
suppliers. During the development process, if a team wishes to understand
how a component being developed behaves when interacting with the rest
of the system, it is useful that the tool in use can import and simulate
correctly the models created by the other teams (with different tools). As we
show shortly, it can be hard to correctly simulate imported models, as these
belong to potentially different domains, each with its own set of specialized
simulators [3].

As for difficulty (ii), if the team is using externally supplied components
and wishes to simulate them, it may not be able to import the components’
models because these contain protected IP. For the sufficiently complex
components, a “lock-in” contract can be made to allow the team access
to those models. However, the team will no longer be free to benchmark
components from different competing suppliers.

Co-simulation, with the support of the Functional Mock-up Interface
(FMI) Standard [4], is proposed as a way to promote tool interoperability
while addressing the IP protection requirement. The models are exported as
executable black boxes, that receive inputs and produce outputs, allowing



for the simulation of the component they stand for. In the FMI, each black

box is called a Functional Mock-up Unit (FMU), the term adopted in this

document.

The standard provides a common interface to allow a uniform communi-
cation with the black boxes, solving the combinatorial explosion of import/ex-
port formats. However, it does not ensure that the black boxes are interacted
with in a semantically correct manner.

When a team is given an FMU that does not behave as it is expected to,
we say that there is an interaction mismatch between the FMU and the rest
of the system. Interaction mismatches can be roughly classified as:

Signal Data Mismatch happens when the signals provided by the FMU
are not compatible with the ones that are expected (e.g., different
frame of reference or different physical units).

Model of Computation Mismatch happens when the provided FMU assu-
mes a different model of computation [5] than the one actually used to
compute the overall behavior of the system (e.g., FMUs exported by
a timed automata modelling and simulation tool [6, 7] have to make
assumptions about the other interacting FMUs).

Capability Mismatch happens when a given FMU lacks some capabilities
* that affect the simulation performance (e.g., FMUs that lack higher
order input extrapolation, an important capability that affects the
accuracy and stability of the co-simulation [9, 10]).

Rather than asking the original producer of the FMU to correct an inte-
raction mismatch, it can be useful that the team is able to correct it immedi-
ately. Note that any mismatch happens between a given FMU and a usage
intent, and therefore it is not necessarily the case that the best correction of
a mismatch is done by the producer (if the FMU is to be reused).

In fact, as [11, 9, 12, 13] show, some mismatches happen as a product of
the (incorrect) handling of multiple interacting FMU'’s, and the correction
has to be done for that specific interaction.

The above arguments motivate the need for semantic adaptations, and
lead to the following research question:

RQ1 How can we describe the most common semantic adaptations on multi-
ple types of black box FMUs in a productive manner, and realise them
without violating modularity and transparency.

Informally, we call semantic adaptation of an FMU to the set of modifica-
tions made to the inputs/outputs and interaction with environment, of the
FMU, with the purpose of correcting an interaction mismatch. This concept
is formalized later in this work.

Productivity is related to the effort required to describe an adaptation.
Modularity refers to the fact that any FMU should be adapted by changing
how it is interacted with, and not how it is implemented. Transparency

*See [8] for an overview of capabilities of FMUs.



means that any tool that imports FMUs should not have to be changed in
order to import, and interact with, an adapted FMU.

The descriptions should be made in an independently developed language
because it is impractical that every tool capable of importing FMUs is able
to implement the adaptations. Furthermore, one cannot expect that any
user of an FMU has the ability to modify the importing tool to support these.
Compared to implementing these adaptations manually, a language reduces
the accidental complexity, prevents mistakes, and allows soundness analyses
to be carried out.

In this paper, we build on prior work [14, 15, 16] to define a language
that allows for the descriptions of the most common semantic adaptations
that can be used in FMI co-simulation, surveyed in [17]. A distinct feature
of the language proposed here is that it describes adaptations for groups
of interconnected FMUs in the same way as for a single FMU, thanks to a
sound definition of hierarchical co-simulation.

The definition of hierarchical co-simulation, and the semantics of the
language, are presented in a bottom up approach, as illustrated in Figure 1.
In the Background section, we introduce a co-simulation abstraction with
simulation units and how these relate to FMUs. Section “Hierarchical Co-
simulation for Semantic Adaptation” contains the formal foundations of
a special kind of simulation unit that is the template to implement any
semantic adaptation. In Section “Running Example”, a running example is
described, and in Section “A DSL for Semantic Adaptation” the language
and its semantics are described. Section “Evaluation” judges how well we
have addressed the research question. Section “Discussion and Future Work”
discusses the flaws of our approach and research opportunities. Finally,
Sections “Related Work” and “Conclusion” present the related work and
conclude, respectively.

2 Background

In this section, we introduce the concepts, terminology, and assumptions
used throughout this document. We cover co-simulation, the Functional
Mockup Interface (FMI) standard, semantic adaptation, and domain specific
languages.

2.1 Co-Simulation

We briefly summarize the main concepts related to co-simulation and we
refer the reader to [17] for a more detailed introduction of each concept.
We call dynamical system to a model that has a notion of state and rules
describing the evolution of that state across time, starting from an initial
state. Inputs and outputs can be defined, to describe the environment.
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Figure 1: Overview of DSL semantics and document structure.

A simulator is an algorithm that takes a dynamical system and input
signals, as input, and computes an approximated behavior trace of the
dynamical system.

A simulation unit (also known as a simulation application [18]) is the
composition of a simulator together with a dynamical system, essentially
representing a mockup of a real system. It accepts input trajectories and
produces a behavior trace.

Simulation units (or just units) can be coupled through their inputs and
outputs. A coupling restriction (or just couplings) is an output connected
to an input. It means that the trajectory computed at that output — e.g., a
function of the continuous time — must be equal to the one computed at the
input, at all times.

The orchestrator (or master) is an algorithm that takes a set of simulation
units and their coupling restrictions — that is, a co-simulation scenario —
and computes the behavior trace of all units, trying to satisfy the coupling
restrictions. In practice, these restrictions can only be satisfied at certain
countable points in time, called communication points. These points are
agreed upon by the simulation units and the orchestrator.

A basic orchestrator will, at each communication point, copy data points
from outputs to inputs, and ask each unit to compute its own behavior trace
until the next communication point. The collective behavior trace is called

the co-simulation.
We capture the essence of a simulation unit with reference ¢, using the



discrete time system notation, in one of the following four possible ways:

(wa(t+ ), Hi) = Fi(t, H,wa(t), walt + H) or wi(t))
—— S—~—

reactive delayed

yi(t) = Gi(t, z3(t), ui(t)) or Gi(t,xi(t)) )
Mealy Moore

x;(0) = Init;(u;(0)) or Init;()

where t denotes the simulated time, x; denotes the state vector, w; the
input vector, Init; computes the initial state, H > 0 denotes the requested
communication step size, 0 < f:fi < H denotes the communication step
size taken by the unit, F; is the state transition function, and G; the output
function. Bold symbols will always refer to vectors in this paper.

The definition in Equation (1) covers the different kinds of simulation
units considered (based on the orchestrators surveyed in [17]): Reactive
Mealy, Reactive Moore, Delayed Mealy, and Delayed Moore. The difference
is in where and when the unit expects inputs to be provided. For example, a
delayed Moore unit can compute its output without requiring an input, and
can compute its future state (x;(t + H;)) with just the current input u;(t). A
reactive Mealy unit, on the other hand: requires an initial input to compute
the initial state; and needs to know the next input in order to compute the
next state/output.

We use shortcuts such as F;(t, H,z;(t),...), Gi(t,...), and Init;(...), to
denote the appropriate function depending on the kind of unit ¢. Furthermore,
we make the following remarks about each simulation unit ¢:

e F; and G; are mathematical functions (also denoted pure).

e The internal definition of F; and G; is unknown, but the kind of unit is

known.

o If <-,FIi> = Fy(t,H,z;(t),...) and H; < H, then the unit rejects the
step size H requested. Furthermore, for any H < H;, we assume that
<H> — Fi(t, H,z;(t), ...

Given a set of unique unit references D = {1,...,n}, a co-simulation
scenario is defined as the aggregation of each simulation unit definition, in
Equation (1), plus a coupling function that defines the input of 7 as a function
of the outputs of units {j: j € D\ {i}}. Formally, combining the notation
used in [9, 19], a scenario is given by:

<wi(t+ H)H> = Fi(t.H,..)
yi(t) = Gi(t,...)

ui:Ci(yla"'7yi71ayi+17--~7yn) (2)

foreach 1€ D



where ¢; denotes the coupling function, and each F;, G; follows one of the
definitions in Equation (1). Commonly, ¢; is linear and maps at most one
component of one of the inputs (the inputs/outputs are vector quantities),
onto one component of the output. We assume that ¢; is linear.

Let4,j € D be two different units, and 0 be the zero matrix of appropriate
dimension. If g—; # 0, then i gets part of its input from j. Informally, this
means that at least one component of u; = ¢;(...) is determined by at least
one component of y;. We say that a unit i € D depends algebraically on unit
j € D, with i # j, if ¢ gets part of its input from j and ¢ is not a delayed
Moore. So, e.g., if i gets part of its input from 7, but it is a delayed Moore,
then ¢ does not depend algebraically on j.

Using the algebraic dependency relationship, one can build a directed
graph — called the dataflow graph — with one node n; per simulation unit
i € D, and an edge (n;,n;) between two nodes n;,n; whenever the unit
1 depends algebraically on unit j. This procedure is based on the Causal
Block Diagram Simulation algorithm [20, 21]. A topological order of the
resulting graph gives an execution order that respects the units’ algebraic
dependencies.

Depending on the coupling function and on the kind of simulation units
being coupled, algebraic loops may occur. An algebraic loop includes any
input/output/state that depends on itself, at the same time point [19].

If an algebraic loop exists between the units, then it is not possible to
compute a topological ordering of the dataflow graph. For now, we assume
that such topological order can always be computed for a given co-simulation
scenario. We denote that order via a mapping ¢ : N — D, that returns the
unit reference o(j) that is the j-th in the topological order. So o(1) gives a
unit that is first in the topological order, i.e., has no algebraic dependencies.

With a well defined topological order, the orchestrator only has to provide
inputs to, execute, and get outputs from, the units in that order. Algorithm 1
formalizes what is known in the state of the art as the Gauss-Seidel orches-
trator. It computes the behavior trace of a given co-simulation scenario as
described in Equation (2). To be concise, we abbreviate the output and state
transition function calls, which depend on the kind of unit (lines 11, 19, and
21). Furthermore, the orchestrator provides the inputs (uc, ;) or UP,(5), in
line 19) that each unit expects, working for both reactive and delayed units
alike. This is the main reason we single out this orchestrator in this work.

Without loss of generality, we assume the most basic step size control
policy in Algorithm 1: the communication step size is never increased af-
ter being rejected by some unit*. The orchestrator uses the most recent
consistent state.

*Algorithm 1 can be greatly optimized (e.g., rolling back as soon as a reject occurs).



2.2 Functional Mock-up Interface Standard (FMI)

The FMI standard [4] defines the interface and interaction pattern that allows
simulation units to communicate. In the standard, a simulation unit is called
a Functional Mockup Unit (FMU).

2.2.1 FMUs and Simulation units.

This subsection establishes the equivalence between FMUs and simulation
units (recall Figure 1), and the assumptions we make throughout this docu-
ment.

Given a simulation unit ¢ (described in Equation (1)) we define its equiva-
lent FMU, and vice versa, as follows:

FMU State - The state of the FMU corresponds to the state of the unit x;.
The FMU does not make the state explicit, but instead implements
functions that can be used to set and retrieve the state.

Inputs - FMUs have input ports, each accepting a scalar quantity. Each
dimension in the input w; corresponds to one input port of the FMU.
The FMU implements functions that allow the orchestrator to set those
inputs (e.g., fmi2SetReal and fmi2SetInteger) and a single vector
quantity u; can be set via multiple calls to those functions.

Outputs - The outputs of the FMU are analogous to the inputs. To obtain
an output y;, multiple calls are made to the dedicated functions (e.q.,
fmi2GetReal and fmi2GetInteger).

Initial State - The initial state computed by the Init; function corresponds
to the computation performed by the FMU in the initialization mode.
We assume that an initial state of a unit/FMU can always be found
from the Init(...) function (and initial input, in case of a reactive unit).
This is in accordance with the FMI Standard, but it restricts our scope
to scenarios were the consistent initial state of one unit depends on
factors (e.g., the initial state of another unit) other than its initial inputs.

Co-simulation Step - A state transition invocation <:Zi, ﬁi> = Fi(t, H, x;,u;)
is mapped to (in order): an optional invocation to set the state of the
FMU to x;; multiple invocations to set the input u;; an invocation to
the fmi2DoStep function; a query to find out up to which time the FMU
computed the step (to get H;); and an (optional) invocation to get the
new state of the FMU &;. The manipulation of the state is optional
for orchestration algorithms that do not perform rollback operations.
However, in this document, we assume that the FMUs support rollback.

Output Function - If the unit is a Mealy unit, then the execution of the
output function y; := G;(t, z;(t), u;(t)) corresponds to setting the inputs
to the FMU, and then getting the outputs. If the unit is a Moore unit,
then the outputs can be enquired without first setting the inputs.



It is the role of the orchestrator to set the appropriate inputs depending
on whether the FMU is reactive or delayed, or mealy and Moore.

We define the type of the FMU by applying the following rules, in order:

1. If the unit does not disclose any input-to-output feedthrough, it is

assumed to be Mealy.

2. If at least one output variable depends instantaneously on an input

variable, we assume that the unit is Mealy.

3. If the previous two do not apply, the unit is assumed to be Moore.

4. If the capability flag canInterpolatelnputs is set, then the unit is re-
active.

5. Otherwise, the unit is delayed.

To establish the equivalence of the couplings restrictions of units and
those of FMUs, we note that the definition of algebraic dependency remains
the same between FMUs. Thus, the dataflow graph can be built as described
in the previous subsection.

Having established the equivalence between simulation units and FMUs,
we will henceforth use the two terms interchangeably.

2.3 Semantic Adaptation

The interface of an FMU (or of a simulation unit) comprises not only the
specification of the inputs and outputs, but also how it is to be interacted with
[14]. It may be the case that in different co-simulation scenarios, the same
FMU has to be interacted with differently (e.g., for accuracy/performance
concerns). While modifying the orchestrator to support a new interaction
pattern will solve the problem, it is not ideal since: (i) the interaction pattern
may be specific to a single FMU (therefore not reusable), and (ii) modifi-
cations to the orchestrator may require extensive testing to ensure that it
retains its correctness properties (e.g., see [22]).

Our work avoids changes to the underlying orchestration algorithm,
and focuses those changes around the FMU itself in the form of semantic
adaptations, using hierarchical co-simulation.

An adaptation targets an FMU, or group of FMUs, which we will call
the internal FMU(s), and the end result of an adaptation is a new FMU,
which we call external FMU. The external FMU interacts with the internal
FMU(s), without requiring them to be modified (modularity). The adjectives
internal and external reflect the hierarchical nature of our approach and are
illustrated in Figure 2.

We introduce below a non-exhaustive list of semantic adaptations that can
be classified according to the interaction mismatch they intent to correct:
Signal Data Mismatch: Conversion of Units and Reference Frame transla-

tion.
Model of Computation Mismatch: Hold, Quantization, Data Triggered
Execution, and Timed Transitions.
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Figure 2: Internal FMUs, External FMU, and Semantic Adaptation.

Capability Mismatch: Interpolation/Extrapolation of Inputs, Fixed Point
Iteration, Multi-Rate Adaptation, Time and Partial Derivative Adapta-
tion, Accurate Threshold Crossing, and Re-Initialisation.

See [17, 8] and references thereof, for variants of these adaptations.

2.3.1 Conversion of Units and Reference Frame Translation.

The conversion of units and reference frame adaptations, take an inter-
nal FMU and create an external FMU whose inputs/outputs are algebraic
transformations of the input/outputs of the internal FMU.

2.3.2 Interpolation/Extrapolation of Inputs.

An FMU that stands for a continuous system, such as a DC motor, approxi-
mates its behavior trace by discretizing the time continuum into a finite set
of points [23] and applying a numerical method at each of those points.

In co-simulation, when the orchestrator asks an FMU to compute the
behavior trace over an interval of time, from ¢ to ¢t + H, the FMU discretizes
the interval and computes the internal solution at each of these points, called
micro-steps. The most common FMUs assume that, in between ¢ and ¢+ H the
inputs provided by the orchestrator are constant. Naturally, for large H, this
assumption causes a significant error in the co-simulation [10, 24, 25, 26].

Instead of reducing H, it is possible to adapt the FMU to better ap-
proximate its inputs. Essentially, the external FMU discretizes the interval
t — t + H and runs the state transition function of the internal FMU multiple
times, providing an approximated input at each of the time points. The
internal FMU will still assume a constant input, but will do so in smaller
intervals of time.

2.3.3 Fixed Point Iteration.

If an algebraic loop exists, then the involved units will belong to the same
cycle in the corresponding dependency graph.



As proposed in [16, 8], given a co-simulation scenario (recall Equation (2))
that has one cycle involving at least two simulation units (non-trivial), it is
possible to create an external FMU that replaces all the units in the cycle.
All the couplings external to the cycle become couplings to the hierarchical
simulation unit.

At each state transition of the external FMU, a fixed point iteration
technique is applied to the inputs/outputs of the internal FMUs.

If a scenario has multiple non-trivial cycles, this adaptation can be applied
to reduce the scenario to one where all the algebraic loops are solved [16].
Algorithm 1 can then be applied to compute the co-simulation.

2.3.4 Multi-Rate Adaptation.

For FMUs simulating first order Ordinary Differential Equations (ODE), the
larger the interval between the points, the less accurate the computed
behavior trace will be [27].

The multi-rate adaptation is used to increase the accuracy while not
sacrificing the performance in a co-simulation. Applied to co-simulation, the
technique, well known in the circuit simulation domain [28], consists of a
groups of interconnected internal FMUs that communicate more frequently
[29, 16]. This can serve two purposes: optimize the communication cost
between the internal units [8], or optimize the accuracy of the co-simulation
(especially when the internal units are physically tightly coupled [17]).

Similarly to the input extrapolation adaptation, the state transition function
of the external unit instructs the internal units to perform multiple steps and
exchange values at each of those steps. The higher the rate of the adaptation,
the higher the number of internal steps performed.

This adaptation can be combined with the approximation of inputs adap-
tation, to provide for approximated inputs at each of the internal state
transition invocations.

2.3.5 Time and Partial Derivative Adaptation.

Time and partial derivative information about each simulation unit’s outputs
can be used to optimize the co-simulation process in many different ways
(e.g., see [30]).

In the FMI standard, since the FMUs can optionally provide time and
partial derivative information, it is often the case that some units do not
support it. To mitigate this, a derivative adaptation can be used to produce
an external FMU that provides (numerically estimated) partial and time
derivatives.

10



2.3.6 Accurate Threshold Crossing.

A co-simulation trace is more accurate if all units exchange values at the
time when a certain signal crosses a given threshold. The problem of accu-
rately finding that time is well known in the hybrid system simulation dom-
ain [31, 32] and many techniques exist to address it [23, 27]. In FMI co-
simulation, the most basic technique to accurately locate a crossing consists
of rejecting a step size and proposing a new one, that possibly coincides with
the threshold crossing moment.

The accurate zero crossing adaptation ensures that the external FMU
rejects the proposed step size when one of the inputs of the internal FMU
crosses a significant threshold too late [15].

2.3.7 Re-Initialisation.

An internal FMU that is expecting a smooth input signal may yield unex-
pected behavior trace when given a discontinuous signal (we consider a
discontinuous signal to be a sufficiently rapid changing one in between
co-simulation communication points) [33, 34, 10]. For example, an FMU
that is using a multi-step numerical solver which assumes the input to be
continuous (see, e.g., [35] for a possible solution to this problem).

A re-initialization adaptation ensures that the external unit: (1) locates
accurately the time of the discontinuity (e.g., in the same manner as the
accurate crossing adaptation), and (2) the external unit is properly reset
before handling the new value of the input. In the FMI standard, item (2)
requires three steps: save the unit state; reset and initialize the unit; and
restore the state.

2.3.8 Quantization.

Quantization is an adaptation commonly used to convert a continuous signal
into a discrete event one. The (continuous) set of possible input values
is discretized into regions and, during the co-simulation, whenever the
continuous signal enters a new region, an event is produced [36, 37].

In co-simulation, this adaptation transforms an internal FMU that expects
continuous inputs and produces continuous outputs, into an external FMU
that deals with events (see, e.g., [38, 39, 40, 41]).

The realization of this adaptation is very similar to the zero crossing
one, except that the thresholds to locate are induced by the input space
discretization.

2.3.9 Hold.

The hold family of adaptations can be seen as the dual of the multi-rate
adaptations.

11



If an internal FMU should run slower than the rest of the simulation units,
then it can be adapted with a hold adaptation. The external FMU will trick
the orchestrator and obey to the proposed step sizes, but will avoid executing
the internal FMU every time a step is requested. For example, if a zero order
Hold adaptation is used, then the external unit will produce an output that is
equal to the most recent output produced by the internal unit.

There are many variants of this adaptation, with varying degrees of
accuracy, borrowed from well known approximation techniques [27].

The two adaptations below are novel in FMI based co-simulation domain,
but well known in the discrete event domain.

2.3.10 Data Triggered Execution.

The data triggered execution is an adaptation most useful when the modeller
knows that a particular internal FMU will only produce relevant behavior
when certain conditions are true over its inputs. The adaptation executes
the internal FMU only when these conditions are met.

2.3.11 Timed Transitions.

The time transition adaptation can be used when the internal FMU is known
to have internal state changes, triggered after a known amount of time. The
adaptation will query the internal FMU to know when exactly should the next
state transition function call take place, and will call it only when that time
is arrived. It can be combined with the data triggered execution to achieve a
lazy execution of units.

Each of the semantic adaptations described above has many variants
that make its ad-hoc implementations not only error prone, but also tedious.
Additionally, one can extract the shared commonalities in the implementation
of all semantic adaptations. The interplay between many small variants
and shared commonalities is one of the motivating factors to use a Domain
Specific Language for the description of the adaptations.

2.4 Domain-Specific Languages

Domain-specific languages (DSLs) offer a way to deal with the essential
complexity of a given domain, while avoiding its accidental complexity [42].

We highlight two important advantages that come from the use of a DSL
in the context of our contribution:

1. The most common tasks in the target domain are performed in a very
simple, productive, and intuitive manner (for a trained domain expert) —
the descriptions made in our DSL do not deal with the idiosyncrasies of
an implementation of the FMI Standard, even though a FMI compliant
external FMU can be generated.
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2. By maximally constraining the user, a DSL ensures that he/she makes
less mistakes and allows domain level validation — our DSL allows the
user to specify extra information that can be used to detect mistakes (a
simple validation being the compatibility of units in inputs/outputs).

3 Running Example

To showcase the language, the case study we present is adapted from a
power window system, described in [43, 44]. This system is the familiar
automated car window, which responds to the driver/passenger pressing
up/down buttons to raise/lower it. If an obstruction is detected, the window
retracts for a few moments to avoid injury. This example was chosen for its
heterogeneity and need for semantic adaptations.

R./Mealy|
obstacle

Legend
FMU input/output (kind/units)

reaction_force (N)(_f

d
obj_detected (Bool) (?)~__2rmature_current (A) % isp (m)
o/

R./Mealy |passenger_up (Bool) R./Moore| o (Bool) u (Real) R./Moore| (rad) R?;:;al;: (cm)
ipassenger_down (Bool) power speed (rad/s) window

. passenger_stop (Bool) down (Bool) reaction_torque (N.m!
environment [griver_down (Bool) controller] d (Rea

driver_up (Bool) stop (Bool) tau (N.m)
driver_stop (Bool)

Figure 3: Power window co-simulation scenario.

3.1 The Example Scenario

Figure 3 shows the co-simulation scenario of the power window, consisting
of five FMUs, with the illustrated input and output ports. The figure is a
block representation of a co-simulation scenario as described in Equation (2).
The FMUs were produced by the authors using independent tools.

The environment FMU, coded manually, is an abstraction of the behavior
of the driver and passenger. Whenever the driver/passenger pushes a button
up/down, the respective output will pulse to signal the event. When the
button is released, the stop output pulses.

The controller FMU, produced from the Yakindu Statecharts tool, repre-
sents the software subsystem that ensures the safe operation of the window.
It gets boolean pulse inputs and decides whether the motor should go up
or down, through its boolean pulse outputs. If an object is detected (that is,
obj_detected pulses) and the passenger (or driver) has pushed the up button,
then the controller should instruct the DC motor to go down for one second.
This is done by pulsing the down output and, after 1 second, pulsing the stop
output.
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The power is an ODE based unit, exported with OpenModelica, represen-
ting the DC motor and the up/down switched circuit that drives the motor.
Whenever the u input is bigger than 0.5, the DC motor moves the window up.
Analogously, whenever the d input is bigger than 0.5, it moves the window
down.

The window and obstacle are stateless units, coded manually, that map the
inputs to the outputs using algebraic equations. The obstacle FMU outputs a
force proportional to how compressed it is. Non-zero compression happens
only when the input displacement exceeds a given threshold (e.g., 0.45m).

An object is detected when the armature_current spikes, caused by a sudden
increase in the reaction_torque input of the DC motor, cause in turn by an
increase in the reaction_forced of the object being compressed.

As illustrated in the figure, all units in this example are reactive, so the
controller, power, window, and obstacle form a single cycle. The power and
controller are Moore and the remaining units are Mealy.

Figure 4 shows the behavior trace of the example produced via a mo-
nolithic model produced in OpenModelica [45]. In the figure, the driver
continuously pushes the up button, asking the controller to move the window
up, but the controller detects an object at about 2.5 seconds (due to the
armature current spike), which causes it to override the requests of the
driver and retract the window for 1 second.

3.2 Semantic Adaptations

The scenario presented in Figure 3 cannot be used as is to compute a co-

simulation as the one shown in Figure 4 because the FMUs are incompatible.
The adaptations that need to be made were introduced in the “Back-

ground” section, and are detailed in the list below and illustrated in Figure 5.

These will be referred to throughout this document.

lazy _sa - for controller:

¢ execute only if the inputs change (data triggered execution).

* execute only when its state transition needs to be called (timed
transition adaptation) due to internal triggers. In FMI, this infor-
mation can be obtained by asking controller to perform a very large
step.

e zero order hold its outputs.

controller_sa - for lazy sa:

* map the armature_current to a boolean signal object_detected that is
true whenever there is a threshold crossing. The condition that
defines the crossing is |armature current| > 5 * and the lazy_sa
unit should be invoked at the time of crossing.

*The value 5 is used here for the purposes of illustration. In practice, it is obtained by
calibration with the DC Motor.
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Figure 4: Power window monolithic simulation results.

e convert output, taking into account the stop signal.
window_sa - for window:
* negate the reaction_torque value;
e convert the units of height from centimetres to metres.
power_sa - for power:
¢ ignore the algebraic loop between controller and power, and bet-
ween the power and window, by delaying the outputs of the power by
one co-simulation step. This effectively makes the external FMU a
delayed unit.
loop_sa - for window_sa and obstacle:
* solve the algebraic loop between obstacle and window_sa by succes-
sive substitution providing an initial guess for height.
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rate_sa - in order to prevent divergence in the fixed point iteration caused
by the above adaptation, smaller communication step sizes should be
taken between the obstacle and the window FMUs. To this end:
¢ use a multi-rate adaptation, where loop_sa is executed 10 times
faster than the remaining scenario.
 interpolate the input signal motor_speed.

Legend . . . " signal transform rate_sa
[ Fmu {semantic_ i input/output (kind/units) & Joop._sa

R./Mealy
obstacle

controller_sa

lazy_sa power_sa

obj_detected (Bool) armatufe_current (A) reaction._force (Nj ]d‘sp(m)

up (Bool)

R./Mealy |passenger_up (Bool) R./M ' (Real) R./MooreJ
passenger_down (Bool) displacement (rad) heighti(c
stop (Bool)

power speed (rad/s) R./Mealy

passenger_stop (Bool)

environment (griver_down (Bool) controller " d (Real): tau (N.m) window
driver_up (Bool) down (Bool) ._f‘,
driver_stop (Bool) window_sa

Figure 5: The modelled adaptations in the power window example.

4 Hierarchical Co-simulation for Semantic Adap-
tation

The most straightforward way of dealing with semantic adaptations is by
creating a master algorithm that implements them. There are multiple
problems with this approach: 1) it forces the master algorithm to be specific
to the scenario, which hinders the potential for reuse; and 2) it violates
the transparency principle by not allowing the FMU (plus adaptations) to
be easily imported onto other tools that perform co-simulation, such as
Simulink®, INTO-CPS [46], or DACCOSIM [47].

To avoid these problems, we implement the semantic adaptations as
FMUs, in a hierarchical way. In fact, our language defines semantic adap-
tations (plus internal FMUs) as FMUs themselves, allowing for adaptations
to be described “on top of” other adaptations. This way, the orchestrator
and semantic adaptations can be clearly separated, as well as the semantic
adaptations between themselves.

As part of our contribution, we extend the definitions provided in Section “Back-
ground” to explain what hierarchical co-simulation is, and we give an over-
view on how the main semantic adaptations are implemented.

4.1 Hierarchical Co-simulation

Before giving the formal definition of hierarchical co-simulation, we start
with an example of a “default” hierarchical co-simulation unit is and does.
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A default hierarchical simulation unit is one that wraps a set of connected
internal units, along with their inter-dependencies, and behaves in a manner
that is indistinguishable from any other simulation unit. The internal FMUs
have internal inputs/outputs (in between the units) and external inputs/out-
puts. This is called the default hierarchical unit because it does not adapt
the behavior of the internal units. It merely wraps them.

To give details about how the default hierarchical unit is constructed,
we extend the definition of co-simulation scenario to make the distinction
between internal and external inputs. Let u.,+ denote the input vector that
is external to the co-simulation scenario. A co-simulation scenario with
D ={1,...,n} units, and with external input w.,¢, is then described as:

yz(t) = Gi(t, .. )
ui(t) = ci(Ueat (1), y1(t), ..., Yi—1(t), Yita(t), ..., yn(t)) 3)
x;(0) = Init(...)

foreach i€ D

Given then a co-simulation scenario as defined in Equation (3), and
assuming that the topological order ¢ : N — D is well defined, the default
hierarchical reactive Mealy FMU is constructed by:

1. aggregating the state x; and the previous input up; of each FMU i,
into a single entity « that becomes the state of the hierarchical unit;
2. implementing the state transition function as a single co-simulation
step of Algorithm 1.
Formally, the unit is defined as:

<m(t+H) H> Ft, H,2(t), ear (t + H))

, =
y(t) = G(t, z(t), Uear (1)) (4)
z(0) = Init(uegt(0))

where: @ = [up,,...,up,,,®1,..., T,  is the total state vector and [ is
the matrix transpose operation; the initial state vector is calculated by the
Inst function, defined in Algorithm 2, which finds the initial inputs and states
to each of the internal units depending on their types; u.,; is the external
input vector; function G is described in Algorithm 3, which computes the
outputs of all internal units from the given inputs; and function F' is detailed
in Algorithm 4, which executes a single co-simulation step of Algorithm 1
and returns the minimum step size selected.

The construction of the default hierarchical reactive Moore, delayed
Mealy, or delayed Moore, is done similarly and we omit it. The next sub-
section presents similar constructions for all kinds of units, incorporating
adaptations.
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The default hierarchical unit gives the basic transformation that underlies
the semantic adaptation of one, or a connected group of, internal FMUs. In
the subsection below, we describe the generic mechanism that enables the
creation of hierarchical units with semantic adaptations.

4.2 Generic Semantic Adaptation

Previous work [14, 15] supports the hypothesis that any semantic adaptation
can be described by the following elements, that mediate the interactions of
the external FMU with the internal units:

» external input rules, describing how the inputs provided to the external

FMU are stored in the state of the external FMU;

e internal input rules, detailing how the values stored internally are

mapped into inputs of the internal FMUs;

e control rules, determining what happens when the state transition

function of the external FMU is invoked;

 internal output rules, describing how the outputs of the internal FMUs

are stored in the state of the external FMU;

* external output rules, detailing how the values stored in the state of

the external FMU are mapped to output values of the external FMU;

This subsection formalizes how a generic external FMU incorporating the
above rules is constructed.

To formalize the above rules, we define the state of the external FMU. The
external FMU is constructed from a given co-simulation scenario, defined
in Equation (3), with D = {1,...,n} units and external input vector wy:. Its
state is then defined as

T = [Tin, Tetrl, Tout, T1, - - - :cn]T
with x;,, T, and x4y, denoting the input, output and control storage
vectors, respectively, and @1, ...,x, being the internal units’ states. The
vectors &y, T4, and x ¢ form the semantic adaptation storage and depend
on the adaptations implemented in the external FMU.

Depending on the kind of external FMU being constructed, its initial state
is computed by

]nit(uewt> = [wina Letrly Louts L1y - - - 7w'ﬂ]T

or Init() = [Tin, Tetrl, Touts T1, - - - ,wn]T
where Init(), to be detailed shortly, makes use of the initialization functions
Init; of the internal units to get their initial states.

We now introduce the formal representation of the semantic adaptation
rules, introduced at the beginning of this subsection:

* The application of the external input rules to the provided input is

In([mina T ctrl, mout]T > ’Uze;ct) = Zin
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¢ The application of the internal input rules to create the internal input
vector is denoted as

Ma/pjn([wlna Lctrl s wout]T ) ha dt) = [1117 LR an]T

This function is used whenever the input to any of the internal units
needs to be computed. It is used in the Citrl rules (defined next) and
in the output function of the external unit. In most adaptations, this
function is invoked immediately before a call to the state transition
function F; of any internal unit. In line with the FMU interface, A is the
communication step size that will be passed to the state transition F;
invocation, dt is the displacement of the time in unit ¢, relative to the
external unit, and u; denotes the vector that will be used as external
input to unit ¢, or ignored if the unit does not depend on the external
input. Multiple calls to this function can be made: potentially one per
internal state transition call.

* The application of the control rules, to compute the new state z; of each
internal unit 7, the step size advanced H , and the new control/output
storage state & i, Toue Of the semantic adaptation, is

Cﬁ'l(t, H, [wiru Letrls wout]T ) [xlv e 7w’n]T) =
<izctrl7 fi’outv [{B-lv e vi:n]T 9 -F:r>

This function invokes the MapIn/MapOut functions before/after a state
transition of an internal unit is invoked.
* The application of the internal output rules

o

MapOUt([a:in»wctrlawout] yla”'ayn}thv dt) =

L out

Analogously to the MaplIn, the invocation of this function is controlled
by the Citril. Parameters i and dt denote the communication step size,
and time displacement, passed as arguments to the most recently
invoked state transition function F;.

* The application of the external output rules to compute the external
outputs, from the semantic adaptation state

Out([mm, T ctrl, wout]T) =Yy

Intuitively, the internal input/output functions serve to decouple the rate
of execution of the internal units, from the rate of execution of the external
FMU.

A semantic adaptation is a concrete definition of:

e Storage structure — x;,, Tetrr, aNd X pys;

* Initialization — Init();
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¢ External input rules — In;

e Internal input rules — MaplIn;

* Control rules — Ctrl;

 Internal output rules — MapOut;

» External output rules — Out;

We now describe how these functions are used in the specification of an
external FMU.

The generic external unit is defined exactly as a simulation unit (recall
Equation (1)):

<:n(t + H),H> =F(t, H,z(t), beat (t + H) OF Ueat(t))

y(t) = G(t, (1), uea (t)) or G(t,2(t)) (5)
z(0) = Init(West) or Init()

where & = [Zin, Tetrl, Tout, L1, - - - 7:/cn]T denotes the state of the external
FMU. Both an external reactive or delayed unit has the same implementation
of I, described in Algorithm 5 (but note that the definition of Ctrl will likely
differ). The definitions of G differ for a Mealy or Moore external unit, and
are detailed in Algorithm 6.

In Algorithm 6, we stress the following:

* The definitions take into account that it may not be possible to sort
the internal units topologically, so the semantic adaptations support
dependency cycles.

e Multiple calls to G can be made without changing the state of the
external unit.

e If a Moore external FMU has at least one internal unit which depends
on external input, then this input must be stored in the input storage «;,
of the semantic adaptation by the In function (Line 2 of Algorithm 5),
and then retrieved by the MapIn function (Line 8 of Algorithm 6).

To make these definitions easier to understand, we provide two examples:
the default reactive Mealy hierarchical unit presented in the sub-previous
section, and the algebraic loop semantic adaptation that involves the obstacle
and window_sa units of the power window example (loop_sa).

The default reactive Mealy hierarchical unit can be informally described
as follows:

e the state x4 of the semantic adaptation includes the previous inputs

of the internal units;

e the Init function is analogue to the one described in Algorithm 2;

e the In, MapIn, MapOut, and Out, are roughly identity functions;

* and the Ctrl function implements the body of F, in Algorithm 4;
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Formally, functions Init and Ctrl are defined in Algorithm 7, and:

In([w"m Lectrl, mout]T s Uezt> = Ueqt

MapIn([Tin, Tctrl, Tout] , h, dt) =

[, ..., 6n)" , With @; = T4,
T T (6)
MapOUt([wzna Letrly wout] 3 [yla DRI ay’n] 7h7 dt) =
T
[yla s 7yn]

Ouﬁ([ﬂ:m, Letrl, xout]T) = Lout

The second example refers to the adaptation loop_sa, which essentially
performs a fixed point iteration between the obstacle and window_sa units,
computing improved values for their input/outputs via successive substitu-
tion.

The external FMU, called loop_sa in Figure 5 is a reactive Moore unit, and
has an input e, € R? with two dimensions — displacement and speed —
and one output - tau. Whenever the state transition of the external FMU is
called, a successive substitution is performed between the two internal units,
using the most recently found value of disp as an initial guess. Formally, let
the index 1 refer to the window_sa unit, and 2 to obstacle, so that, e.g., ucs
refers to the input to the obstacle unit. For the sake of simplicity, we assume
that the system starts with all inputs/outputs being zero. Then, the functions
that characterize the adaptation are shown in Equation (7). Note that had we
not assumed that the system starts with zero inputs/outputs, the Init would
have to compute a fixed point iteration to find a consistent initial state. This
is possible with our formalization.

The next section describes a DSL for the definition of such semantic
adaptations. The examples provided in that section clarify the need for the
semantic adaptation functions defined in the current section.

Init(weqr) = [0, 0,0, Init,(0), Inits(0)]"
In([wma Ltrl, $out]T s uezt) = Ueqt
Map[n([w'm; L ctrls xout]T , h, dt) = [xin7 O]T
o

(7)

MapOut([wzna T etrl, wout] Y1, yZ]T 9 ha dt) =Y1

v (1 0 0
Out([wzna wctTlvwout] ) = |:O 1 0:| Tout
Ctrl is defined in Algorithm 8

21



5 A DSL for Semantic Adaptation

We introduce a DSL for the specification of the set of rules introduced in
the previous section (which form a semantic adaptation). Since research in
semantic adaptation is ongoing, the language should be expressive enough to
cover future semantic adaptations. Additionally, the implementation should
not violate the modularity and transparency principles.

To these ends, the DSL. — named baseSA— mixes imperative concepts
with convenient functions that perform common operations on simulation
units. A description made in this DSL can be used to generate hierarchical
units.

The language and the examples used in this paper are available for
download*.

The baseSA allows the description of the internal FMUs and their cou-
plings (that is, the internal scenario as described in Equation (3)), and how
semantic adaptation rules (Init, In, MapIn, Ctrl, MapOut, and Out), are
implemented.

The remainder of this section is organised as follows. First, the baseSA
DSL is introduced by describing the semantic adaptations of the running ex-
ample and what their intended meaning is. Then, a more detailed description
of the language (syntax and semantics) is provided.

5.1 The baseSA DSL

5.1.1 The window_sa adaptation.

1 semantic adaptation reactive mealy WindowSA windowSA
2 at

3
1+ for inner fmu Window window

5 at

6 with input ports displacement (rad), speed (rad/s), reaction force (N)
7 with output ports height (cm), reaction torque (N.m)

o output ports disp (m) <- window.height, tau
10

11 out rules {

12 true > {} ->{

13 windowSA.tau := -window.reaction force;
EE H

15 }

Listing 1: The simple data adaptation window_sa in baseSA.

Listing 1 shows the baseSA definition of the semantic adaptation that
generates the window_sa in Figure 5. The first few lines (Line 1 and 2 in the
example) of any description, declare the name of the semantic adaptation
and where the resulting external FMU will be generated.

*https://msdl.uantwerpen.be/git/claudio/HybridCosimulation
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Following that, the internal scenario is declared. The example listing
(Lines 4 - 7) declares a single internal FMU and its ports.

baseSA descriptions work by exclusion: the user only specifies what
needs to be changed, and the rest is assumed from the information provided.
Hence, Listing 1 only needs to declare the output ports of the external
FMU (disp and tau), in Line 13, and how they get their values: disp gets its
value implicitly from the height port, and tau gets its value explicitly (via the
specification of output rules).

Lines 11-15 declare the output rules. These specify how the tau output
port of the external FMU gets its value, and this is done by assigning it the
value of the reaction_torque output port, of the window FMU. The examples
declares a single output rule, but in general multiple output rules can be
declared. In general, each output rule has three parts: a condition, a
MapOutRule part (syntactically preceded by “->”), and a OutRule part
(syntactically preceded by “~>"). The condition decides whether the rule
should be applied, and the other two parts contribute to the definition of the
corresponding functions MapOut and Out, respectively.

Following the exclusion principle, Listing 1 omits several bits of infor-
mation about the external FMU, that are required for a full definition of a
semantic adaptation: input ports; Init function; In function; MaplIn function;
and Ctrl function;

In general, this information is assumed by applying multiple conventions,
detailed in Section “Semantics”. The intended behavior is to follow the
default hierarchical unit definition wherever the information is omitted
(recall Equation (6) and Algorithm 7). For the example in Listing 1, the
following is applicable:

¢ The external FMU (windowSA) has an input port for every input port of
any internal FMU that has no incoming connection. This means that
windowSA has three input ports, each bound to the corresponding input
port of the internal FMU window.

¢ Each of the input ports of the internal FMU that have no incoming
connections, gets its value from the corresponding external input port
declared by the previous convention. The implementation of bindings
is made via a storage variable. In Listing 1, this means that an extra
input rule is created to encode the transfer of values. The input storage
variables are also created.

¢ Any output variable bindings are realized in a manner similar to the
previous convention: add an output rule and declare the necessary
output variables to perform the transfer of values.

* Any expression referring ot the output of any internal FMU, in the
Out part of an output rule, is assumed to refer to the storage variable
with the most recent value of that output (output variables are created
for the outputs of each internal FMU). In Listing 1, this means that
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26

window.reaction force, in Line 13, gets replaced by a reference to an
output variable.

» After applying the previous two conventions, the implicit bindings are
removed.

semantic adaptation reactive mealy WindowSA windowSA
at

for inner fmu Window window
at
with input ports displacement (rad), speed (rad/s), reaction force (N)
with output ports height (m), reaction torque (N.m)

input ports reaction force,
displacement,

speed

output ports disp,
tau

paran  INIT_WINDOWSA_REACTION_FORCE := 0.0,
INIT_WINDOWSA DISPLACEVENT := 0.0,
INIT_WINDOWSA_SPEED := 0.0,
INIT_WINDOW_REACTION_TORQUE := 0.0,
INIT_WINDOW_REACTION HEIGHT :=0.0;

control rules {
var H.window := do_step(window, t, H);
return H_window;

5}

27 invar stored windowsa_reaction_force := INIT_WINDOWSA REACTION_FORCE,

stored windowsa_displacement := INIT_WINDOWSA DISPLACEVENT,
stored windowsa_speed := INIT_WINDOWSA_SPEED;

in rules {
true > {
stored windowsa_reaction_force := windowSA.reaction_force;
stored windowsa displacement := windowSA.displacement;
stored windowsa_speed := windowSA.speed;
}-> o
window. reaction force := stored windowsa_reaction force;
window.displacement := stored windowsa displacement;
window.speed := stored windowsa_speed;
}
}

3 out var stored window_reaction torque := INIT_WINDOW REACTION TORQUE

stored window_height := INIT_WINDOW_REACTION_HEIGHT;

out rules {
true -> {
sto