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The OntoNotes project is creating a corpus of large-scale, accurate, and integrated anno-
tation of multiple levels of the shallow semantic structure in text. Such rich, integrated
annotation covering many levels will allow for richer, cross-level models enabling sig-
nificantly better automatic semantic analysis. At the same time, it demands a robust,
efficient, scalable mechanism for storing and accessing these complex inter-dependent
annotations. We describe a relational database representation that captures both the
inter- and intra-layer dependencies and provide details of an object-oriented API for
efficient, multi-tiered access to this data.
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1. Introduction

The OntoNotes project is addressing the challenge of large-scale, accurate, and
integrated annotation of multiple levels of the shallow semantic structure in text.
Experience has shown that when individual levels like syntactic parse structure,
propositional structure, and semantic role labels can be annotated with high con-
sistency (inter-tagger agreement, or ITA), then machine learning models can also
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be implemented to predict those structures with only somewhat lower accuracy.
The premise of OntoNotes is that integrated annotation covering many levels will
allow for richer, cross-level models enabling significantly better automatic semantic
analysis.

Given that goal, the mechanism used to store and access the annotation becomes
a key part of the research, and not just a tool support issue. The representation
has to correctly capture the dependencies between the different annotation layers,
so that consistency can be maintained across layers. The representation also has to
allow for unified access, so that cross-layer features can be used in the integrated
predictive models that will make use of these annotations. This paper describes
how we have addressed the research challenge of modeling such multi-layer annota-
tions, with complex, cross-layer dependencies, while providing efficient, convenient,
integrated access to the data.

2. OntoNotes

The OntoNotes project [7] is a multi-year, collaborative effort between BBN Tech-
nologies, the University of Colorado, the University of Pennsylvania, and the Uni-
versity of Southern California’s Information Sciences Institute.

2.1. Data

OntoNotes 2.0 consists of newswire and broadcast news data from two languages —
English and Chinese. The English portion is a 300k word, approximately 600 doc-
uments collection from the non-financial news portion of the Wall Street Journal
(WSJ), and about 200k word, approximately 950 documents from a collection of
broadcast news sources such as CNN, ABC, NBC, etc. The Chinese newswire por-
tion is a 250k word collection comprising 325 documents from the Xinhua and
about 80 documents from the Sinorama magazine. The broadcast news portion
comprises about 300 k word, approximately 1200 documents from news sources such
as CBS, CNR, CTV, etc. These documents are annotated with the following layers
of information:

(1) Syntax — A syntactic layer representing a revised Penn Treebank [1, 10].

(2) Propositions — The proposition structure of both verbs and nouns in the
form of a revised PropBank [1,13].

(3) Word Senses — Coarse grained word senses are tagged for the most frequent
polysemous verbs and nouns, in order to maximize coverage. The word sense
granularity is tailored to achieve 90% inter-annotator agreement as demon-
strated by Palmer et al. [12].

(4) Names — The corpus was tagged with a set of 18 proper name entity types that
were well-defined and well-tested for inter-annotator agreement by Weischedel
and Brunstein [19].

(5) Coreference — General anaphoric coreference that spans a rich set of entities
and events — not restricted to a few types, as has been characteristic of most
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coreference data available until now — has been tagged with a high degree of
consistency. Attributive coreference is tagged separately from the more common
identity coreference [16].

(6) Ontology — The Ontology is a refinement over the Omega ontology [14] and
is composed of an upper model — which is a network of concepts, and a col-
lection of sense pools which identify more fine-grained notions in the meaning
space. Each sense pool represents a manually selected collection of synonymous
OntoNotes senses of different words, which are then connected to the relevant
concepts in the upper model. The creation and verification of the sense pools
is described in Yu et al. [20].

For a more detailed description of the different layers, the reader is referred
to Hovy et al. [7].

2.2. The challenge

To the best of our knowledge, this is the first time that an attempt has been made to
integrate so many different, rich, layers of syntax and semantics. Although, in combi-
nation, we had decades of experience in annotating the individual layers (excluding
coarse grained word sense, and general anaphoric coreference), we had no mecha-
nism for integrating them. This posed a significant challenge as it is more or less an
open problem, and there exist no off-the-shelf resources that can be used to meet
this end.
The questions that this level of integration pose are:

(1) How do we ensure that all the components are consistent with each other? The
types of inconsistencies that we encounter in this process are two fold: (i) Those
that challenge the underlying assumptions and mechanics of the annotation dif-
ferences and require a careful revision of the inter-connecting components, and
(ii) Those that are more technical (engineering/formatting) in nature. Although
there is no silver bullet for solving either one, a solution to the latter can signif-
icantly alleviate problems encountered during representational manipulations.

(2) How do we distribute all these different layers of data? Should we distribute
them as independent pieces and leave the task of assembling them to the end
user or, do we provide an integrated representation that greatly simplifies the
dissemination of this rich information? If the latter, what would be the best
way to accomplish this?

(3) What type of representation would best facilitate the use of this information as
training data for systems that will be incorporated into applications with their
own knowledge sources? Can this representation also support leveraging these
additional knowledge sources during the training process?

2.3. Properties of an ideal solution

Since these layers represent related linguistic information, there is a high degree
of interconnection between them. To begin with, the PropBank annotations are
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defined over nodes in the Treebank. Most® of the coreference links have also been
defined, by design, over the nodes in the Treebank. Vital information relating to
the interpretation of each word sense, including its relation to the WordNet senses,
their argument structure, as well as the constraints imposed on arguments by the
particular semantic frame that a predicate invokes, are captured in the sense inven-
tory and frame files. In short, the information required to interpret the semantics
of a sentence is spread over several different files, and without some mechanism to
control this information, it can easily become asynchronous.

An ideal solution would be one that combines this information in an integral
whole which allows an end-user to both easily interpret all the vital connections
as well as to easily manipulate the information. The representation of such layers,
we believe, should provide a bare-bones structure independent of the individual
semantics with the following properties:

(1) Efficiency — It should efficiently capture both intra- and inter-layer semantics

(2) Independence — It should maintain the independence of each annotation
layer. Any component should be replaceable with a parallel representation. For
example, it should allow replacing PropBank with FrameNet [3]. That is, as
long as the parallel representation exhibits the same core properties, it should
be easily incorporable into the whole.

(3) Flexibility — It should provide mechanisms for flexible integration. For exam-
ple, it should accommodate a change in representation of, say, propositions over
spans of text instead of over nodes of a given syntactic representation.

(4) Granularity — It should be integrated at a level of granularity so as to allow
relatively easy integration of more components.

(5) Robustness — It should capture first-order, or primary connections between
the components in such a way that secondary connections do not become incon-
sistent upon a superficial change in representations.

(6) Queriability — It should facilitate cross-layer queries.

(7) Versioning — It should not be limited to storing the annotations themselves,
but should manage different versions and hypotheses generated by automatic
systems, allowing them all to coexist.

3. A Solution

We have developed a representation which we believe possesses all the above quali-
ties to a more or less satisfactory degree: a relational database representation that is
used to define and store the required semantics underlying the data, and an object
layer which allows for intuitive manipulation of this data.

aSome entities/events constitute subparts of the relatively flat NP structure in the Treebank and
have to be defined over word spans instead of corresponding to nodes.
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3.1. Relational layer

The main reason for using a relational database representation is that it allows
for flexibility of design and provides an objective language to efficiently specify
all the interconnections in the form of its schema. Furthermore, there exist time-
tested mechanisms to deal with the problem of maintaining consistent states of each
layer, and at the same time allow for concurrent modifications to individual layers.
In short, this is done by defining dependencies through the use of Primary and
Foreign keys over database tables. The reader can find this information discussed
in depth in any standard text book on the subject of relational databases.

The entity relationship diagram for the database is shown in Fig. 1. The
tables shown are divided into six logical blocks depending on the type of linguistic
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Fig. 1. Entity-relationship diagram of the OntoNotes database.
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annotation that they represent: (i) The corpus itself, (ii) Treebank, (iii) PropBank,
(iv) Word Sense, (v) Names, (vi) Coreference and (vii) Ontology. Each of the annota-
tion schemes adds meta-information to the corpus. The lowest common granularity
of annotation is represented by the Treebank tokens,” rather than the more preva-
lent character-based indexing of several existing corpora, significantly simplifying
the visualization and manipulability of the data. If required, the token-based index-
ing scheme allows for dereferencing to lower levels of atomicity without affecting the
interface between the corpus and other layers of annotation. This could be achieved
by the addition of a table that maps to the lower level, thus providing a comfort-
able degree of encapsulation. This tokenization is particularly well-suited for the
existing layers of annotation as they take the Treebank tokenization as a basis of
dereference. There are a few exceptions; for example, in the case of coreference for
about 2% of the cases an entity is (most likely) a subpart of one of the flat-NPs
that the Treebank realizes. This requires only the addition of a derivable layer of
token-based offsets. In the case of names, although the original annotation is based
on token-offsets, about 93% of the names actually align with the existing nodes in
Treebank. In such an instance, we provide a derived layer of nodes corresponding to
the named entities. In short, the database captures the primary level of granularity
and allows for the flexibility of adding derived layers for better interpretation when
necessary.

In reviewing the design, note that all the tables with the suffix _type indicate
tables that only store type information. The others represent instance tables where
instances, instead of just the type information, are stored. Various cardinalities
such as one-to-one or one-to-many relationships are shown using the crow’s feet
style of representation. The ontonotes table contains the id for the OntoNotes cor-
pus. This is associated with the many subcorpora that represent it — identified
by the subcorpus table. The subcorpus contains many files captured in the file
table, which in turn contain one or more documents (the document table). The doc-
ument then contains one or more sentences (the sentence table). This now puts a
structure on the raw text which we are embellishing with layers of linguistic infor-
mation. The second logical block is the Treebank. Here at the center lies the tree
table which represents a general case of trees, nodes and leaves. The root tree has a
NULL parent whereas the leaves have NULL children. Hierarchical information is cap-
tured through table recursion. The meta-information on the tree nodes is captured
in the compound function_tag and function_tag type tables. There can be more than
one function tag associated with a node in the tree, and many nodes associated with
the same function tag type — known as a many-to-many relationship in database
terms, and the design principles dictate the generation of a link table which we call
the compound_function_tag table and which contains a composite primary key which
is made up of two foreign keys: one being the primary key of the function tag type

bWords tagged with part of speech in the Treebank.
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table; and the other being the primary key of the tree table. For the sake of gener-
ality, each tree has an associated token and other syntactic information such as the
part of speech type (pos_type table), the phrase type (phrase_type table), the trace
chain (syntactic_link table). The reason for giving the latter table a more general
name is that it is also used to capture links from the propositions as indicated by
the reference to the argument_id.

The PropBank logical block captures the propositional annotation. Here, at the
center lies the proposition table which has associated with it a predicate and one or
more arguments. Both the predicate as well as the arguments exhibit a many-to-many
relationship with the nodes in the Treebank. Therefore, we create two more link
tables predicate node and argument node. predicate_type and argument_type tables
capture the respective type information. Each predicate in the PropBank invokes
a semantic frame and that determines which of its core arguments such as ARGO,
ARc1, etc. can be legally associated with that predicate as well as the semantics of
those arguments. This frame type is represented in the pb_sense_type table, and the
pb_sense_type_argument_type serves as the link table. This in turn is connected across
the logical boundary to the on_sense_type_pb_sense_type table in the Word Sense
portion of the database. What this means is that the OntoNotes sense type has a
many-to-many mapping to the PropBank frame sense. A similar relationship to the
WordNet senses is captured in the wn_sense_type and on_sense_type_wn_sense_type
and the wn_sense_type tables.

Names are represented with the name_entity and name_entity_type tables in the
logical block called Names, and the tables coreference_chain and coreference_link
capture the coreference chains and links within each document in the corpus. The
coreference_chain type and coreference link type store the respective type infor-
mation. As mentioned earlier, most of the coreference links and names correspond
to a node in the tree, and that information is stored as tree_id in the respective
table where applicable, or NULL otherwise.

Finally, the ontology is represented within the Ontology logical block. In the
database schema, the concept_sensepool_type table represents the concepts and
sense pool types. At some fundamental level, the concept and sense pool repre-
sent points in the meaning space, therefore, in order to avoid separation of similar
logic, and thereby fragmentation of tables in the database, we choose to create one
composite table for both the entity types and use the class attribute to distinguish
between the two. Each concept and sense pool can have multiple parents as well
as children. Furthermore, each concept and sense pool can potentially exhibit a
similarity that does not justify hierarchical relationship, or membership, and these
similarities are captured using a “related” link. Since these interconnections exhibit
a many-to-many property, the obvious choice in the relational world is to create
link tables, which are the concept_sensepool relation and concept_sensepool_parent
table respectively. One more thing that remains is the connection of the ontology to
the OntoNotes word sense portion which is captured in the sensepool_sense table
which contains pointers to the individual OntoNotes senses that comprise the sense
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pool. There were a few stages in the design process where we could have imposed
some hard constraints on the relations, such as — a concept can only have another
concept, and not a sense pool, as it parent; or, imposed a mutual exclusion con-
straint on the membership of senses in a sense pool, but we refrained from adding
such constraints since the OntoNotes ontology is still in developmental stage, and
it might not be wise to back-propagate any such constraints from the physical data
design to the conceptual level. We would like to let the refinement of the ontology
generate such constrains, if necessary.
We used the MySQL database to realize the database design.

3.2. Object layer

A well-defined relational layer provides a clear foundation for designing the object
layer. To facilitate a better design of the object layer, we took the following decisions:

(1) We decided to trade-off database normalization for database design elegance
and integration with the object world. Therefore, we did not normalize the
tables beyond the first normal form.

(2) We decided to create a composite primary key for each table rather than using
auto-increment, or using a database generated composite primary key. The goal
here was seamless integration between the relational and object world. This
meant that the database primary keys can also be used to index the objects
in the respective containers. Another advantage of this is that the keys by
themselves have a lot of semantic value and a person looking at them can, to
some extent, decipher what it represents.

In the object design, almost every database table corresponds to an object with
the database columns representing part of the attributes. There is almost always
more derived information required for logical manipulation that is part of an object
which is not in the database table itself. This resonates with the original plan of
having only the bare-minimum of information needed to represent the data in the
database. If required, more complex logic can be easily built in the object layer.
Also, more often it is the case that the objects inside container objects are skeletal
representations of those objects thus maintaining component independence.

Depending on the interface requirements of a particular application, the level of
detail in each object can be altered to meet various needs. As an example, the word
sense of a lemma can be tagged to be “1” but that “1” actually represents the sense
“1” which has various attributes associated with it, such as its definition, the asso-
ciated PropBank frame groups, the associated WordNet sense groups, etc. This is
achieved by just accessing the sense_inventory class which centralizes information
for each lemma and their senses, mappings, etc. This has an alternative benefit of
avoiding possible redundancy and therefore inconsistency. Figure 2 shows the UML
representation of part of the package on.corpora which comprises, among others,
the modules on.corpora.tree and on.corpora.proposition. The argument_part class
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Fig. 2. UML representation of the modules on.corpora.tree and on.corpora.proposition
which represents the Treebank and PropBank, respectively.

represents the information in the argument node table. The argument_analogue rep-
resents the table with the same name in the database world, and it captures the fact
that an argument can be represented by multiple nodes in the tree — a trace node,
which points to possibly another trace node which points to the actual node that
identifies the string that the argument is represented with. All three, in the Prop-
Bank world, are considered to be equivalents of the same argument. Therefore the
name “argument_analogue”. The attribute argument_analogue_index is in order to
maintain the directional association between these equivalent arguments. Further-
more, each layer is provided with application level logic to integrate itself with the
other layer that it has an integral connection with. For example, in this particular
case, owing to the centrality of the Treebank the propbank and on_sense classes have
been provided with enrich_treebank methods which make the necessary connections,
thus forming full-fledged objects. Whereas, name_bank, and coreference_bank have
been provided with enrich_align treebank methods that try to align the token spans
with nodes in the tree when there exists one.

More details on the design can be found in the ontonotes-db-tool API that
has been submitted for distribution with the corpora. The Python programming
language has been used to implement the object layer.
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4. Interaction Lifecycle

We will take a brief look at a typical interaction between the raw data, database,
and object layers. A few lines of code allow a pre-defined corpus file-structure to be
read and converted into objects. The application logic could identify several errors
and inconsistencies in the raw data that are encountered during object creation.
These are mostly at the independent object level. Upon successful object creation
they are written to the database. The constraints imposed by the data model in the
database possibly identify some more intra or inter-layer inconsistencies ensuring
that the data that gets stored in the database is clean and consistent. Figure 3
graphically depicts this cycle. Each object uses its write_to_db(cursor) method
to write itself to the database. The top-level container contains the overall logic
whereas the intermediate containers know how to write themselves to the database
and these methods are delegated from top down to achieve the desired result. Once
the data is in the database the ontonotes-db-tool API can then be used to read
in the database, and generate the objects from it. All top level containers know
how to re-create the full-fledged objects and pointers to objects as required. This is
possible through the from_db(cursor) method.

In a typical database initialization lifecycle, the raw data will be read and written
to the database iteratively until all the errors and inconsistencies are solved. When

s

Errors and

inconsistencies /
Clean Data

Raw
Data

AN
) clean view
_ Clean objects
clean view
L7 .
clean view

Fig. 3. Interaction lifecycle between the raw data and extracted information.
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the data in the database is stable, most likely a lifecycle would involve reading the
database and converting it into objects and performing the required manipulations.
This manipulation can be done at three different levels — (i) using generated objects
only; (ii) using SQL queries only, (iii) combining both to achieve the simplest data
manipulability.

5. Benefits of This Architecture

Let’s say the user wishes to find an answer to the following question — What
is the distribution of named entities that are ARGOs of the predicate “say”? The
pseudocode outlined in Fig. 4 shows how you could accomplish that using a com-
bination of SQL and object-level manipulation. Without the current architecture,
this manipulation would have required significant pre-processing by each end-user,
requiring possible re-interpretation of the underlying semantics of the data itself,
and a possible introduction of errors therewith.

While synchronizing and revising the Treebank and PropBank annotations,
there were several cases of well-defined changes such as: (i) if an NP represent-
ing an ARGM argument, is dominated by a PP, which is dominated by a VP that
is the parent of the predicate, then the ARGM label is transferred from the NP
to the dominating PP; (ii) if an argument tagged on an NP is dominated by an
SBAR, dominated by a WH-phrase, then a separate semantic link (SLINK) is cre-
ated that links the ARG label on the WH-pronoun to its referent, the latter of
which was previously directly tagged as an argument of the predicate; (iii) traces
are inserted to address some synchronization issues; (iv) argument attachments, and

Procedure: get_name_entity_distribution(a_arg_type, a_predicate_lemma)

Load OntoNotes database
for all proposition € on.proposition.proposition_bank.propositions() do
if proposition.predicate.lemma == a_predicate_lemma then
(arg-type, arg-id)«—get_arg_info(“select * fron argument where proposition_id = proposition.id”)
for all arg_type € arg_types do
if arg_type == a_arg_-type then
node_id«get_arg_node_id(“select * fron argument_node where argument_id = argument.id”)
document_id <« proposition.document_id
sentence_id <« proposition.sentence_id
document « on.tree.treebank.get_tree_document(document_id)
tree «— document.get_tree(sentence_id)
node « tree.get_subtree(node_id)
name_entity_type «— node.name_entity
name_entity _hash[name_entity_type] < name_entity_hash[name_entity_type] + 1
end if
end for
end if
end for

e e e e

—_
©

return name_entity_hash

Fig. 4. Pseudocode for performing a cross-layer query on the representation using the
ontonotes-db-tool API.
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therefore phrase attachments were altered. More of such changes are mentioned in
[1]. All these changes required some degree of change to the Treebank, and there-
fore all the pointers in PropBank annotation had to be revised to be consistent
with the Treebank. Since we did not have this tool/representation when we per-
formed these merges, it was quite a painful and kludgy experience. There are tools
such as TSurgeon, which do allow arbitrary manipulations of tree structures, but fail
to be very useful in such cases where multiple representations are simultaneously
affected, and have to be synchronized. In light of this new representation and API,
those changes would be extremely easy.

We used the OntoNotes data in the Lexical Sample WSD task of the SemEval
competition [15]. It was extremely easy to format the word sense information from
OntoNotes to conform to the predetermined Semeval lexical-sample task format.

The amount of coreference annotation in OntoNotes was richer and more in
quantity than any other effort in the past. However, the tool that we used was a
generic tool called “Callisto”® developed at MITRE. Although it is a very flexible
tool, it does not provide mechanisms to add data-level consistency checks based on
the semantics of the individual tasks that you use it to accomplish. One recurring
manifestation of this limitation was that annotators could erroneously add a corefer-
ence link to multiple coreference chains. To correct this, we added a quality control
step which comprised of trying to add the annotated documents to the database, and
inserted a routine using the DB-API, that created a report of multiple-link errors,
which the annotators could easily read, and edit the coreference chains accordingly
to eliminate the inconsistencies. This process was repeated until no errors were
identified while loading a document to the database.

Even in the well established, and heavily-used Penn Treebank, we identified
some orphan, or duplicate traces that were subsequently corrected. This process
identified many more such cases in the Chinese Treebank, which are relatively new
and unexplored by the community — especially since automatic parsers typically
tend to ignore this information and not reproduce it.

Last but not least, annotation tools can be built using this representation as
their backend, and tools could be easily written to visualize this complex data
fairly easily.

6. Related Works

Although this is probably the first attempt at combining so many different layers
together, the importance of this goal has already been recognized by the community
and attempts have been made to reach a consensus; most notably by the formation
of the ISO/TC 37/SC 4 standard by the International Standards Organization. This
standard identifies principles and methods for creating, processing and managing
language resources [9]. A working group within this standard WG1-1 has been trying
to put together a Linguistic Annotation Framework (LAF) that can serve as a basis

Chttp://callisto.mitre.org/
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for harmonizing existing language resources. However, the bottomline is that this is
a framework, and whoever wants to conform to that has to define the schemas and
write translation routines to convert their data into the required representation —
which is a form of feature structure graph. We envelope our specific six layers
by efficiently capturing their internal semantics at a skeletal level and provide an
object-level representation that could be easily translated into any format that
might evolve from this standard.

Another feature structure representation — GLARF [11] tries to capture infor-
mation in various Treebanks, and also tries to superimpose some predicate argument
structure. This technique is more representation centric — trying to capture a union
of various individual representations, however, as per our understanding, without
any means of easy access to the data. It is also not clear how it would extend to
accommodating more layers of semantic information.

An additional significant effort is the Unified Linguistic Annotation (ULA)
project [17] which is also a collaborative effort aimed at merging several existing
semantic annotation efforts: PropBank, NomBank, Coreference, the Penn Discourse
Treebank, and TimeBank. Crucially, all individual annotations are being kept sep-
arate in order to make it easy to produce alternative annotations of a specific type
of semantic information (e.g., word senses, or anaphora) without needing to mod-
ify the annotation at the other levels. One of the main goals of this project is to
eliminate any theoretical incompatibilities between the different layers.

In the past, database representations have been used to store individual anno-
tation layers as in the case of FrameNet [2] as well as WordNet. However, they are
restricted to predicate argument structures and pure ontological representations,
respectively. Neither of them have provided native layers of API for easy manip-
ulation. The distribution is a collection of XML documents, so end-users have to
write routines to read and manipulate the data themselves. Recently, as part of
the Unstructured Information Management Architecture (UIMA) [8] effort, IBM
has introduced a mechanism called Common Analysis System (CAS) [5] that allows
definition of annotation types and serialization as well as querying capabilities. To
our knowledge, it has not yet been widely used, or reported, so a detailed comparison
is not possible at this time.

Two other works that comes closest to ours in terms of the types of annotations
and corpora itself, are the Prague Dependency Treebank [6] and the Salsa project
[4,18]. However, even these do not include word senses, their connections to the
Ontology, and a full range of coreference. Neither do they address additional lan-
guages (Chinese and Arabic) and genres (Broadcast News, Talk Shows, etc.) that
we address.

7. Conclusions

In conclusion, we have created a corpus with various levels of semantic infor-
mation integrated in one big database. This process identified several levels of
inconsistencies that were resolved, ensuring a clean, consistent final product.
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The relationships between all the layers and within the layers themselves is effi-
ciently captured in the database schema. We have also provided an object layer
on top of the database layer, written in Python, which can flexibly manipulate the
data at the level of the database or as objects, to extract information across lay-
ers which was not easily possible before. It can also produce the individual layers
by themselves as well as a human readable representation. All this is available for
distribution through the Linguistic Data Consortium (LDC). This should facilitate
defining custom views of the data as well as extracting cross-layer features for use
in predictive models, neither of which was easily possible previously.

Acknowledgments

We gratefully acknowledge the support of the Defense Advanced Research Projects
Agency (DARPA/IPTO) under the GALE program, DARPA/CMO Contract No.
HRO0011-06-C-0022.

References

[1] Olga Babko-Malaya, Ann Bies, Ann Taylor, Szuting Yi, Martha Palmer, Mitch Mar-
cus, Seth Kulick, and Libin Shen, Issues in synchronizing the English treebank and
propbank, in Workshop on Frontiers in Linguistically Annotated Corpora 2006, July
2006.

[2] Collin Baker, Charles Fillmore, and Beau Cronin, The structure of the framenet
database, International Journal of Lezicography 16(3) (2003) 281-296.

[3] Collin F. Baker, Charles J. Fillmore, and John B. Lowe, The Berkeley FrameNet
project, in Proceedings of the International Conference on Computational Linguistics
(COLING/ACL-98), Montreal (1998), ACL, pp. 86-90.

[4] Katrin Erk and Sebastian Pado, A powerful and versatile xml format for representing
role-semantic annotation, in Proceedings of LREC, 2004.

[5] T. Gotz and O. Suhre, Design and implementation of the uima common analysis
system, IBM Systems Journal 43(3) (2004).

[6] Jan Hajic, B Vidova-Hladka, and P. Pajas, The prague dependency treebank: Anno-
tation structure and support, in Proceeding of the IRCS Workshop on Linguistic
Databases (2001), pp. 105-114.

[7] Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph
Weischedel, OntoNotes: The 90% solution, in Proceedings of HLT/NAACL, New York
City, USA, June 2006. Association for Computational Linguistics, pp. 57—60.

[8] IBM. Unstructured information management architecture (UIMA) — http://www.
research.ibm.com/uima, 2005.

[9] Nancy Ide and Laurent Romary, International standard for a linguistic annotation
framework, Journal of Natural Language Engineering 10(3-4) (2004) 211-225.

[10] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz, Building a
large annotated corpus of English: The Penn treebank, Computational Linguistics
19(2) (1993) 313-330.

[11] Adam Meyers, R. Grishman, M. Kosaka, and S. Zhao, Covering treebanks with glarf,
in ACL/EACL Workshop on Sharing Tools and Resources for Research and Educa-
tion, 2001.

[12] Martha Palmer, Olga Babko-Malaya, and Hoa Trang Dang, Different sense granulari-
ties for different applications, in Robert Porzel, editor, HLT-NAACL 2004 Workshop:



(16]

(17]

(19]

20]

OntoNotes: A Unified Relational Semantic Representation 419

2nd Workshop on Scalable Natural Language Understanding, Boston, Massachusetts,
USA, May 2 — May 7 2004. Association for Computational Linguistics, pp. 49-56.
Martha Palmer, Daniel Gildea, and Paul Kingsbury, The Proposition Bank: An anno-
tated corpus of semantic roles, Computational Linguistics 31(1) (2005) 71-106.
Andrew Philpot, Eduard Hovy, and Pantel Patrick, The omega ontology, in Proceed-
ings of the ONTOLEX Workshop at IJCNLP, Jeju Island, South Korea, October
2005.

Sameer Pradhan, Edward Loper, Dmitriy Dligach, and Martha Palmer, Semeval-
2007 task-17: English lexical sample, srl and all words, in Proceedings of the Fourth
International Workshop on Semantic Evaluations (SemEwval-2007), Prague, Czech
Republic, June 2007. Association for Computational Linguistics, pp. 87-92.

Sameer Pradhan, Lance Ramshaw, Ralph Weischedel, Jessica MacBride, and Linnea
Micciulla, Unrestricted coreference: Indentifying entities and events in ontonotes, in
Proceedings of the IEEE International Conference on Semantic Computing (ICSC),
September 17-19, 2007.

James Pustejovsky, Adam Meyers, Martha Palmer, and Massimo Poesio, Merging
PropBank, NomBank, TimeBank, Penn Discourse Treebank and coreference, in Pro-
ceedings of the Workshop on Frontiers in Corpus Annotations II: Pie in the Sky, Ann
Arbor, MI, June 2005.

Dennis Spohr, Aljoscha Burchardt, Sebastian Pado, Anette Frank, and Ulrich Heid,
Inducing a computational lexicon from a corpus with syntactic and semantic anno-
tation, in Proceedings of IWCS-7, 2007.

Ralph Weischedel and Ada Brunstein, BBN pronoun coreference and entity type
corpus LDC catalog no.: LDC2005T33. BBN Technologies, 2005.

L. C. Yu, C. H. Wu, A. Philpot, and E. H. Hovy, Ontonotes: Sense pool verification
using google n-gram and statistical tests, in Proceedings of the OntoLex Workshop at
the 6th International Semantic Web Conference (ISWC' 2007), 2007.



