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Abstract

Inverted indexes in image retrieval not only allow fast
access to database images but also summarize all knowl-
edge about the database, so that their discriminative ca-
pacity largely determines the retrieval performance. In
this paper, for vocabulary tree based image retrieval, we
propose a semantic-aware co-indexing algorithm to jointly
embed two strong cues into the inverted indexes: 1) local
invariant features that are robust to delineate low-level im-
age contents, and 2) semantic attributes from large-scale
object recognition that may reveal image semantic mean-
ings. For an initial set of inverted indexes of local features,
we utilize 1000 semantic attributes to filter out isolated im-
ages and insert semantically similar images to the initial
set. Encoding these two distinct cues together effectively
enhances the discriminative capability of inverted indexes.
Such co-indexing operations are totally off-line and intro-
duce small computation overhead to online query cause
only local features but no semantic attributes are used for
query. Experiments and comparisons with recent retrieval
methods on 3 datasets, i.e., UKbench, Holidays, Oxford5K,
and 1.3 million images from Flickr as distractors, manifest
the competitive performance of our method 1.

1. Introduction

As the well-known saying goes, “A picture is worth a
thousand words”, images generally convey large amount of
information. This leads to one fundamental challenge to
content-based image retrieval: retrieval algorithms have no
clue which subset of the “thousand words” in a query that
a user is searching for. For instance, the query in Fig. 1
shows a rocky coast, then is the user searching for the exact
location, rocks of similar shapes, or any coastal scene?

There are three major lines of image retrieval algorithms.
All of them have to resort to various assumptions and search
criteria to find candidate images, i.e., searching for exact

1This work was supported in part to Dr. Qi Tian by NEC Laborato-
ries of America, ARO grant W911NF-12-1-0057, NSF IIS 1052851, 2012
UTSA START-R Research Award, and NSFC 61128007.

The query

Figure 1. A sample query from the Holidays dataset: retrieval
using a vocabulary tree of local features (first row); retrieval using
1000 semantic attributes (second row); retrieval based on co-
indexing of both local features and semantic attributes (third row).

or near-duplicate images [14] by identifying similar local
features [13]; finding similar images [20] by comparing
hashing codes [21] of global features like GIST [15]; or re-
trieving objects of the same category by classifying images
to multiple classes or attributes [5, 22, 2, 25]. This raises a
natural question that how one retrieval method might take
into account of multiple criteria in finding the candidates,
e.g., returning near-duplicates to a query if presented in
a database or otherwise similar ones related to relevant
semantic concepts.

Different lines of retrieval methods tightly couple their
search criteria with dramatically different image represen-
tations and indexing strategies. For example, representing
images by bags of local features [19, 13] that are indexed
by vocabulary trees [14] is very effective for near-duplicate
or instance level retrieval, i.e., searching the same object
or scene with arbitrary changes. Compact hashing codes
for global features [21] or semantic attributes from object
recognition [2, 25] are efficient for similar image search.
Hence, on one hand, it is very hard to merge these diverse
representations and indexing schemes, if not impossible.
On the other hand, fusing retrieval results [4] requires online
extraction of multiple image feature sets and storage for
their respective indexes, which is costly in practice. These
challenges leave the effort on using multiple search criteria
in one retrieval method rarely explored in the literature.

In this paper, we propose to incorporate two search
criteria, i.e., image similarities based on local features and



semantic attributes, into the inverted indexes. Then the
retrieval not only searches for candidate images sharing
similar local features but also encourages consensus in their
semantic similarities as shown in Fig. 1. Towards these
ends, we present a semantic-aware co-indexing algorithm
which leverages semantic attributes from advanced object
recognition to update the inverted indexes of local features
quantized by a large vocabulary tree. Specifically, during
off-line indexing, we adopt the classification scores of 1000
object categories in the ImageNet Challenge [1] as the
semantic attributes. Then we perform two steps to embed
the semantic clue into the indexes: 1) semantic isolated
image deletion which removes those images with dissimilar
attributes on an inverted index; and 2) semantic nearest
image insertion which adds K-nearest images with similar
attributes to the inverted indexes of their local features.

The proposed co-indexing technique does not sacrifice
online query efficiency. During online retrieval, we conduct
conventional vocabulary tree based retrieval only using the
local features in a query and do NOT compute the semantic
attributes. Nevertheless, the retrieval implicitly promotes
candidates that are potentially with similar attributes to the
query because the updated indexes are semantic-aware.

In this paper, we discover that editing the inverted
index of a single local feature with multi-class classification
scores effectively enhances its discriminative ability. This
is because the co-indexing jointly considers strong cues
to low-level image contents and their semantic meanings,
respectively. The online query remains as efficient as
before since only local features are extracted. Meanwhile,
we manage to consume an acceptable memory cost in the
deletion and insertion of images on the indexes. Last but
not the least, we do not assume query or database images are
related to any of the 1000 object categories, which assures
its generalization capability. Extensive experiments on 3
benchmark datasets, i.e., UKbench, Holidays, Oxford5K,
validate the merits of the proposed method in comparison
with recent image retrieval algorithms.

Large-scale object recognition and near-duplicate image
search largely remain independent efforts due to different
focuses on recognition accuracy and retrieval scalability.
State-of-the-art recognition approaches [16, 12, 10] gen-
erally require substantial computation, which are hardly
affordable in online retrieval. Existing retrieval methods
using multi-cues all extract multiple features online for a
query. To our best knowledge, this work is an original effort
on improving near-duplicate image retrieval by efficiently
utilizing object recognition in off-line indexing.

2. Related Work
This work focuses on improving near-duplicate im-

age retrieval by co-indexing object recognition outcomes,
which is closely related to vocabulary tree based image re-

trieval, learning semantic attributes, and how to incorporate
two cues in retrieval. Due to space limit, detailed survey of
either direction is beyond the scope of this paper.

Indexing bag of local invariant features [13, 19] by
visual vocabulary trees [14] has demonstrated an exception-
al scalability for large-scale near-duplicate image retrieval
by applying a spatial verification [17], Hamming embed-
ding [9], building high-order features [26], or encoding
spatial configurations of local features [28, 27, 24, 18].

Large-scale object recognition has achieved a promi-
nent advance recently. For instance, in the ImageNet
Challenge [1] the recognition accuracy of top-5 candidates
among 1000 categories has improved significantly to about
84% by extracting Fisher vectors [16], coding BoW fea-
tures [19, 12], and learning deep network models [10]. The
outcomes of these multi-class classifiers, often referred as
semantic attributes [6, 5, 22], present a strong cue to find
similar videos [8], faces [11], or images by hierarchical
indexing [2] or mid-level weak attributes [25].

These recognition methods [19, 16, 12, 10] are generally
expensive due to the extraction of high-dimensional features
and classification of thousands of object categories. Conse-
quently, it is unaffordable to take advantage of the semantic
attributes directly in near-duplicate retrieval, either in early
fusion of the features [7], or late fusion of the retrieval
results [4]. Thus, near-duplicate image retrieval [14, 17,
9, 26, 28, 27, 18] using local features and similar image
retrieval with attributes [20, 11, 2, 25] remain largely two
separate lines of research. In contrast, our approach co-
indexes the similarities w.r.t. semantic attributes into the
inverted indexes of local features. The semantic attributes
are computed off-line for database images but not for
online query images. Furthermore, we learn the recognition
models on totally independent datasets and do not assume
query or database images are relevant to any of the object
categories. These characteristics distinguish our work from
existing efforts on near-duplicate retrieval.

3. Proposed Approach
Image retrieval using vocabulary trees and object recog-

nition are two cornerstones of the proposed semantic-aware
co-indexing, which are described in Sec. 3.1 and Sec. 3.2,
respectively. Then we present how to off-line co-index
semantic attributes among database images (Sec. 3.3) and
how to conduct online query (Sec. 3.4) in details. The entire
procedure is summarized in Fig. 2.

3.1. Image retrieval with vocabulary trees
We employ the vocabulary tree based approach [14] as

the baseline. Denote q a query image and d an database
image, and q is represented by a bag Sq of local descriptors
{xi}i∈Sq , where xi ∈ R

D indicate SIFT descriptors [13] of
dimension D = 128, so does {xj}j∈Sd

for d.
A visual vocabulary tree T is obtained by hierarchical
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Figure 2. The block diagram of the semantic-aware co-indexing.

K-means clustering of local descriptors (extracted from a
separate dataset), with a branch factor B and depth L. This
tree T typically is very deep and contains millions of leaf
nodes, e.g., B = 10 and L = 7, in order to achieve fast
quantization and high distinctiveness. We quantize {xi}
along T to the corresponding tree nodes or visual words
T ({xi}) .

= {vi}. Then the similarity sim(q, d) between
q and d is defined as the average TF-IDF (term frequency-
inverse document frequency) of these visual words:

sim(q, d)
.
=

1

|Sq||Sd|
∑

v∈T (xi)∩T (xj)

w(v), (1)

w(v)
.
= idf2(v) = log2

(
M

Mv

)
, (2)

where M is the total number of database images and Mv

is the number of images containing at least one descriptor
that quantizes to the node v. Note T ({xi}) allows repeated
nodes to model the TF. The list ofMv images and the TFs of
v in them are stored in the inverted index of v for fast access,
and are denoted by I(v) = {dm}Mv

m=1 and {tfdm(v)}Mv
m=1.

3.2. Semantic attributes from object recognition
We follow the Bag-of-Words (BoW) paradigm to learn

C = 1000 object category classifiers from the training
images in the LSVRC [1], a subset of ImageNet dataset.
For each training image, we obtain the BoW features from
dense HOG and LBP which are further encoded by local
coordinate coding to train multiple one-against-all linear
SVM classifiers [12]. The recognition accuracy for the
top-5 candidate categories is about 65% according to the
LSVRC’s flat evaluation metric [1]. The SVM margin
scores of these 1000 categories are denoted by {fc}Cc=1 for
an image, which are regarded as its semantic attributes.

These 1000 categories in LSVRC certainly cannot cover
millions of all possible objects in the real-world. Therefore,
different from previous work [2], we do not implicitly
assume the query or the database images are related to one
object category in these semantic attributes. In fact, our
testing query and database images are independent from the
ImageNet dataset, hence it is likely one image is relevant
to none or multiple categories in these 1000 attributes.
Therefore, we do not assume “is a” or “has a” meaning for
these attributes but a weaker “relevant to” relation.
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Figure 3. Illustration of the co-indexing process: based on the
attributes, isolated images on the inverted indexes (red and yellow
lines) of two visual words (red ball and yellow triangle) are
deleted, marked by red cross marks; nearest images are inserted to
the indexes, indicated by solid arrows; and no insertion for nearest
images that are already on one index, linked by a dash arrow.

3.3. Semantic-aware off-line co-indexing
The inverted indexes from visual words to images and

their TFs summarize all knowledge about the database in
the vocabulary tree based method [14]. Though hundreds of
local descriptors are capable of finding the near-duplicates
to a query via the inverted indexes, the discriminative
capacity of a single local descriptor is limited due to two
reasons. First, some similar local descriptors may appear
in dramatically different images. Second, local descriptors
even in near-duplicate images may fall to different visual
words due to quantization errors. These two issues may lead
to unsatisfied retrieval results, e.g., returning images with
similar local textures but appear irrelevant to users. These
motivate us to explore how to embed extra discriminative
clue into the individual indexes of local descriptors.

we propose a semantic-aware co-indexing to address the
two issues by off-line updating the inverted indexes with the
image similarities induced from semantic attributes. The
attributes obtained by multi-class recognition may reveal an
image’s rough high-level semantic contents, which is often
complimentary to the low-level descriptors. The proposed
co-indexing involves two steps: 1) semantic isolated image
deletion which spots the isolated images on an inverted
index according to their attributes and removes them from
the index; and 2) semantic nearest image insertion which
searches for the top nearest neighbors of database images
using the attributes and inserts them to the inverted indexes.
By these means, the images on one index tend to be more
consensus with each other and in return more effective for
near-duplicates retrieval, as illustrated in Fig. 3.

3.3.1 Distance of semantic attributes

Let us first define how to measure the distance between se-
mantic attributes given in Sec. 3.2 before proceeding to the
specific schemes to alter the inverted indexes. We convert
the SVM scores {fc}Cc=1 to a probabilistic representation
{pc}Cc=1 by fitting a sigmoid function to each dimension,
similar as in [2]. For an image d, each entry pc(d) is
proportional to P (c|d), the likelihood of being relevant to



the category c. As discussed in Sec. 3.2, {pc(d)}Cc=1 is
not naturally normalized because the C categories may not
cover one image’s semantic contents or one image may be
related to multiple categories, so we regard it as a partial
probability distribution. For two images dm and dn, we
employ the Total Variance Distance (TVD) to measure the
semantic distance between their partial probability vectors:

TVD(dm, dn) =

C∑
c=1

|pc(dm)− pc(dn)|. (3)

In our settings, the TVD indicates the largest possible
divergence of probabilities that two images could be rec-
ognized as being related to the same object categories.
Thus, it reasonably reflects the semantic distance between
two images, e.g., for exact or near-duplicate images, the
TVD shall be close to zero. In this paper, we do not
model the semantic relation among different categories and
deem them independent, so we choose the TVD due to its
intuition and efficiency. More distance metrics, such as the
ones considering hierarchical semantic relationships among
concepts [2], etc., are to be investigated in the future work.

3.3.2 Semantic isolated image deletion

Encoding nondiscriminative information [23] into the in-
verted indexes may not help the retrieval, since it makes
the right candidate hard to stand out. An isolated image
on an inverted index, whose appearance is quite different
from any other image on the same index, would contribute
less in image retrieval, since they are less likely to help to
find similar images. Hence, we utilize a semantic isolated
image deletion procedure to filter out isolated images from
the perspective of semantic attributes, so as to obtain more
consistent inverted indexes.

For the images indexed to v, i.e., I(v) = {dm}Mv
m=1, if

Mv ≥ 3 we calculate the semantic distances of attributes
as in Eq. (3) among them and delete the isolated images,
which are specified as being semantically distinct from all
the others in the same index, i.e., an image dn that satisfies:

Mv

min
m=1,m �=n

TVD(dn, dm) > ρ, (4)

where ρ is a threshold to tune the portion of images to
be deleted. The semantic isolated image deletion can
effectively reduce the index size without impacting the
retrieval precision in our experiments.

3.3.3 Semantic nearest image insertion

After the deletion of isolated images, we take advantage of
the attribute feature to insert semantically similar images
to the inverted indexes. We compare the attributes of all
database images using Eq.(3) to identify their top K nearest
images, denoted by NK(d). If one nearest image dk to d

…
Image 
index 

vi

…

vj

…

Image ID 
of d 

Image ID of 
d’s K-NN1

… Image ID of 
d’s K-NNk

viidf(    )

idf(    )vj

Image 
index 

Image 
index 

Image 
index 

tfd(    )vi

Figure 4. The proposed data structure for co-indexing.

does not appear on the same inverted index, we insert it
to the entry of d’s inverted index, whose data structure is
illustrated in Fig. 4. Namely, dk is inserted to I(v), if

dk ∈ NK(d), d ∈ I(v), dk /∈ I(v). (5)

The desired K for d shall equal to the number of
semantically similar images to d. However, it is hard to
pre-define or learn K because database images commonly
have variable numbers of semantically similar images. To
address this problem, we determine the value of K specific
to individual d. For d, we seek a Kd, after where the
similarity between d and dk drops most sharply, i.e.,

Kd = argmax
k=1:K

∂2 (TVD(d, dk))

∂k2
, (6)

where K is the maximum number of semantic nearest
neighbor images to check. Note, it is very likely that
dk ∈ NK(d) already appears on the inverted index that
includes d, since semantically similar images shall share
some similar local features. For these cases we do not
introduce redundant images in the index. As shown in
Fig. 3, the two images between the dash black arrow are
semantic nearest neighbors that are already on the same
index. Thus, semantic nearest image insertion does not
increase the size of indexes by K times. We will discuss
how to further reduce the memory cost of the indexes in
Sec. 4.1. The set of dk that is inserted to the indexes due to
d is referred by GKNN(d), not including those already in the
indexes. In Sec. 5, we test the impacts of deleting different
portions of isolated images, inserting different numbers of
similar images, as well as the effectiveness of Eq.(6).

3.4. Semantic-aware online query
The online query process is almost identical to the

conventional vocabulary tree based retrieval, except that we
implicitly consider the joint similarity based on the local
features and the semantic attributes. Given q and d are the
query and a database image, respectively, then the similarity
between q and d is conceptually updated to:

ŝim(q, d)
.
= sim(q, d) +

∑
{dg |d∈GKNN(dg)}

ω × sim(q, dg), (7)

where ω is a weighting parameter of the contribution from
semantic attributes, and the second term includes the set



of images dg such that d is within their K semantic
nearest neighbors (note d is dg’s neighbor, while dk is d
neighbor). In another word, we use sim(q, dg) computed
with Eq. (1) to update ŝim(q, d), because d is semantically
similar to dg . Consequently, the candidate images, not
only sharing a large portion of similar local feature but also
being consistent with the semantic attributes, will be ranked
higher in the retrieved set. Ideally, the weighting parameter
ω shall be determined by the TVD between d and dg or its
rank in the NK(dg), but different ω require extra storage
in the inverted indexes. According to our experiments, this
memory overhead is not worthwhile, thus as a compromise
we use a fixed ω = 0.2 in our implementation.

Note that during online retrieval, we do not need to
explicitly identify the set GKNN(dg) to compute Eq. (7).
Instead, we only need to scan image lists attached to the
visual words found in the query, as well as the semantic
nearest images inserted to the indexes. We summarize the
online computation of Eq. (7) in Algorithm 1.

Algorithm 1 Similarity calculation between a query q and
all database images.

Input: the inverted indexes I(v) stored as in Fig. 4; the
BoW representation of a query image: {vi}i∈Sq ; the
weighting parameter ω.

Output: the similarity vector of ŝim(q, d).
for each visual word v in {vi}i∈Sq do

for each database image d in the image list I(v) do
ŝim(q, d) = ŝim(q, d) + tfd(v)tfq(v)idf(v)
for each semantic nearest image dk of d do
ŝim(q, dk) = ŝim(q, dk)+ω×tfd(v)tfq(v)idf(v)

end for
end for

end for

4. Scalability Analysis
The scalability in terms of computational complexity

and memory cost is utmost critical to image retrieval. As
our semantic-aware co-indexing focuses mainly on off-line
indexing, we discuss the memory cost first and then its
impact to online query and off-line indexing efficiency.

4.1. Memory consumption
In the vocabulary tree based retrieval, the total memory

cost of inverted indexes is proportional to the total number
of local features in the database, i.e.,

∑M
m=1 |Sdm |. In

semantic nearest image insertion, we add at most K nearest
neighbors per image to the indexes. In fact, the memory
cost shall be at O(KM), if we maintain a separate table for
the K semantic nearest neighbors of database images which
is a quite marginal memory overhead. This is substantially
smaller than

∑M
m=1 |Sdm | by 2-3 order of magnitudes,

because the number of local features extracted from each
image, i.e., |Sdm | easily exceeds 1000. However, the online

query demands for efficiency as high as possible, therefore
we choose to consume the inverted indexes to obtain the
semantic nearest neighbors in a streaming manner, rather
than jumping to a separate table, which minimizes CPU
cache misses. This is why we adopt the data structure in
Fig. 4, trading memory for efficiency.

In addition, as explained in Sec. 3.3.3, the semantic
nearest image insertion avoids adding redundant images
if they already present in the inverted index. Thus, our
method does not increase the index size if the indexes
of local features largely agree with the semantic features.
Moreover, the isolated image deletion removes a certain
number of images and their associated TFs from the indexes
and saves some storage. Therefore, the overall memory cost
of the co-indexing is acceptable. For example, after deleting
20% images first and then inserting K = 2 neighbors,
the proposed co-indexing requires about 50% additional
storage using a tree with 1 million leaf nodes, which is even
less than the memory cost in some recent approaches which
store the spatial configuration or contexts of local features
into the inverted indexes [9, 28, 27, 24].

4.2. Computational complexity
The computation of online query using a vocabulary tree

is composed of two parts: 1) the local feature extraction and
their quantization, and 2) the voting of TF-IDFs along the
inverted indexes. The former part is independent from the
indexing and remains unchanged in our approach. For the
latter, the co-indexing method roughly requires additional
one multiplication and one add operation for each semantic
nearest image inserted. The computational overhead can
be estimated by the average increment of index lengths
multiplied by the ratio of these two additional operations
in the TF-IDF voting, which is about 5 − 10% query time
compared to the baseline in large-scale problems.

The major computational demand in our method is at the
off-line stage. The major part is to perform the large-scale
object category recognition for all the database images,
which are easily parallelized. We finished extracting the
1000D attributes of 1.3 million images within 3 hours
using 200 mappers in Hadoop. The search for semantic
nearest neighbors in the database also allows for parallel
processing. The TVD computation in Eq. (3) is very
efficient and allows hashing technique for acceleration.
Our experiments validate that the co-indexing strategy is
applicable to millions of images.

5. Experiments
We evaluate the proposed method on 3 public bench-

mark datasets, i.e., the UKbench [14], Holidays [9], and
Oxford5K [17]. These 3 datasets represent diverse near-
duplicate image retrieval tasks, i.e., search for the same
object in the UKbench which contains 2,550 objects under
4 different viewpoints; search for the same scene in the



Method T165 T107 SA GIST Color

UKbench, N-S 2.85 3.42 3.17 1.93 2.48
Holidays, mAP(%) 59.70 73.79 71.62 40.89 46.33
Oxford5K, mAP(%) 51.32 68.27 42.62 21.92 7.83

Table 1. The retrieval performance of individual methods. The
first two columns are the baselines using a vocabulary tree. The
last three columns are retrieval performance directly using the
semantic attributes (SA), GIST and color, respectively.

Holidays which includes 500 queries from 1,491 annotated
scene images; and search for the 55 landmarks in the
Oxford5K from 5,063 annotated landmark images. Note,
the setting in the Oxford5K does not favor the semantic
attributes because all its database images roughly belong to
one category, i.e., street-view landmark buildings. Besides
these, we conduct large-scale experiments by mixing the
three datasets with 1.3 million images collected from Flickr
(as distraction sets) 2, respectively. Note none of our test
images are from the ImageNet or related to the 1000 object
categories, to verify the generalization ability to attributes.

5.1. Methods
We implement two variants of vocabulary tree based

retreival [14] as the baseline, to show the co-indexing helps
for different trees with/out spatial contexts. The first one
uses a relatively shallow tree with B = 16 and L = 5
(about 1 million leaf nodes), denoted by T 165. The other
utilizes a deeper tree with B = 10 and L = 7 (about 3
million leaf nodes) and also records local feature’s spatial
contexts [24] with 4 bytes, denoted by T 107. Both trees
are constructed by hierarchically clustering of 100 million
SIFT descriptors extracted from images crawled from the
Internet. The number of SIFT features extracted from a
query ranges from 500 to 2500 in our experiments.

The proposed co-indexing technique is not restricted to
the usage of semantic attributes, so we also compare with
the methods using the GIST and color histograms in the co-
indexing, to demonstrate the advantage of being semantic-
aware. Three types of features are hence tested in co-
indexing, i.e., the 1000D semantic attributes explained in
Sec. 3.2, the 512D GIST features [15], and 512D color
histograms in the HSV color space (256 bins for Hue,
and 128 bins for Saturation and Value respectively). We
employ the L2 distance for the GIST and color features in
determining the isolated and nearest images. These three
features are denoted by SA, GIST, and Color hereafter.
We hence use T 165 + SA and T 107 + SA to denote our
semantic-aware co-indexing algorithm.

We adopt the metrics in the original papers of the 3
datasets to evaluate the retrieval performance: the recall
rate for the top-4 candidates (referred as the N-S score) for
the UKbench, and the mAP (mean average precision) for

2The test images, their local features and semantic attributes are
available upon request to the first author.

the Holidays and Oxford5K. The performance of using the
two baselines and the 3 features, i.e., SA, GIST, and Color,
is summarized in Table 1, e.g., directly using the 1000D
attributes to retrieve and rank the candidate images.

5.2. Performance
We first compare the isolated image deletion and nearest

image insertion against the baselines, respectively, includ-
ing the sensitivity study of the key parameters. Then,
we present the overall performance of semantic-aware co-
indexing on these datasets, as well as mixed with the large-
scale distractor images.

Semantic isolated image deletion. During the deletion
of isolated images, we tune the threshold ρ for the three
types of features to remove the same ratio Δr of inverted
indexes. The retrieval performance is summarized in Fig. 5,
where the retrieval precision remains almost unchanged or
even improves slightly when using SA to delete 10%-20%
of the inverted indexes. This validates that enforcing the
semantic consensus among images on one index effectively
saves storage without hurting the retrieval precision.

Figure 5. Comparison of isolated image deletion on the UKbench,
Holidays, and Oxford5K datasets.

Semantic nearest image insertion. We first test insert-
ing fixed K = 1 to 4 of the nearest images to the inverted
indexes according to SA, GIST and Color, whose retrieval
performance is presented in Fig. 6. On the UKbench, the
retrieval performance improves considerably, i.e., the N-
S scores from 2.85 to 3.39 and 3.42 to 3.61 respectively
when K = 3 for T 165 + SA and T 107 + SA. The mAP
jumps from 59.70% to 75.60% and 73.79% to 80.99% on
the Holidays over these two baselines. The improvement
on the Oxford5K is not that significant compared to the
other two datasets, yet the mAP still increases by 7% for
T 165+SA, partly because the 1000D attributes are generic
object categories. Fine-grained attributes particularly for
buildings may be more appropriate for landmark search. In
contrast, the performance gain of using GIST and Color
is marginal compared to SA. This verifies the advantages
of embedding semantic attribute to the indexes. Details of



Methods T165 + SA T107 + SA
Dataset UKbench Holidays Oxford UKbench Holidays Oxford

Performance 3.38 76.13 57.46 3.60 81.60 68.54
(K̄d) (3.02) (2.80) (3.82) (3.02) (2.80) (3.82)

Performance 3.39 75.60 58.11 3.61 80.99 68.52
(Fixed K) (3) (2) (4) (3) (3) (4)

Table 2. Performance comparison of nearest image insertion with
automatically selected Kd and the best fixed K in Fig. 6.

Fig. 5 and Fig. 6 are available in Supplementary material.
Next we test the scheme of image-specific Kd in Eq. (6),

rather than setting a fixed K . The performance of T 165 +
SA and T 107 + SA with a varying Kd is summarized in
Table 2, which shows the average K̄d is close to the best
fixed K and the performance is quite comparable to those
in Fig. 6. This verifies the effectiveness of the automatic
selection scheme for K . We set K in Eq. (6) as 5.

Figure 6. Comparison of nearest image insertion on the UKbench,
Holidays, and Oxford5K datasets.

Semantic-aware co-indexing. Now we show the overall
performance of the semantic-aware co-indexing and the
ratio Δr of memory cost increment. To present the results
concisely, we fix the ratio of isolated image deletion to
20% for T 165 + SA and 5% for T 107 + SA. The
results are presented in Table 3, where the first column
shows the baseline performance. The retrieval precision
improves consistently as in the previous two experiments,
e.g., T 107 + SA achieves N-S=3.60 on the UKbench and
mAP=80.86 on the Holidays. The memory overhead Δr is
reasonably higher in a deep tree than in a shallow one, since
the feature quantization is finer. As discussed in Sec. 4.1,
using a separate table for the nearest neighbors can bound
the memory usage. The computational overhead of the co-
indexing is hardly noticeable on these small-scale datasets,
only about 1-3ms, for the quantization of local features
dominates the online computation.

We also conduct the experiment excluding the queries
from the database. On the UKbench, we employ 1/4
images of the dataset as the query and the rest 3/4 in the
database for indexing, thus the query images and dataset

Methods Proposed [17] [9] [27] [24] [18] [3]

UKbench, N-S 3.60 3.45 3.42 3.26 3.56 3.52 N/A
Holidays, mAP(%) 80.86 N/A 81.3 N/A 78.1 76.2 69.9
Oxford5K, mAP(%) 68.72 64.5 61.5 71.3 N/A 75.2 N/A

Table 4. Overall performance comparison with the state of arts.

images are totally separated. We hence run 4 rounds of
experiments, the average N-S score of T 165 + SA jumps
from 1.85 to 2.35 (maximum 3), which is consistent with
the improvement from 2.85 to 3.37 (maximum 4); similarly
T 107 + SA improves from 2.40 to 2.63 (maximum 3) vs.
from 3.37 to 3.60 (maximum 4) in Table 3.

The comparison with recent retrieval methods (without
re-ranking and query expansion) are shown in Table 4,
which demonstrates that the performance of the proposed
co-indexing is very competitive. Attributes are also utilized
in [3] for image search, yet differently it extracts both
the attributes and visual features online from the queries.
Sample retrieval results are in the Supplementary material.

The large-scale experiments. Using 1.3 million images
collected from Flickr as distractors, we conduct the retrieval
with the original queries in the 3 datasets based on T 165 +
SA and T 107 + SA, where about 20% isolated images
are deleted in T 165 + SA and about 5% isolated images
deleted in T 107 + SA, and K is automatically selected
with Eq. (6). The experimental results are summarized in
Table 5. The average retrieval time t̄ (not including feature
extraction) only increases slightly over the baseline, which
is about 140-210ms among 1.3 million images. We also
observe promising improvements by using the co-indexing,
e.g., the N-S score increases from 2.42 to 2.83 in T 165+SA
and from 3.14 to 3.39 in T 107 + SA. Hence, these results
demonstrate that the semantic-aware co-indexing approach
scales up well for image retrieval from millions of images.

5.3. Discussions
The local feature based near-duplicate image retrieval

essentially relies on finding a small set of matched local
descriptors to retrieve the candidates. The fundamental
rational of the proposed co-indexing is that we leverage
another strong cue, i.e., the semantic attributes, to enhance
the discriminability of individual local feature’s inverted
index, resulting in a prominent improvement on the overall
discriminative ability of inverted indexes.

It is not a must to have semantic attributes and their K-
nearest neighbors available for all database images in co-
indexing. Investigation of selectively co-indexing a portion
of database images with reliable attributes and approximate
nearest neighbor search will be our future work.

6. Conclusions
In this paper, we present a new approach to jointly

indexing both local features and semantic attributes for
image retrieval. By updating the indexes of local features
guided by the semantic features, the proposed retrieval



K Base. 0 +1 +2 +3 +4 Base. 0 +1 +2 +3 +4 Base. 0 +1 +2 +3 +4
Datasets UKbench (N-S) Holidays mAP(%) Oxford5K mAP(%)

T165 + SA 2.85 2.89 3.06 3.23 3.37 3.34 59.70 62.58 73.54 76.18 75.57 74.17 51.22 53.12 55.77 56.59 58.27 58.32
Δr (%) 0 -20 +8.61 +40.4 +69.1 +104 0 -20 +9.75 +42.4 +72.75 +103 0 -20 +13.6 +46.4 +80.5 +115

T107 + SA 3.42 3.41 3.46 3.52 3.60 3.58 73.79 74.06 78.61 80.45 80.86 80.82 68.27 68.27 68.53 68.61 68.63 68.72
Δr (%) 0 -5 +26.8 +55.3 +83.7 +112 0 -5 +29.0 +59.3 +89.0 +113 0 -5 +29.1 +59.7 +89.7 +120

Table 3. The overall performance of semantic-aware co-indexing on the UKbench, Holidays, and Oxford5K.

Methods T165 + SA T107 + SA
Datasets UKbench (N-S) Holidays mAP(%) Oxford5K mAP(%) UKbench (N-S) Holidays mAP(%) Oxford5K mAP(%)

K̄d 0 3.03 0 3.24 0 3.9 0 3.06 0 3.14 0 4.1
Performance 2.42 2.83 53.23 63.34 44.25 48.29 3.14 3.39 54.30 62.77 60.39 60.52
Δr (%) 0 +86.15 0 +84.13 0 +125.3 0 +87.2 0 +89.4 0 +111.0
t̄ (ms ) 132 135.1 182.0 186.7 158.7 162.7 93 169.6 101 162.7 125 211.3

Table 5. The performance of semantic-aware co-indexing with 1.3 million distractor images. The columns with K̄d = 0 are the baselines.

algorithm effectively applies two search criteria to enhance
the overall discriminative capability of the inverted indexes,
leading to more satisfactory retrieval results to users. The
co-indexing introduces very small online computation and
consumes manageable additional memory. This semantic-
aware co-indexing method can be easily reproduced by
other motivated researchers. These warrant further investi-
gating incorporation of multiple cues into off-line indexing.
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