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ABSTRACT

We introduce the notion of semantic background subtraction,

a novel framework for motion detection in video sequences.

The key innovation consists to leverage object-level semantics

to address the variety of challenging scenarios for background

subtraction. Our framework combines the information of a

semantic segmentation algorithm, expressed by a probability

for each pixel, with the output of any background subtraction

algorithm to reduce false positive detections produced by il-

lumination changes, dynamic backgrounds, strong shadows,

and ghosts. In addition, it maintains a fully semantic back-

ground model to improve the detection of camouflaged fore-

ground objects. Experiments led on the CDNet dataset show

that we managed to improve, significantly, almost all back-

ground subtraction algorithms of the CDNet leaderboard, and

reduce the mean overall error rate of all the 34 algorithms

(resp. of the best 5 algorithms) by roughly 50% (resp. 20%).

Note that a C++ implementation of the framework is available

at http://www.telecom.ulg.ac.be/semantic.

Index Terms— background subtraction, change detection,

semantic segmentation, scene labeling, classification

1. INTRODUCTION

Background subtraction is a popular approach for detecting

moving objects in video sequences. The basic idea consists

in comparing each video frame with an adaptive background

model (which can be reduced to a single image) free of mov-

ing objects. Pixels with a noticeable difference are assumed

to belong to moving objects (they constitute the foreground)

while others are classified as background.

Over the last two decades, a large number of methods have

been proposed for this task (see [1, 2] for reviews). Most of

them model the background using low-level features such as

color components [3, 4], edges [5], texture descriptors [6],

optical flow [7], or depth [8]. A comprehensive review and

classification of features used for background modeling can

be found in [9]. While most of these features can be computed

with a very low computational load, they cannot address si-

multaneously the numerous challenges arising in real-world

video sequences such as illumination changes, camouflage,
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Fig. 1. We present a framework that improves the binary

segmentation maps produced by background subtraction al-

gorithms by leveraging object-level semantics provided by a

semantic segmentation algorithm (see Section 2).

camera jitter, dynamic backgrounds, shadows, etc. Upper

bounds on the performance of pixel-based methods based ex-

clusively on RGB color components were simulated in [10].

In particular, it was shown that these algorithms fail to provide

a perfect segmentation in the presence of noise and shadows,

even when a perfect background image is available.

Our solution consists in the introduction of semantics. Hu-

mans can easily delineate relevant moving objects with a high

precision because they incorporate knowledge from the se-

mantic level: they know what a car is, recognize shadows,

distinguish between object motion and camera motion, etc.

The purpose of semantic segmentation (also known as scene

labeling or scene parsing) is to provide such information by

labeling each pixel of an image with the class of its enclos-

ing object or region. The task is difficult and requires the



simultaneous detection, localization, and segmentation of se-

mantic objects and regions. However, the advent of deep

neural networks within the computer vision community and

the access to large labeled training datasets have dramati-

cally improved the performance of semantic segmentation al-

gorithms [11, 12, 13, 14]. These improvements have moti-

vated their use for specific computer vision tasks, such as op-

tical flow estimation [15]. In this paper, we leverage object-

level semantics for motion detection in video sequences and

present a generic framework to improve background subtrac-

tion algorithms with semantics.

The outline of the paper is as follows. We describe the

details of our semantic background subtraction framework in

Section 2. In Section 3, we apply our proposed approach to all

the 34 background subtraction methods whose segmentation

maps are available on the website of the CDNet dataset [16]

(named CDNet hereafter) and discuss the results. Finally,

Section 4 concludes the paper.

2. SEMANTIC BACKGROUND SUBTRACTION

Our framework compensates for the errors of any background

subtraction (named BGS hereafter) algorithm by combining,

at the pixel level, its result B ∈ {BG, FG} with two signals

(SBG and S
FG) derived from the semantics, as shown in Fig-

ure 1. While the first signal supplies the information nec-

essary to detect many BG pixels with high confidence, the

second helps to detect FG pixels reliably. The result of the

combination is denoted by D ∈ {BG, FG}. Our objective is

to show the possibility of leveraging state of the art semantic

segmentation algorithms to improve the performance of most

BGS algorithms, without modifying them or accessing their

internal elements (e.g. their model and parameters).

2.1. Leveraging semantics to detect background pixels

Let C = {c1, c2, ..., cN} be a set of N disjoint object classes.

We assume that the semantic segmentation algorithm out-

puts a real-valued vector vt(x) = [v1t (x), v
2
t (x), ..., v

N
t (x)],

where vit(x) denotes a score for class ci at the pixel location

x at time t. The probabilities pt (x ∈ ci) are estimated by ap-

plying a softmax function to vt(x). Let R (R ⊂ C) be the

subset of all object classes semantically relevant for motion

detection problems. The semantic probability is defined and

computed as pS,t(x) = pt(x ∈ R) =
∑

ci∈R pt (x ∈ ci).
It is possible to leverage semantics to detect background,

as all pixels with a low semantic probability value pS,t(x)
should be labeled as background, regardless of the decision

Bt(x). Therefore, we compare the signal SBG
t (x) = pS,t(x)

to a decision threshold τBG, as given by rule 1:

rule 1: S
BG
t (x) ≤ τBG → Dt(x) = BG . (1)

Rule 1 provides a simple way to address the challenges

of illumination changes, dynamic backgrounds, ghosts, and

strong shadows, which severely affect the performances of

BGS algorithms by producing many false positive detections.

The optimal value of τBG is related to the performance of the

BGS algorithm for the BG class, as explained in Section 3.

2.2. Leveraging semantics to detect foreground pixels

In order to help detecting the foreground, we have to use

pS,t(x) in a different way than for rule 1, as semantically rel-

evant objects may be present in the background (e.g. a car

parked since the first frame of the video). To account for this

possibility, our solution consists to maintain a purely seman-

tic background model for each pixel. More precisely, we de-

note by Mt(x) the probability modeling the semantics of the

background at the pixel x at time t. Typical initialization and

updating steps of this semantic model can be the following:



















M0(x) = pS,0(x)

Dt(x) = FG → Mt+1(x) = Mt(x)

Dt(x) = BG →α Mt+1(x) = pS,t(x)

→1−α Mt+1(x) = Mt(x)

(2)

with →α denoting a probability α of application (α is arbi-

trarily set to 0.00024 in our experiments). This conservative

updating strategy was introduced in [4] to avoid model cor-

ruptions due to intermittent and slow moving objects. The se-

mantic background model allows to detect large increases of

pS,t(x), observed when a foreground object appears in front

of a semantically irrelevant background (e.g. a car moving on

a road or a pedestrian walking in front of a building). This

leads us to the following decision rule:

rule 2: S
FG
t (x) ≥ τFG → Dt(x) = FG , (3)

with the signal SFG
t (x) = pS,t(x)−Mt(x), and τFG denoting

a second threshold, whose optimal value is related to the per-

formance of the BGS algorithm for the FG class, as explained

in Section 3. Rule 2 aims at reducing the number of false neg-

ative detections due to camouflage, i.e. when background and

foreground share similar colors.

2.3. The BGS is used when semantics is not decisive

The semantic probability pS,t(x) alone does not suffice for

motion detection. This is illustrated by the case in which a se-

mantically relevant object (e.g. a car in the foreground) moves

in front of a stationary object of the same semantic class (e.g.

a car parked in the background). The semantic probability

pS,t(x) being the same for both objects, it is impossible to

distinguish between both. If conditions of rules 1 and 2 are

not met, which means that semantics alone does not provide

enough information to take a decision, we delegate the final

decision to the BGS algorithm: Dt(x) = Bt(x). The com-

plete classification process is summarized in Table 1.



Bt(x) SBG
t

(x) ≤ τBG SFG
t

(x) ≥ τFG Dt(x)

BG false false BG

BG false true FG

BG true false BG

BG true true X

FG false false FG

FG false true FG

FG true false BG

FG true true X

Table 1. Our combination of three signals for semantic BGS.

Rows corresponding to “don’t-care” values (X) cannot be en-

countered, assuming that τBG < τFG.

The importance of both rules should be emphasized. Rule 1

always leads to the prediction of BG, so its use can only de-

crease the True Positive Rate TPR and the False Positive Rate

FPR, in comparison to the BGS algorithm used alone. To

the contrary, rule 2 always leads to the prediction of FG, and

therefore its use can only increase the TPR and the FPR. The

objective of improving both the TPR and the FPR can thus

only be reached by the joint use of both rules.

3. EXPERIMENTAL RESULTS

We applied our framework to all the 34 BGS methods whose

segmentation maps (which directly provide the binary de-

cisions Bt(x)) are available on the website of the CDNet

dataset [16] for 53 video sequences organized in 11 cate-

gories. We rely on a recent deep architecture, PSPNet [13]

(ranked 1st in the PASCAL VOC 2012 object segmentation

leaderboard [17] on the 6th of February 2017), trained on the

ADE20K dataset [18] to extract semantics, using a publicly

available model [19]. The last layer of the model provides a

real value in each pixel for each of 150 object classes of the

ADE20K dataset (C). Our subset of semantically relevant ob-

jects is R = {person, car, cushion, box, book, boat, bus, truck,

bottle, van, bag, bicycle}, corresponding to the semantics of

CDNet foreground objects.

In order to show the effectiveness of our framework, we

compare the performances of BGS methods applied with or

without semantics. The improvement is defined as

improvement =
ERBGS − ERBGS+SEM

ERBGS

, (4)

where ER denotes the mean Error Rate over a particular set of

BGS methods and a set of categories from the CDNet dataset.

We considered three policies to set τBG and τFG.

(1) Optimization based policy. First, we performed a grid

search optimization, for each BGS algorithm specifically, to

select the thresholds producing the best overall F score:

(

τoptBG , τoptFG

)

= argmax
(τBG,τFG)

(

mean
CDNet

(

FBGS+SEM
)

)

. (5)
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Fig. 2. Relationship between the thresholds
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τoptBG , τoptFG

)

de-

fined by (5) and the mean performance of the BGS algorithm.
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Fig. 3. Overall improvement, as defined in (4), for three pa-

rameter setting policies. For each policy, we manage to re-

duce significantly the overall error rate of BGS algorithms.

(2) Heuristics based policy. An analysis of these optimal

thresholds showed that τoptBG and τoptFG are strongly correlated

with FPRBGS and TPRBGS (see Figure 2). This led us to

define the heuristics:

(

τheuBG , τheuFG

)

=
(

FPRBGS

/2,TPRBGS
)

. (6)

These heuristics may be useful in practice for a BGS

user who has access to the performance specifications of a

BGS algorithm and hopes for good results without any time-

consuming optimization process. Note that, as the BGS

classifier performs better than a random classifier, we have

FPRBGS < TPRBGS , which leads to τheuBG < τheuFG given (6).

The heuristics therefore guarantee that don’t-care situations

of Table 1 cannot be encountered.

(3) Default policy. A more simple alternative consists to set

the pair (τBG,τFG) to default values, such as the mean opti-

mal thresholds of the 5 best BGS algorithms (according to

the ranking of CDNet 2014), that is:

(τBG, τFG) = (0.00366, 0.88627). (7)

Figure 3 presents the improvement on the overall CDNet

dataset for the three parameter setting policies. The three

policies lead to very similar improvements and allow to re-

duce the mean overall ER of the best 5 BGS algorithms by

more than 20%. Considering all BGS algorithms, we manage
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Fig. 4. Effect of our framework on the position of BGS clas-

sifiers in the overall ROC space of the CDNet dataset [16],

with the default pair of thresholds given by (7). It tends to re-

duce the FPR significantly, while simultaneously increasing

the TPR.

to reduce the mean overall ER by approximately 50%. Fig-

ure 4 shows that our framework tends to reduce significantly

the FPR of BGS algorithms, while increasing simultaneously

their TPR.

Per-category results are detailed in Figure 5. It turns

out that our framework improves radically the segmenta-

tion masks on many categories (including “Dynamic back-

ground”, “Shadow”, and “PTZ”). Importantly, it should be

noted that this does not come at the cost of deteriorating the

results on the other categories.

Figure 6 illustrates the benefits of our semantic background

subtraction framework for several challenging scenarios of

real-world video sequences. It reduces drastically the number

of false positive detections caused by dynamic backgrounds,

ghosts, and strong shadows, while mitigating simultaneously

color camouflage effects.

The consequence for these detection improvements is the

computational overhead introduced by the semantic segmen-

tation algorithm. The PSPNet model [19] used in our ex-

periments runs at approximately 7 frames per second for

473×473 image resolution on a NVIDIA GeForce GTX Titan

X GPU. However, it is possible to exploit the temporal stabil-

ity of semantics in the video to reduce the computational load

of the semantic segmentation, as done in [20]. Note that the

computational load of (1), (2) and (3) is negligible compared

to the computational load of semantic segmentation.

Baselin
e

Dynamic background

Camera jit
ter

Interm
itte

nt o
bj. m

otio
n

Shadow

Therm
al

Bad w
eather

Low fra
merate

Night v
ideos

PTZ

Turbulence

All C
DNet 2

014 dataset

0

20

40

60

80

100

im
p

ro
v
e

m
e

n
t 

[%
]

All BGS algorithms

Best 5 BGS algorithms

Fig. 5. Per-category mean improvements (see (4)) of our

framework using the default pair of thresholds given by (7).

Fig. 6. Our framework addresses robustly dynamic back-

grounds (column 1), ghosts (column 2) and strong shadows

(column 3). In addition, it limits camouflage effects (column

4). From top row to bottom row: the input image, the prob-

abilities pS,t(x), the output of IUTIS-5 [21], the output of

IUTIS-5 integrated in our framework, and the ground truth.

4. CONCLUSION

We have presented a novel framework for motion detection

in videos that combines background subtraction (BGS) algo-

rithms with two signals derived from object-level semantics

extracted by semantic segmentation. The framework is sim-

ple and universal, i.e. applicable to every BGS algorithm,

because it only requires binary segmentation maps. Experi-

ments led on the CDNet dataset show that we managed to im-

prove significantly the performances of 34 BGS algorithms,

by reducing their mean overall error rate by roughly 50%.
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Erratum

This version of the paper slightly differs from the one pub-

lished at ICIP 2017. Since then, we have discovered a prob-

lem in the code that was used to generate our results. This is a

corrected version of the paper, including the updated results.

The new results are even better than those that we had initially

reported.


