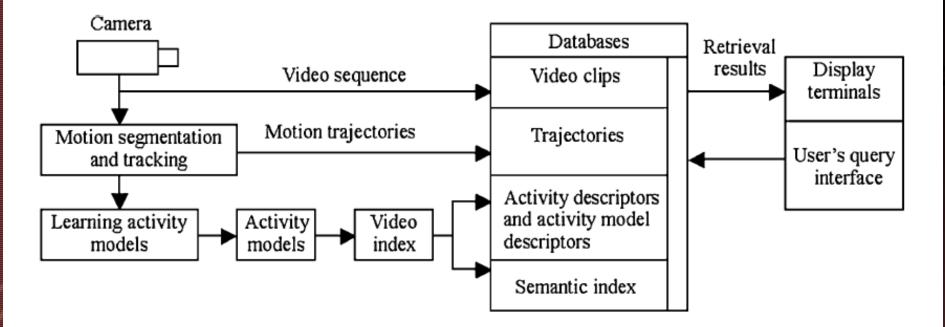
Semantic-Based Surveillance Video Retrieval

Weiming Hu, Dan Xie, Zhouyu Fu, Wenrong Zeng, and Steve Maybank, Senior Member, IEEE

IEEE Transactions on Image Processing, Vol. 16, No. 4, April 2007

National Taiwan University CMLAB , since 1991

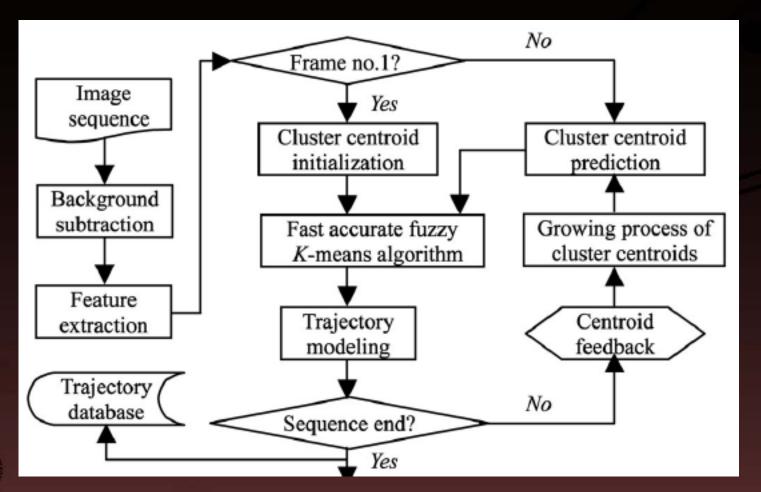

Present by komod

Introduction

2

NATIONA

TAWA


Object Tracking

Copyright @ CMLaboratory Since 1991, All rights reserved. | NTU | CSIE | CMLAB

Multiple object tracking

Copyright 🗇 CMEaboratory Since 1991, All rights reserved. | -NTU | CSFE | CME2

Pixel Features

- Foreground pixels are acquired by a self-adaptable background update model
- Each foreground pixel is described with a feature vector f

$$f = (x, y, v_x, v_y, r, g, b).$$

Copyright @ CMLaboratory Since 1991, All rights reserved. | NTO | CSFE | CMLAS

Component Quantization Filtering

- The image plane is partitioned into square regions with equal size
- X_i sample vector, mean of the feature vectors of the foreground pixels in the region
- *w_i* weight, number of foreground pixels in this region

Fuzzy c-means Clustering

• In fuzzy clustering, each point has a degree of belonging to clusters, as in fuzzy logic, rather than belonging completely to just one cluster $-u_k(x)$: the degree of being in the k_{th} cluster

$$u_k(x) = \frac{1}{\sum_j \left(\frac{d(\operatorname{center}_k, x)}{d(\operatorname{center}_j, x)}\right)^{2/(m-1)}} \cdot \operatorname{center}_k = \frac{\sum_x u_k(x)^m x}{\sum_x u_k(x)^m}.$$

 For m = 2, this is equivalent to normalising the coefficient linearly to make their sum 1. When m is close to 1, algorithm is similar to <u>k-means</u>

Fuzzy c-means Clustering

- X_I sample feature vectors
- V_i vector of cluster centroid
- M number of sample feature vectors
- N dimension of the sample feature vectors
- K number of cluster centroids
- Fuzzy membership

$$R_{lj}(t) = \frac{1/d_{lj}^2(t)}{\sum\limits_{m=1}^{K} (1/d_{lm}^2(t))}, \ 1 \le l \le M, \ 1 \le j \le K.$$

Fuzzy c-means Clustering

- cluster centroid initialization
 - first frame : random select
 - otherwise : prediction from previous frame
- cluster centroid update

$$V_{ji}(t+1) = V_{ji}(t) + \frac{\sum_{l=1}^{M} R_{lj}(t) \cdot w_l \cdot (X_{li} - V_{ji}(t))}{\sum_{l=1}^{M} R_{lj}(t) \cdot w_l}$$
$$1 \le i \le N, \ 1 \le j \le K$$

Dynamic Growing of Centroids

- entering and leaving regions are manually defined
- Creation
 - we find a subset of samples where the Euclidean distance between each of these samples and its associated cluster centroid j exceeds a threshold Φ_i
- Erasure
 - The position of cluster centroid j is within a leaving region
 - The number of the samples corresponding to cluster centroid j is too small to represent the smallest object in the scene.

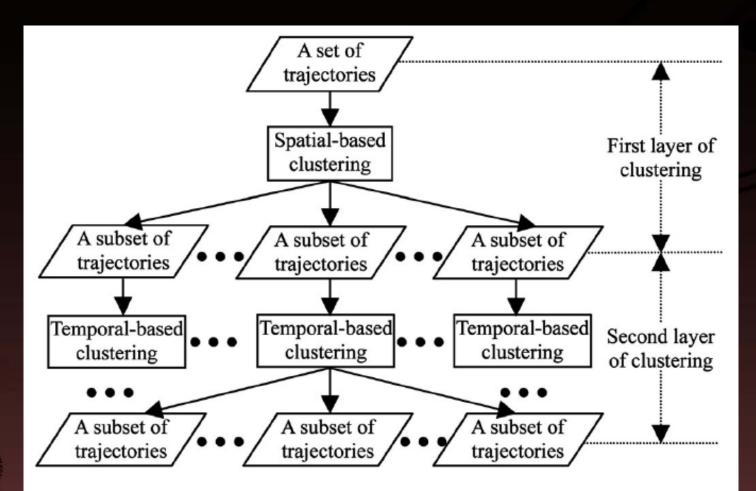
Modeling of Cluster Centroids

- There may be objects which correspond to two or more cluster centroids in one frame
- For two centroid trajectories exist over the same sequence of frames, if the differences between the centroids in each frame are approximately constant and small, two trajectories are merged

Semantic Activity Models

Copyright @ CMEaboratory Since 1991, All rights reserved. | NTU | CSFE | CMLAB

Activity Model


- Activity models are learned from the trajectories obtained by tracking
- Spatiotemporal trajectory T_{ST}

$$-T_{ST} = \{f_1, f_2, \dots, f_i, \dots, f_n\}$$

- $-f_i = (x_i, y_i, v_{x_i}, v_{y_i})$
- An activity model describes a category of activities with similar semantic meanings

Hierarchical clustering

opynylit 🗇 CMEaboratory Since 1991, All rights reserved. | - NTU | CSFE | CME

Hierarchical clustering

- Spatial
 - Activities observed in different road lanes or routes are assigned to different activity models
- Temporal

 Objects which pass along the same lane or route may have different activities producing different activity models

Spatial-based Clustering

Spectral Clustering

Step 1: Compute the similarity matrix A for the data set X by (6).

Step 2: Construct matrix L [23]

$L = D^{-1/2} A D^{-1/2}$

(7)

where D is a diagonal matrix whose *i*th diagonal element is the sum of all elements in the *i*th row of matrix A.

- Step 3: Apply the eigenvalue decomposition to matrix L to find out the K eigenvectors q_1, q_2, \ldots, q_K , corresponding to the K largest eigenvalues. The eigenvectors are represented as column vectors.
- Step 4: Form a new $M \times K$ matrix $Q = [q_1, q_2, \dots, q_k]$ by stacking the K eigenvectors in columns, and normalize each row of Q to unit length.
- Step 5: Cluster the M row vectors of Q into K clusters, using the fuzzy c-means algorithm by treating each row as a new feature vector corresponding to the vector in the original data set X.

Temporal-based Clustering

- Spatiotemporal trajectories, rather than spatial trajectories, are required in temporal-based clustering
- Assume that trajectory *i* contains *n* sampling points, trajectory *j* contains *n* sampling points, and *m > n*

$$\overline{d_{ij}} = \frac{1}{m} \left(\sum_{k=1}^{n} \|f_{i,k} - f_{j,k}\| + \sum_{k=1}^{m-n} \|f_{i,n+k} - f_{j,n}\| \right)$$

Semantic Indexing and Retrieval

Copyright @ CMLaboratory Since 1991, All rights reserved. | NTU | CSEE | CMLAB

Semantic Indexing

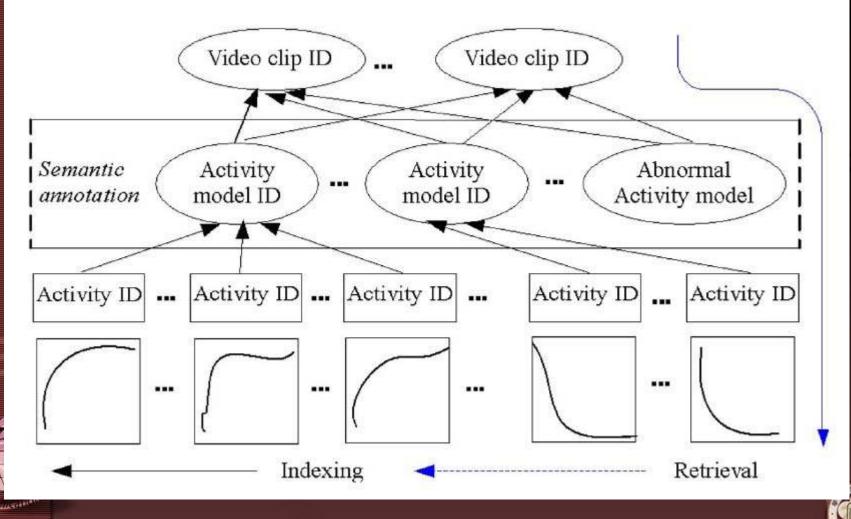
Activity descriptor

Components	Value
ACT_ID	ID of an activity
VIDEO_ID	ID of a video clip
Birth_Time	Frame number
Death_Time	Frame number
Spatio-Temporal	$T_{ST} = (f_1, f_2,, f_i,, f_n)$
Trajectory	$f_i = (\mathbf{x}_i, \mathbf{y}_i, \mathbf{v}_{x_i}, \mathbf{v}_{y_i})$
Obj_Color	Object color (R, G, B)
Obj_Size	Object size (height, width)

Copyright 🕤 CMLaboratory Since 1991, All rights reserved. 📔 NTO 🕴 CSFE 🕴 CMLA

Semantic Indexing

Activity Model descriptor


Components	Value
AM_ID	ID of an activity model
ACT_List	A list of activities
Spatio-temporal template	$T_{ST} = (f_1, f_2,, f_i,, f_n)$
trajectory	$f_i = (\mathbf{x}_i, \mathbf{y}_i, \mathbf{v}_{x_i}, \mathbf{v}_{y_i})$
Conceptual_Descriptions	Keywords {turn left; low
	speed; north ahead; traffic
	violation; }

Copyright @ CMLaboratory Since 1991, All rights reserved. | NTU | CSIE | CMLA

Hierarchical structure

opyright 🗇 CMEaboratory Since 1991, All rights reserved. 📋 NTU 🕴 CSIE 🕴 CMEA

Dynamic Adaption

- The distance from the spatiotemporal trajectory to the template trajectory
 - small enough: add to the activity list of this activity model
 - Otherwise: treated as a temporary abnormal activity and added to the abnormal activity model
- The spectral algorithm is used periodically to cluster the activities in the abnormal activity model
 - If there is a cluster which contains enough activities, the activities in this cluster are considered to be normal

Semantic Retrieval

- The object activities and their associated video clips are found, and the subvideo between birth and death frame is supplied to users for browsing
- Applicable Query Types
 - Query by keywords
 - Multiple object queries
 - Query by sketch

Query by Keywords

- Example: "a blue car ran from south to north at a high speed"
- Assume that an activity model contains a set of keywords A and there is a set of keywords in the query sentence(s)
- Degree of matching

 $|A \cap B|$

Multiple object queries

- Two temporal restrictions are considered
 - Succession
 - Simultaneity
- the precision-recall cures are affected by the permutation order of retrieval results
 - BFS
 - DFS

Query by sketch

- trajectory drawn by a user
 - $-A = (X_{A,1}, Y_{A,1}), (X_{A,2}, Y_{A,2}), \dots, (X_{A,m}, Y_{A,m})$
- the spatial template trajectory in an activity model
 - $-B = (X_{B,1}, Y_{B,1}), (X_{B,2}, Y_{B,2}), \dots, (X_{B,n}, Y_{B,n})$
- Three step before calculate distance
 - Re-sampling
 - Scaling
 - Translation

Query by sketch

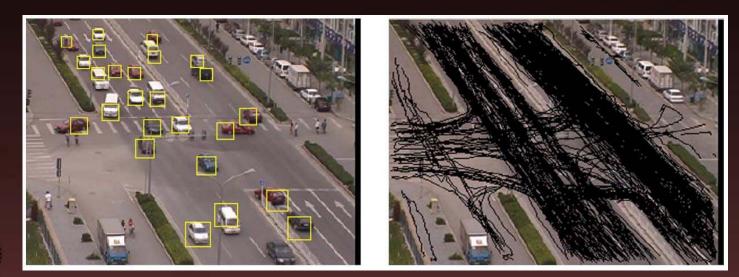
- Re-sampling (A₁)
 - point *i* in trajectory A₁ is prorated in the line segment

 $[(X_{A,\lfloor (m/n) \times i \rfloor}, Y_{A,\lfloor (m/n) \times i \rfloor}) - (X_{A,\lfloor (m/n) \times i \rfloor + 1}, Y_{A,\lfloor (m/n) \times i \rfloor + 1})]$

- Scaling (A₂)
 - Trajectory A_1 is scaled by $L_{\rm B}/L_{\rm A_1},$ to form trajectory
- Translation (A_3)
 - Trajectory A₂ is translated to match B
- Distance

$$f(\Delta x, \Delta y) = \sum_{i=1}^{n} \left((x_{A_{2},i} + \Delta x - x_{B,i})^{2} + (y_{A_{2},i} + \Delta y - y_{B,i})^{2} \right)$$

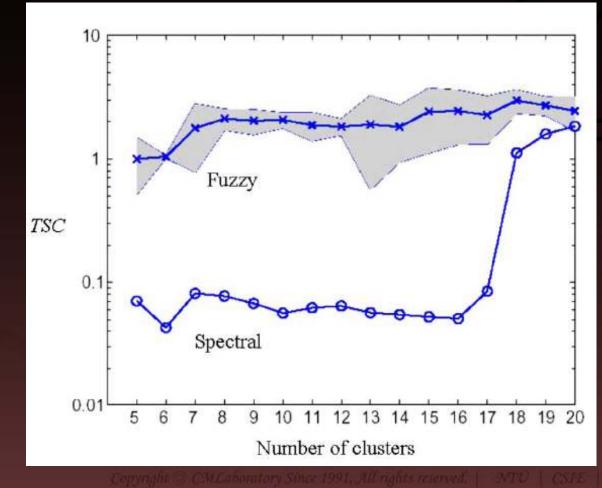
Experimental Results



Copyright @ CMEaboratory Since 1991, All rights reserved. | NTU | CSFE | CMEAB

Tracking

- 320 * 240 RGB image
- 1184 /1216 = 97.4%
- 5–10 frame/s on P4-1.8-GHz



Copyright @ CMEaboratory Since 1991, All rights reserved. | NTU | CSFE | CMEA

Learning of Activity Models

first layer of spatial-based clustering

Learning of Activity Models

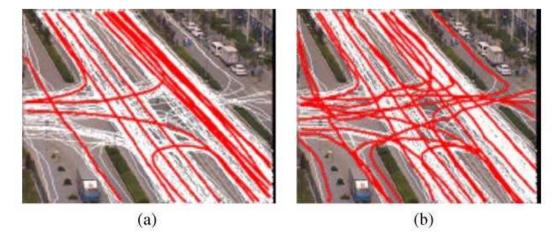
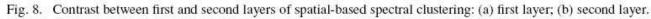
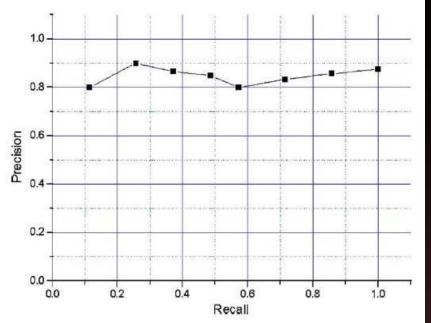
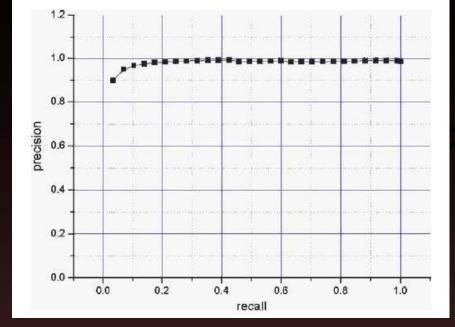



Fig. 7. Results of second layer of spatial-based clustering: (a) fuzzy c-means; (b) spectral clustering.


76 activity models are finally learned

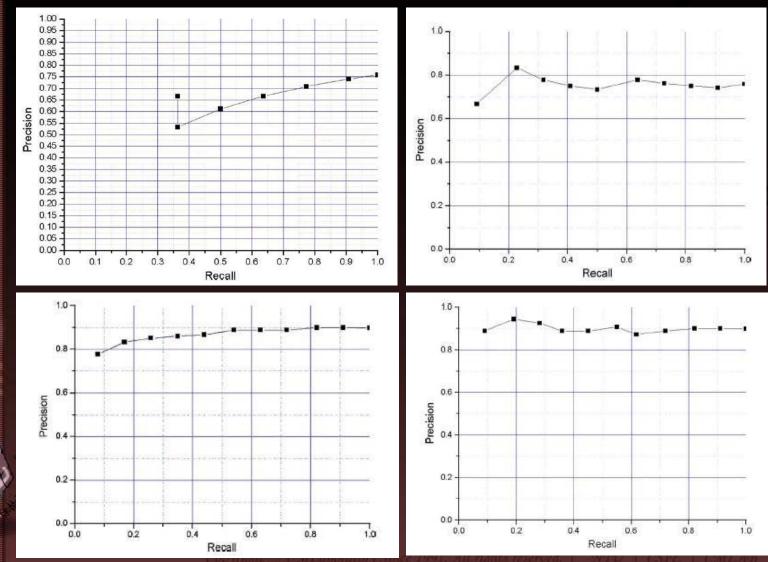
Keywords-Based Retrieval





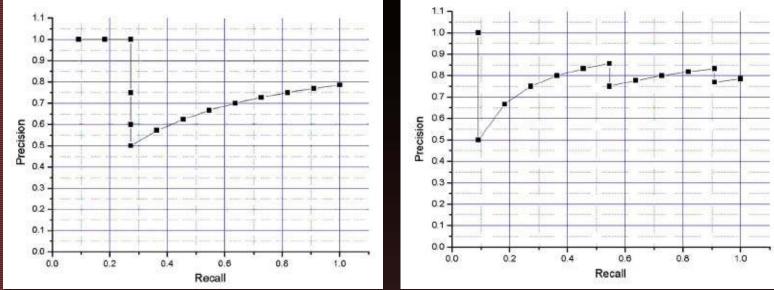
Copyright 🗇 CMLaboratory Since 1991, All rights reserved. 📔 NTU 🕴 CSFE 🕴 CML

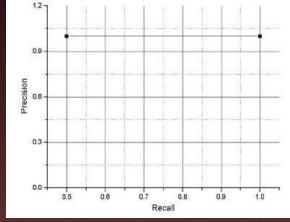
Keywords-Based Retrieval


" a red car turned left "

" a white car ran from south to north by the right lane "

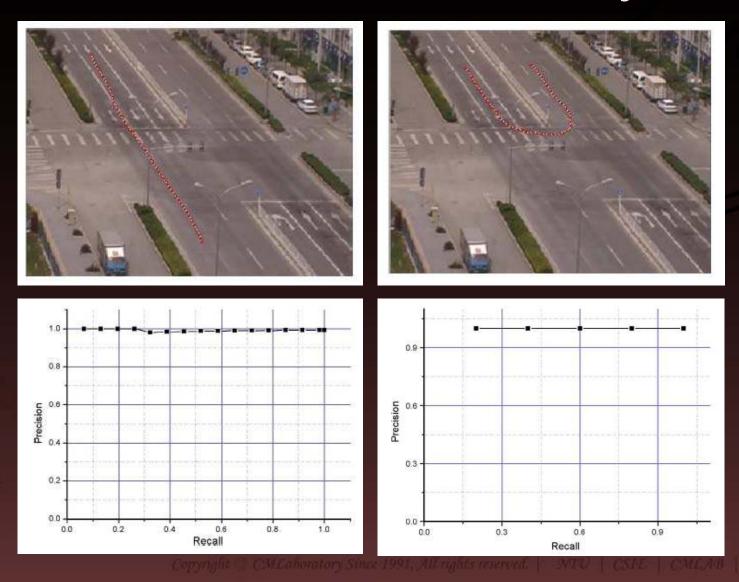
Copyright 🕤 CMLaboratory Since 1991, All rights reserved. 📋 NTU 🕴 CSIE 🕴 CMLA


Multiple Object Query


CMLAB NATIONAL TAIWAN UNIVERSITY

Wester Of

Multiple Object Query



opyrijlit 🗇 CMEaboratory Since 1991, All rights reserved. | - NTU | CSIE | CME2

Sketch-Based Query

Conclusion

- A clustering-based tracking algorithm is used to obtain trajectories
- With semantic indexing, our retrieval framework provides a query interface at the semantic level
- the workload of manual annotation is greatly reduced
- The framework has been experimentally tested in a crowded traffic scene, with good results.

Thank You

Copyright @ CMEaboratory Since 1991, All rights reserved. | NTU | CSIE | CMEAB