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Pixel Features

* Foreground pixels are acquired by a
self-adaptable background update
model

» Each foreground pixel is described
with a feature vector f

f= (,3:& Ys Vs Uy, Ty 4, b)
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Component Quantization Filtering
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* The image plane is partitioned into
square regions with equal size

» X.- sample vector, mean of the

feature vectors of the foreground
pixels in the region

* w; - weight, number of foreground
pixels in this region
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Fuzzy c-means Clustering

* |n fuzzy clustering, each point has a degree of
belonging to clusters, as in fuzzy logic, rather
than belonging completely to just one cluster

— U, (x) : the degree of being in the k;, cluster

1 T‘ N i |: T I T T

Up(r) = ———— L

2 ."II fm—1 | ' ConLte ]'_‘FI. = P .
'l_|I R a* T
) i i T !'Fltll [-. 'T __.I

‘ul .i|, center J_:,I.::I
a7\ d{center;,x) _

 Form = 2, this is equivalent to normalising the
coefficient linearly to make their sum 1. When
m is close to 1, algorithm is similar to k-means
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Fuzzy c-means Clustering

X, — sample feature vectors
V, - vector of cluster centroid
M - number of sample feature vectors

N - dimension of the sample feature
vectors

K - number of cluster centroids
Fuzzy membership

/2. (t
Ryj(t) = &

- 1<I<M,1<j<K.

> (1/dg, (1))

m=1
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Fuzzy c-means Clustering

e cluster centroid initialization
— first frame : random select

— otherwise : prediction from previous
frame

 cluster centroid update

M
> (1) e (Xei = V(1)
Vit )= Va4 2 77

M N
> Ray(t) - wi
=1

1<i<N,1<j<K
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Dynamic Growing of Centroids

entering and leaving regions are manually
defined

Creation

— we find a subset of samples where the
Euclidean distance between each of these
samples and its associated cluster centroid |
exceeds a threshold &,

Erasure

— The position of cluster centroid j is within a
leaving region
— The number of the samples corresponding to

cluster centroid j is too small to represent the
smallest object in the scene.
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Modeling of Cluster Centroids

* There may be objects which
correspond to two or more cluster
centroids in one frame

* For two centroid trajectories exist over
the same sequence of frames, if the
differences between the centroids in
each frame are approximately constant
and small, two trajectories are merged
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Semantic Activity Models
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Activity Model
F  Activity models are learned from the
°  trajectories obtained by tracking

« Spatiotemporal trajectory T4
—Tor ={f 5. fr
— £ = (Xis Yis Viir Vy)

* An activity model describes a

| category of activities with similar
&2, semantic meanings
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Hierarchical clustering

Spatial-l:!ased First ]é}rer of
clustering clustering
A subset of A subset of A subset of X m
trajectories /' ® ®* % trajectories /' ® ® ¥ trajectories :

Tempmral-_based .o Tcmpnral-.bascd .o Temporal-based Secnnd layer
clustering clustering clustering of clustenng

A subset of A subset of A subset of Y
trajectories trajectories trajectories
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Hierarchical clustering

o Spatial
— Activities observed in different road

lanes or routes are assigned to
different activity models

 Temporal

— Objects which pass along the same
lane or route may have different
activities producing different activity
models




Spatial-based Clustering

. Spectral Clustering

Compute the similarity matrix A for the data set X
by (6).
2: Construct matrix [, [23]
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where [J is a diagonal matrix whose ¢th diagonal
element is the sum of all elements in the ¢th row of
matrix A.

Apply the eigenvalue decomposition to matrix L to

find out the K eigenvectors g, 2, ...,k ., Corre-

sponding to the K largest eigenvalues. The eigen-

vectors are represented as column vectors.

Form a new M x K maltrix (J = [i_ﬂ s G2,y "IF-:] h}

stacking the K eigenvectors in columns, and nor-
Jﬁ |'|1;'|Ii;.f:;- each row t"rl'l[':) Lo unit Il:-n"rlh

4

\ using the Ill.f.f.}- c-means ulgt_rlllllm h}- llL.ulln__'-_: lulu..h
row as a new feature vector corresponding to the
vector in the original data set X .
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Temporal-based Clustering

« Spatiotemporal trajectories, rather
than spatial trajectories, are required
In temporal-based clustering

» Assume that trajectory / contains n
sampling points, trajectory j contains
n sampling points, and m > n

T —T

T
(Z ||f-!-~-IL _ -f..-"vILH _|_ Z “fnn—l—i — fj_,n“
k=1 k=1

g ——

dij =

— 1
n

7
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Semantic Indexing
and Retrieval




il W

L e

AL TR T | NN

Semantic Indexing

 Activity descriptor

ID of an activity

Spatm—Tempara! Tsr = (fis Saoeees fiseees J3)
Trajectory Ji =Ly, xi? n)

Object size (height, width)
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Semantic Indexing

 Activity Model descriptor

AM ID ID of an activity model

ACT List A list of activities

Spatio-temporal template Tor = ([1s foseews Lisenes [31)

Irajectory Ji =00V, Yy

Keywords {turn left; low
Conceptual Descriptions | speed, north ahead; traffic

violation; ...}
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Hierarchical structure

Eitlf "I-"u;f

(" Video clipID )
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Dynamic Adaption

* The distance from the spatiotemporal
trajectory to the template trajectory
— small enough: add to the activity list of this activity
model
— Otherwise: treated as a temporary abnormal
activity and added to the abnormal activity model
* The spectral algorithm is used periodically to
cluster the activities in the abnormal activity
model

— If there is a cluster which contains enough
activities, the activities in this cluster are
considered to be normal
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Semantic Retrieval
F * The object activities and their
associated video clips are found, and

the subvideo between birth and death
frame Is supplied to users for browsing

* Applicable Query Types
— Query by keywords
— Multiple object queries
— Query by sketch
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Query by Keywords

 Example: “a blue car ran from south
to north at a high speed”

* Assume that an activity model
contains a set of keywords A and
there is a set of keywords in the
query sentence(s)

* Degree of matching

a0 R St e
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Multiple object queries
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* Two temporal restrictions are
considered
— Succession
— Simultaneity

 the precision-recall cures are affected
by the permutation order of retrieval
results
— BFS
— DFS

L TR TR N
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Query by sketch
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* trajectory drawn by a user

— A= (KXo Ya1)(Kaz Yaz)-(Xams Yam)
» the spatial template trajectory in an

activity model

— B =(Xg,1, Yg,1):(Xg 2 Yg2)s-(Xgpn Ypn)
* Three step before calculate distance

— Re-sampling

— Scaling

— Translation

L TR EEATRET | AN
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Query by sketch

Re-sampling (A,)

— point /in trajectory A, is prorated in the line
segment

[(XA,\_(171/11)><iJ ’ YA,\_(m/n)xiJ) o (XA,\_(m/n)xiJH ’ YA,\_(m/n)xiJH )]

Scaling (A,)

— Trajectory A, is scaled by Lg/L,,, to form
trajectory

Translation (A;)
— Trajectory A, is translated to match B

Distance B o,
J(Az, Ay) = Z: ((__:1:4425;_ +Ar —xp;)°

i=1

.2

+ (YA, i + Ay — yB.i) )
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Experimental Results




Tracking

« 320 * 240 RGB image
e 1184 /1216 = 97.4%
e 5-10 frame/s on P4-1.8-GHz
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Learning of Activity Models

* first layer of spatial-based clustering

3 9 10 11 12 13 14 15 16 17 18 19 20

Number of clusters




Learning of Activity Models
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Fig. 7. Resulis of second layer of spatial-based clustering: (a) fuzzy c-means: (b) spectral clustering.

(b)

Fig. 8. Contrast between first and second layers of spatial-based spectral clustering: {a) first layer; (b) second layer.
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Keywords-Based Retrieval
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Keywords-Based Retrieval
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““a white car ran from south
to north by the right lane
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Conclusion

A clustering-based tracking algorithm is
used to obtain trajectories

With semantic indexing, our retrieval
framework provides a query interface at
the semantic level

the workload of manual annotation is
greatly reduced

The framework has been experimentally
tested in a crowded traffic scene, with
good results.
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