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Abstract

In this paper we present a new mechanism for studying the impact of sub-
tree crossover in terms of semantic building blocks. This approach allows us to
completely and compactly describe the semantic action of crossover, and provide
insight into what does (or doesn’t) make crossover effective. Our results make it
clear that a very high proportion of crossover events (typically over 75% in our ex-
periments) are guaranteed to perform no immediately useful search in the semantic
space. Our findings also indicate a strong correlation between lack of progress and
high proportions of fixed contexts. These results then suggest several new, theo-
retically grounded, research areas.

1 Introduction
Subtree crossover is one of the oldest and remains one of the most widely used re-
combination operators in genetic programming (GP). It is still unclear, however, why
or how it works. It’s hardly obvious that yanking a random chunk of code from one
program, and plopping it unceremoniously in a random location in a second program
would be a good thing. Yet it clearly works (at some level) in GP.

But why? How does subtree crossover move the population closer to the solution?
Is it really just a happy accident that this simple operator provides some sort of useful
recombination? Are there better operators and representations waiting to replace this
strangely random process?

In this paper we present a new mechanism for studying the semantic effect of sub-
tree crossover in terms of semantic building blocks. Subtree crossover combines two
tree components: the context (the root parent with a subtree removed) and the subtree
being inserted into that context. Our approach allows us to completely and compactly
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describe (for boolean problems) the semantics of these two key components, which
allows us to completely describe the semantic action of subtree crossover. We can also
enumerate the occurrences of different context and subtree semantics in a population,
independent of their syntax, allowing us to perform detailed studies of the semantic
components present in a population, and the opportunities this provides for subtree
crossover. The resulting data strongly suggest that the distribution of context seman-
tics are key in the success (or failure) of runs. Our results also make it clear that a very
high proportion (typically over 75% in our setup) of crossover events are guaranteed
to perform no immediately useful search in the semantic space.

These tools and results not only shed valuable new light on the operation and impact
of subtree crossover, but they also suggest a number of ideas for new operations and
approaches to genetic programming that are based on this new theoretical and empirical
understanding.

In the next section (Section 2) we review some of previous work on GP building
blocks and the behaviour of crossover. In Section 3 we present our new tools and
show how the semantics of contexts and subtrees can be calculated and enumerated.
In Section 4 we go over the results from empirical runs we used to collect data using
new measures enabled by these ideas. We discuss those results and some of their
implications in Section 5, and conclude in Section 6.

2 Related research
The idea of “building blocks” has a long history in genetic algorithms (GAs), and
there have been various proposals of what a building block might look like in genetic
programming. These were typically strictly syntactic in nature, and often part of an
effort to adapt GA schema theory to GP (e.g., [18, 24, 20, 25, 21, 22]; see [7] for
additional review). There have also been numerous studies on the impact of subtree
crossover, other recombination operators, and their interactions with things like muta-
tion [2, 1, 19, 11, 14, 7].

Many of these studies have helped us better understand important properties of GP
such as code growth. None, however, have shed much light on the underlying semantic
behavior of subtree crossover or provided tools to track and analyze those semantics.
Perhaps the closest to the current research that we’re aware of is [2], where the proposed
marking process captures useful semantic information about potential crossover points
that that is related to our notion of fixed contexts discussed in Section 3.2.

3 Enumerating semantic “Building blocks”
In sub-tree crossover we construct a new offspring by replacing a randomly chosen
sub-tree from parent A with a random sub-tree from parent B. To understand the pos-
sibilities afforded by sub-tree crossover, then, we need to be able to characterize what
sub-trees can be chosen from B, and where they can go in A.

We define a context to be a tree with some specific (but arbitrary) subtree removed
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X Y

NOR

AND

#

Figure 1: An example of a context; the # symbol represents the removed subtree.

(see Figure 1); we will use ‘#’ to indicate the removed subtree.1 Given this definition,
describing the semantic impact of sub-tree crossover reduces to describing the seman-
tics of sub-trees, the semantics of contexts, and their interactions. We will describe
these ideas in some detail below; see [13], however, for a more detailed discussion and
additional examples.

This paper will focus on the boolean domain, i.e., trees that represent boolean func-
tions. Working in such a small (finite) domain is valuable because it makes it much
easier to compute and catalogue the complete semantics of the sub-trees and contexts
involved. (See Sec 5.1 for more on extending these ideas to other domains.) In the
boolean domain. we can generate a highly compact representation of both subtree and
context semantics. This allows us to enumerate the semantics of all the sub-trees in a
given tree in the population, or even all the sub-trees of all the trees in a given popu-
lation. We can then explore this distribution of sub-tree semantics to better understand
the possibilities available to sub-tree crossover.

3.1 Semantics of subtrees
Following the ideas used in sub-machine code GP [23], we can completely specify the
semantics of a boolean valued (sub)tree (or, equivalently, function) by enumerating its
value on each of the possible sets of input values. Taking 0 to be false and 1 to be
true, the function (and x y), for example, has the semantics 0001 corresponding to
the third column in Table 1. (See Fig. 2 and [13] for additional examples of sub-tree
semantics.) This, then, allows for a complete characterization of the semantics of any
boolean (sub)tree in the sense that if two trees S0 and S1 have the same semantics, and
tree T contains S0 as a sub-tree, we can replace the occurrance of S0 in T with S1, and
the semantics of T will remain unchanged.

1This is similar to a tree schema with one ‘#’ leaf symbol from [7]. A schema, however, represents a set
of trees, whereas for us a context is simply a syntactic construct.
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x y (and x y) (or x y) (nand x y) (nor x y)
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 0

Table 1: The (sub)tree semantics for the four boolean functions used in our experi-
ments. In a finite (e.g., boolean) domain we can fully characterize the semantics of a
(sub)tree by enumerating the values of a tree (i.e., a function) on all its possible inputs.

X Y
0011 0101

0111

X Y
0011 0101

1000

+000

000 000

0+++

+000 +000

AND

OR NOR

Figure 2: A sample syntax tree showing both subtree and context semantics. The
arrows pointing upward (on the left of the edges) are the semantics of the subtree below
them, e.g., the semantics of (or x y) is 0111. The arrows pointing downward (on the
right on the edges) are the semantics of the context obtained by removing the subtree
below the arrow, e.g., the semantics of (and # (nor x y)) is +000.

3.2 Semantics of contexts
In general we won’t know the semantics of a tree with an unspecified subtree removed,
since the details of that subtree will usually affect the semantics of the entire tree.
However, some contexts depend less on the details of their open subtree than others.
For example, the context (and false #) is always going to return false, regardless
of which subtree we insert into the open position. Further, we know from experience
that genetic programming has strong tendencies towards the creation of such contexts
[12, 8, 7].

We refer to a context as being fixed for a particular set of inputs (or a particular
position when using strings to represent semantics) if the value of that context is com-
pletely determined (either true or false) regardless of what subtree is inserted at the
open node (#). We define the entire context to be fixed if it is fixed for every possible
set of inputs (or at every position in the semantics string).

In the boolean domain the semantics of a context depend on the details of the in-
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Parent Arg
semantics semantics (x) (and x #) (or x #) (nand x #) (nor x #)

0 0 0 0 0 0
0 1 0 0 0 0
1 0 1 1 1 1
1 1 1 1 1 1
+ 0 0 + 1 -
+ 1 + 1 - 0
- 0 1 - 0 +
- 1 - 0 + 1

Table 2: The context semantics for and, or, nand, and nor. See the text for details.

serted subtree in a systematic manner. Consider, for example, the context (and true
#). Here the value of this context will be the same as the value of whatever subtree we
insert for the #. We will denote the semantics in such a case with a +, indicating that
the value of the subtree passes through unchanged. The alternative case is represented
by a context like (nand 1 #). Here the value of the context is going to be the negation
of the value returned by the inserted subtree. We will use a - to denote the semantics in
this case. ([13] provides several examples in more detail.) Thus while the interactions
between contexts and subtrees can be quite complex, in the case of boolean functions
there are only four options for a context on a specific set of inputs: the fixed semantics
(0 and 1), the “unchanged semantics” (+), and the “negation semantics” (-).

A key difference between subtree semantics and context semantics is which com-
ponents need to be taken into consideration when computing the semantics. The se-
mantics of a subtree are solely a function of the operator and the value of its arguments;
they are completely independent of where that subtree might be located. For context
semantics, the case is slightly more complex. While we associate the semantics with
the edge above the insertion point, they are still a function of the entire tree around that
point. In particular they depend on three things (see Fig. 3):

• The operator g immediately above the insertion point.

• The semantics of the context obtained by removing the subtree rooted at g (the
“Parent semantics” in Figure 3).

• The subtree semantics of the other argument (x) of the operator g (the “Arg se-
mantics” in Figure 3).

The one exception is when the insertion point (#) is in fact the root of the context,
in which case there is no parent node. In this case the context semantics are simply
defined to be + since the value returned by the tree is going to be the value of the
inserted subtree.

Table 2 lists the cases for the boolean functions used in this work: and, or, nand,
and nor. In the last line of Table 2, for example, if the parent semantics of a nand node
is -, and the argument semantics of the sibling is 1, then the context semantics is +.
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g
Arg

semantics

Parent
semantics

#x

Figure 3: Illustration of the interaction of the different components in computing the
context semantics. We have a tree with some subtree removed (the insertion point,
indicated by the # in the lower right). g is the parent node of the insertion point, and
x represents the other argument of g (i.e., the sibling subtree of the insertion point).
Note that x is not necessarily a leaf but can represent an arbitrarily complex node. The
semantics of this context is a function of the specific operator g, the semantics of the
context obtained by removing the subtree rooted at g, and the subtree semantics of x.

Notationally it is convenient to associate context semantics with the edge extending
down to the insertion point (i.e., the # symbol), as this allows us to indicate the seman-
tics of all the possible contexts in a tree on a single diagram as is done in Figure 2.
It’s important to realize, however, that even though they are attached to specific edges,
these semantics describe the entire context, i.e., the entire tree minus the subtree below
the edge in question.

4 Empirical results
To see how subtree crossover affects the distribution of both context and subtree se-
mantics, we did multiple runs on five different problems: Even Parity problems with 2,
3, 4, and 6 bits (2-EP, 3-EP, 4-EP, and 6-EP), the 6-bit multiplexer (6-MUX) problem,
and flat fitness on four bits (4-Flat).

4.1 Parameters and data collected
For each problem we did 38 independent runs using the parameters listed in Table 3.
Since we weren’t particularly interested in maximizing our chances of solving the prob-
lems, no effort was made to tune our parameter choices.

For each test problem except the flat fitness case (4-Flat) the fitness was the number
of test cases handled correctly, with higher values being better. For 4-Flat the fitness
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Parameter Value
Function set Binary AND, OR, NAND, and NOR
Terminal set x0,x1, . . . ,xn−1, where n is the number of variables (or

bits) in the problem.
Control strategy Generational
Population size 1000
Initialization PTC2 [10], with equal proportions of sizes 50, 70, and

100 nodes and maximum initial depth of 10
# of generations 500
Tournament size 2
XO Probability 1
XO bias away from leaves None (all nodes are equally likely)
Maximum size after XO 500 (If the resulting child is too large, then new parents

are chosen independently and process begins again.)

Table 3: Parameters used in our runs. The crossover probability of 1 means that subtree
crossover was the only recombination operator used in these runs, i.e., there was no
mutation and no reproduction.

was constant for all individuals, so there was no selection bias in those runs.
Along with traditional data such as fitnesses and tree sizes, we also tracked several

kinds of data specific to building block semantics:

Proportion of fixed contexts The percentage of contexts (over all contexts in every
individual in the population) that are completely fixed, i.e., all the positions are
either a 0 or 1. This means that any crossover using this context is going to be
a semantic no-op, yielding an offspring with the same semantics as the context
regardless of the subtree inserted. High proportions of fixed contexts suggest that
a run has essentially stalled, with very little effective search going on anymore.
Note that this is not necessarily a bad thing – if the run has found the target,
for example, then fixing strongly is not necessarily problematic. However, if the
target has yet to be found then a large proportion of fixed contexts is probably
undesirable.

Construction likelihood The probability of constructing the target via subtree
crossover:

∑c ∑s MakesTarget(c,s)
∑c ∑s 1

Here ∑c is summing over all contexts in all individuals in the population, ∑s is
similarly summing over all subtrees, and the pseudo-predicate MakesTarget(c,s)
returns 1 if subtree crossover with the context c and subtree s generates the target
semantics, and 0 otherwise. Obviously a run with a higher construction likeli-
hood is more likely to generate the target, and runs with construction likelihoods
that are 0 (or very nearly so) are almost certainly not going to succeed in the near
term.
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Proportion of compatible contexts The percentage of contexts (over all contexts in
every individual in the population) that are compatible with the target context. A
compatible context is a context that has the possibility of producing a target solu-
tion, meaning that any fixed values in the context must match the corresponding
values in the target. (A fully fixed context that will always produce a target so-
lution is also considered a compatible context.) If a context is incompatible, it is
guaranteed to not produce a solution if it is used in a crossover event. Therefore
low proportions of compatible contexts suggest that a run is unlikely to succeed,
at least in the near term.

4.2 Results
Not surprisingly, the 2-EP and 3-EP problems were quite easy and had 100% success
rates. The 4-EP runs found a solution 20 out of 38 times; two of these 20 runs, however,
later lost their successful solution (we weren’t using any form of elitism) and ultimately
converged on functions with fitness 15. None of the 6-EP runs solved the problem,
while all of the 6-MUX were successful, supporting the idea that 6-MUX is generally
much easier to solve than 6-EP with this function set. We weren’t particularly interested
in the success of the runs, but the relative difficulty of these problems (as demonstrated
by these success rates) is clearly reflected in many of the results below.

4.2.1 Compatible contexts

Figure 4 plots the proportion of compatible contexts for all five non-flat problems (Flat
fitness is not included here because it does not make sense to talk about compatible
contexts when there is no target to be compatible with.) The proportion of compatible
contexts for the relatively easy 2-EP and 3-EP problems quickly jumps to nearly 1 as
solutions are found, and subsequent bloat leads to large trees with many (correctly)
fixed contexts. 6-MUX, which also has a very high success rate, shows a similar be-
havior, although it takes a little longer for it to find a solution so the proportion of
compatible contexts does not rise as soon.

The proportion of compatible contexts for most 6-EP runs quickly drops to effec-
tively zero, indicating that those runs have converged on local optima that are inconsis-
tent in a significant way with the target. This suggests that those runs are very unlikely
to ever find a solution, as it would presumably take a significant jump to move from the
peak they’ve converged on to the target peak. What’s not indicated in the plot (because
the whiskers and outliers are suppressed) is that there are handful of runs (4 of 38) with
considerably higher proportions of compatible contexts. The proportions in these runs
are around 0.01, putting them in the lower range of the plotted data for the 4-EP runs.
None of the 6-EP runs succeed in finding a solution in the 500 generations we used, but
it seems plausible that this small group of runs would be the most likely to eventually
find a solution if given more time.

The higher persistent variance in the percentages for the 4-EP runs presumably re-
flects the fact that several of the runs have succeeded, while others remain stuck at
local optima. The fact that many of the (so far) unsuccessful 4-EP runs have percent-
ages that are well above zero (around 0.01) suggests, however, that those runs may still
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Figure 4: Boxplots of the percentage of compatible contexts for the first 250 gener-
ations across the 38 runs for all five problems. The whiskers and outliers have been
suppressed, so only the median and two middle quartiles are plotted. Note the log scale
on the y-axis.

have some chance of eventually jumping to the solution. In fact 6 (of 38) 4-EP runs
go on to find solutions after the final generation (250) plotted in Figure 4, although the
distribution of compatible contexts isn’t changed significantly by those successes.

4.2.2 Odds of construction

Figure 5 shows the strong correlation between the percentage of compatible contexts in
a population and the probability of constructing a target function via subtree crossover.
The trend is general; we’ve chosen to focus on two specific problems that have a broad
range of values. This correlation supports the idea that having the appropriate contexts
is critical to the success of GP runs.

The thick clusters of points in the upper right of the plot primarily represents the
later generations of successful runs, where a high proportion of the individuals match
the target function. The odds of constructing the target function is always slightly
below the percentage of compatible contexts, since constructing the desired function
requires both a compatible context and an appropriate subtree. The fact that the proba-
bility of constructing the target function via subtree crossover is so nearly equal to the
proportion of compatible contexts in the population, however, suggests that what’s im-
portant is to have the necessary contexts (as opposed to the right subtrees). This might
suggest that (at least in for these runs), the necessary sub-trees are generally present (or
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Figure 5: Scatterplot of the percentage of compatible contexts vs. the probability of
constructing the target via subtree crossover for 2-EP (the upper “cloud” of points) and
4-EP (the lower “cloud” of points).

easy to discover), and that the challenge is to construct the appropriate contexts.

4.2.3 Proportion of fixed contexts

Figure 6 shows the median proportion (over the 38 runs) of contexts that are com-
pletely fixed for each of our six test environments. Remember that a completely fixed
context is one where the return value in all cases is completely determined and will
be unaffected by the details of the particular subtree inserted into the context. Thus a
crossover using a completely fixed context is guaranteed to generate an offspring with
the same semantics as the root (or context) parent, and no semantic exploration will
have occurred.

It is worrying, then, that in each of the six cases, the proportion of fixed contexts
in the population exceeded 60% at all times, and was typically greater than 75%. This
means that a great majority of all crossover events are (at least in the short term) useless,
as they don’t explore any new semantic space.2 The two harder problems (4-EP and
6-EP) had the lowest percentage of fixed contexts, but even in these problems well
over half of all crossovers were guaranteed to be ineffective, regardless of the subtree
chosen for crossover.

2It is possible that such a crossover creates new structure that, when sampled in later generations, will
lead to an important discovery. Given the lack of any immediate semantic effect, however, such benefit is
quite random and unguided by the fitness function.
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Figure 6: Median proportion of contexts that are fixed vs. generation for all six test
environments. Note the y-axis doesn’t continue all the way down to 0. Also, the 3-EP
and 6-MUX plots almost completely overlap for the second half of the plots, so they
almost look like a single line in the graph.

All the problems with non-trivial fitness (everything but the 4-Flat) show a small
drop in the proportion of fixed contexts in the first few generations, with the proportion
of fixed contexts then climbing again from around generation 10 to around generation
30. After 200 generations the median proportion of fixed contexts become fairly flat
with the exception of 4-Flat, where there appears to be a certain amount of drift.

Figure 6 also shows that the proportion of fixed contexts in the initial generations
are driven (for these problems) by the number of inputs. 4-EP and 4-Flat for example,
both start at the same proportion, but diverge almost immediately, with 4-Flat’s pro-
portion of fixed contexts growing gently instead of dipping initially as is the case with
4-EP. Similarly 6-EP and 6-MUX start out similarly for a few generations, and then
diverge as the 6-MUX runs begin to gain traction on the problem while the 6-EP runs
continue to flounder.

5 Discussion

5.1 Approximation and extension to non-boolean domains
As mentioned in Section 3, these techniques are currently constrained to boolean prob-
lems, and even for boolean problems they scale badly to large number of variables. Of
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the three new measures that these techniques enable (proportions of compatible con-
texts, construction probabilities, and proportion of fixed contexts), the proportion of
fixed contexts is probably the easiest to generalize to problems with more variables
and non-boolean domains. Given that the proportion of fixed contexts appears to have
potential as an indicator of problem difficulty (see Figure 6), being able to at least
estimate it might have value even if it can’t be computed exactly.

One could estimate the proportion of fixed contexts on larger boolean problems,
for example, by randomly sampling contexts (perhaps as part of the existing crossover
process), and checking to see if they’re fixed. One could, for example, insert each of
the 22N

different subtree semantics at the crossover point in the context to see if any
changed the semantic value of the context. It is sufficient, however, to only check
any two complementary subtree semantics (e.g., the constants true and false). If the
(boolean) context is in fact not completely fixed, then it must contain at least one ’+’
or ’-’, which means it will have different values for at least one set of inputs when
complementary subtree semantics are inserted. One would still need to check all 2N

possible inputs to know for certain if the context is fixed, but for large N one could
further approximate by sampling the set of possible inputs.

For non-boolean domains the problem becomes more complex, especially in con-
tinuous domains like symbolic regression over the reals. With real-valued functions,
for example, there is potentially a whole spectrum of fixation. A completely fixed con-
text might (as in the boolean case) be completely independent of the inserted subtree,
while a “nearly fixed” context might change, but only by very small amounts. There’s
also no simple analogy to the complementary subtree semantics (such as true and false)
to simplify the sampling of the subtree semantics. Still, it seems likely that sampling
a few constant values at the insertion point across several sets of input values would
provide a useful approximation of the “fixedness” of a context, even in a real-valued
problem.

5.2 Understanding other representations and operators
One application of these ideas is to better understand the structural relationships be-
tween different GP operators and representations. In this paper we only examine the
impact of traditional subtree crossover and selection, but one could obviously extend
this to other crossover operators [15, 4, 6, 1], mutation operators [17], and their vari-
ous combinations (which are known to induce markedly different biases than operators
acting alone [14]). Unfortunately, the high proportion of fixed contexts in the initial,
randomly generated population suggests that even randomizing operations such as mu-
tation may not significantly lower the proportion of fixed contexts.

Another option would be to use this ideas to better understand the impact of differ-
ent representations on the search process. It’s clear, for example, that structural alter-
natives such as automatically defined functions (ADFs) [5] and grammatical evolution
(GE) [16] change the behavior of GP systems, but the exact nature of, and reasons for,
those differences are still only dimly understood. It seems likely that both of these
alternatives significantly change important properties such as the proportion of fixed
contexts, and the concepts presented here could be used to better understand those
changes.
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As in the real-valued case discussed above, however, the methods presented here
would have to be modified and extended to be used these other settings. In the case of
GE, for example, the notion of a context would have to be extended to include multiple
insertion points, which would require significant changes to the way that context se-
mantics are represented, computed, and enumerated. Alternatively, one could instead
calculate estimates of key quantities such as the proportion of fixed contexts.

5.3 Designing new operators and models
In many ways the high proportion of fixed contexts (Figure 6) is quite disheartening,
as it suggests that the majority of crossover applications are accomplishing nothing (at
least in the short term). We could, therefore, use these results to guide the design of
new recombination operators that would deliberately work to reduce the proportion of
fixed contexts, hopefully increasing the exploratory power of our system.

Experiments, for example, with a crossover operator that avoids choosing approxi-
mately fixed contexts (essentially the same as the approach taken in [2]) don’t appear to
improve the likelihood of finding solutions and can significantly slow down the evalua-
tion of individuals. It does, however, provide a very effective bloat control mechanism,
and it’s possible that modifications of this idea, or combinations with other operators,
could improve performance.

We could see the data reported here as the result of a co-evolutionary system where
there is a serious problem of disengagement [3], where one population (the contexts)
“beats” the other (the subtrees). In this case the population of contexts reaches such a
high proportion of fixedness that the subtrees are essentially frozen out of the process.
The restricted crossover operator defined above, then, could be seen as a means of
combating disengagement by increasing the chances that a context distinguishes among
subtrees instead of simply dominating them [3]. One could extend this observation
to build an explicit co-evolutionary model of subtree crossover in GP. Obviously in
standard GP the “population” of contexts and the “population” of subtrees are linked on
several levels (any particular node is a component of numerous contexts and numerous
subtrees at the same time), but given the apparent dominance of contexts in determining
the likelihood of success, detaching the two might in fact prove helpful rather than
problematic.

Alternatively, one could see our distributions of context and subtree semantics as
the basis for a co-evolutionary estimation of distribution (EDA) algorithm [9].

6 Conclusions
In this paper we have presented a novel means of exactly and compactly describing
(for boolean problems) the semantics of the two tree components combined by subtree
crossover: the context (the root parent with a subtree removed) and the subtree being
inserted into that context. This allows us to completely describe the semantic action
of subtree crossover, and enumerate in a syntax independent fashion the occurrence
of different context and subtree semantics in a population. The resulting data strongly
suggest that the distribution of context semantics are key in the success (or failure)
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of runs. Our results also make it clear that the proportion of fixed contexts in these
problems is very high (typically over 75%), indicating that the substantial majority of
subtree crossover events actually perform no search in the semantic space.

As well as shedding valuable new light on the impact of subtree crossover, these
tools and results suggest a number of ideas for new operations and approaches to ge-
netic programming that would be based on theoretical and empirical understanding
rather than simple guesswork.
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