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Abstract  18 

Digital terrain analysis (DTA) provides efficient, repeatable, and quantified metrics of 19 

landscape characteristics that are important to the Earth sciences, particularly for detailed soil 20 

mapping applications. However, DTA has not been field tested to the extent that traditional 21 

field metrics of topography have been. Human assessment of topography synthesizes multiple 22 

parameters at multiple scales to characterize a landscape, based on field experience. In order to 23 

capture the analysis scale used by field scientists, this study introduces a method for calibrating 24 

the analysis scale of DTA to field assessments. This method is used to calibrate land-surface 25 

derivatives of relative elevation, profile curvature, and slope gradient in the context of the 26 

commonly used field description of hillslope position. For a topographically diverse landscape in 27 

Michigan, USA, a peak in agreement between field assessment and digital terrain analysis was 28 

found at field equivalent distances of 135 m for relative elevation, 63 m for profile curvature, 29 

and 9 m for slope gradient. Given the field experience of soil scientists, these calibrations of 30 

DTA metrics are likely to have stronger correlations with hillslope properties and could be used 31 

together to classify hillslope position consistently across large extents. 32 

Keywords: digital terrain analysis, analysis scale, semantic calibration, land-surface derivatives 33 
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Introduction 34 

Digital terrain analysis (DTA) metrics are typically scale dependent (Wood 1996a; Albani 35 

et al. 2004; Hupy et al. 2004; Roecker and Thompson 2010). Therefore, when used as 36 

parameters in models, attention needs to be given to using the optimal analysis scale for the 37 

process being represented. Otherwise, the use of the incorrect analysis scale could result in 38 

erroneous model outcomes or mistakenly disregarding important parameters (Claessens et al. 39 

2005). Prior to digital techniques, cartographers utilized tacit knowledge to identify the optimal 40 

analysis scale for the parameters in their mental model for creating a spatially predictive map. 41 

This study calibrates the analysis scale of three land-surface derivatives to the expert 42 

knowledge of hillslope position classification. 43 

Processes occur at certain phenomenon scales. Analysis scale, on the other hand, is the 44 

generalization that is best able to detect that phenomenon (Montello 2001).  In DTA terms, 45 

analysis scale is the combination of cell resolution and the number of cells incorporated in an 46 

analysis neighborhood (Thompson et al. 2001; Albani et al. 2004). Experience has calibrated 47 

scientists’ sense of analysis scale for measuring landscape characteristics. Similar calibration of 48 

analysis scale needs to be derived for digital terrain metrics. This is especially true for expert 49 

knowledge-based models and models that seek to predict or be validated by human-made 50 

classifications in the field (e.g. digital soil mapping). Until more field studies are conducted to 51 

quantitatively determine the scale at which the processes influencing the variation of landscape 52 

properties operate, utilizing the scale learned by field scientists provides the best supported 53 
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method for predicting metric-process relationships. Through semantic calibration, DTA can be 54 

parameterized to the tacit knowledge of scientists (Dehn et al. 2001).   55 

Despite the importance of analysis scale, analysis neighborhoods are often set to a 3 by 56 

3 cell area for all land-surface derivatives, leaving the analysis scale dependent on cell 57 

resolution (e.g. Zevenbergen and Thorne 1987; Gallant and Wilson 1996; Lapen and Martz 58 

1996; MacMillan et al. 2000; Shi et al. 2009). In some cases, neighborhood size is considered to 59 

be such a fundamental assumption that it is not specified in research methods (e.g. Mitášova 60 

and Hofierka 1993; Joel et al. 1994; Florinsky et al. 2002). By focusing on cell resolution alone, 61 

the analysis scale can be inadvertently determined by the best available resolution and 62 

computational efficiency (Moore et al. 1993; Sharma et al. 2011). 63 

Many studies have identified the impact of analysis scale via the effect of DEM 64 

resolution on geomorphic models (e.g. Chang and Tsai 1991; Chaplot et al. 2000; Schoorl et al. 65 

2000; Florinsky and Kuryakova 2000; Thompson et al. 2001; Kienzle 2004; Wu et al. 2008). 66 

However, a distinction should be made between varying cell resolution and analysis 67 

neighborhood size, because they are different methods of generalization. Also, cell resolution 68 

can be associated with elevation accuracy (Gao 1997), especially if the DEMs are generated by 69 

different methods. By using algorithms that can calculate land-surface derivatives from 70 

neighborhoods larger than 3 by 3 cells, analysis scale can be tested independently of grid 71 

resolution (Wood 1996b).  72 

In the context of digital soil mapping, several studies have determined that analysis 73 

scale affects results. However, the complex interactions between different land-surface 74 
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derivatives, combinations of soil properties, and value systems inherent within soil classification 75 

systems, have clouded interpretation of those results. Smith et al. (2006) varied the analysis 76 

scale of slope gradient, plan curvature, and profile curvature as inputs to the SoLIM soil 77 

mapping model. Because analysis scale for the different parameters was not allowed to vary 78 

independently, it is unclear if the determination of different optimal analysis scales for different 79 

terrain types (i.e. 24-36 m for high relief, 33-48 m for gently rolling) reflects different 80 

phenomenon scales for different landscapes, or a shift in the dominant parameter. In other 81 

words, model performance could have been improved not by the optimal analysis scale of the 82 

respective parameters changing between landscapes, but rather by the optimal parameter for 83 

prediction changing between soil classes used in different landscapes. Behrens et al. (2010) 84 

tested analysis scale for land-surface derivatives independently and found that the optimal 85 

analysis scale varied by soil class. The variability of optimal analysis scale between soil classes 86 

may be produced by the complexity and values built into the classification system, rather than 87 

processes acting at different scales. Therefore, point observations for single attributes need to 88 

be examined for determining optimal analysis scale. Roecker and Thompson (2010) did this and 89 

concluded analysis scales between 117-189 m to be optimal for correlating point observations 90 

of soil carbon, rock fragment content, and clay content at different depths with profile 91 

curvature.  92 

Recognizing the value of accumulated field experience, expert knowledge models seek 93 

to capture tacit knowledge to improve model performance. Hillslope position is a useful, tacit 94 

knowledge based, metric for many geomorphic studies; soil scientists have long used this field 95 

metric extensively across the United States in their efforts to inventory soil resources. For this 96 
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reason, I argue that data collected by the U.S. Soil Survey has the large quantity of observation 97 

points needed to calibrate DTA with field terrain analysis and to reduce the noise that is 98 

inherent in human observations of continuous variables. Therefore, the purpose of this study is 99 

to semantically calibrate the land-surface derivatives of slope gradient, profile curvature, and 100 

relative elevation to the analysis scale used by soil scientists in determining hillslope position. 101 

Because of the categorical nature of hillslope position and high variability of human 102 

interpretation, a method of percent agreement is introduced for identifying the analysis scale 103 

with the strongest signal. The resulting calibrated metrics can be used as parameters to a 104 

variety of models, including fuzzy and discrete classifications. 105 

Methods 106 

Relating Field Assessment of Hillslope Position to Digital Terrain Analysis 107 

Terrain characteristics for describing hillslope process zones and predicting soil 108 

properties has been an important area of study in soil geography (e.g. Milne 1935; Ruhe 1960; 109 

Burras and Scholtes 1987; Carter and Ciolkosz 1991; Donald et al. 1993; Stolt et al. 1993; Cerdá 110 

1998; Yoo et al. 2005). Although largely qualitative, the use of hillslope position has been tuned 111 

through decades of scientific study and field experience. Hillslope position is a contextual 112 

metric that divides a landscape into areas where the interaction between hydrology and relief 113 

affect the properties of the soil in different ways (Wysocki et al. 2000). Summit positions are 114 

often flat and higher in elevation than their surrounding areas, which tends to result in more 115 

infiltration than runoff, and less influence from the water table. Shoulder positions are also 116 

relatively high in elevation, but their convex shape and steep slope shifts the balance to a 117 



7 

 

greater likelihood of runoff over infiltration. Backslopes are generally considered to be 118 

transition zones, and although the slope shape is generally linear, the slope gradient is generally 119 

the highest of the hillslope positions, and steeper slope gradients promote runoff. Footslope 120 

positions are concave in profile curvature and lower on the slope, causing these sites to be 121 

wetter and sediment accumulating positions. The toeslope is flatter and lies at the lowest 122 

relative elevation along the slope. Its juxtaposition makes it the zone with the most 123 

accumulation of materials transported from upslope and the most affected by the water table. 124 

In the field, soil scientists synthesize the terrain characteristics of slope gradient, profile 125 

curvature, and relative elevation to identify the functional zones as defined by hillslope position 126 

(Figure 1). Although hillslope position is one of the most basic and widely used terrain 127 

descriptions for soil geomorphology, it is primarily based on tacit knowledge without 128 

quantitative definitions. Soil scientists have calibrated a mental model for identifying soil-129 

landscape patterns. This study focuses on identifying the analysis scales of land-surface 130 

derivatives equivalent to the analysis scales used in the soil scientists’ mental model. 131 

Semantic Calibration of Analysis Scale 132 

DTA was performed at multiple analysis scales for comparison with soil scientists’ field 133 

assessments. Slope gradient and profile curvature were calculated with varying neighborhood 134 

sizes using the r.param.scale function in GRASS 6.4.2 (GRASS Development Team 2012). The 135 

r.param.scale function calculates both slope and profile curvature by fitting a quadratic trend 136 

surface using least squares (Evans 1979). The analysis scale can be expanded by including more 137 
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grid cells in the parameters for the polynomial and solving the least squares via a matrix (Wood 138 

1996b).  139 

In order to have a user controlled analysis scale for relative elevation, I developed a 140 

procedure in ArcGIS 10.1 (ESRI 2012). This method for calculating relative elevation subtracted 141 

the inverse elevation from the original elevation by analysis neighborhoods. The inverse 142 

elevation was the elevation subtracted from the sum of the minimum and maximum elevation 143 

values in the analysis neighborhood. The neighborhood size was controlled via the focal 144 

statistics used to determine the minimum and maximum elevation. The resulting relative 145 

elevation grid had increasing positive values above and decreasing negative values below the 146 

analysis neighborhood’s middle elevation (Figure 2). 147 

A LiDAR-derived, 3 m resolution, elevation grid was aggregated to resolutions of 9 m 148 

and 27 m to reflect the resolutions of 1/3 arc second and 1 arc second that other elevation grid 149 

products are commonly available in, while still preserving cell alignment. Then, all three grids 150 

were processed for the three land-surface derivatives using varied neighborhood sizes by the 151 

experimental matrix in Table 1. The experimental matrix was designed to cover the full range of 152 

reasonable analysis scales and to use combinations of cell resolution and neighborhood size 153 

where analysis scale would align across cell resolutions. 154 

  155 
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Table 1. Experimental matrix for varying combinations of DEM cell size and neighborhood size 156 

for varying analysis scale. 157 

  Neighborhood Size  

Distance  9 m 15 m 27 m  45 m  63 m  81 m  135 m  189 m  

LiDAR (3 m) 3x3  5x5  9x9  15x15  21x21  27x27   45x45† 63x63† 

(9 m resample)     3x3  5x5  7x7  9x9  15x15  21x21  

(27 m resample)           3x3  5x5  7x7  

†only used for relative elevation 158 

 159 

Field observation points of hillslope position and slope gradient, collected by U.S. 160 

Natural Resource Conservation Service (NRCS) soil scientists, were then intersected with each 161 

of the DTA grids. The resulting match-up allowed for the comparison of DTA calculations with 162 

soil scientists’ assessment in the field by location. The soil scientists recorded slope gradient as 163 

an integer, allowing for a quantitative comparison. Agreement for slope gradient was evaluated 164 

by the mean absolute difference between the field observed and the DTA calculated slope 165 

gradient in degrees. Because profile curvature and relative elevation are included in hillslope 166 

position as categorical attributes, not quantitative measures, comparison between field 167 

observation and DTA were compared on a basis of percent agreement by categorical definition 168 

(Table 2).  169 

Table 2. Definition table for relating qualitative hillslope position descriptions to the DTA of 170 

profile curvature and relative elevation. Attributes highlighted in gray were used for the 171 

semantic calibration. 172 

Hillslope Position Profile Curvature  Relative Elevation  

Summit  Linear  High  

Shoulder  Convex  High  

Backslope  Linear  Middle  

Footslope  Concave  Low  

Toeslope  Linear  Low  
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Due to the fuzzy nature of landscape elements and the subjectivity of human 173 

assessment, agreement was only tested for the definitional extremes. For profile curvature, 174 

agreement was evaluated for negative values corresponding to concave slope shape and 175 

positive values corresponding to convex slope shapes. Relative elevation was quantified as 176 

distance above (positive) or below (negative) the mid-elevation of the analysis neighborhood. 177 

Agreement was evaluated as negative values corresponding with low hillslope positions and 178 

positive values corresponding with high hillslope positions.  179 

The level of agreement between digital and field assessment should increase as the 180 

digital analysis scale is more closely aligned with the analysis scale used by the soil scientists in 181 

the field. Therefore, the optimal semantic calibration was determined to be the analysis scale 182 

with the highest percent agreement for the qualitative metrics. Specifically, for profile 183 

curvature and relative elevation, percent agreement was calculated for each definitional 184 

category separately and then summarized with the mean of those results. Using the mean of 185 

the categorical results avoided over emphasizing a category that may have more observations 186 

than the other. In other words, the mean percent agreement for a particular analysis scale 187 

equally weights the two categories used for evaluation. For slope gradient, agreement could be 188 

measured on a continuous scale. Therefore, the optimal semantic calibration for slope gradient 189 

was determined by the lowest mean absolute difference between the DTA calculation and the 190 

field estimate. 191 

Consistent analysis scale calibration between grid resolutions provided support for the 192 

determination that calibration was due to the matching of analysis scales and not to matching 193 
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an artifact pattern in the source DEM. Therefore, a consistent peak in percent agreement at the 194 

same analysis scales was considered to be a strong signal for identifying the analysis scale used 195 

by the soil scientists and that analysis scale being used consistently.  196 

Study Area 197 

This study analyzed data for Ottawa County, Michigan, on the eastern shore of Lake 198 

Michigan (Figure 3). Large dunes have formed on the western edge of Ottawa County (Figure 199 

4a). The central part of the county is lake plain formed beneath Glacial Lake Chicago (Figure 4b). 200 

This glacial lake plain is flat with interspersed dunes of decreasing size (from west to east) that 201 

have encroached from the west. The northeast and southeast portions of the area grade into a 202 

hummocky terrain, more characteristic of till plains (Figure 4c). Across the entire 1,488 km2 203 

study area the elevation ranges from 173 to 292 meters above sea level.  204 

Ottawa County was chosen because of the availability of a LiDAR-based elevation grid 205 

(2004) and a number of georeferenced observations of hillslope position, by NRCS soil 206 

scientists, taken in the field. The LiDAR-based elevation grid has a 3 m resolution and was 207 

provided by the Ottawa County government. Georeferenced field observations of hillslope 208 

position were provided by the Grand Rapids, Michigan Soil Survey Office.  209 

Recorded GPS points at observation sites were joined with a database created from the 210 

paper records of field observations. Observations were made by the Grand Rapids Soil Survey 211 

Office staff between 2007 and 2009. The GPS recorded observations used in this study were all 212 

8-10 point transects, of typically 40-80 m point spacing, for a total of 1,068 points (Figure 3). 213 
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The hillslope position assessment of the soil scientists was converted into categorical attributes 214 

in terms of profile curvature and relative elevation (Table 2), as interpreted from the hillslope 215 

position diagram presented in Schoeneberger et al. (2012). Not all recorded observations were 216 

interpretable for these two land-surface derivatives. For example, observation points that were 217 

recorded simply as “flat,” could not have a relative elevation interpreted from it. From the 218 

transect observation points, 966 were interpretable for profile curvature and 572 were 219 

interpretable for relative elevation. Field observed values of slope gradient were available for 220 

all 1,068 points. Using only points in the categories that were least likely to overlap reduced the 221 

number of field observations that could be used in the calibration. Therefore, 216 points were 222 

used for the evaluation of profile curvature and 406 points were used for the evaluation of 223 

relative elevation. 224 

 225 

226 
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Results 227 

Analysis Scale Calibration 228 

The calibration of all three land-surface derivatives showed a pattern of increasing 229 

agreement up to a certain analysis scale and then decreasing agreement with scales coarser 230 

than the optimal matching analysis scale. In describing the result details, the different 231 

combinations of grid resolution and neighborhood size will be referred to by the field distance 232 

equivalent for the particular analysis scale. Because all analysis scales are based on square 233 

neighborhoods of square cells, it is simpler and more relatable to the field environment to use 234 

the field equivalent distance for the linear dimension of the analysis scale. However, it should 235 

be noted that field observations of hillslope position are likely more linear (aligned with the 236 

profile of the hillslope) than the square area used by DTA. 237 

Profile curvature had the highest agreement between digital calculations and field 238 

observations at a field equivalent distance of 63 m (Table 3). Because the minimum possible 239 

analysis scale for a grid resolution of 27 m is 81 m (3 cells * 27 m = 81 m), the same signal could 240 

not be observed with the 27 m grid. Instead, the highest percent agreement was at the smallest 241 

analysis scale, which is closest to the scale signal observed in the other two resolutions. An 242 

exception to this signal was the concave profile curvature agreement for the 9 and 27 m 243 

resolution grids, where the highest percent agreement was at a scale of 135 m. However, for 244 

the 9 m resolution grid, the percent agreement at 81 m and 63 m was only 3% less than at 135 245 

m. These increases in analysis scale for the highest percent agreement could be caused by the 246 

scale effect of the modifiable area unit problem (MAUP), which increases the probability of 247 

categorical agreement by decreasing the variability at larger analysis scales. The percent 248 
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agreement peak for the combined concave and convex categories still showed a strong signal at 249 

63 m, or the closest possible analysis scale.  250 

 251 

Table 3. Percent agreement results for profile curvature. Concave and convex 'agree' are the 252 

count of points where the digital and field assessments of slope profile shape were in 253 

agreement. Percent is the proportion of agreement out of the total number of points identified 254 

by the soil scientists to be in the respective category (105 concave and 111 convex points).†  255 

Profile Curvature 3 m Grid 

  Distance 9 m 15 m 27 m 45 m 63 m 81 m 

  Concave agree 60 59 72 72 73 70 

  Convex agree 67 72 75 77 77 76 

  % concave agree 57.1% 56.2% 68.6% 68.6% 69.5% 66.7% 

  % convex agree 60.4% 64.9% 67.6% 69.4% 69.4% 68.5% 

  Mean % 

agreement 58.8% 60.5% 68.1% 69.0% 69.4% 67.6% 

  

 

  9 m Grid 

 

Distance 27 m 45 m 63 m 81 m 135 m 189 m 

 

Concave agree 64 65 71 71 74 65 

 

Convex agree 72 75 76 73 68 74 

 

% concave agree 61.0% 61.9% 67.6% 67.6% 70.5% 61.9% 

 

% convex agree 64.9% 67.6% 68.5% 65.8% 61.3% 66.7% 

 

Mean % 

agreement 62.9% 64.7% 68.0% 66.7% 65.9% 64.3% 

    

  27 m Grid 

    

Distance 81 m 135 m 189 m 

    

Concave agree 68 75 68 

    

Convex agree 77 69 75 

    

% concave agree 64.8% 71.4% 64.8% 

    

% convex agree 69.4% 62.2% 67.6% 

    

Mean % 

agreement 67.1% 66.8% 66.2% 

†Analysis scale with strongest signal highlighted in dark gray; other strong agreements shown 256 

in lighter gray. 257 

 258 



15 

 

The signal for relative elevation was at 135 m (Table 4). To confirm this for the 3 m 259 

resolution grid, the experimental matrix needed to be extended beyond a field equivalent 260 

distance of 81 m. The signal for an optimal analysis scale at 135 m was consistent for nearly all 261 

measures. The only exception was the percent agreement for relatively high elevation using the 262 

27 m resolution grid. In that case, one more point was in agreement for the 81 m over the 135 263 

m scale, increasing the amount of agreement by 0.5%. The analysis scale for the relative 264 

elevation signal indicates relative elevation is considered contextually over a larger area in the 265 

field, by mappers, as compared to the other terrain metrics. 266 

The numeric field observations of slope gradient provided a quantitative determination 267 

of matching analysis scales. Although it is unrealistic to expect integers recorded by human 268 

observation to exactly match the rational numbers calculated by DTA, a minimal difference 269 

provides a calibration of the digital method to the analysis scale used in the field. For each grid 270 

resolution, the mean difference was lowest at the finest analysis scale possible (Table 5). The 271 

trend of decreasing mean differences with decreasing neighborhood size suggests the optimal 272 

analysis scale for digitally determining slope gradient similar to a soil scientist’s characterization 273 

in the field is relatively small. 274 

  275 
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Table 4. Percent agreement results for relative elevation. Low and high 'agree' are the count of 276 

points where the digital and field assessments of relative elevation were in agreement. Percent 277 

is the proportion of agreement out of the total number of points identified by the soil scientists 278 

to be in the respective category (206 low and 200 high points).† 279 

Relative Elevation 3 m Grid 

Distance 9 m 15 m 27 m 45 m 63 m 81 m 135 m 189 m 

Low agree 101 115 135 148 158 163 176 173 

High agree 109 117 123 136 137 140 144 140 

% low agree 49.0% 55.8% 65.5% 71.8% 76.7% 79.1% 85.4% 84.0% 

% high agree 54.5% 58.5% 61.5% 68.0% 68.5% 70.0% 72.0% 70.0% 

Mean % 

agreement 51.8% 57.2% 63.5% 69.9% 72.6% 74.6% 78.7% 77.0% 

 

  9 m Grid 

 

Distance 27 m 45 m 63 m 81 m 135 m 189 m 

 

Low agree 125 152 159 164 177 172 

 

High agree 129 133 139 139 148 132 

 

% low agree 60.7% 73.8% 77.2% 79.6% 85.9% 83.5% 

 

% high agree 64.5% 66.5% 69.5% 69.5% 74.0% 66.0% 

 

Mean % 

agreement 62.6% 70.1% 73.3% 74.6% 80.0% 74.7% 

    

  27 m Grid 

    

Distance 81 m 135 m 189 m 

    

Low agree 153 167 166 

    

High agree 145 144 138 

    

% low agree 74.3% 81.1% 80.6% 

    

% high agree 72.5% 72.0% 69.0% 

    

Mean % 

agreement 73.4% 76.5% 74.8% 

 †Analysis scale with strongest signal highlighted in dark gray; other strong agreements shown 280 

in lighter gray. 281 

 282 

  283 
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Table 5. Mean absolute difference results for slope gradient. 284 

Slope (degrees) 3 m Grid 

  Distance 9 m 15 m 27 m 45 m 63 m 81 m 

  
Mean difference 3.1° 3.2° 3.4° 3.8° 4.0° 4.1° 

  

 

  9 m Grid 

 

Distance 27 m 45 m 63 m 81 m 135 m 189 m 

 

Mean difference 3.4° 3.8° 4.0° 4.1° 4.4° 4.5° 

    

  27 m Grid 

    

Distance 81 m 135 m 189 m 

    

Mean difference 4.1° 4.4° 4.5° 

 285 

Discussion 286 

The observed convergence in agreement as neighborhood size approaches an optimal 287 

analysis scale suggests 1) soil surveyors are relatively consistent in their use of analysis scale 288 

and 2) the calibration methodology was able to capture the analysis scales used by the soil 289 

scientists. By comparing a series of analysis scales for land-surface derivatives with the soil 290 

scientists’ mental model assessments, the analysis scales of land-surface derivatives that best 291 

correspond to the soil scientists’ field experience were identified. In the context of soil 292 

scientists describing hillslopes, the analysis scale used decreases from relative elevation to 293 

profile curvature to slope gradient. To many field scientists, this hierarchy of analysis scale for 294 

these components may sound intuitive, but DTA parameters are often calculated at identical 295 

analysis scales for use in environmental models. The field scientists’ use of different analysis 296 

scales for these parameters should inform quantitative modelling and thereby improve 297 

geomorphic and soil predictions. 298 
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Comparisons of DTA scales demonstrated the impact of analysis scale choice for each 299 

land-surface derivative, particularly for capturing expert knowledge. For example, when 300 

characterizing relative elevation with a 3 m resolution grid, choosing between a field equivalent 301 

distance of 9 m versus 135 m had the impact of agreeing with the field scientists 52% of the 302 

time or 79% of the time, respectively. Similarly, when simply characterizing profile curvature as 303 

concave or convex, choosing an analysis scale of 63 m over 9 m improved agreement with 304 

scientists in the field by 10%.  305 

Although the method introduced would need to be applied in additional study areas to 306 

determine transferability, the results of this study are supported by the observations of other 307 

researchers investigating the optimal analysis scale for these land-surface derivatives in other 308 

soil related contexts. The semantic calibration of profile curvature scale in this study 309 

corresponds to the optimal scale Drăgut et al. (2009) determined for predicting crop yield from 310 

profile curvature on an alluvial plain of the Danube River. The increasing agreement between 311 

digital and field measurements of slope gradient with decreasing neighborhood size to at least 312 

9 m is also consistent with the results of Shi et al. (2007). The results of Roecker and Thompson 313 

(2010) indicated a coarser analysis scale for profile curvature, but the smaller quantity of 314 

samples in their study may have been susceptible to issues of sampling and the scale effect of 315 

MAUP. 316 

The use of only categories that are better separated definitionally was successful in 317 

reducing the noise in the soil scientists’ mental model outcomes. The high variability of human 318 

assessment greatly reduces the predictability of qualitative field metrics such as hillslope 319 
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position, but does not negate the ability to capture the logic in the experts’ knowledge. At a 320 

minimum, the DTA should be expected to produce values definitionally compatible with the 321 

field observations. That is, profile curvature should be positive for convex slope shapes and 322 

negative for concave slope shapes (note, some profile curvature algorithms may have those 323 

definitions switched). Similarly, it would be expected that summits and shoulders would have 324 

positive relative elevations with footslopes and toeslopes expected to have negative relative 325 

elevations. The calibrated analysis scale at which the DTA has the highest agreement with these 326 

definitional relationships provides insight to how the soil scientists conceptualized the 327 

landscape in the field. 328 

The similar rates in calibration agreement for matching analysis scales across grid 329 

resolutions indicate that resampling to larger cell sizes did not have a major impact on the 330 

analysis. Using more cells in the analysis neighborhood or aggregating to larger cell sizes and 331 

then using fewer cells in the analysis neighborhood are two different routes for generalization, 332 

with the potential for different outcomes. However, the effect of using one or the other 333 

method of generalization did not affect the results as much as changing the realized analysis 334 

scale. 335 

As high resolution, digital elevation products from technologies such as LiDAR become 336 

more available, smaller objects on the ground have the potential to affect DTA results. 337 

Although the elevation grid used in this study was processed from the LiDAR point cloud to be 338 

bare earth, the influence of either non-soil or at least man-made features are present in the 339 

elevation data. This noise in the DEM could affect land-surface derivatives. Therefore, the 340 
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semantic calibration in this study may be influenced by not only the scale used by soil scientists, 341 

but also the DTA scale that sufficiently smoothes the digital representation of terrain to 342 

minimize the influence of features that would naturally be ignored by scientists in the field. 343 

Conclusions 344 

Based on data from the soil scientists in this study, this research suggests that there are 345 

optimal analysis scales for relating DTA to observations made in the field. However, the optimal 346 

analysis scale is likely to be different for each land-surface derivative. The method of semantic 347 

calibration presented was able to identify analysis scales that optimized the agreement 348 

between DTA and field observations.  349 

Results from this study suggest that the optimal analysis scales for slope gradient, 350 

profile curvature, and relative elevation are the field equivalent distances of 9 m, 63 m, and 135 351 

m, respectively. As analysis scales tested were limited to multiples of the grid cell size, these 352 

calibrated analysis scales are approximate. Application of the method introduced in this study 353 

in additional areas is needed to determine the transferability of these calibrated analysis scales, 354 

but similarity of these results with other studies suggests the possibility that they are not 355 

unique to this study area. 356 

This method of semantically calibrating analysis scales for DTA provides documentation 357 

of the soil scientists’ field perspective and experience in the assessment of hillslope processes. 358 

Models attempting to predict landscape features traditionally identified by field scientists will 359 

likely benefit from using the same analysis scales utilized by those scientists. Similarly, other 360 
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models using DTA as parameters will likely benefit from the lessons of analysis scale 361 

accumulated by scientists in the field over centuries.  362 
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Figures 482 

 483 

Figure 1. In order to classify the functional zones of hillslope position, a) soil scientists in the 484 

field synthesize their assessment of b) slope gradient, c) profile curvature, and d) relative 485 

elevation to determine the hillslope position of a location. 486 
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 487 

Figure 2. In this research, relative elevation is calculated on a neighborhood by neighborhood 488 

basis for each cell. a) First, a reference elevation ceiling is calculated by summing the 489 

neighborhood minimum and maximum elevations. b) Then, the central cell elevation is 490 

subtracted from the elevation ceiling to calculate an inverse elevation. c) By subtracting the 491 

inverse from the original elevation, a relative elevation grid is created with the mid-point 492 

between the neighborhood minimum and maximum having a value of zero. Elevation values 493 

above the mid-point are increasingly positive. Below the elevation mid-point, values are 494 

negative and decrease with vertical distance.  495 
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496 
Figure 3. Relief and location of study area, Ottawa County, in the lower peninsula of 497 

Michigan, U.S. The map also includes locations of field observation transect points. 498 
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499 

500 

501 
Figure 4. Examples of terrains within study area: a) dune landscape, b) glacial lake plain 502 

landscape, and c) hummocky landscape. Photos by the author.  503 

c) 

b) 

a) 
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