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Abstract. Semantic coordination, namely the problem of finding an agreement
on the meaning of heterogeneous semantic models, is one of the key issues in the
development of the Semantic Web. In this paper, we propose a new algorithm for
discovering semantic mappings across hierarchical classifications based on a new
approach to semantic coordination. This approach shifts the problem of semantic
coordination from the problem of computing linguistic or structural similarities
(what most other proposed approaches do) to the problem of deducing relations
between sets of logical formulae that represent the meaning of concepts belong-
ing to different models. We show how to apply the approach and the algorithm
to an interesting family of semantic models, namely hierarchical classifications,
and present the results of preliminary tests on two types of hierarchical classifi-
cations, web directories and catalogs. Finally, we argue why this is a significant
improvement on previous approaches.

1 Introduction

One of the key issues in the development of the Semantic Web is the problem of enabling
machines to exchange meaningful information/knowledge across applications which (i)
may use autonomously developed models of locally available data (local models), and
(ii) need to find a sort of agreement on what local models are about to achieve their users’
goals. This problem can be viewed as a problem of semantic coordination1, defined as
follows: (i) all parties have an interest in finding an agreement on how to map their models
onto each others, but (ii) there are many possible/plausible solutions (many alternative
mappings across local models) among which they need to select the right, or at least a
sufficiently good, one.

In environments with more or less well-defined boundaries, like a corporate Intranet,
the semantic coordination problem can be addressed by defining and using shared models
(e.g., ontologies) throughout the entire organization2. However, in open environments,

1 See the introduction of [6] for this notion, and its relation with the notion of meaning negotiation.
2 But see [4] for a discussion of the drawbacks of this approach from the standpoint of Knowledge

Management applications.
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like the Semantic Web, this “centralized” approach to semantic coordination is not viable
for several reasons, such as the difficulty of “negotiating” a shared model of data that
suits the needs of all parties involved, the practical impossibility of maintaining such a
model in a highly dynamic environment, the problem of finding a satisfactory mapping
of pre-existing local models onto such a global model. In such a scenario, the problem
of exchanging meaningful information across locally defined models seems particularly
tough, as we cannot presuppose an a priori agreement, and therefore its solution requires
a more dynamic and flexible form of “peer-to-peer” semantic coordination.

In this paper, we address an important instance of the problem of semantic coor-
dination, namely the problem of coordinating hierarchical classifications (HCs). HCs
are structures having the explicit purpose of organizing/classifying some kind of data
(such as documents, records in a database, goods, activities, services). The problem of
coordinating HCs is significant for at least two main reasons:

– first, HCs are widely used in many applications3. Examples are: web directories (see
e.g. the GoogleTM Directory or theYahoo!TMDirectory), content management tools
and portals (which often use hierarchical classifications to organize documents and
web pages), service registry (web services are typically classified in a hierarchical
form, e.g. in UDDI), marketplaces (goods are classified in hierarchical catalogs),
PC’s file systems (where files are typically classified in hierarchical folder struc-
tures);

– second, it is an empirical fact that most actual HCs (as most concrete instances of
models available on the Semantic Web) are built using structures whose labels are
expressions from the language spoken by the community of their users (including
technical words, neologisms, proper names, abbreviations, acronyms, whose mean-
ing is shared in that community). In our opinion, recognizing this fact is crucial to
go beyond the use of syntactic (or weakly semantic) techniques, as it gives us the
chance of exploiting the complex degree of semantic coordination implicit in the
way a community uses the language from which the labels of a HC are taken.

The main technical contribution of the paper is a logic–based algorithm, called
CtxMatch, for coordinating HCs. It takes in input two HCs H and H ′ and, for each
pair of concepts k ∈ H and k′ ∈ H ′, returns their semantic relation. The relations we
consider in this version of CtxMatch are: k is less general than k′, k is more general
than k′, k is equivalent to k′, k is compatible with k′, and k is incompatible with (i.e.,
disjoint from) k′. The formal semantics of these relations will be made precise in the
paper.

With respect to other approaches to semantic coordination proposed in the literature
(often under different “headings”, such as schema matching, ontology mapping, semantic
integration; see Section 6 for references and a detailed discussion of some of them), our
approach is innovative in three main aspects: (1) we introduce a new method for making
explicit the meaning of nodes in a HC (and in general, in structured semantic models)
by combining three different types of knowledge, each of which has a specific role; (2)
the result of applying this method is that we are able to produce a new representation

3 For an interesting discussion of the central role of classification in human cognition see, e.g.,
[15,7].
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of a HC, in which all relevant knowledge about the nodes (including their meaning in
that specific HC) is encoded as a set of logical formulae; (3) mappings across nodes
of two HCs are then deduced via logical reasoning, rather then derived through some
more or less complex heuristic procedure, and thus can be assigned a clearly defined
model-theoretic semantics. As we will show, this leads to a major conceptual shift, as
the problem of semantic coordination between HCs is no longer tackled as a problem
of computing linguistic or structural similarities (possibly with the help of a thesaurus
and of other information about the type of arcs between nodes), but rather as a problem
of deducing relations between formulae that represent the meaning of each concept in
a given HC. This explains, for example, why our approach performs much better than
other ones when two concepts are intuitively equivalent, but occur in structurally very
different HCs.

The paper goes as follows. In Section 2 we introduce the main conceptual assump-
tions of the new approach we propose to semantic coordination. In Section 3 we show
how this approach is instantiated to the problem of coordinating HCs. Then we present
the main features of CtxMatch the proposed algorithm for coordinating HCs (Sec-
tion 4). In the final part of the paper, we sum-up the results of testing the algorithm on
web directories and catalogs (Section 5) and compare our approach with other proposed
approaches for matching schemas (Section 6).

2 Our Approach

The approach to semantic coordination we propose in this paper is based on the intuition
that there is an essential conceptual difference between coordinating generic abstract
structures (e.g., arbitrary labelled graphs) and coordinating structures whose labels are
taken from the language spoken by the community of their users. Indeed, the second type
of structures give us the chance of exploiting the complex degree of semantic coordina-
tion implicit in the way a community uses the language from which the labels are taken.
Most importantly, the status of this linguistic coordination at a given time is already
“codified” in artifacts (e.g., dictionaries, but today also ontologies and other formalized
models), which provide senses for words and more complex expressions, relations be-
tween senses, and other important knowledge about them. Our aim is to exploit these
artifacts as an essential source of constraints on possible/acceptable mappings across
HCs.

To clarify this intuition, let us consider the HCs in Figure 1, and suppose they are
used to classify images in two multi-media repositories. Imagine we want to discover the
semantic relation between the nodes labelled MOUNTAIN in the two HCs on the left hand
side, and between the two nodes FLORENCE on the right hand side. Using knowledge
about the meaning of labels and about the world, we understand almost immediately that
the relation between the first pair of nodes is “less general than” (intuitively, the images
that one would classify as images of mountains in Tuscany is a subset of images that one
would classify under images of mountains in Italy), and that the relation between the
second pair of nodes is “equivalent to” (the images that one would classify as images of
Florence in Tuscany are the same as the images that one would classify under images of
Florence in Italy). Notice that the relation is different, even though the two pairs of HCs
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Fig. 1. Coordinating HCs

are structurally very similar. How do we design a technique of semantic coordination
which exploits the same kind of facts to achieve the same results?

The approach we propose is based on three basic ideas. First of all, exploiting the
degree of coordination implicit in the fact that labels are taken from language requires
to make explicit the meaning of labels associated to each node in a HC. We claim that
this can be done only of we properly take into account three distinct levels of semantic
knowledge:

Lexical knowledge: knowledge about the words used in the labels. For example, the
fact that the word ‘image’ can be used in the sense of a picture or in the sense of
personal facade, and the fact that different words may have the same sense (e.g.,
‘picture’ and ‘image’);

Domain knowledge: knowledge about the relation between the senses of labels in the
real world or in a specific domain. For example, the fact that Tuscany is part of Italy,
or that Florence is in Italy;

Structural knowledge: knowledge deriving from how labels are arranged in a given
HC. For example, the fact that the concept labelled MOUNTAIN classifies images, and
not books.

Let us see how these three levels can be used to explain the intuitive reasoning
described above. Consider the mapping between the two nodes MOUNTAIN. Linguistic
meaning can be used to assume that the sense of the two labels is the same. Domain
knowledge tells us, among other things, that Tuscany is part of Italy. Finally, structural
knowledge tells us that the intended meaning of the two nodes MOUNTAIN is images of
Tuscan mountains (left HC) and images of Italian mountains (right HC). All these facts
together allow us to conclude that one node is less general than the other one. We can
use similar reasoning for the two nodes FLORENCE, which are structurally equivalent.
But exploiting domain knowledge, we can add the fact that Florence is in Tuscany (such
a relation doesn’t hold between mountains and Italy in the first example). This further
piece of domain knowledge allows us to conclude that, beyond structural similarity, the
relation is different.

Second, this analysis of meaning has an important consequence on our approach
to semantic coordination. Indeed, unlike all other approaches we know of, we do not
use lexical knowledge (and, in our case, domain knowledge) to improve the results
of structural matching (e.g., by adding synonyms for labels, or expanding acronyms).
Instead, we combine knowledge from all three levels to build a new representation of the
problem, where the meaning of each node is encoded as a logical formula, and relevant
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domain knowledge and structural relations between nodes are added to nodes as sets of
axioms that capture background knowledge about them.

This, in turn, introduces the third innovative idea of our approach. Indeed, once the
meaning of each node, together with all relevant domain and structural knowledge, is
encoded as a set of logical formulae, the problem of discovering the semantic relation
between two nodes can be stated not as a matching problem, but as a relatively simple
problem of logical deduction. Intuitively, as we will say in a more technical form in
Section 4, determining whether there is an equivalence relation between the meaning of
two nodes becomes a problem of testing whether the first implies the second and vice
versa (given a suitable collection of axioms, which acts as a sort of background theory);
and determining whether one is less general than the other one amounts to testing if
the first implies the second. As we will say, in the current version of the algorithm we
encode this reasoning problem as a problem of logical satisfiability, and then compute
mappings by feeding the problem to a standard SAT solver.

3 Semantic Coordination of Hierarchical Classification

In this section we show how to apply the general approach described in the previous
section to the problem of coordinating HCs. Intuitively, a classification is a grouping
of things into classes or categories. When categories are arranged into a hierarchical
structure, we have a hierarchical classification. Formally, the hierarchical structures we
use to build HCs are concept hierarchies, defined as follows in [8]:

Definition 1 (Concept hierarchy). A concept hierarchy is a tripleH = 〈K,E, l〉 where
K is a finite set of nodes, E is a set of arcs on K, such that 〈K,E〉 is a rooted tree, and
l is a function from K ∪ E to a set L of labels.

Given a concept hierarchy H , a classification can be defined as follows:

Definition 2 (Classification). A classification of a set of objectsD in a concept hierarchy
H = 〈K,E, l〉 is a function µ : K → 2D.

We assume that the classification function µ in Definition 2 satisfies the following
specificity principle: an object d ∈ D is classified under a category k, if d is about k
(according to the some criteria, e.g., the semantic intuition of the creator of the classifi-
cation!) and there isn’t a more specific concept k′ under which d could be classified4.

Prototypical examples of HCs are the web directories of many search engines, for
example the GoogleTM Directory, the Yahoo!TM Directory, or the LooksmartTM web
directory. A tiny fraction of the HCs corresponding to the GoogleTM DirectoryTM and
to the Yahoo!TMDirectory is depicted in Figure 2.

Intuitively, the problem of semantic coordination arises when one needs to find
relations between categories belonging to distinct (and thus typically heterogeneous)
HCs. Imagine the following scenario. You are browsing the GoogleTM Directory on the
left hand side of Figure 2, and find out that the documents classified under the category

4 See for example Yahoo!TM instruction for “Finding an appropriate Category” at
http://docs.yahoo.com/info/suggest/appropriate.html.
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Fig. 2. Examples of concept hierarchies (source: Open Directory and Yahoo!Directory)

labelled Baroque are very relevant for your work on Baroque music. So you would like
to ask the system to find out for you whether there are categories in different hierarchical
classifications (e.g., the Yahoo!TMDirectory) which have the same meaning as, or a
meaning related to, the category Baroque in the directory you are currently browsing5.
Formally, we define the problem of semantic coordination as the problem of discovering
mappings between categories in two distinct concept hierarchies H and H ′:

Definition 3 (Mapping). A mapping M from H = 〈K,E, l〉 to H ′ = 〈K ′, E′, l′〉 is a
functionM : K×K ′ → rel, where rel is a set of symbols, called the possible relations.

The set rel of possible relations depends on the intended use of the structures we
want to map. Indeed, in our experience, the intended use of a structure (e.g., classifying
objects) is semantically much more relevant than the type of abstract structures involved
to determine how a structure should be interpreted. As the purpose of mapping HCs
is to discover relations between nodes (concepts) that are used to classify objects, five
possible relations can hold between two nodes ks and kt belonging to different HCs:

ks
⊇−→ kt (ks is more general than kt); ks

⊆−→ kt (ks is less general than kt); ks
≡−→ kt

(ks is equivalent to kt); ks
∗−→ kt (ks is compatible with kt); ks

⊥−→ kt (ks is disjoint
from kt). Later in the paper we’ll provide a formal definition of these five relations.

4 The Algorithm: CtxMatch

CtxMatch takes the concept hierarchies of two HCs as input and returns a mapping
between their nodes. The algorithm has the following two main steps:

Semantic explicitation: The meaning of each node k in a concept hierarchyH is made
explicit in a logical formulaw(k). This formula approximates the intended meaning
of the node k inH . For instance the formulae associated with the two nodes labeled

5 Similar examples apply to catalogs. Here we use web directories, as they are well-known to
most readers and easy to understand.
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FLORENCE on the right hand side of Figure 1 will approximate the meanings “images
of Florence, a city in Tuscany” and “images of Florence, a city in Italy”, respectively.

Semantic comparison: The problem of finding the semantic relation between two
nodes k ∈ H and k′ ∈ H ′ is encoded in a satisfiability problem, involving the
formulae w(k) and w(k′), and a background theory T containing properties (ax-
ioms) relevant for the relation between w(k) and w(k′). So, to prove that the two
nodes FLORENCE in Figure 1 are equivalent, we deduce the logical equivalence be-
tween the formulas associated to the nodes by using the domain axioms “Florence
is a city of Tuscany” and “Tuscany is a region of Italy”.

In the version of the algorithm presented here, we use WordNet [12] as a source of
both lexical and domain knowledge. However, WordNet could be replaced by another
combination of a linguistic resource and a domain knowledge resource.

4.1 Semantic Explicitation

In this phase we make explicit the meaning of each node into a logical formula. Let us
see how lexical, domain, and structural knowledge is exploited in this phase. Consider
Figure 2. Using lexical knowledge, we associate linguistic senses to labels. For example,
the label “Arizona” is associated with two senses corresponding to “a state in southwest-
ern United States” or a “glossy snake”. Domain knowledge and structural knowledge
are used to filter out some of the possible senses.

Semantic explicitation is performed in two phases: linguistic interpretation and con-
textualization.

Linguistic Interpretation. In this first phase we provide an interpretation of the labels
independently from the structure in which they occur. Let H = 〈K,E, l〉 be a concept
hierarchy and LH the set of labels associated to the nodes and edges of a hierarchy H
by the function l. In this phase we associate to each label s ∈ LH a logical formula
representing all possible linguistic interpretations of that label allowed by the lexical
knowledge available.

Definition 4 (Label interpretation). Given a logic W , a label interpretation in W is a
function li : LH → wff(W ), where wff(W ) is a set of well formed formulas of W .

The choice of W depends on how expressive one wants to be in the approximation
of the meaning of nodes, and on the complexity of the NLP techniques used to process
labels. In our first implementation we have adopted the propositional fragment of de-
scription logic with �, � and ¬, whose primitive concepts are the synsets of WordNet
that we associate to each label. Labels are processed by text chunking (via Alembic
chunker [10]), and translation of the connectives into a logical form according to the
following rules:

– coordinating conjunctions and commas are interpreted as a disjunction;
– prepositions, like ‘in’ or ‘of’, are interpreted as a conjunction;
– expressions denoting exclusion, like ‘except’ or ‘but not’, are interpreted as nega-

tions.
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We access WordNet to attach to each word in each label its set of senses. When two
or more words in a label are contained in WordNet as a single expression (a so-called
multiword), the corresponding senses are selected and, in the basic logical form, the
intersection between the two words is substituted by the multiword.

Example 1.

– li(Baroque) = baroque#1, the unique sense of ‘Baroque’ presents in WordNet;
– li(Arizona) = arizona#1 � arizona#2, i.e., the disjunction of the two possible

senses of ‘Arizona’;
– li(Chat and Forum) = chat#1 � chat#2 � chat#3 � forum#1 � forum#2 �
forum#3 i.e. the disjunction of the meaning of ‘chat’ and ‘forum’ taken separately
(both ‘chat’ and ‘forum’ have tree senses in WordNet);

– li(Classic Music) = ((classic#1 � . . . ) � (music#1 � . . . )) �
classic music#1 either the conjunction of the meaning of ‘classic’ (with
n senses) and the meaning of ‘music’ (with m sense) taken separately, or the
multiword ‘classic music’ considered as a whole concept, (‘classic music’ is a
multiword in WordNet).

Contextualization. The aim of this phase is to determine the component of the meaning
of a node’s label that depends on its position in the concept hierarchy associated to a HC.
To this end, we introduce the notion of focus of a concept k in a hierarchy H , denoted
by f(k,H). Intuitively, the focus is the smallest sub-tree of H that one should take into
account to determine the meaning of k in H . In CtxMatch, the focus is defined as
follows:

Definition 5 (Focus). The focus of a node k ∈ K in a concept hierarchyH = 〈K,E, l〉,
is a finite concept hierarchy f(k,H) = 〈K ′, E′, l′〉 such that:K ′ ⊆ K, andK ′ contains
exactly k, its ancestors, and their children; E′ ⊆ E is the set of edges between the
concepts of K ′; l′ is the restriction of l on K ′.

This definition of focus is motivated by observations on how we humans use HCs.
When searching for documents in a HC, we incrementally construct the meaning of a
node k by navigating the classification from the root to k. During this navigation, we
have access to the labels of the ancestors of k, and also to the labels of their siblings.
This information is used at each stage to select the node we want to access6.

Given a focus f(k,H) and the linguistic interpretation li(.) of the labels of all its
nodes, the phase called contextualization defines a formula w(k) which is called the
structural interpretation of the node k. We first set w(k) := li(l(k)) (i.e., w(k) is the
linguistic interpretation of the label associated to k), then we refine this definition via
sense filtering and sense composition.

6 This definition of focus is appropriate for HCs. With structures used for different purposes,
different definitions of focus should be used. For example, if a concept hierarchy is used to
represents an XML-schema, the meaning of a node is determined also by the meaning of its sub-
nodes, so a more suitable definition of focus f(k, H) would include for example the sub-tree
rooted at k.
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Sense Filtering is a heuristic method by which we keep only the senses of a linguistic
interpretation that a node k is more likely to have, and discharge the other ones. To this
end, we analyze the relations between the senses of k and the senses of the other nodes
in the focus. For example, if w(k) = arizona#1 � arizona#2, the sense arizona#2
(i.e., the snake) can be discharged if f(k,H) contains the sense United States#1 (the
United States of America), and the focus does not contain any sense that is somehow
related with snakes.

Sense Composition enriches the meaning of a node’s label by combining its linguistic
interpretation with structural information and domain theory. For HCs, the rule is that the
structural meaning of a conceptk is formalized as the conjunction of the senses associated
to all its ancestors; this makes sense, if we consider how we interpret the relation between
a node and its ancestors in a classification. In CtxMatch, some interesting exceptions
are handled. For example, in theYahoo!TMDirectory, Visual arts and Photography
are sibling nodes under Arts & Humanities; since in WordNet photography is in
a is–a relationship with visual art, the node Visual arts is re-interpreted as visual
arts with the exception of photography, and is then formalized in description logic as:
visual art#1 � ¬ photography#1.

4.2 Computing Semantic Relations via SAT

After semantic explicitation is over, the problem of discovering semantic relations be-
tween two nodes k and k′ in two HCs can be reduced to the problem of checking if a
logical relation holds between the formulas w(k) and w(k′); this is done again on the
basis of domain knowledge. In CtxMatch, the existence of a logical relation is checked
as a problem of propositional satisfiability (SAT), and then computed via a standard SAT
solver. The SAT problem is built in two steps. First, we select the portionB of the avail-
able domain knowledge which is relevant to the structural interpretationw(k) andw(k′)
of the two nodes k and k′; then we compute the logical relation betweenw(k) andw(k′)
which are implied by B.

Definition 6 (Background theory). Let φ = w(k) and ψ = w(k′) be the structural
interpretations of two nodes k and k′ of two hierarchical classifications H1 and H2
respectively. Let T be a theory (a set of axioms) in the logic where φ andψ are expressed.
The portion of T relevant to the semantic relation of φ and ψ, denoted by B(φ, ψ) is a
subset of T , such that for any subset B′ of T , with B(φ, ψ) ⊆ B′, we have that

B′ |= αφ,ψ iff B(φ, ψ) |= αφ,ψ

where αφ,ψ is a formula obtained by combining φ and ψ by replacing all the atomic
proposition of α either with φ or with ψ.

In the first version of CtxMatch, the background theoryB is built by transforming
WordNet relations between senses in a set of subsumption axioms as follows:

1. s#k ≡ t#h: s#k and t#h are synonyms (i.e., they are in the same synset);
2. s#k 
 t#h: s#k is either a hyponym or a meronym of t#h;
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3. t#h 
 s#k: s#k is either a hypernym or a holonym of t#h;
4. ¬t#k 
 s#h: s#k belongs to the set of opposite meanings of t#h (if s#k and t#h

are adjectives) or, in case of nouns, that s#k and t#h are different hyponyms of the
same synset.

To buildB(φ, ψ) from WordNet, we adopt heuristic rules that turned out to produce
satisfactory results. The idea is to extract the smallest set of axioms which provide
semantic relations between senses that occur in φ and ψ. However, different sources
(e.g., domain specific ontologies) and different heuristic rules may be used to build the
background theory for φ and ψ.

Example 2. Suppose that we want to discover the relation between Chat and Forum in
the GoogleTM Directory and Chat and Forum in the Yahoo!TMDirectory in Figure 2.
From WordNet we can extract the following relevant axioms:art#1 
 humanities#1
(the sense 1 of ‘art’ is an hyponym of the sense 1 of ‘humanities’), and humanities#1 �
literature#2 (the sense 1 of ‘humanities’ is an hyperonym of the sense 2 of ‘litera-
ture’).

Once we have extracted a suitable background theory, we are ready to state a SAT
problem for each possible relation in rel between any two nodes k and k′ belonging to
different HCs. In CtxMatch, we use the following encoding:

relation SAT Problem

ks
⊇−→ k′

t B |= w(kt) 
 w(ks)

ks
⊆−→ kt B |= w(ks) 
 w(kt)

ks
⊥−→ kt B |= w(ks) � w(kt) 
 ⊥

ks
≡−→ kt B |= w(kt) 
 w(ks) and B |= w(ks) 
 w(kt)

ks
∗−→ kt w(ks) � w(kt) is consistent in B

B is the portion of the background theory relevant to ks and kt. The idea under this
translation is to see WordNet senses (contained inw(k) andw(k′)) as sets of documents.
For instance the concept art#i, corresponding to the first WordNet sense of art, is
though as the set of documents speaking about art in the first sense. Using the set
theoretic interpretation of mapping given in definition 7, we have that mapping can be
translated in terms of subsumption of w(k) and w(k′). Indeed subsumption relation
semantically corresponds to the subset relation.

Example 3. The problem of checking whether Chat and Forum in GoogleTM is, say,
less general than Chat and Forum in Yahoo!TM amounts to a problem of satisfiability
on the following formulas:

φ = (art#1 � literature#2 � (chat#1 � forum#1))
ψ = (art#1 � humanities#1) � humanities#1 � (chat#1 � forum#1)

B(φ, ψ) = (art#1 
 humanities#1), (humanities#1 � literature#2)
It is easy to see that from the above axioms we can infer B(φ, ψ) |= φ 
 ψ.
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5 Testing the Algorithm

In this section, we report from [17] some results of the first tests on CtxMatch. The tests
were performed on real HCs (i.e., pre-existing classifications used in real applications),
and not on ad hoc HCs.

In [1], a testing methodology is defined which is based on an ideal situation where
two agents have the same set of documents and proceed to classify them into two different
HCs following the specificity principle (see Section 3). Then, we can define the following
criterion of correctness for mapping elements:

Definition 7 (Correctness of a mapping element7). LetHs toHt be the concept hier-
archies of two HCs. Let ks and kt denote any pair of nodes ofHs andHt respectively. Let
µs and µt denote two classifications of a set of documentsD inHs andHt respectively.
Then:

1. ks
⊇−→ kt is correct if for all µs and µt, µs(ks↓) ⊇ µt(kt↓);

2. ks
⊆−→ kt is correct if for all µs and µt, µs(ks↓) ⊆ µt(kt↓);

3. ks
≡−→ kt is correct if ks

⊆−→ kt is correct and ks
⊇−→ kt is correct;

4. ks
⊥−→ kt is correct if for all µs and µt, µs(ks↓) ∩ µt(kt↓) = ∅;

5. ks
∗−→ kt is correct if there is pair µs and µt such that µs(ks↓) ∩ µt(kt↓) �= ∅.

where µ(c↓) is the union of µ(d) for any d in the subtree rooted at c. A mapping is correct
if all its elements are correct.

5.1 Experiment 1: Matching Google with Yahoo!

The aim of this experiment was to evaluate the CtxMatch algorithm over portions of
the GoogleTM Directory and the Yahoo!TM Directory about overlapping domains. The
test was performed on the two sub-hierarchies ‘Architecture’ and ‘Medicine’ available
in GoogleTM and Yahoo!TM. The results, expressed in terms of precision and recall, are
reported in the following table:

Architecture Medicine
Relations Pre. Rec. Pre. Rec.

equivalence
≡−→ .75 .08 .88 .09

less general than
⊆−→ .84 .79 .86 .61

more general than
⊇−→ .94 .38 .97 .35

7 The semantics introduced in Definition 7 can be viewed as an instance of the compatibility
relation between contexts as defined in Local Models Semantics [13,5]. Indeed, suppose we
take a set of documents D as the domain of interpretation of the local models of two contexts
c1 and c2, and each concept as a unary predicate. If we see the documents associated to a
concept as the interpretation of a predicate in a local model, then the relation we discover
between concepts of different contexts can be viewed as a compatibility constraint between the
local models of the two concepts. For example, if the algorithm returns an equivalence between
the concepts k1 and k2 in the contexts c1 and c2, then it can be interpreted as the following
constraint: if a local model of c1 associates a document d to k1, then any compatible model of
c2 must associate d to k2 (and vice versa); analogously for the other relations.
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We observe that the use of domain knowledge allowed us to discover non
trivial mappings. For example, an inclusion mapping was computed between
Architecture /History/Periods and Styles/Gothic/Gargoyles and Archi-
tecture/History/ Medieval as a consequence of the relation between Medieval
and Gothic that can be found in WordNet. This kind of semantic mappings are very
difficult to find using a keyword–based approach.

5.2 Experiment 2: Product Re-classification

The second test was in the domain of e–commerce. In the framework of a collaboration
with a worldwide telecommunication company, the matching algorithm was applied to
re-classify the HC of the ‘equipment and accessories’ office (used to classify company
suppliers) into unspsc8 (version 5.0.2).

To evaluate the results of the re-classification, consider the different results between
CtxMatch and the baseline matching process9:

Baseline Matching
classification classification

Total items 194 100% 194 100%
Rightly classified 75 39% 134 70%
Wrongly classified 91 50% 16 8%
Non classified 27 14% 42 22%

Given the 194 items to be re-classified, the baseline process found 1945 possible
nodes, but only 75 out of the 1945 proposed nodes are correct. The baseline, a simple
string-based matching method, is able to capture a certain number of re-classifications,
but the percentage of error is quite high (50%), with respect to the one of correctness
(39%). Concerning the results of CtxMatch, the percentage of success is significantly
higher (70%) and, even more relevant, the percentage of error is minimal (8%).

6 Related Work

CtxMatch shifts the problem of semantic coordination from the problem of matching
(in a more or less sophisticated way) semantic structures (e.g., schemas) to the problem
of deducing semantic relations between sets of logical formulae. Under this respect, to
the best of our knowledge, there are no other works to which we can compare ours.

However, it is important to see how CtxMatch compares with the performance of
techniques based on different approaches to semantic coordination. There are four other

8 unspsc (Universal Standard Products and Services Classification) is an open global coding
system that classifies products and services. unspsc is extensively used around the world for
electronic catalogs, search engines, e–procurement applications and accounting systems.

9 The baseline has been performed by a simple keyword based matching which worked according
to the following rule: for each item description (made up of one or more words) gives back the
set of nodes, and their paths, which maximize the occurrences of the item words.
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Table 1. Comparing CtxMatch with other methods

graph
matching CUPID MOMIS GLUE CtxMatch

Structural
knowledge • • • •
Lexical
knowledge • • • •
Domain
knowledge • •
Instance-based
knowledge •
Type of
result

Pairs of nodes Similarity measure
∈ [0..1] between
pairs of nodes

Similarity measure
∈ [0..1] between
pairs of nodes

Similarity measure
∈ [0..1] between
pairs of nodes

Semantic relations
between pairs of
nodes

families of approaches that we will consider: graph matching, automatic schema match-
ing, semi-automatic schema matching, and instance based matching. For each of them,
we will discuss the proposal that, in our opinion, is more significant. The comparison
is based on the following five dimensions: (1) if and how structural knowledge is used;
(2) if and how lexical knowledge is used; (3) if and how domain knowledge is used; (4)
if instances are considered; (5) the type of result returned. The general results of our
comparison are reported in Table 1.

In graph matching techniques, a concept hierarchy is viewed as a tree of labelled
nodes, but the semantic information associated to labels is substantially ignored. In this
approach, matching two graphs G1 and G2 means finding a sub-graph of G2 which is
isomorphic to G2 and report as a result the mapping of nodes of G1 into the nodes of
G2. These approaches consider only structural knowledge and completely ignore lexical
and domain knowledge. Some examples of this approach are described in [21,20,19,18,
14].

CUPID [16] is a completely automatic algorithm for schema matching. Lexical
knowledge is exploited for discovering linguistic similarity between labels (e.g., using
synonyms), while the schema structure is used as a matching constraint. That is, the more
the structure of the subtree of a node s is similar to the structure of a subtree of a node t,
the more s is similar to t. For this reason CUPID is more effective in matching concept
hierarchies that represent data types rather than hierarchical classifications. With hier-
archical classifications, there are cases of equivalent concepts occurring in completely
different structures, and completely independent concepts that belong to isomorphic
structures. Two simple examples are depicted in Figure 3. In case (a), CUPID does not
match the two nodes labelled with ITALY; in case (b) CUPID finds a match between the
node labelled with FRANCE and ENGLAND. The reason is that CUPID combines in an ad-
ditive way lexical and structural information, so when structural similarity is very strong
(for example, all neighbor nodes do match), then a relation between nodes is inferred
without considering labels. So, for example, FRANCE and ENGLAND match because the
structural similarity of the neighbor nodes is so strong that labels are ignored.

MOMIS (Mediator envirOnment for Multiple Information Sources) [2] is a set of
tools for information integration of (semi-)structured data sources, whose main objective
is to define a global schema that allow an uniform and transparent access to the data
stored in a set of semantically heterogeneous sources. One of the key steps of MOMIS
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Fig. 3. Two example of mappings from CtxMatch

is the discovery of overlappings (relations) between the different source schemas. This
is done by exploiting knowledge in a Common Thesaurus together with a combination
of clustering techniques and Description Logics. The approach is very similar to CUPID
and presents the same drawbacks in matching hierarchical classifications. Furthermore,
MOMIS includes an interactive process as a step of the integration procedure, and thus,
unlike CtxMatch, it does not support a fully automatic and run-time generation of
mappings.

GLUE [11] is a taxonomy matcher that builds mappings taking advantage of informa-
tion contained in instances, using machine learning techniques and domain-dependent
constraints, manually provided by domain experts. GLUE represents an approach com-
plementary to CtxMatch. GLUE is more effective when a large amount of data is
available, while CtxMatch is more performant when less data are available, or the
application requires a quick, on-the-fly mapping between structures. So, for instance,
in case of product classification such as UNSPSC or Eclss (which are pure hierarchies
of concepts with no data attached), GLUE cannot be applied. Combining the two ap-
proaches is a challenging research topic, which can probably lead to a more precise and
effective methodology for semantic coordination.

7 Conclusions

In this paper we presented a new approach to semantic coordination in open and
distributed environments, and an algorithm (called CtxMatch) that implements this
method for hierarchical classifications. The algorithm has already been used in a peer-
to-peer application for distributed knowledge management (the application is described
in [3]), and is going to be applied in a peer-to-peer wireless system for ambient intelli-
gence [9].

An important lesson we learned from this work is that methods for semantic coordi-
nations should not be grouped together on the basis of the type of abstract structure they
aim at coordinating (e.g., graphs, concept hierarchies), but on the basis of the intended
use of the structures under consideration. In this paper, we addressed the problem of
coordinating concept hierarchies when used to build hierarchical classifications. Other
possible uses of structures are: conceptualizing some domain (ontologies), describing
services (automata), describing data types (schemas). This “pragmatic” level (i.e., the
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use) is essential to provide the correct interpretation of a structure, and thus to discover
the correct mappings with other structures.

The importance we assign to the fact that HCs are labelled with meaningful expres-
sions does not mean that we see the problem of semantic coordination as a problem of
natural language processing (NLP). On the contrary, the solution we provided is mostly
based on knowledge representation and automated reasoning techniques. However, the
problem of semantic coordination is a fertile field for collaboration between researchers
in knowledge representation and in NLP. Indeed, if in describing the general approach
one can assume that some linguistic meaning analysis for labels is available and ready
to use, we must be very clear about the fact that real applications (like the one we de-
scribed in Section 4) require a massive use of techniques and tools from NLP, as a good
automatic analysis of labels from a linguistic point of view is a necessary precondition
for applying the algorithm to HC in local applications, and for the quality of mappings
resulting from the application of the algorithm.

The work we presented in this paper is only the first step of a very ambitious sci-
entific challenge, namely to investigate what is the minimal common ground needed
to enable communication between autonomous entities (e.g., agents) that cannot look
into each others head, and thus can achieve some degree of semantic coordination only
through other means, like exchanging examples, pointing to things, remembering past
interactions, generalizing from past communications, and so on. To this end, a lot of
work remains to be done. On our side, the next steps will be: extending the algorithm
beyond classifications (namely to structures with purposes other than classifying things);
generalizing the types of structures we can match (for example, structures with non hier-
archical relations, e.g. roles); going beyond WordNet as a source of lexical and domain
knowledge; allowing different lexical and/or domain knowledge sources for each of the
local structures to be coordinated. The last problem is perhaps the most challenging one,
as it introduces a situation is which the space of “senses” is not necessarily shared, and
thus we cannot rely on that information for inferring a semantic relation between labels
of distinct structures.
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