
Semantic Decomposition and Marker Passing in

an Artificial Representation of Meaning

vorgelegt von

Dipl.-Inform.

Johannes Fähndrich

Geb. in Lahr im Schwarzwald

von der Fakultät IV — Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

— Dr.-Ing. —

genehmigte Dissertation

Promotionsauschuss:

Vorsitzender: Prof. Dr. Klaus-Robert Müller

Gutachter: Prof. Dr. Dr. h.c. Sahin Albayrak

Gutachter: Prof. Dr. Rainer Unland

Gutachter: Prof. Dr.-Ing. Michael Weyrich

Tag der wissenschaftlichen Aussprache: 19. Feb. 2018

Berlin 2018

Abstract

The research area of Distributed Artificial Intelligence aims at building intelligent agent systems.

Multi-Agent Systems have been applied successfully in many domains, from an intermodal plan-

ning domain to cascading security thread simulations. But still, agents struggle with the meaning

of concepts used in language. Intelligence needs language to form thoughts. Thus, the challenge

addressed in this thesis is to provide a computable representation of meaning and evaluate its

usefulness. Based on the theory of a mental lexicon and the thesis that meaning is a combination

of symbolic and connectionist parts, I investigate the use of the theory of Natural Semantic Met-

alanguage (NSM) to build an artificial representation of meaning. I show that the use of NSM

for creating a semantic graph out of different information sources can be utilized as a basis for

Marker Passing algorithms.

The Marker Passing algorithm encodes symbolic meaning to guide the reasoning over the con-

nectionist semantic graph. Through the combination of a semantic graph and symbolic Marker

Passing, I can combine connectionist and symbolic approaches to AI research to create my arti-

ficial representation of meaning.

To test my approach, I build a semantic distance measure, a word sense disambiguation al-

gorithm and a sentence similarity measure which all go head to head with the state-of-the-art.

I apply those approaches to two use cases: A semantic service match marking and a context-

dependent heuristics. I evaluate my heuristic by utilizing them in AI problem-solving component

which uses AI planning guided by my heuristic.

iii

Zusammenfassung

Die Wissenschaft im Bereich der verteilten künstlichen Intelligenz untersucht unter anderem

Multi-Agenten Systeme und deren Anwendung in verschiedenen Bereichen. Solche intelligen-

ten verteilten Systeme finden beispielsweise erfolgreich Einsatz bei der Planung intermodaler

Routen oder bei der Simulation von Kaskaden Effekten durch Sicherheitsbedrohungen. Dabei

entwickeln Agenten immer mehr Intelligenz zur autonomen Lösunge von neuen Problemen.

Agenten kämpfen jedoch noch immer mit der Bedeutung von Konzepten der natürlichen Sprache.

Intelligenz benötigt jedoch Sprache um Gedanken zu formen. Deshalb wird in dieser Arbeit die

Herausforderung angegangen eine künstliche Repräsentation von Bedeutung zu erschaffen und

deren Nutzbarkeit zu evaluieren.

Basierend auf der Theorie eines mentalen Lexikons und darauf, dass Bedeutung aus zwei

Teilen besteht (Symbolischer und Konnektivistischer Bedeutung), untersucht diese Arbeit die

Verwendung der Natural Semantic Metalanguage (NSM) zum Erstellen einer künstlichen Reprä-

sentation von Bedeutung. Hauptaugenmerk liegt dabei auf der automatischen Erzeugung eines

semantischen Graphen, der durch Marker Passing Ansätze genutzt werden kann. Der semantis-

che Graph wird dabei basierend auf der NSM Theorie aus verschiedenen Informationsquellen

automatisch erstellt. Der Marker Passing Algorithmus beschreibt dabei den symbolischen Teil

unseres Ansatzes. Die symbolische Information der Marker wird dazu verwendet diese geeignet

über den semantischen Graphen zu verteilen. Durch die Verteilung der Marker wird eine Art

von Schlussfolgerung modelliert. Durch die so entstandene Kombination aus Dekomposition

und Marker Passing kann eine Mischung aus symbolische und konnektivistische Bedeutung

entstehen.

Die so entstandene künstliche Repräsentation von Bedeutung wird durch mehrere Experi-

mente getestet: Ich verwende sie um ein semantisches Distanzmaß zu bauen, erstellen einen

Ansatz zur Auflösung von Mehrdeutigkeit von Worten in natürlicher Sprache und erzeugen einen

neuen Ansatz zur Bestimmung von Satzähnlichkeit. Dabei konnte gezeigt werden, dass die so

entstandenen Ansätze dem Stand der Technik in nichts nachstehen. Des Weiteren teste ich an

zwei Anwendungen ob meine künstliche Repräsentation von Bedeutung wirklich Bedeutung

formalisiert: erstens anhand einer Semantischen Service Matching-Komponente und zweitens

einer kontextabhängigen und zielorientierten Heuristik. Diese Heuristik wird durch den Einsatz

in einem Planungsalgorithmus evaluiert.

Acknowledgements

I want to express my gratitude and recognition to my doctoral supervisor Prof. Dr. Dr. h.c.

Sahin Albayrak from whom I have had the opportunity to learn a lot about science, academia

and the work I want to do in my life. I want to thank Prof. Dr. Rainer Unland for his support

in all those years mentoring me in the Doctoral Consortia. I wish to thank Prof. Dr. Michael

Weyrich, whose constructive criticism has kept me on my scientific toes. In addition, I want

to thank the team of scientists at the Technische Universität Berlin for their constant support.

Especially Sebastian Ahrndt for his enthusiastic criticism and Dr. Frank Trollmann for the many

fruitful discussions and the scientific mentoring. Without all of them, this would have been less

fun.

v

Contents

I. Introduction 1

1. Introduction 3

1.1. Motivation . 5

1.2. Problem Statement . 8

1.3. Research Statement . 8

1.4. Research Questions . 9

1.5. Research Approach . 10

2. Thesis Document 13

2.1. Thesis Structure . 13

2.2. Contributions . 15

II. Foundations 17

3. Basic Terms and Concepts 19

3.1. Agents . 19

3.2. Actions, Services and Capabilities . 23

3.3. Planning . 27

3.4. Graphs . 27

3.5. Concept . 29

3.6. Ontology . 31

3.7. Semantic . 32

3.8. Context . 33

3.9. Meaning . 35

3.10. Natural Semantic Metalanguage . 45

4. State-of-the-Art 47

4.1. Semantic Theories . 47

4.2. Ontology . 57

4.3. Semantic Service Description Languages . 68

4.4. Semantic Decomposition . 70

4.5. Activation Propagation, Activation Spreading and Marker Passing 71

4.6. Service Planning . 75

III. Approach 83

5. Abstract Approach 85

6. Semantic Decomposition 89

6.1. Natural Semantic Metalanguage . 91

6.2. NSM Semantic Primes in Artificial Languages 93

6.3. Data Sources used in the Semantic Decomposition 95

6.4. Formalization of the Semantic Graph . 97

vii

6.5. Decomposition into Semantic Primes . 102

6.6. Conclusion . 114

7. Marker Passing 115

7.1. Pragmatic Meaning Representation . 115

7.2. Marker Passing Algorithm . 119

7.3. Parameters of Marker Passing . 126

7.4. Conclusion . 141

8. Implementation 143

8.1. Semantic Decomposition . 143

8.2. Marker Passing . 146

IV. Evaluation 147

9. Experiments with the Decomposition 149

9.1. Parameters of the Decomposition . 149

9.2. Selecting Synonyms . 150

9.3. Selecting Decomposition Depth . 152

10.Experiments with the Marker Passing 155

10.1. Experiment 1: Semantic Similarity Measure 157

10.2. Experiment 2: Word Sense Disambiguation 183

10.3. Experiment 3: Semantic Sentence Similarity Measure 189

10.4. Experiment 4: Semantic Service Matching . 199

10.5. Experiment 5: Heuristics in AI Service Planning 208

10.6. Experimental Setup . 242

10.7. Evaluation Results . 242

V. Conclusion 245

11.Summary 247

12.Discussion 251

13.Final Remarks and Future Work 255

VI. Bibliography, Glossary, Index, and Appendix 257

A. Appendix 259

A.1. Tools . 259

A.2. Class Diagrams . 260

A.3. Algorithms . 261

A.4. Natural Semantic Metalanguage . 261

Bibliography 261

Index 293

viii

List of Figures

1.1. Hierarchy of arguments towards the need for artificial meaning. 5

1.2. Abstract research approach. 11

2.1. The structure of this thesis. 14

3.1. Illustration of an agent in its environment. 20

3.2. Architecture of the means-ends reasoning of an agent. 21

3.3. Cognitive interpretation in an agent. 22

3.4. Abstract example effect rule. 26

3.5. Illustration of the EGraph morphisms taken from [66]. 28

3.6. Illustration of the AGraph diagram taken from [66]. 29

3.7. Overview of the state-of-the-art of semantic similarity measures. 31

3.8. Type graph of our ontology definition. 32

3.9. Illustration of a context for the definition of Mahr [250] 34

4.1. Illustration of Bloomfields definition of meaning. 48

4.2. Illustration Chomsky’s grammatical hierarchy. 48

4.3. Illustration of two prototypes for the class of car and of fast. 50

4.4. Example of axiomatic semantics. 51

4.5. Example for generative semantics. 54

4.6. Example in discourse representation semantic. 55

4.7. Example of distributed semantics. 55

4.8. The Semiotic Triangle. 60

4.9. An example ontology for living and not living things. 62

4.10. Formalisation the concepts to sing and to break taken from [387]. 70

4.11. Script in the notation of Schank and Andelson [345]. 71

4.12. Abstract approach of activation spreading. 72

5.1. Abstract description of the knowledge part of this approach. 85

5.2. Abstract description of the reasoning part of this approach. 86

5.3. Abstract approach to represent artificial meaning. 87

6.1. Classifiction of data sources in information type and formality. 96

6.2. Example of a relation hierarchy. 98

6.3. Minimal type graph for the description of a decomposition graph. 98

6.4. Example of a typed graph. 100

6.5. Abstract example of an decomposition of midday and noon. 100

6.6. Example of a type graph (big). 101

6.7. Example of a typed graph of noon and midday. 102

6.8. Example decomposition of one meaning of the concept “to go”. 103

6.9. An example decomposition using the Cambridge Dictionary. 114

7.1. Abstract communication act adapted from [228]. 116

7.2. Abstract description of our Marker Passing algorithm. 120

7.3. Marker passing Example start and first step. 133

7.4. Marker passing Example step two and three 135

ix

7.5. Marker passing Example step four and five . 136

8.1. Architecture of the implementation. 143

8.2. Our IDictionary interface. 144

8.3. Class diagrams of concept and definition. 145

9.1. Example graph of an example decomposition of “noon” with depth 1. 153

9.2. Example graph of an example decomposition of “midday” with depth 1. 153

9.3. Example graph of an example decomposition of “noon” with depth 2. 154

9.4. Example graph of an example decomposition of “midday” with depth 2. 154

10.1. Overview of the experiments making up the evaluation of our representation of

meaning. 156

10.2. Overview of the algorithm to measure semantic similarity of two concepts. . . . 158

10.3. Overview of the state-of-the-art of semantic similarity measures. 160

10.4. Result and Error of the Marker Passing approach with the RG65 dataset. 179

10.5. Result and Error of the BDOS approach with the RG65 dataset. 180

10.6. Result and Error of the Word2Vec with the RG65 dataset. 182

10.7. Error of the ELKB approach with the RG65 dataset. 182

10.8. Overview of the algorithm for Word Sense Disambiguation. 184

10.9. Example sentence with word sense from the Senseval Task 3 data set 187

10.10.Overview of the algorithm for our semantic sentence similarity measure. 190

10.11.Detailed result of the SMTeuroparl data set. 197

10.12.Detailed result of the MSRpar data set. 198

10.13.Detailed result of the MSRvid data set. 199

10.14.Abstract Service Matching challenge. 201

10.15.NDCG of the overall result with all Marker Passing experts and equal weights. 207

10.16.Overview of our methodology to create a heuristic. 223

10.17.Abstract example of state space in a planning problem. 224

10.18.Abstract approach to a greedy A∗ heuristic. 231

10.19.Example state space with heuristic values. 236

10.20.The transport part of the Scallop health domain start state. 236

10.21.The account part of the Scallop health domain start state. 237

10.22.The location part of the Scallop health domain start state. 237

10.23.The parameters part of the Scallop health domain start state. 238

10.24.The patient and transport part of the Scallop health domain goal state. 238

10.25.The airport part of the Scallop health domain goal state. 238

10.26.The account part of the Scallop health domain goal state. 239

10.27.The parameter and person part of the Scallop health domain goal state. 239

10.28.Example goal axioms which are different in our goal state to our start state. . . 240

10.29.Experiment results overview. 244

A.1. Service Development tools and their interplay. 259

A.2. Class diagram of the decomposition. 260

x

List of Tables

3.1. List of different types of antonyms. 42

3.2. Semantic primes for the English language [140]. 46

4.1. Comparison of semantic approaches. 57

4.2. Requirements for the chosen language for the representation of meaning. 67

4.3. Comparison of Service Composition approaches. 80

6.1. List of semantic primes and equivalent concepts found in OWL. 93

6.2. List of semantic primes and equivalent concepts found in PDDL. 94

6.3. List of semantic primes with and equivalent concepts found in MOF. 95

6.4. List of knowledge graphs. 97

6.5. Semantic primes in the category substantive in the English language [140]. . . . 108

9.1. Example decomposition properties. 153

10.1. Node and edge count for different decomposition depth. 164

10.2. The parameters of the Marker Passing approach with replacement in the in-

function. 172

10.3. Parameters of the Marker Passing for our semantic similarity measurement. . . 177

10.4. The result of the semantic similarity measure experiment. 178

10.5. Results of the WSD approaches on the Senseval Task 3 data set. 188

10.6. Example sentences form the SemEval 2012 MSRvid data set. 195

10.7. Example sentences form the SemEval 2012 SMTeuroparl data set. 195

10.8. Results of the semantic sentence similarity measure experiment. 197

10.9. Fixed scoring assessments or matcher pats as proposed by [23]. 202

10.10.Service Matching results for the Marker Passing expert. 206

10.11.Service Matching results for the experts without Marker Passing. 206

10.12.Comparison of heuristic approach. 217

10.13.Planning results for an average over ten runs of planner (time is in seconds). . . 240

10.14.Hardware description of the computer used for the experiments. 242

10.15.Software description main external components used. 242

xi

List of Algorithms

1. A decompositional algorithm. 104

2. Get the relations of a concept . 106

3. Get the definitions of a concept . 106

4. Marker Passing- adapted from Crestani’s Spreading Activation Algorithm . . . 125

5. Marker Passing Algorithm . 126

6. Semantic Similarity measure. 158

7. Setting initial Markers. 168

8. Function to select the active concepts. 169

9. Threshold calculation of concept nodes for our semantic similarity measure. . . 169

10. Out-Function of concept nodes. 170

11. Edge-Function. 170

12. GetWeightOfRelation. 171

13. In-Function of concept nodes. 171

14. After-Send-Function of concept nodes. 173

15. The termination condition for the semantic similarity measure. 174

16. Word Sense Disambiguation Marker Passing algorithm. 185

17. Semantic Sentence Similarity Marker Passing algorithm. 191

18. Setting initial markers for sentences. 191

19. Marker Passing Expert - Name Matching. 204

20. Service Planner algorithm. 221

21. Goal oriented heuristic. 233

22. Spreading Activation - adapted from Crestani [61]. 261

xiii

Listings

3.1. Definition of the OWL parameter class. 24

3.2. Definition of the OWL-S output parameter class. 25

8.1. Example decomposition creation. 144

8.2. Example Marker Passing. 146

10.1. Reference example of ontologies in an OWL syntax. 225

xv

List of Publications

This section lists the publications which are used in this dissertation.

Fähndrich, J., Masuch N., Borchert L., and Albayrak, S. Learning Mechanisms on OWL-

S Service Descriptions for Automated Action Selection, Presented at the IoA at the

Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 41-57, 2017.

[102]

Fähndrich, J., Küster, T., Masuch N., and Albayrak, S. Semantic Service Management and

Orchestration for Adaptive and Evolving Processes, In: International Journal on Ad-

vances in Internet Technology, vol. 9, no. 4, pp. 75-88, 2016. [100]

Fähndrich, J., Küster, T., Masuch N., and Albayrak, S. Semantic Service Management for

Enabling Adaptive and Evolving Processes, Presented at the International Conference

on Internet and Web Applications and Services, Valencia, pp. 46-53, 2016. [101] (Best

Paper Award)

Fähndrich, J., Weber, S., Ahrndt, S., and Albayrak, S. Design and Use of a Semantic Similar-

ity Measure for Interoperability Among Agents, Presented at the German Conference

on Multiagent System Technologies (MATES), pp. 41- 57, 2016. [104]

Fähndrich, J., Ahrndt, S., and Albayrak, S. Self-Explanation through Semantic Annota-

tion and (automated) Ontology Creation: A Survey. Presented at the International

Symposium Advances in Artificial Intelligence and Applications (AAIA), pp. 1-15, 2015

http://doi.org/10.15439/2015F416 [99]

Fähndrich, J., Ahrndt, S., and Albayrak, S. Formal Language Decomposition into Semantic

Primes., In: Advances in Distributed Computing and Artificial Intelligence Journal (AD-

CAIJ), 3(8), pp. 56, 2014 http://doi.org/10.14201/ADCAIJ2014385673 [98]

Fähndrich, J., Ahrndt, S., and Albayrak, S. Are There Semantic Primes in Formal Lan-

guages?, Presented at the International Conference on Distributed Computing and Arti-

ficial Intelligence (DCAI), 290 (Chapter 46), pp. 397-405, 2014, http://doi.org/1
0.1007/978-3-319-07593-8 46 [97] (Best Paper Award)

Fähndrich, J., Masuch, N., Yildirim, H., and Albayrak, S. Towards Automated Service Match-

making and Planning for Multi-Agent Systems with OWL-S Approach and Chal-

lenges., Presented at the International Conference on Service-Oriented Computing (IC-

SOC) Workshops (Vol. 8377), pp. 240, 2013, http://doi.org/10.1007/978-3
-319-06859-6 21 [103]

Fähndrich, J. Best First Search Planning of Service Composition Using Incrementally Re-

fined Context-Dependent Heuristics, Presented at the German Conference Multiagent

System Technologies (MATES), pp. 404, 2013 http://doi.org/10.1007/978-3
-642-40776-5 34 [93]

Fähndrich, J., Ahrndt, S., and Albayrak, S. Towards Self-Explaining Agents., presented at the

International Conference on Practical Applications of Agents and Multi-Agent Systems

(PAAMS), 221 (Chapter 18), pp. 147-154, 2013, http://doi.org/10.1007/978-3
-319-00563-8 18 [96]

xvii

http://doi.org/10.15439/2015F416
http://doi.org/10.14201/ADCAIJ2014385673
http://doi.org/10.1007/978-3-319-07593-8_46
http://doi.org/10.1007/978-3-319-07593-8_46
http://doi.org/10.1007/ 978-3-319-06859-6_21
http://doi.org/10.1007/ 978-3-319-06859-6_21
http://doi.org/10.1007/978-3-642-40776-5_34
http://doi.org/10.1007/978-3-642-40776-5_34
http://doi.org/10.1007/978-3-319-00563-8_18
http://doi.org/10.1007/978-3-319-00563-8_18

Fähndrich, J., Ahrndt, S., and Albayrak, S. Self-Explaining Agents. Jurnal Teknologi (Science

and Engineering), 63(3), pp. 53-64, 2013, http://doi.org/0.11113/jt.v63.195
5 [95]

Fähndrich, J. Exploring Self-Explanation : The System Side., Presented at the German Con-

ference on Multiagent System Technologies (MATES), p. 12, 2012 [94]

xviii

http://doi.org/0.11113/jt.v63.1955
http://doi.org/0.11113/jt.v63.1955

List of Supervised Theses

This section lists the supervised student theses which have been basis to some of the sections of

this dissertation.

Hannes Kanthak, Ein semantischer Ansatz zum Lösen von Winograd Schemen. Technische

Universität Berlin, Bachelor (2017)

Maik Wischow, Konfliktlösung bei der Erweiterung von Wissensgraphen. Technische Uni-

versität Berlin, Bachelor (2016)

Tom König, Untersuchung semantischer Distanzmaße auf der Grundlage von Aktivierungsaus-

breitung über ontologiebasierten Hypergraphen. Technische Universität Berlin, Bachelor

(2016)

Nico Tobias Schneider, Quantifizierung semantischer Satzähnlichkeit basierend auf lexikalis-

cher Dekomposition und Marker Passing. Technische Universität Berlin, Bachelor (2016)

Benjamin Brand, Semantic Distance of Service Descriptions through Activation Spreading.

Technische Universität Berlin, Diploma (2016)

Florian Marienwald, How Does the Interpretation Of Word Relations Help Word Sense Dis-

ambiguation via a Marker Passing Approach? Technische Universität Berlin, Bachelor

(2016)

Pascal Lukanek, Ein auf Marker-Passing basierender Word-Sense-Disambiguation Ansatz.

Technische Universität Berlin, Bachelor (2016)

Sabine Weber, The roles of Synonyms in a semantic decomposition. Technische Universität

Berlin, Bachelor (2015)

Ghadh, Altayyar, An editor for manual semantic decomposition, Technische Universität Berlin,

Bachelor (2015)

Zeinab, Sawan, Goal driven Heuristics based on Service Descriptions, Technische Univer-

sität Berlin, Bachelor (2015)

xix

Part I.

Introduction

1

1. Introduction

Artificial Intelligence (AI) helps to solve ever more complex problems. The use of increasingly

sophisticated software enables us to automate many tedious tasks, perform better research and

grasp a better understanding of the world, e.g., playing GO [395], or fighting cancer [90]. “De-

spite all these developments, the promises of strong artificial intelligence set forth in the 1960s

have not been fulfilled.” [68, p. 7], meaning that AI is not able to understand natural language

[419], construct plans on dynamic domains [135], or do common sense reasoning like humans

[356]. These kind of problems are solved by a so called “strong AI” [353]1. A strong AI is

able to learn new problem-solving skills or can get to know new topics, in difference to special

purpose AI like most chess AI which is, e.g., unable to drive a car.

One of the reasons for human intelligence might be the ability to think. Having a language to

formulate thoughts, meaning and ideas helps us to handle unknown situations with adaptiveness

and dynamic behavior. Part of the capacity to think is reasoning, which does not always “obey

the rules of classical logic” but gives us my common sense [128]. The foundation for language

to think is a representation of meaning. Consequently, research in AI analyzes how methods

from Mathematics, Linguistics, Psychology, Philosophy and Computer Science can be used to

create machines with the ability to represent meaning.

One approach to AI is the intelligent component “agent” [338]. An agent models human

intelligence behavior, like goal orientation or autonomy [417], to act intelligently. Grasping the

meaning of things, events or actions allows agents to react appropriately and makes them able

to react to change. As a result, agents become more robust in their problem-solving skills. The

adaption of an agent becomes easier if the agent can integrate new concepts into its knowledge

and use them for future reasoning processes. In humans, we2 call this understanding of concepts,

meaning [234]. One possibility for an agent to reach its goal is to use the help of other agents.

In this work we will firstly have a look at how meaning is described, and on this basis I will

develop two mechanisms to integrate a meaning representation into agents: one to formalize

semantic information and one to perform reasoning using this information.

During research on meaning, I found the difficulty to measure meaning directly [296], this is

why the AI community has established experiments which allow us to collect evidence on the

existence of meaning in humans and machines by observing their behavior in specific test situa-

tions. This can be seen in the testing of human knowledge, e.g., in schools and universities tests.

For an AI these tests are challenges with defined data sets. Here we start out with my hardest

experiment (the creation of heuristics for AI planning) and explain why the other experiments

questions have to be answered first.

Planning anticipates acting through reasoning [133]. Planning allows humans to approach

complex problems and is envisioned as key for artificial agents to become more autonomous

1strong AI (sometimes called full AI or hard AI) [213, p. 260] refers to a human level intelligence.
2If the reference “we” is used in this thesis, this “we” references the author and the reader in the form of a pluralis

modestiae.

3

1. Introduction

and proactive [339]. The ability to plan enables agents to solve problems that have not been

programmed during design time; creating agents which adapt to changes in (dynamic) environ-

ment. One dynamic environment is a Service Oriented Computing (SOA) [89] where distributed

services undergo change during runtime.

In complex planning problems heuristics are needed to solve a problem. The creation of

heuristics (see Section 10.5) during runtime may leads to the encounter of new concepts, which

then lead us back to my original question: How can AI make sense of new concepts? For

heuristics this means interpreting the new concepts and adding additional information to clas-

sical heuristic approaches: A function H : state → R
+ is called heuristic [337, p. 92] and

estimates the distance from a state to a given goal. I extend this definition of heuristic to:

H : service × state × goal → R
+ making the heuristic more dynamic since now it can adapt

to changing goals and services. Here the heuristic determines the usefulness w.r.t. the goal of

the given service in the current state (e.g. by comparing the service to a request). We integrate

service and goal description into the heuristic because if only a state is the information source

for the heuristic, we miss out on information like the description of the service. This leads to

the experiment to evaluate a service according to some service needs according to a goal in a

planning problem. This experiment is done by implementing a service match maker and testing

it in one of my experiments in a Service Matching (see Section 10.4) context. Heuristics can

be build by simplifying the given problem [304]. Those implications are for example used by

Fast-Forward-Planner by removing the delete list of service effects [171]. Because of the open

world assumption, this does not work in service planning. Other heuristics guide specific prob-

lems which then can not be used in problem independent (sometimes called general purpose)

planning [304], because they do not adapt to e.g. changes in the goal or to new services. Thus

we need another way of gathering information about the available service and the goal. In this

work, this information is the meaning of the concepts used to describe e.g. the service or goal.

The service descriptions are e.g. given in sentences, means that we have to compare more than

just single concepts. This leads to the need of comparing sentences, using a Sentence Similarity

measure (see Section 10.3). Such a sentence similarity measure gives use a next experiment on

how well my meaning representation can capture the meaning of sentences. Ambiguous word

carry different meanings in different contexts. Selecting the right word sense leads us to the next

experiment: which word sense is the right one to select in a context of use. This leads us to my

next experiment for Word Sense Disambiguation (see Section 10.2). To be able to use services

of agents programmed by other developers, using other models and with that other ontologies,

the agent needs to integrate new concepts into its knowledge. The interpretation of new concepts

requires to identify if a new concepts is equivalent to a already known concept (e.g. by using a

semantic similarity measure). This leads us to my experiment with a Semantic Similarity mea-

sure (see Section10.1). The recognition of similarity is a basic task to form more sophisticated

and abstract abilities for reasoning [131, p. 197]. All of those subproblems show an aspect of

meaning. Each experiment analyzes the capability of the representation of meaning of a differ-

ent use. With all those experiments we will gather evidence on whether my representation of

meaning is a useful one or not.

In Section 1.1, I will motivate why we need an artificial representation of meaning, explain

how I derived the creation of an artificial representation of meaning as my main goal and explain

how the work, done in this doctoral thesis, fits into the bigger picture of AI research. Afterwards,

I work out the problems we need to solve to create such representation Section 1.2. Regarding

4

1.1. Motivation

Service

Semantic Description

Integrate new Concepts

Problem Solving

Planning

Artificial Meaning

Artificial Intelligence

Focused on strong AI

Abstracted to Planning Experiment 5: Heuristics

Understanding what a
Service does Experiment 4: Service Matching

Understanding the concepts
of the description Experiment 3: Sentence Similarity

Context dependent
interpretation Experiment 2: Word Sense Disambiguation

Machine Representation of
Meaning Experiment 1: Semantic Similarity

Figure 1.1.: Hierarchy of arguments towards the need for artificial meaning.

this problem, I formulate hypotheses in my Research Statement in Section 1.3. I then derive

research questions which I want to answer in this work in Section 1.4. Finally, I will look at the

abstract research approach in Section 1.5.

1.1. Motivation

Successfully creating an artificial representation of meaning will advance us on the task of build-

ing machines that help us to solve ever more complex problems. The Figure 1.1 depicts the

abstraction of the here hold argument, starting from the research gap shown in the introduction:

lack of general purpose problem-solving skills in AI agents. This section has the goal of nar-

rowing my research scope from the general research area of AI to problem solving, down to

the need of a representation of meaning. To gain insight into how to represent and use meaning

(the part of AI we are interested in) we abstract problem solving to planning so that we can use

computers to help with the problem-solving. The usefulness of planning mechanisms falls and

stands with the used heuristic.

Planning can be used to create service compositions. In the research area of service compo-

sition, the runtime is shaped by dynamically appearing and disappearing services. One way

to create service composition is to combine the development paradigm of Service Oriented

Architecture (SOA) [89] with AI planning techniques [133] in Multi-Agent Systems (MAS)

[110, 403]. Here we see agents as a service provider and as planning entity. This means that

the planning agent try to find a solution to fulfill one of its goals by planning, including the

services of other agents. If the agent can reach its goal with its own services, then no interaction

with other agents is needed. I focus on problems where an agent needs the services provided by

other agents [331], which is motivated in both SOA and MAS as distributed systems. Here the

prerequisite is, that agents can integrate new services, e.g., proposed by other agents, into their

own problem solution [373, 372]. With that integration, the search space of available services

grows, creating more effort with the search for a plan. The question at hand is: Which services

5

1. Introduction

are useful for an agent given its current goal? I answer this question by creating a heuristic,

which guides the search for useful combinations of services during the planning process. In

the area of service composition, those heuristics cannot be created during design time, as the

designers neither know about the available services nor know about the actual goals an agent

pursues. Subsequently, these unknown components make it necessary to create heuristics during

runtime.

The creation of heuristics (Experiment 5) during runtime may lead to the encounter of new

concepts, which then lead us back to my original question: How can AI make sense of new

concepts? For heuristics this means interpreting the new concepts and adding additional infor-

mation to classical heuristic approaches: A function H : state→ R
+ is called heuristic [337, p.

92] and estimates the distance from a state to a given goal. I extend this definition of heuristic

to: H : service× state× goal→ R
+ making the heuristic more dynamic since now it can adapt

to changing goals and services. Here the heuristic determines the usefulness w.r.t. the goal of

the given service in the current state (e.g., by comparing the service to a request). I integrate

service and goal description into the heuristic because if a state is the only information source

for the heuristic, we miss out on important information. This leads to the experiment to evaluate

a service according to some service needs according to a goal in a planning problem. This exper-

iment is done by implementing a service match maker and testing it in one of my experiments

in a service matching (Experiment 4) context.

To build a dynamic heuristic, we need to understand [234] the functionality encapsulated by

a service to decide if the service is useful for my goal. For that, the service needs to describe its

functionality for others to analyze. The SOA community provides semantic service descriptions

to facilitate the understanding of services [255]. Those descriptions contain ontologies which

describe the concepts used, as a formal representation of semantic meaning. If an ontology

contains concepts unknown to an agent, the use of the service becomes difficult. Special to the

problem of creating a heuristic regarding semantic service description is that we have to handle

reasoning with the Open World Assumption [74] and domain specific ontologies.

The difficulty is that the agent needs to integrate new concepts into its beliefs. An example

for that could be, an agent providing a service. This service can be atomic and only depend

on the agent itself, or the service is composed, meaning it depends on other services to provide

its functionality. If the service is composed, it can be composed of services proposed by other

agents. Consequently, a service provided by an agent can rely on services of other agents.

The use of services of other agents increases the reusability, resilience, and flexibility of those

services and creates a loosely coupled SOA like architecture. For my example: If an agent

provides the service of booking the cheapest flight available, the service might depend on other

airline agents, providing flight schedule and price information. Ensuring that the booked flight is

the cheapest available, the agent needs to find all airline agents, and call their services, compare

the results and return the cheapest flight. The distributed and dynamic nature of how this is done

depends on how well my agent can find new airline services or how well change in the service

interface can be integrated.

The precondition for an agent to use the functionality of a service is the ability to integrate

new concepts into its beliefs. To integrate new concepts into the agent’s beliefs, we need to

set the new concept into relation with already known concepts. This task is called Ontology

Matching [91]. In this work, I try to create an artificial meaning representation with the goal of

enabling the agent to learn new concepts and use them by reasoning.

6

1.1. Motivation

Learning new concepts could mean looking up their definitions. This means that we have

to compare definitions of words, to find out if the meaning of a concept is known to the agent

in form of another concept. Definitions, e.g., in Dictionaries are often given in sentence form.

Choosing the right definition, therefore, requires semantically comparing sentences with each

other, using a Semantic Sentence Similarity Measure (Experiment 3). Such a sentence simi-

larity measure gives us a next experiment on how well my representation of meaning can capture

the meaning of sentences.

Used in sentences, words can change their meaning. Ambiguous words carry different mean-

ings in different contexts. Selecting the right word sense leads us to the next experiment: which

word sense is the right one to select in a context of use. This leads us to my next experiment for

Word Sense Disambiguation (Experiment 2).

To be able to use services of agents programmed by other developers, using other models and

with that other ontologies, the agent needs to integrate new concepts into its knowledge. The

interpretation of new concepts requires the detection if a new concept is equivalent to an already

known concept (e.g., by using a semantic similarity measure). This leads us to my experiment

with a Semantic Distance Measure (Experiment 1). The recognition of similarity is a basic

task to form more sophisticated and abstract abilities for reasoning [131, p. 197].

To be able to find relations between concepts, we need a fitting representation of the agent’s

knowledge describing my representation of meaning (connectionist view) and a reasoning algo-

rithm (symbolic view) to use the representation of meaning. Together those two parts represent

my artificial representation of meaning.

All of those sub problems show an aspect of meaning. Each experiment analyzes the capabil-

ity of the representation of meaning of a different use. With all those experiments we will gather

evidence on whether my representation of meaning is a useful one or not. In order to understand

which kind of meaning is of interest for us, we look at properties of natural languages and how

to correlate to technological developments in computer science.

In linguistics, the science concerned with language, Morris [275] has introduced three compo-

nents of natural language: Syntax, concerning the interpretation of signals, Semantics, concern-

ing the meaning and relationship between entities and Pragmatics, concerning the interpretation

of entities. In computer science, or more precise in formal systems, those components of com-

munications have been incorporated by many theories starting with the syntax of signals [54]

leading to Berners-Lee [24] with the vision of a “Semantic Web” and could be extended to a

pragmatic reasoning [44]. The third element from linguistics, the pragmatics, can be seen as a

context-dependent interpretation of meaning. As noticed by Steel [369] interpretations of state-

ments can become easier if the mutual context is taken into account. Context also might help my

agent to integrate new concepts. As syntax is a well-researched scientific area, this work focuses

on semantic and contextual information for describing meaning artificially.

For an agent to create pragmatic (context dependent) meaning of concepts, the description

of the concepts needs to be context dependent. Bouquet et al. [35] define context as a “local”

description of meaning. Since this local knowledge of the domain encodes most of the back-

ground knowledge needed by the agent to create a dynamic heuristic this domain knowledge is

necessary for the reasoning process [258].

The vision here is to create an ability of agents to self-explain new concepts, which might be a

step towards an implicature, which I see as a pragmatic extension of logical implication. Having

a formal representation of context-dependent meaning, that is used by artificial reasoners for

7

1. Introduction

learning new concepts and comprehending their meaning, can be seen as a step towards AI in

agents.

1.2. Problem Statement

To recapitulate the introduction: Agents perform badly in unknown situations [403, p. 3]. I pos-

tulate that this is partly because they are unable to integrate new concepts into their knowledge

[128, 276]. With that, it seems that modern agents fail to represent the meaning of (new) con-

cepts and bring them in connection with concepts they already know. This task can be broken

into two parts: the representation of meaning and the reasoning upon this representation.

Problem Statement: Agents struggle with the meaning of concepts and the reasoning

upon it.

The way meaning is represented conditions the reasoning mechanisms an agent can use [273].

Logic-based representations (henceforth I refer to the logic-based representation as symbolic

representation) have enabled reasoners to make an inference like theorem proving, e.g., with the

superposition calculus [83]. Logicians, on the one hand, build upon the idea of symbolic repre-

sentation where description logics describe languages and the meaning of symbols. Knowledge

graphs (henceforth I refer to the knowledge graph-based representation as connectionist repre-

sentation) on the other hand allow inference on structural features, e.g., graph traversal. This

neat (symbolic) vs. scruffy (connectionist) discussion is going on for the last 40 years [273].

In AI research a symbolic representation of meaning states that the symbols carry the meaning.

In this case, a reasoner has a semantic for the symbols of a language and can use these symbols

for inference. One example could be theorem proving in first order calculus [83]. Here examples

of such symbols are ∨ and ∧, which have a defined semantic and can be used by the reasoner.

Another representation of meaning is connectionist. In connectionist views the meaning of a

concept is defined by the concepts, it is in relation with. This kind of meaning representation

creates a network of concepts [120] which we can use for reasoning.

The research in both of those factions analyses different things like symbolic reasoning is

able to provide consequences form a set of axioms [83] and connectionist using algorithms like

PageRank to analyze clusters of topics by connecting concepts [73]. The problem we tackle in

this thesis is to combine those two approaches to enable more complex reasoning.

Reasoning is quite abstract and includes multiple tasks. We focus on the reasoning in the form

of finding similar concepts, identifying word senses or validating logical correctness, with an

influence of connectionist fuzziness in how concepts are seen. The fuzziness is needed because

the symbolic reasoning has a fixed semantic for symbols. As soon as another agent uses other

symbols for the same concept, connectionist approaches are needed.

The problem with agents today is that without the ability to understand new concepts, it

becomes hard to cope with new situations and problems. One example of enabling an agent

to react to new situations is to use AI planning to solve previously unsolved problems [134].

1.3. Research Statement

This section formulates the overall thesis of this work and its overarching aim. The goal of this

section is to pinpoint a scientific gap, which I will analyze further in the problem analysis in

8

1.4. Research Questions

Section 5. Therefore, I describe my research statement and formulate a hypothesis which I will

try to analyze in the remainder of this work.

Given my problem described in Section 1.2 I want my agent to be able to react appropriately

in unknown situations. Meaning my agent has to be able to integrate new concepts into its

beliefs and reason upon them. By looking at how humans learn new concepts [314, 362, 383],

we can formalize the problem by regarding the agents beliefs as a semantic graph, which is a

connectionist representation of meaning [273]. Within this work, I will formalize this process

and represent the known concepts within a graph structure, henceforth referred to as semantic

graph. In addition to this semantic graph, I have a second representation of meaning encoded in

the reasoning done on the semantic graph. This reasoning is a symbolic view and represents an

implicature. New concepts will be included into this graph, leading to the questions (1) where to

place them, (2) are there equivalent concepts already present and (3) to which concepts should

the new one connect to?

Both representations have their strengths and weaknesses. Symbolic representations can au-

tomatically create proofs for facts they have inferred via implications. Connectionist models can

represent the fuzzy nature of semantic of natural language. I postulate that the connection of

both leads to a better representation of meaning.

To approach the problem described in Section 1.2 I formulated and analyze the following

thesis:

Thesis A combination of symbolic and connectionist representation of meaning can help

agents to reason with new concepts.

As we just described this thesis’ objective and the ideas to approach it, now we will ground

these ideas and the actual approach in the application domains and the experiments next. The ex-

periments carried out in this thesis can be seen as a collection of evidence that my representation

of meaning is sufficient and the agent can use them for reasoning.

By proving evidence for the usefulness of my artificial representation of meaning, I will show

evidence of my thesis. From here I can specify questions which I need to be answered to show

the usefulness of my artificial representation of meaning. I formulate those research questions

in the following section.

1.4. Research Questions

I focus my work on two aspects of meaning, to show the correctness of my thesis: First I look

at how to automatically build a connectionist representation of meaning and how it represents

meaning in a context-dependent manner. Second, I look at how this representation of meaning

can be used with symbolic reasoning to enable an agent to reason on this representation of

meaning. With that this thesis will answer the following questions:

Research Question 1 How can meaning formally be described in a context-dependent

manner?

An answer to this question is provided in Section 5 by introducing a concept for the repre-

sentation of meaning in agents. This representation is based on the assumption that encoding

of information into the knowledge of an agent at design time might not be sufficient to react to

9

1. Introduction

new situations. In consequence, we want an agent to be able to update its knowledge during

runtime. The representation of meaning thus needs to be able to change with the integration of

new concepts. Furthermore, this representation of meaning should be formal enough to enable

reasoning in the context of different problems, which leads us to the following question:

Research Question 2 Can the reasoning be improved for the following tasks:

Experiment 1 Does my representation of meaning include information to create a state-

of-the-art semantic similarity measure?

Experiment 2 Does my representation of meaning include information to create a state-

of-the-art word sense disambiguation approach?

Experiment 3 Does my representation of meaning include information to create a state-

of-the-art semantic sentence similarity measure?

Experiment 4 Can I improve the performance of service matchers by using the connec-

tionist and symbolic representation of meaning as ontology matching?

Experiment 5

The second research question is concerned with the usefulness of the meaning representation.

Having a representation of meaning, I need to show that the information encoded here is of some

use in reasoning tasks. Here I select a different task from AI research to compare my approach

against the state-of-the-art. Starting with the task of creation of a semantic similarity measure

(Experiment 1), I will test this on data sets like the Stanford Rare Word Similarity dataset [244]

and SensEval [84]. To compare sentences, we need to be able to compare concepts [104]. Since

words in natural language are ambiguous, we need to select the right word sense of the concept

used in context (Experiment 2) [282] which is tested on the SensEval Task 3 called “Word-Sense

Disambiguation of WordNet Glosses” [267]. Experiment 3 extends the comparison of concepts

to the comparison of sentences which we test on the data sets MSRvid, MSRpar, SMTeuroparl

like in [308]. To establish a semantic distance between, e.g., two service descriptions, the nat-

ural language service description can be compared, like comparing the meaning of sentence

[221]. Experiment 4 analyzes the usefulness of semantic similarity for finding appropriate ser-

vices given a service request, which is tested on the “OWL-S Test Collection” (OWLS-TC) v43

which we call S3 test collection. To estimate the usefulness of a service w.r.t. a given goal, e.g.,

for a heuristic the different meanings of concepts in a goal or in a precondition are of impor-

tance (Experiment 5), which we test on the Secure Agent-Based Pervasive Computing (Scallop)

domain4.

In the next section, I will introduce all experiments and their proposed method explicitly. In

doing so, I will deduce an overview about the research approach.

1.5. Research Approach

This section describes the overall approach on how I create an artificial representation of mean-

ing and how I want to use it to enable better reasoning for agents.

3http://projects.semwebcentral.org/frs/?group id=89&release id=380, last visited on

27.07.2017
4http://www.dfki.de/scallops/, last visited on 27.07.2017

10

http://projects.semwebcentral.org/frs/?group_id=89&release_id=380
http://www.dfki.de/scallops/

1.5. Research Approach

Facts

In
fo

rm
a
tio

n

Knowledge representation

Reasoning

A
n

s
w

e
r

Q
u

e
s
tio

n

Semantic Graph

Marker Passing

Symbolic Connectionist

Semantic Decomposition
WordNet, Wikidata,…

Problem specific

Figure 1.2.: Abstract research approach.

Next, I will describe my research approach by recapitulating my problem statement: An artifi-

cial notion of meaning needs to be created for an agent with strong AI to emerge [265]. Without

a language and with that the meaning of the words used in this language, an AI is unable to

think. Without thought, there is only reacting, no reasoning. AI today can syntactically capture

language for many specific problems but never establishes meaning for the words of these lan-

guages or can abstract to concepts [44]. Creating an artificial representation of meaning requires

the analysis of what meaning is and how it can be formally represented (see research question

1). There are many terms associated with meaning, like semantics, pragmatics, knowledge, un-

derstanding or word sense [240]. All of those describe an aspect and bear a multitude of theories

explaining what meaning could be. These theories need to be analyzed to develop an artificial

notion of meaning best fitted to my current state of knowledge.

We create my artificial representation of meaning in two parts: First the creation of a semantic

graph and second the symbolic reasoning using this graph. This abstract approach is depicted in

Figure 1.2, which I will describe next.

Knowledge representation

For the first part, we look at different theories of meaning and create an insight into how AI can

create something like my understanding of concepts. Since understanding is difficult to measure

we use proxy problems to measure if my representation of meaning handles the problem in a

way we can understand. These proxy problems are, e.g., guessing a semantic similarity between

words via a semantic similarity measure or selecting word senses from one word given a context

of use.

11

1. Introduction

So my approach is to create a connectionist knowledge representation as a semantic graph

consisting of concepts and their relations, which will serve as a foundation for the represen-

tation of meaning [95, 96, 98, 290, 373]. This knowledge representation represented as a se-

mantic graph is based on a lexical decomposition [328]. Here the graph is created by lexical

decomposition which breaks each concept semantically down until a set of semantic primes are

reached. The primes are taken from the theory of the Natural Semantic Metalanguage [144, 407],

which I have analyzed for their usefulness in formal languages [103]. Representing meaning as

a graph is a connectionist way of AI, cognition, and linguistic researchers think about mean-

ing [238, 256, 371].

The creation of a notion of artificial thoughts and with that, the representation of meaning

is approached by giving an agent the ability to self-explain. This is done by including both

connectionist and symbolic meaning: First, I use knowledge sources to create a semantic graph.

I build this graph out of different knowledge sources like WordNet, Wiktionary, and BabelNET.

Second, I use a Marker Passing algorithm to select relevant concepts out of this graph.

Reasoning

In the second part, I use this knowledge representation to extract facts about the given question

and use them to reason upon this knowledge. This is done by an algorithm encoding symbolic

information on markers and specifying a set of rules how to move them over the semantic graph

so that an interpretation of the resulting marked graph can answer my question about the given

problem. I then use this approach to test its applicability in the experiments mentioned in Sec-

tion 1.4 to answer research question 2. Upon this graph, Marker Passing [48, 99, 165, 167] is

used to create the dynamic part of meaning representing thoughts [61]5.

The novelty of this approach is the automatic creation of a semantic graph and the Marker

Passing algorithm, where symbolic information is passed along relations from one concept to

another, which uses node and edge interpretation to guide its markers. The node and edge

interpretation model the symbolic influence of certain concepts.

This doctoral thesis creates a notion of meaning combining the state-of-the-art knowledge of

natural meaning with the symbolic and connectionist formalization of meaning for AI. Whether

this representation of meaning really formalizes meaning has to be tested. Now we can ask if the

here selected experiments really represent problems which need strong AI to be solved. This can

be answered by looking at my second experiment which identifies Word Sense Disambiguation

(WSD) — the differentiation of meaning of words — as a main problem of language understand-

ing [5]. As an AI-complete problem WSD is a core problem of natural language understanding

[179, 419]. Selecting the right word sense in a context of a sentence provides more information

then guessing the semantic distance of two words, thus making the creation of a semantic dis-

tance measure AI-complete as well. This argument can be extended to sentence similarity and

with that to my service matching and heuristic experiment. Therefore, solving such problems

lets us evaluate my artificial representation of meaning.

5This approach is comparable to the way humans think in that it dynamically reasons about known concepts. Just

like the physical brain creates the basis for neural stimuli to activate.

12

2. Thesis Document

This chapter introduces the structure of the document (cf. Section 2.1) and list the contributions

(cf. Section 2.2) that are provided within this dissertation.

2.1. Thesis Structure

Now that we have a research approach, I can structure scientific endeavor. This section will give

an overview of the thesis and explain why the research has been done in this order. Depicted in

Figure 2.1 this thesis is structured in four logical parts:

Part 1 – Introduction: The first part introduces the problem and states my research questions,

which is placed before this section in Section 1. This is done to form a common under-

standing of the problem and scope of this thesis between reader and author. Easing the

navigation of the document, and letting the reader select the parts of interest to him/her,

we have the current section which explains the organization of the thesis document in

Section 2.

Part 2 – Foundation: The foundation establishes the basic terms used in this thesis in Chap-

ter 3. The basic terms discussed in Chapter 3 start out with the definition of my fundamen-

tal acting entity “Agent” in Section 3.1. Then we look at actions of agents in Section 3.2. I

then describe how agents solve problems through “planning” with services in Section 3.3.

my analysis continues with the description of the basic building blocks of ontologies a

graph in Section 3.4 and the “concepts” in Section 3.5. Next, I describe my representa-

tion of connectionist knowledge in form of “Ontologies” in Section 3.6. Since a concept

represents meaning, and can be interpreted in different ways, I describe how I will use

“semantic” in Section 3.7. Because semantic meaning is independent of context and I

want an agent to be able to represent pragmatic (context dependent) meaning I discuss

what I will use as context in Section 3.8. Afterwards, I discuss what is meant in this thesis

by “meaning” in Section 3.9. In Section 3.10 I introduce the linguistic foundation of my

semantic theory called Natural Semantic Metalanguage (NSM).

We will analyze the different state-of-the-art of the different topics relevant to this thesis

in Chapter 4, starting with semantic theories in Section 4.1. After this I look at formal-

izations of semantic information in form of different ontologies in Section 4.2. I then have

a look at the different semantic description languages in Section 4.3. Afterwards, I will

look at the state-of-the-art in the two main parts of my approach: the semantic decompo-

sition in Section 4.4 and Marker Passing in Section 4.5. Because my use case on problem

solving is planning, I analyze the related work on AI planning in Section 4.6.

Part 3 – Approach: The approach is separated into four parts: A description of the abstract

approach will be provided in Chapter 5. This approach foresees that a semantic decom-

13

2. Thesis Document

Foundation

Basics

SotA

3.

4.

Approach

Abstract
Approach

5.
Semantic

Decomposition
6.

Marker
Passing

7. Implementation8.

Introduction

Introduction

Thesis
Document

1.

2.

Conclusion

Summary11. Discussion12. Final Remarks
Future Work

13.

Evaluation

Service
Matching

AI Planning

Applications
10.4

10.5

Decomposition
Parameters

9.1

Semantic
Similarity

10.1

WSD
10.2

Sentence
Similarity

10.3

Experimental
Setup

10.6

Evaluation
Results

10.7
Selecting
Synonyms

9.2

Decomposition
Depth

9.3

Decomposition Marker Passing

Figure 2.1.: The structure of this thesis.

position creates a graph of concepts which I will describe in detail in Chapter 6. Based

on this, my approach uses the created semantic graph as basis for a Marker Passing algo-

rithm which is introduced in Chapter 7. The approach ends with the description of the

implementation of the decomposition and the Marker Passing algorithm in Chapter 8

Part 4 – Evaluation: The evaluation consists of six experiments which are described in two

parts: Chapter 9 the experiments regarding the Decomposition and Chapter 10 regard-

ing the Marker Passing. The first experiments (see Section 9.1 to 9.3) analyzes the meta

parameters of my approach. The following experiments use my approach in different sci-

entific challenges: a semantic similarity measure (Section 10.1), Word Sense Disambigua-

14

2.2. Contributions

tion (Section 10.2) or a Sentence Similarity Measure (Section 10.3). The experiments are

followed by two experimental applications of my approach: The first experimental appli-

cation is a Semantic Service Matchmaking described in Section 10.4, the second experi-

mental application is a dynamic heuristic for service planning described in Section 10.5.

Part 5 – Conclusion: The conclusion summarizes the approach in Chapter 11, discusses the

experiments with respect to the research questions in Chapter 12 and provides a critical

reviews of my approach and an outlook into possible future work in Chapter 13.

2.2. Contributions

We can structure my scientific output by cutting the different parts into contributions. These

contributions will be discussed next. The main contribution of creating a theoretic sound rep-

resentation of meaning can be split up into smaller contributions. To show the novelty of my

approach, I have surveyed technical semantic representation and analyzed their viability for my

domain. Creating the needed artificial representation of meaning presented hurdles, for instance,

the acquisition of new facts had to be automated. The main contributions of this dissertation pro-

vide an answer to the research questions formulated in Section 1.4 and are listed in the following:

Contribution 1. A formal representation of context-dependent meaning consisting of a semantic

graph and a Marker Passing algorithm.

Contribution 2. A semantic decomposition component that automatically creates a semantic

graph.

Contribution 3. A Marker Passing component that uses symbolic and connectionist informa-

tion.

Contribution 4. An evaluation of my approach by comparison with the state-of-the-art based

on six different problems.

We base my contributions on the analyses of the applicability of NSM as a pragmatic meta-

model for the utilization in service descriptions. Here I will outline an approach, able to create

NSM-based context-dependent explanations which can be used by artificial reasoners to search

on it. One outcome is a context-dependent description of meaning which is my Contribution 1.

This work will compare different reasoning algorithms and their extension to cope with the

newly introduced concepts, eventually introducing a new approach to the creation of a semantic

decomposition algorithm in Contribution 2 and a reasoning algorithm which uses the so created

semantic graph and builds Contribution 3. These two algorithms combined are compared to the

state-of-the-art in six AI challenges forming Contribution 4. Given these contributions, I can

integrate this thesis into the bigger picture of AI by comparing it w.r.t. existing contributions.

In conclusion, the following contributions can be drawn from this doctoral thesis: A new

meaning representation combining connectionism and symbolism is defined and automated in

its creation. I extend the known Marker Passing algorithms and analyze their use for reasoning.

This analysis gives insight into the notion of meaning and how it can be formalized to be useful

in AI research. I have published parts of this research [93, 94, 95, 96, 97, 98, 99, 100, 101, 102,

103, 104].

15

Part II.

Foundations

17

3. Basic Terms and Concepts

To build a common ground on the terminology used, we will now look at the basic terms and

concepts used in our scientific strive. For that this chapter introduces relevant concepts from

the fields of AI agents (Section 3.1), their actions and the relation to services (Section 3.2) and

planning (Section 3.3), formal descriptions of graphs (Section 3.4), the definition of concepts

(Section 3.5) and ontologies (Section 3.6) as well as semantic representations (Section 3.7), a

notion of context (Section 3.8), our notion of meaning (Section 3.9) and finally a short intro-

duction to the Natural Semantic Metalanguage (Section 3.10). We will start out by looking at

agents and AI Planning to understand the basic algorithms to compose actions into a plan and

with that understand why there are still problems in finding problem solutions through planning.

We then look at the formal basis for our approach: Graphs and Ontologies. We use ontologies to

encode semantic information. We, having ontologies as a basis, then discuss our understanding

of semantic information, meaning, and context. The mixture of semantics and context brings us

to an understanding of pragmatics.

We start with the definition of an agent since the fundamentally acting entity in this work is

called agent.

3.1. Agents

Picking up the idea of Weiss [403, p. 3], agents are an approach to create more autonomous and

intelligent software. The notion of an agent and the design paradigm of Multi-Agent Software

Architectures [416] are well discussed in the related work. This section defines what we will use

as a definition of an agent, which part of the agent will be further analyzed and how the agents

and services are interlinked to enable the transfer of semantic approaches to the agent world.

We concentrate on the deliberation part of the agent which selects a service1 executed next.

This mechanism of an agent selects a service based on the information available to the agent

which could be, e.g., the goal the agent wants to achieve. This mechanism is called planning or

sometimes means end reasoning; meaning that the agent reasons about what service to perform

next and its effect or its precondition, before executing it. Planning is a hard task for most

humans and as the quote leading into this section of Weiss [403, p. 3] signifies: computer are

even worse at it. Pinpointing which part of the agent we are concerned with, we need to look at

some general definitions of agents and determine in which part of the agent the “reasoning” is

happening, being able to improve it.

Hayes-Roth [160] formulates the most fitting abstract definition of an agent. Here an agent

acts continuously by:

Sense: Perception of the environment updating the knowledge of the agent.

1In the Agent community the services provided by agents are called actions. We use the word service to emphasize

the SOA part of an agent, where the action proposed by an agent can be seen as service.

19

3. Basic Terms and Concepts

Agent Environment

Act

Sense
R
e
a
s
o
n

C
h
a
n
g
e

Figure 3.1.: Illustration of an agent in its environment.

Act: Acting as taking effect on the environment by executing services.

Reason: Reason with available information, e.g., the knowledge of the agent.

Figure 3.1 shows an abstract agent and its interplay with the environment. This definition of

agent is too broad and needs to be narrowed to grasp the aspects of agents used in this work.

Since this work focuses on the reasoning part of the agent, we further focus on architectures

of agents concerned with the internal design of an agent, e.g., its service selection behavior.

We see the reasoning as the mechanism which describes the inherent ability of the agent to

change his mental state. With a certain complexity of the reasoning of an agent, its ability to

represent meaning or act intelligently gets hard to prove. Because of this, we test such reasoning

mechanisms through observation of the behavior of the agent [384].

We start out by separating natural from artificial agents. Artificial agents are agents which are

man made, thus do not occur in nature with out the influence of higher intelligence like human

beings. For example Cars, Robots and Software might fall into this category. Furthermore, since

we are talking about software components, we reduce our definition of Agent to the virtual part

of artificial agents. As a result, we restrict our notion of an agent to the definition of Wooldridge

and Jennings [417] who define an artificial “weak” software agent in more details by requesting

the following properties:

Autonomy: the agent can operate without interaction from some external or deterministic

source and can control his services and internal state.

Social ability: the agent can interact with other agents.

Reactivity: the agent can perceive the environment and adapt to change.

Pro-activeness: the agent has, in addition to reacting to the change in the environment, ini-

tiative or goal-driven behavior.

We want an agent to have those properties since autonomy allows the agent to control its

beliefs, social behavior allows the calling of other agents services, reactivity allows the agent

to sense new concepts and reacts on service calls and finally pro-activity, so that the agent is

able to plan and show goal driven behavior. We will especially postulate the social and pro-

active properties of agents. On the one hand, we need agents to act together so that we can plan

including all of their services to achieve a given goal and on the other hand we need pro-active

behavior on the reasoning about the services descriptions of other agents.

20

3.1. Agents

With this definition, we can distinguish between software agents and software components

like services which are not pro-active and autonomous. Looking at the variety of software which

has been implemented using an agent paradigm, there are many different architectures which

establish the properties of an agent differently [15]. However, all of them have in common, that

the agent needs to interact with the environment through sensing and acting. We thus can still

base our definition of an agent on Figure 3.1 to illustrate the notion of an agent.

Wooldridge and Jennings [417] further define a “strong notion of agency” as software which

has the properties of the weak notion of an agent and also “...is either conceptualized or imple-

mented by using concepts that are more usually applied to humans” [417, p. 117] like thinking

which again is similar to most AI principles, where human behavior is simulated. The strong

notion of agency is too abstract because being implemented with concepts to describe human

thinking introduces too many attributes, like a psychiatric disorder.

Intentions / GoalsOptions / possible Services

Plan

Means-ends Reasoning

Relevant Out of scope

Service
selection

Service
anlaysis

Heuristic
generation

Initial state

state
transition

state
evaluation

goal reached

back
tracking

Context

knowled
ge

Figure 3.2.: The rough architecture of the means-ends reasoning of an agent.

In addition to the requirements of Wooldridge and Jennings [417] we want an agent to be in-

telligent, meaning to be able to find solutions for given problems on its own. With that autonomy

is extended from the ability to make decisions on its own (autonomous, e.g., with a fixed set of

decisions possibilities) and to create own decision possibilities (intelligent). Especially intelli-

gence enables an agent to solve problems in a goal-directed way. Intelligent behavior merges

all the properties declared by Wooldridge and Jennings [417] in a way, that the adaption of the

agent — in a proactive or reactive way — adapts towards a given goal of the agent. Conse-

quently, an agent should be able to adapt existing plans or create new ones if necessary, leading

us to the planning problem which we see as one problem-solving method. Consequently, in this

work, we try to make software agents more intelligent by giving them the ability to plan with

a semantic and pragmatic understanding of service descriptions as service representations. For

that, the representation of meaning in an artificial agent is subject to research, which leads us to

the analysis of formal information representations in the next section.

Weiss [403] identifies two general architectures for software agents: Belief-Desire-Intention

(BDI) architecture [320] and Multi-Layer Agent which are discussed in Weiss [403] with the

example of TuringMachines [111] and InteRRaP [277]. There are many agent architectures [15],

21

3. Basic Terms and Concepts

but since our approach is independent of the agent implementation, as long as it includes a

means-ends reasoning with some kind of planning we do not pick an agent architecture here.

Since this means-ends reasoning [309] is in focus in this work, we will further embed our

approach in a cognitive architecture discussed next.

We postulate that the means-ends reasoning part of an agent is the part we want to investigate

if we want to create intelligent agents because this is the part where the actions of the agent

are planned. The actions of an agent define its behavior and with that our perception of its

intelligence. The means-ends reasoning part is abstracted in Figure 3.2 where we show the

relevant parts for this work. We focus our analysis of an agent to the heuristic generation (dotted

line in Figure 3.2) and the service selection as a use case to evaluate our approach.

Figure 3.2 describes the scope of our analysis. So there is no plan execution to evaluate the

plan. From the agent perspective, this can be seen as thinking about the problem, making an

abstract plan which could solve the problem, but not execute it. We focus on the pure planning,

because of the execution of a plan, with all the hurdles, are too much to handle in this work.

The challenges arising during execution are subject to other research like describe in the work

of Ghallab [135] and Nau [281].

To outline this work, one could say that the proposed thesis extends the work of Usón and

Faber [387] with the goal to create a metalanguage to describe context-dependent meaning au-

tomatically as artificial thoughts. In the work of Castelfranchi [46] this ability of abstraction and

conceptualization is called Cognitive Emergence.

System 2

Symbolic

System 1

Connectivism

Slow
Controlled
Logical
Episodic

Fast
Unconscious
Automatic

Make decision
Reason

Assessment of relevant
Filter

DecompositionMarker Passing

Figure 3.3.: Cognitive interpretation in an agent.

In the theory of Kahneman [186], he separates the cognition into two parts called System 1 and

System 2. One is responsible for the fast, automatic evaluation and filtering of new information;

the other one is in charge of the controlled, logical decision making. The ability to self-explain

new information to oneself is an essence of learning. The decomposition allows us to create the

semantic network used by the Marker Passing to, e.g., find a semantic distance between wanted

concepts (goal) and provided once (services). To interpret this in a cognitive manner, we take the

insight of cognitive decision making from Kahneman [186] and extend it to an artificial agent.

Figure 3.3 illustrates the separation of an agents cognition into System 1 and System 2.

The agent as the basic acting component of our approach is part of a distributed system called

Multi-Agent System (MAS) [242, 372, 403]. Here different functionalities are provided by

different agents. The functionality of an agent is encapsulated in its actions. The next section

will discuss the functionalities of agents and their use.

22

3.2. Actions, Services and Capabilities

Now we can formulate our definition of an agent formally based on the “Abstract Architecture

of Intelligent Agents” of Wooldridge [416]: An agent A as a tuple A = (Beliefs,Goals,

Services) of its beliefs (the knowledge of the agent), its goals (which formalize what the agent

wants), and the services it provides for others.

3.2. Actions, Services and Capabilities

In this section we will describe how we see a service and its relations to terms like action or

capability. We do so to connect the search done in the SOA research with the Multi-Agent

research, showing parallel developments and map the terms used to our terminology in this

work.

There are many names for the fundamental active part, which we call agent: the execution,

the actor, a component or a subsystem. In the agent community, the activities of agents are often

called actions. In the SOA community, an equivalent is called services. A service encapsulates

functionality and specifies an interface for using this functionality. SOA do this to ensure separa-

tion of concern and reusability. The reusability is supported by describing the service regarding

its input and output parameters, preconditions which need to be fulfilled to call a service and the

resulting effect [255]. MAS separate functionality by agents and the interfaces to the functional-

ity are its actions. Here we refer to an agents actions as service because we are interested in the

semantic description normally present for semantic service. Additionally, we can argue that the

functionality of an action can always be encapsulated in a service, which is just an interpretation

of how we look at the functionality provided by an agent [204]. It does not matter to us, who

provides the service, or how intelligent or adaptive it is or how it is implemented, as long as we

can use its functionality as part of our search for a solution to a given problem. Sabatucci et

al. [339] provide a definition of service, with the addition, that a service evolves a set of world

states S, from a state si ∈ S to a state si+1 ∈ S. For each state, the effect of the executed service

has to hold in si+1, and the precondition needs to be fulfilled in si for the service to be executed.

Sabatucci et al. [339] define their world states as closed worlds [74], which is not sufficient

for the use of semantic technology from the Semantic Web [24] because there the closed world

assumption does not hold [74]. Further, we differentiate between world-altering service and in-

formation services like Saboohi et al. [340]. The difference is that that world-altering services

describe effects which differentiate si+1 from si. Information services do not. Again the defini-

tion of Sabatucci et al. [339] is not sufficient here, since they demand si+1 to be different from

si. A world state is further defined in Definition 1:

Definition 1. A State A state S is a set of facts which make up the state.

Here a fact is a quantum (a measurable unit) which can be concrete or abstract and formalizes

one aspect of the world. In either way, facts can be seen as abstracted entities in a context.

A context is defined in Section 3.8. The state can represent a world state, like used in most

planning approaches [339] or can be an abstract representation of a fictional world, which is

kept in a belief of an agent, as an intermediate step during planning.

The main difference to the classical objective state of planning problems, like defined in [134],

is that we do not claim a closed world.

The formal representation is based on a set of facts F which are technical represented in an on-

tology using the Web Ontology Language (OWL) [103]. We discuss more details on ontologies

23

3. Basic Terms and Concepts

in Section 3.6.

The facts f ∈ F which make up the state Si are subjective to the agent i believing fact f . The

facts making up Si are subjective2, since from another perspective or in other contexts, facts

might differ in their evaluation. This means that not only the selection of facts describing a state

but also their manifestation may differ from agent to agent.

Let S be the set of states of the environment and let Services = s1 . . . sn be the set of services

of an agent. We argue that we are not interested in the service implementation itself but rather

in the functionality it provides. Thus, we define a service with its service description. Martin et

al. define a service si as a sextuple in the manner of an OWL-S description [255]. We adopt this

definition as follows:

Definition 2. A service si := (Input, Output, Precondition, Effect, Name, Description).

The Input, Output, Precondition, and Effect (IOPE) are equivalent to the profile of an OWL-S

Service profile [255]. Here the input describes the information needs of the agent to perform a

service, and the output describes the change done by the service. The precondition and effect, on

the other hand, describes the state change the service might invoke. The name and the description

of a service natural language description of the functionality the service encapsulates. Since,

this so-called “profile” of a service, describes what it can do we will have a closer look at it,

to determine if this description of a service can help the agent to think about the service and

to decide to execute the service, or not. The name of a service is the natural language name of

the service, e.g., ”BookFlightService”. The description is a natural language description of the

service thought for humans.

Here the input describing the required information, objects (individuals), all parameters of the

service needs to be executed.

Definition 3. Input parameters are a set Input of facts Input = {i1 . . . in}.

These facts3 making up the inputs can be abstract in the form of free variables or concrete as

in grounded statements on individuals4. All input parameters are a subclass of the more general

class parameter. Listing 3.1 illustrates the OWL-S definition of a parameter.

Listing 3.1: Definition of the OWL parameter class.

<owl:Class rdf:ID="Parameter">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#parameterType" />

<owl:minCardinality

rdf:datatype="&xsd;#nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Parameter">

<rdfs:subClassOf rdf:resource="&swrl;#Variable"/>

2This means the facts depend on the beliefs of the agent.
3The inputs describes restricted facts which we reduce to class assertions.
4Individuals are further discussed in Section 3.6.

24

3.2. Actions, Services and Capabilities

</owl:Class>

<owl:Class rdf:ID="Input">

<rdfs:subClassOf rdf:resource="#Parameter"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="parameterType">

<rdfs:domain rdf:resource="#Parameter"/>

<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

Listing 3.1 describes the parameter class, which has a parameter type with a cardinality of one.

This parameter is a variable and the input. The parameter type is given (here with the example

“anyURI”), which describes that the “Variable” is of this parameter type. The “parameter type”

is defined as “DatatypeProperty” which describes a domain and a range. The domain and range

defined which type of facts are connected with this “parameterType” relation.

The output is the optional return values of a service. It is similarly defined to the input param-

eters:

Definition 4. Output parameters are a set Output of facts Output = {o1 . . . on}.

Like for the input parameters the output parameters are defined as a subclass of OWL param-

eters as shown in Listing 3.2.

Listing 3.2: Definition of the OWL-S output parameter class.

<owl:Class rdf:ID="Output">

<rdfs:subClassOf rdf:resource="#Parameter"/>

</owl:Class>

Listing 3.2 shows the change from an input to an output parameter. The rest of the description

would be similar to Listing 3.1.

As an example of a service description, the interested reader can look at one example service

from the Semantic Service Selection (S3) Contest5.

Definition 5. Preconditions are a set Precondition of SWRL rules Precondition = {p1 . . . pn}.

OWL-S describes the precondition and effect in the Semantic Web Rule Language (SWRL).

These rules are made of the form: Body→Head, which means that if the body evaluates to true

the head is executed. The precondition describes a set of conditions which have to be fulfilled (in

the current state) for the service to be executable. Such a condition can be formulated as a rule

[175] without a head. The semantic here is that if the body of the rule holds, then the service can

be executed. Therefore we define preconditions with an empty head, because we want nothing

to be changed by the rule in our ontology6.

Similar to the preconditions of a service, the effect of a service describes which facts are

fulfilled after the execution of the service.

Definition 6. Effects are a set Effect of SWRL rules Effect = {e1 . . . en}.

5see: http://www-ags.dfki.uni-sb.de/˜klusch/s3/ last visited: 22.07.2017
6Because the SWRL specification states that if a rule has an empty head, the rule is only true if all facts in the body

of the rule are evaluated to false, we fill the head of a precondition with a fictional fact, which states something

like the rule is fulfilled.

25

http://www-ags.dfki.uni-sb.de/~klusch/s3/

3. Basic Terms and Concepts

∅ isBookedFor(Flight, Patient) isBookedFor(Flight, Attendant)

v

Figure 3.4.: Abstract example effect rule.

The difference to a precondition is that an effect has an empty body. The body of the effect

is empty because, if the service is executed, we want the effect to be executed as well. Here the

empty body is interpreted as always to be true.

The effect formulates the expected effect of the execution of the service on the environment.

Figure 3.4 describes an example effect. In this effect, we formulate that the effect of the executed

service is that the flight #Flight is booked for a person called #Patient and a person called

#Attendant.

The name of a service is a natural language name for the service, which in most cases give

us a clue on which topic the service is. This is not a formal description of the service since the

developer can choose names like “Service1” for a service. In these cases, the name of the service

does not reveal much about the functionality of the service, but in other cases, where the service

is for example called “BookFlightService”, it gives us a brought domain in which the service

acts.

The description of a service is a natural language description, thought for humans, which

describes the functionality encapsulated in the service.

Definition 7. Description the description is a natural language description of the functionality

of the service. It might include examples on the result of the service or example parameters.

The name of a service can hint us on its domain or functionality.

Definition 8. Name The name is a natural language identifier. A string with no spaces naming

the service.

Now we have defined the acting the part of an agent. Next, we will look at its knowledge

representation by defining how we see its beliefs:

Definition 9. A Belief is a set of non-contradicting facts which the agent evaluates to be true.

We are especially interested in the knowledge base of an agent since we want to model mean-

ing by combining symbolic and connectionist information. Updates in the knowledge base are

interpreted as new states. We represent the belief of an agent as ontology. What kind of ontology

we use is further discussed in Section 3.6

Definition 10. A Goal is a set of non-contradicting facts representing what an agent wants to

achive.

The fulfillment of the goal is checked for each fact and if all facts are fulfilled the goal is

reached. Such a definition of a goal represents a set of goal states. Depending on how abstract

the goal is formulated the facts of the goal could be fulfilled in different states.

Because sometimes the achievement of a goal cannot be done by the execution of one ser-

vice but needs the combination of multiple services, AI planning analyses methods to combine

services to achieve a goal.

26

3.3. Planning

3.3. Planning

This section will describe planning as a problem-solving method. Since this work will not en-

gage in defining a new planning algorithm, we will only look at state space planning to motivate

which information is available for the creation of a heuristic.

Planning represents a problem-solving approach; where we think about how to solve a prob-

lem by determining which services we can use to solve the problem. By ordering the available

service and choosing the right input parameters, planning tries to find a combination of services

to reach a goal state.

A planning problem is formalized in the following way based on the description of a state

transition system given in [134, p. 17]:

Definition 11. A planning problem P = (S, A, γ, sstart, sgoal) with,

S = {s1, s2, . . . } a finite or recursively enumerable set of states,

A = {a1, a2, . . . } a finite or recursively enumerable set of services,

γ: S× A→ S a state transition function,

sstart: an initial state, and

sgoal: a goal state.

The goal here, since it is a state, is a set of facts. It encodes all states in which these facts are

true. We can imagine this planning problem as a directed graph, where the services determine

which state is connected to which state by the state transition function. We changed the definition

from [134] to fit the terminology here. Since actions of agents are services to us, we call the

actions here services as well.

For the use of services of other agents, the agents need to describe their services to each

other, so that they can evaluate if the service might be useful to them. To do that the agent

needs, on the one hand, a formalization of meaning in its beliefs, goals, and functionality needs

and on the other a semantic description of the services. Both are described by using semantic

representations of meaning like ontologies.

3.4. Graphs

This section defines attributed typed graphs with node type inheritance. We will use this for-

malism as a basis for representing semantic networks in Section 6 and 7. The definitions in this

section are taken from De Lara et al [66]. We start with the definition of a graph, consisting of

sets of nodes and edges and a source and target function.

Definition 12 (Graph (Definition 1 in [66])). A graph G = (V,E, s, t) with a set V of nodes and

a set E of edges and a source and target function s, t : E → V

The nodes represent the vertices of the graph and the edges represent the lines between the

nodes. The two functions s and t give the edges a direction by assigning a node as target and

source to each edge. Giving two graphs a graph morphism maps the nodes and edges of one

graph onto another graph by preserving the structures of the first graph. Like in De Lara et

al. [66] we define a e-graph morphism in the following way:

27

3. Basic Terms and Concepts

Definition 13 (E-Graph and E-Graph Morphism (Definition 6 in [66])). An E-Graph G with

G = (VG,VD,EG,ENA,EEA, (sourcej, targetj)j∈{G,NA,EA}) consists of sets:

• VG and VD called graph and data nodes (or vertices) respectively;

• EG, ENA, EEA called graph, node attribute and edge attribute edges respectively.

and source and target functions

• sourceG : EG → VG, targetG : EG → VG for graph edges;

• sourceNA : ENA → VG, targetNA : ENA → VD for node attribute edges;

• sourceEA : EEA → EG, targetEA : EEA → VD for edge attribute edges.

V
G

E
NA

EG

E
EA

V
D

source
G

target
G

source
EA

target
EA

target
NA

source
NA

Figure 3.5.: Illustration of the EGraph morphisms taken from [66].

Let Gk = (Vk
G,Vk

D,Ek
G,Ek

NA,Ek
EA, (sourcek

j , targetk
j)j∈{G,NA,EA}) for k = 1, 2 be two E-graphs.

An E-Graph morphism f : G1 → G2 is a tuple (fVG
, fVD

, fEG
, fENA

, fEEA
) with fVi

: V1
i → V2

i and

fEj
: E1

j → E2
j for i ∈ {G,D}, j ∈ {G,NA,EA} such that f commutes with all source and target

functions, e.g. fVG
◦ source1G = source2G ◦ fEG

The E-Graph and E-Graph-Morphism allow us to define two types of nodes: graph nodes Vk
G

and data nodes Vk
D. Further, we distinguish between three types of edges: the graph edges Ek

G,

the node attribute edges Ek
NA, and the edge attribute edges Ek

EA. For those edges source and target,

functions are defined respectively. This extension of a basic graph is needed to allow attribute

for nodes and edges. The graph edges describe the edges of a graph, the node attribute edges

map attributes to nodes, and the edge attribute edges map attributes to edges respectively.

Definition 14 (Attributed Graph and Attributed Graph Morphism (Definition 7 in [66])). Let

DSIG = (SD,OPD) be a data signature with attribute value sorts S′D ⊆ SD. An attributed graph

AG = (G,D) consists of an E-graph G together with a DSIG-Algebra D such that
⊎

s∈S′D
DS =

VD. For two attributed graphs AGi = (Gi,Di) with i = 1, 2 an attributed graph morphism

f : AG1 → AG2 is a pair f = (fG, fD) with an E-graph morphism fG : G1 → G2 and an algebra

homomorphism fD : D1 → D2 such that (1) commutes for all s ∈ S′D.

With the mapping of attributes to nodes and edges, Definition 14 extends a graph to an at-

tributed graph and a graph morphism to an attributed graph morphism, where the morphism

maps in addition to nodes and edges the attributes of the graph as well. The difference to

a attributed graph to a e-graph is here that is uses a data signature (sorts and operations) for

28

3.5. Concept

DS

1
DS

2

VD

1
VD

2

(1)

,→,→

fD,s

fG,VD

Figure 3.6.: Illustration of the AGraph diagram taken from [66].

attributes, where e-graphs just use an anonymous set of data nodes. Next, we define in Defi-

nition 15 how the type graph is connected to a graph so that we can create a typed attributed

graph.

Definition 15 (Typed Attributed Graph and Typed Attributed Graph Morphism (Definition 8

in [66])). Given a data signature DSIG, an attributed type graph is an attributed graph ATG =

(TG, Z), where Z is the final DSIG-algebra.

A typed attributed graph (AG, t) over ATG consists of an attributed graph AG together with

an attributed graph morphism t : AG→ ATG.

A typed attributed graph morphism f : (AG1, t1)→ (AG2, t2) is an attributed graph morphism

f : AG1 → AG2 such that t2 ◦ f = t1.

This type graph which maps type to node and edges of the graph does yet not support inheri-

tance. Definition 16 describes an attributed type graph with inheritance.

Definition 16 (Attributed Type Graph with Inheritance (Definition 9 in [66])). An attributed

type graph with inheritance ATGI = (TG, Z, I,A) consists of an attributed type graph ATG =

(TG, Z), where TG is an E-Graph TG = (TGVG
, TGVD

, TGEG
, TGENA

, TGEEA
, sourcei,

targeti)i∈{G,NA,EA}) with TGVD
= S′D and Z the final DSIG-algebra and an inheritance graph

I = (IV , IE, s, t), with IV = TGVG
, and a set A ⊆ IV , called abstract nodes.

The inheritance in the attributed type graph in Definition 16 allows us to describe a type graph

by using inheritance edges between nodes and with that have type inheritance for the typing of

nodes in a typed attributed graph.

Among others, we want to use this formalization to describe our connectionist representation

of meaning. This representation, called ontology, has concepts as nodes and relations between

concepts as edges. Next, we will look at how the basic building block of an ontology (a concept)

is defined.

3.5. Concept

A single entity with its ontology is sometimes called a concept. We will use this term to specify

a word with all its relations like its synonym relations or its definitions. To this end, we define:

This signature describes the signature of what we see as a concept. Here we define all the

functions which a concept implements. For example the getDefinitions function as input a string

representing the word we want to look up definitions for and a word type7 and returns a list

7A word type is a syntactical classification of words like verbs or nouns. The word type is sometimes called Part-

of-Speech (POS).

29

3. Basic Terms and Concepts

Signature Concept

sorts:

String

WordType

Definition

opns:

getDefinitions : Concept × String×WordType→ Definition∗
getSynonyms : Concept × String×WordType→ Concept∗
getAntonyms : Concept × String×WordType→ Concept∗
getHypernyms : Concept × String×WordType→ Concept∗
getHyponyms : Concept × String×WordType→ Concept∗
getMeronyms : Concept × String×WordType→ Concept∗
getLiteral : Concept→ String

getWordType : Concept→ String

of definitions which was found for this concept with the given word type. All other functions

except the getLiteral work similar to the getDefinitions function. The getLiteral function returns

the string representation of the word representing the concept in natural language.

In addition, we can get the literal8 of the concept by invoking getLiteral(c) for concept c. The

word type or Part-of-Speech (POS) of a concept is made available by the getWordType function.

We define the signature of a definition as follows:

Signature Definition

sorts:

String

Concept

Definition

opns:

getDefinition : Definition→ Concept∗
getExamplePhrase : Definition× Concept→ Concept∗
getSenseKey : Definition× Concept→ String

getTerm : Definition× Concept→ String

Here the definition of a concept can be collected by calling getDefinition which then returns

a list of concepts consisting of those concepts making up the definition. Of course, a concept

can have multiple definitions. A definition contains an example phrase as well. This exam-

ple phrase shows the definiendum in a typical use in a sentence. The function getTerm re-

turns the definiendum of this definition. If available, the getSenseKey function returns a sense

key compatible with WordNet. This is done to compare the different definitions from differ-

ent dictionaries. Here an example definition shown in Figure 3.7 from Wiktionary (https:

//en.wiktionary.org/wiki/eat) for the word “eat”:

We continue with the definition of ontology since this is the essence of the formalization of

our connectionist representation of meaning.

8String representation of the word representing this concept.

30

https://en.wiktionary.org/wiki/eat
https://en.wiktionary.org/wiki/eat

3.6. Ontology

eat ; Verb

To ingest; to be ingested.

1. (transitive, intransitive) To consume (something solid or semi-solid, usually food) by

 putting it into the mouth and swallowingit.

He’s eating an apple.  Don’t disturb me now; can't you see that I’m eating?

Example Phrase

Term

WordType (POS)

Definition

Figure 3.7.: Overview of the state-of-the-art of semantic similarity measures.

3.6. Ontology

The goal of this section is to define what we will use as an ontology for the representation of

our semantic graph, modeling the connectionist part of meaning [366]. In the remainder of this

work, we will use ontologies to model, e.g., the beliefs of agents, the states — like the goal

state of our planning problem — and describe the capabilities the agent can use to create a plan

which might reach that goal state. Furthermore, we want to reason upon those ontologies (e.g.,

to calculate a semantic distance of words and sentences) and extend them automatically. Having

set this purpose of ontologies, we will have to create a theoretic sound basis for the formalized

meaning, complete with the benefits of automated reasoning. For that purpose the definition of

Euzenat and Shavaiko [91] is adapted to our definition with the Definition 26 and 27 of Mahr.

We start out with the most basic element: the concept. We define a concept in the way of

Mahr [249] defines an entity: A concept describes something that exists, and anything that exist

can be described by a concept. Ontology then describes a concept and its relationship to other

concepts or itself. In Figure 3.8 we define six types of concepts: four of them are relations. The

other two are “Type” and “Individual”. Types specialize concepts which can be instantiated.

The individuals are realizations of abstract concepts.

Formally we defined an ontology similar to Euzenat and Shavaiko [91] but now we should

even consider the mind set of the Model of conception from Mahr [249] as shown in Figure 3.8.

Figure 3.8 describes that everything is a concept. Especially relations are concepts. We have

specified three special relationships:

Named Relation a relationships with a name like a meronym or “FatherOf”.

Instantiation a relationship which relates concepts to individuals.

Assignment a relationship which assigns concrete individuals to the sources or targets of a

relationship.

This combines Euzenat and Shavaiko [91] with the idea of Mahr [249] since relations are

concepts as well and because everything is a concept (Mahr calls this entity). We need to notice

here, that because we are unable to describe cardinality in this formalism, relations reference

zero or more concepts. The special relationships for instantiation and assignment are needed

to distinguish between individuals and concepts. Here we extend the definition of Euzenat and

Shavaiko [91] since we define what an individual consists of concrete values for the abstract

concepts related to the concept under study.

31

3. Basic Terms and Concepts

Relation

Concept
- Literal: String

Refernce
- Name: String

Individual

Assignment source

target Instantiationtarget

source

Named Relation

Type
source

target

Inheritance

Relates

Figure 3.8.: Type graph of our ontology definition.

3.7. Semantic

Semantics, in general, is the theory studying the meaning of symbols [240]. For computer

science, on the other hand, semantics can be understood as an enrichment of data with meta-

information, for example, to describe the meaning of words used in a programming language.

Here the meaning of the word of the programming language is defined by the calculation a

computer will do when seeing that word. For natural language, this meta-information can be

formalized in an ontology represented in abstract conceptualization. For more details, please

see Section 3.6.

Semantics for formal languages can be seen as an investigation of the interpretation of the

formal statements making up something formulated in this language like an ontology. Meaning

can be used in a wide range, whenever a reasoner tries to understand a relationship of entities

or, e.g., action might have a meaning as well. However, this work focuses on the meaning of

concepts. In this regard semantic is a linguistic area concerned with the meaning of words or

utterances. We define semantic meaning as in compliance with [45, 240]:

Definition 17. Semantic is the context independent meaning of concepts.

To establish our notion of meaning, we analyze different semantic theories in Section 4.1 to

gain insight into how meaning is formalized, how it can be used and which inference is possible

with each of these theories. For that, we want a formalization of symbolic and connection-

ist meaning which can represent meaning in an expressiveness of natural language and still is

tractable for the reasoning done upon it as well as for us working with it. This means semantic

information is the information a reasoner can extract from an utterance without knowledge ex-

tending the syntax. For example the sentence “Ich bin ein Berliner” (engl. I am a Berliner9) can

be analyzed in the following way: There is a speaker (here the denoted by the “I”) who sees him-

self as part of the group with the name “Berliner”. The German grammar additionally allows the

conclusion that the speaker is a male because of the use of “ein”. This completes the semantic

analysis. The meaning for which this sentence has become famous: “We as America (Capi-

9An utterance made by U.S. President John F. Kennedy on June 26, 1963

32

3.8. Context

talists) stand beside you (Germany) in the fight against the UdSSR (Communist), and we will

support you (also capitalists),” is only extractable with a vast amount of contextual information.

The problem with the contextual information is that the uttering agent and the listening agent10

might have different contexts like depicted in Figure 4.1 on Page 48. In linguistics, the context

of the uttering agent is called “Äußerungskontext” (context at utterance) [240]. The semantic

of the utterance itself is called “Ausdrucksbedeutung” (meaning of the utterance) which is the

meaning of the utterance with the addition of relevant facts form the context at utterance [240, p.

11]. The pragmatic (context depending meaning) can then be seen to build up on the semantic

meaning in the “Kommunikativer Sinn” (the wanted effect of the communication of the speech

act) [240]. The receiving part from the view of the uttering agent is the effect the uttering agent

wanted to create in the listening agents.

The semantic information does not have this problem because it describes the meaning of the

concepts used in the utterance in general. Thus, it is not context dependent. The problem here is

that now we need to describe the meaning of every concept we encounter. The question here is:

Can we create a semantic where we do not have to describe the semantic of each word, but derive

it. The semantic part of our artificial representation of meaning thus needs to be wisely chosen to

be able to represent these three layers (Semantic, Syntax, and Pragmatic) of meaning. Following

Tarski [377] a sufficiently expressive language can define its semantic in itself. Leading to the

question of how expressive our language has to be, to be used in the artificial representation of

meaning.

3.8. Context

Context has many definitions and is often used to describe all information available. One of

the basics for defining context is the work of Dey [71]. Dey uses “relevance” of information

to “describe a situation of an entity” as criteria for the definition of context. This is a vague

definition since it lets us not distinguish between other information since all relevant information

becomes contextual information. Here it becomes important to describe what relevance means,

which is a other research question [385].

The context in Natural Language Understanding is often interpreted as the words surround-

ing a target word or in distributed models (with word embedding) the concurrence of a word

with another word in texts in a given window [39]. The size of the context then is subject to

discussion [270].

Miller [270] defined a linguistic context as a set of sounding words in which a concept can

be used. This is sometimes referred to as Topical Context [270]. Here the vocabulary used to

discuss a topic provides additional information to the creation of meaning.

In this work we use the Model of Conception of Mahr [250] as a formal representation of

context. This section is meant for a short introduction of the notion of context used in this work

so that we can understand the problem statement in Section 1.2. For further details Section 3.8

describes the notion of context in more detail.

To illustrate how we will use context in this work we will now look at an example of contextual

information in our use case: A taxi calling service which takes two locations as input, the starting

address, and the destination address.

10Here listening agent is not restricted to audio signal but means the receiver of an abstract message.

33

3. Basic Terms and Concepts

Service Consumer

Domain

Relevant Information

User

Service

Subject

Object
Context

SeMa2

Dynamic
Derived

Conception

Figure 3.9.: Illustration of a context in regard to an object using the example of a service and its

consumers.

For service planning an action selection component is needed. This action selection compo-

nent selects the best fitting service for a given request. Depending on the contextual information

given, let’s say the location of the user, different services can be selected. As shown in Figure 3.9

the service is conceived by a subject — in this case, the Service consumer or an service matcher

called SeMa2 — and the relevant information of this service the location of the user makes up

the context. Figure 3.9 illustrates the transferred model of conception as one definition of context

from Mahr [250] by using an example of a service.

Definition 18. Conception

1. A Conception is a relationship consisting of three entities:

• An entity called subject of the conception

• An entity called object of the conception

• A complex called the context of the conception

2. The content of a conception is a complex consisting of the relationships of the context, of

which the object of the conception is an element of.

This can be imagined as an observer (the subject) observing an entity (the content) which is

made up of the object and the context surrounding this object (all entities which stand about the

object). The conception, therefore, is something like a perspective and depending on the subject

the object might appear in a different context. If an entity (or for our purpose a concept) is part

of different conceptions, the context regarding the subject might change. In consequence, one

object can be part of multiple contexts. An example of such a construction is the meaning of

a word, from the view of a speaker and a listener. An effect of different contexts for the word

could be a misunderstanding. For structure with multiple conceptions Mahr [250] has defined

the term: Universe

Definition 19. Universe:

3. A universe is a complex to which with every entity which belongs to the universe, a con-

ception belongs to it as well, which has this entity as content.

4. A universe is called reflexive, if it belongs to itself.

34

3.9. Meaning

A universe, therefore, is everything which is part of a conception. In our example the follow-

ing three components are part of the universe: the word uttered by the speaker, the speaker and

the listener and the context of all three. From these definitions we can extract the definition of a

context as follows:

Definition 20. A context is a subset C of complexes.

C is the set of complex with C ⊂ E where E is the set of entities.

A is the set of conception (german: “Auffassung”) with A ⊂ R where R is the set of relations.

⊆ is a relation over (E × E) ∪ (R× R)) denoting if an entity is part of the relationship or

entity called ’belongs to’.

As argued above, semantic concepts as part of a description of a service can be extended to

reflect the changes in context. This could, for example, happen if the viewpoint of the subject

changes. In a connectionist view point, the meaning of an entity is defined by its relationships to

other entities leading to the conclusion that the context of a conception defines the meaning of its

object. This context-dependent meaning can be seen like the pragmatic extension of semantics in

linguistics. Coleman et al. [57] notice that within communication between agents which are not

context aware, the meaning cannot extend beyond the meaning explicitly carried by the message.

Thus, the meaning needs to be predefined or explained within the message, which forms the crux

of this approach. Following the argumentation of Robertson [330] adaptive software requires

knowledge of the context as in: “what does the application/capability do?”, how to react/adapt

to change and runtime support for detecting change as well as modifying parameters to adapt

to that change. On the one hand contextual meaning can be seen to be twofold: First, we

can define abstract domain specific meaning, e.g., if we are talking about opening something

in the smart home domain we talk about windows and doors. Second, during runtime, the

abstract values have to be filled with concrete contextual information, e.g., this sensor measures

if door A is open. With context-aware communicating agents, context-dependent meaning might

change over time, since the context may change. Figure 3.9 illustrates the transferred model of

conception as one definition of context from Mahr [250] by using an example of a service.

3.9. Meaning

Since the main goal of this doctoral thesis is to formalize meaning of an AI to use, this section

analyzes the different definition of meaning. The goal of this section is too close the knowledge

gap about meaning. Then we are able to answer our first research questions so that the approach

to represent meaning selected in this thesis can be understood.

From the point of view of Minsky [273], we will use two aspects of meaning in this doctoral

thesis:

Definition 21. Connectionist meaning of a concept (definiendum) is given thought its definitions

and other concepts it stands in relation with.

Based on the Meaning Text Theory [262] the Definition 21 of the scope of meaning we in-

terpret conceptual meaning as context-dependent since the definiendum might have relations

to contextual concepts. This can be seen in an example like the concept “grandma” which in

35

3. Basic Terms and Concepts

my context has the relation “reference to” connecting to my two grandmas and since the reader

most likely does not know my grandmothers, it will reference other persons in the readers con-

text. Even though we might have the same definition of a grandmother in our semantic repre-

sentation, they are used differently. This part of meaning is represented by our second part of

meaning:

Definition 22. Symbolic meaning of a concept (definiendum) is given thought the use of the

connectionist representation of meaning with a pragmatic reasoning algorithm.

This second part of our artificial representation of meaning described in Definition 22 rep-

resents the symbolic view on meaning. Looking at our “grandma” example, even though we

have the same definition of grandmother representing our concept of grandma, the way we think

about it differs, e.g., with the contextual concepts activated regarding the grandma concept like

cake or elderly. Depending on those contextual concepts our meaning of “grandma” changes.

This change might be from happy situations with coffee to sad situations in hospitals.

The remainder of this section is spent discussing why we have selected our definition of

meaning like described in Definition 21 and 22 and a concludes our view of meaning.

There are many definitions of meaning. This section states our view of meaning and discusses

different views meaning. The goal of this section is to grasp the notion of meaning formally. We

will see that not one single definition of meaning fits and that we need to switch from measuring

“the right meaning” to e.g. “the same meaning” or “a different meaning”. To identify the

definition of meaning; we look at the study of language because we are interested in the meaning

of words and text not images or events. Meaning is often seen as something virtual, like an

“idea” or a “thought” rather concrete objects which are referenced by an utterance [297]. Since

meaning seems not to be an inherent property of things, the meaning is formed by observing

things and within the head of the observer. This makes meaning a subjective matter which

might be subject to change since we do not stop observing and with each observation, there

might by new information which lets us change our preformed meaning about something. The

definition of the term “meaning” needs further investigation into the different fields of research

which meaning is subject of. In this section, we will look at different definitions of meaning to

crystallize how we define meaning of words by comparing them.

The philosophical meaning has been discussed in a multitude of publications [136]. Some of

them discuss the location of meaning from being inside ones head to being part of nature in the

objects which are referenced by concepts [124] or as part of the communication act [414]. For

Wittgenstein, the use of language as well as the use in the specific speech act itself represents

the meaning. Grice [151] separates the “conventional meaning” from the meaning intended by

the speaker.

Labov [217, p 342] noticed that the linguistic endeavors into meaning lead to a classification

into categories, which are “... discrete, invariant, qualitatively distinct, conjunctively defined,

composed of atomic primes.” Rieger [327, pp. 161] discusses this as a classical view of mod-

eling. He differentiates between internal semantics (called a theory of meaning) and external

semantics (called a theory of reference).

Theory of meaning states that expressions or symbols carry their meaning. There are two

kinds of theory of meaning: semantic theories of meaning which explain the meaning

of a symbol and a foundational theory of meaning which tries to explain what meaning

is [422].

36

3.9. Meaning

Theory of reference states that the meaning of words lies in the object (called the reference)

which it points out in the world.

This type of theory is further discussed in the remainder of this section.

Since the meaning in both theories, seems to be connected to cognitive elements — carrying

the meaning or holding the reference — we have to define the basis for such cognition: the

mind: Without launching into a philosophical discussion this work is based on a theory of

mind which is called monism. In that theory of mind — the most consistent ontological thesis

at the beginning of the 21th century — the physicalism is, where, in opposite to the dualism,

the mind is based on physical events [352]. With that, we can define the use of mind in this

thesis as: A mind is every cognitive (mental) process of thought like reasoning, remembering or

consciousness based on the physical stimulus of the body containing the mind.

With the physicalism as the basic theory of mind, meaning as part of thought has to be based

on physical events. Hence meaning can be seen to be built up with the cognition we endure dur-

ing our life. Majumdar et al. [251] call this “prelinguistic knowledge.” Based on this assumption

we analyze different theories of meaning and how they fit in an artificial application in AI.

Meanings of meaning

In this section, we will try to describe what meaning is about after the role model Ogden and

Richards [291]. Furthermore, how it is used in AI and we will try to find a definition which is

formal enough for this thesis to work with.

First of all the meaning is a vaguely defined concept. There are many words enclosing that

we know as common sense meaning:

relevance a measure of how pertinent, con-

nected, or applicable something is.

distinction two or more things being differ-

ent from one another.

intension any property or quality connoted

by a word, phrase, or another symbol.

consequence a result or effect, importance

or relevance.

reason the power of the mind to think, un-

derstand, and form judgments logically

signify a symbol of an indication of some-

thing

deduction the action of deducting or sub-

tracting something

implication the conclusion that can be drawn

from something although it is not explic-

itly stated

purpose the reason for which something is

done or created or for which something

exists

substance the essential nature underlying

phenomena

definition a statement of the exact meaning

of a word, especially in a dictionary

sense a way in which an expression or a sit-

uation can be interpreted

These are just a few of them11. These words all collectively describe what we mean by

questions like: “What is the meaning of ...?” [335, p. 21].

11Definitions of the words were selected from the Oxford Online Dictionary.

37

3. Basic Terms and Concepts

It seems peculiar that in philosophy the meaning of a sentence depends on the words used in

the sentence and on the other hand, the meaning of a word depends on the sentence (context) it

is used in [370].

Looking at the effect of meaning, we might notice that the speaker of an utterance and its lis-

tener have a common understanding of the utterance if they have a common interpretation of the

utterance [335, p. 24]. Grasping this idea in a theory of meaning, the meaning is made up of the

knowledge, beliefs, and experience or other cognition which is used by both speaker and listener

to interpret the utterance. Therefore, the listener can interpret the utterance of the speaker, and

with that extract the intended meaning of the speaker, if they use similar interpretation.

Scientifically, e.g., from linguistics, philosophy or other structural sciences, there are many

different definitions of meaning, starting from semantics (context independent meaning) to prag-

matics (context-dependent meaning). As our example from the short introduction to seman-

tics 3.7 shows, semantics is a rather formal process, which lets us extract the information of

words which is part of the common ground. For example, the utterance “I am a Berliner” shows

a self-reference, namely a speaker (imaginary or real, alive or dead) had to excise, and the sym-

bol “I” stands for the reference (the speaker). This distinguishes the speaker from someone else

since he did not use the word we. There are further implications, or consequences to this utter-

ance: since the speaker references himself he seems to be self-aware. For humans12 this means

the speaker is probably older than 30 months, since this is the age human children might need to

learn to use the self-reference “I” instead of their names.

However, all this does not come close enough the questions: What did Kennedy mean with

his sentence “Ich bin ein Berliner.”? The sense of connectedness, such a statement might give

the people of Berlin in those times of war. This sentence was said with the purpose of reinsuring

western Germany that they have an ally, support and especially financial assistance. That they

are not left alone, and there is hope that change will come. On the other hand, it states the policy

regarding the Soviet Union and with that against communism. Further the age of the speaker

might not be relevant here.

All this can be reasoned with contextual knowledge, explaining what this visit of the Ameri-

can president to West Berlin might signify to the inhabitants of West Berlin. If this has been the

intension of Kennedy is likely but not certain since we did not ask him to explain his actions but

used deduction on his state of mind, thought reasoning on what he said.

We can see that the different concepts describing meaning are all entangled in the explanation

above, and we need to formalize them. Further, we can see that the right meaning of an utterance

often lets us reduce the vast amount of information which could be deduced from it. We stop the

search for explanations once we think we have extracted the fitting meaning to the context.

Defining the meaning for concepts with the result of having a lexicon to look up concepts

and have their explanation given by the description in the lexicon is one aspect of meaning 13.

Here the definition of the meaning of a word is dogmatic, an axiom for most concepts, since the

concept itself, does often not introduce the meaning it carries. Especially, to learn a language,

certain concepts need to be learned by heart to be able to understand the language. In our lexicon,

this is the case. Here the meaning is defined [235, p. 157].

12That the speaker is human is context information, and should be ignored here, but for the sake of the argument and

since humans are the only English speaking species we know of, we can argue that we talk about semantics for

humans here.
13This is based on the meaning text theory [262], which states in abstracted sense that meaning of a concept can be

explained using words.

38

3.9. Meaning

This is different with dynamic compositions of concepts (e.g. sentences or larger texts). Here

the meaning of the composition comes from the way the concepts are composed. There is an

infinite amount of compositions which could be built. As a result, those compositions build a

lexicon to look up the meaning of such text (composites of words).

Deyne et al. [65] describe a semantic network representation of the knowledge representa-

tion (called a mental lexicon). They try to analyze the structure of the mental lexicon to ex-

plain psychological phenomena like developmental shifts [280]. Collins et al. [58] argue that

a network representation is psychologically plausible as a representation of a mental lexicon.

Dowty [76, 77] on the other hand uses Montague grammars to describe a Decomposition of

meaning.

From now on we can differentiate the meaning of words and the meaning of sentences. The

composition principle implies that the meaning of sentences, phrases, and larger texts can be

composed out of the components it is built on and the way they are composed (the gram-

mar) [235, p. 157]. We will convene on the composition principle and with that analyze at first

the meaning of concepts and have a glance at the composition to sentences and their meaning.

In the next sections, we analyze different definitions of meaning to their purpose of formal-

ization for the use in AI.

Linguistics

In linguistics, the definition of meaning is often pushed aside to other research fields as Bloom-

field [30] noticed 1933: Meaning of an utterance for linguists is, therefore “The situation in

which the speaker utters it and the response which it calls forth in the hearer.” [297].

The remainder of this chapter discusses context-dependent meaning with the goal of defining

the difference between semantics and pragmatics for machine learning, knowledge representa-

tion, and artificial reasoning. The last few decades of research in computer science have been

dedicated to the analysis of semantics as context-independent meaning. In this research effort

terms like the Semantic Web [24] have been coined and we want to look at this achievements

and work on a definition of meaning for AI.

As lexical context, we use a sentence which utilizes the concept in question c1. This is chosen

because a sentence has a distinct meaning and stands as one unit of meaning. Here a sentence

encapsulates the formulation of one fact. If more than one fact is described in a sentence, then

the sentence is broken down into multiple sentences, where each one represents one fact. Here in

a lexical context the concept c1 is only used in one sense. The lexical context could be extended

to larger linguistic units if the concept c1 is not used in two different senses. Since that would

lead to the need for identifying sub-context for each sense of c1 to identify the different senses.

From this philosophical discussion, we take away, that there is no sufficient formal definition

of meaning to be used in our AI research. The formal definition of meaning is out of scope

for this doctoral thesis. That is the way we try to find a way measuring meaning without a

proper definition. Instead of defining the meaning of a concept, we look at the difference of

meaning amongst concepts. The next discussions will try to analyze: When is the meaning of

two concepts the same?, When is the meaning of two concepts the opposite?, When is the

meaning of a concept more or less abstract?, When is the meaning of a concept part of

another concept? and finally How is the meaning of a concept explained? We start out by

looking at words which have supposed to have the same meaning: Synonyms.

39

3. Basic Terms and Concepts

Synonyms

Two concepts which have the same meaning are called synonyms. A closer look on what “the

same meaning” means leads us to the different definitions of synonyms, later in this section. The

problem of having to define synonyms comes from the imprecise nature of natural language.

Since one concept might have different representations in a language, and different representa-

tions might reference the same concept we have a function defining which concepts reference

the same entity and vice versa. Let’s call this function synonym.

Since we define meaning to be two fold (connectionist and symbolic), and there is “true mean-

ing” we use the notion of synonymy to measure the correctness of our definition of meaning,

or more precise our artificial representation of meaning, by selecting synonyms of concept, sen-

tence, and semantic service descriptions. This is why we need to define in this section what we

mean by meaning and with that by synonymy.

One definition of a synonym is often traced back to Leibniz which states: “two expressions are

synonymous if the substitution of one for the other never changes the truth value of a sentence in

which the substitution is made” [271]. A concept consequently seems to be a synonym to itself.

However, other than that, it will be hard to find concepts which “never changes the truth value

of a sentence.”

Löbner [240, p. 117] defines a synonym as: “two expressions are synonymous if and only if

they have the same meaning.” With having no precise definition of meaning this definition is too

fuzzy for us to use. Löbner further elaborates that two concepts with a denotational equivalent,

hence referencing the same entities do not have to be synonyms. For instance, in German,

the word for “Weihnachtsengel” (Engl. Christmas angel) and the “geflügelte Jahresendpuppe”

(Engl. winged doll for the end of the year) reference the same entities but are not synonyms,

because the synonyms need conceptual equivalence.

Linke et al. [235, p. 167] define synonyms in the compositional semantic (see section 4.1.3)

as concepts with the same semantic attributes.

Linke’s definition of a synonym is restrictive because only equivalents can be substituted.

Miller et al. [271] relax this definition by making the equivalence of a concept relative to the

context of use: “two expressions are synonymous in a linguistic context C if the substitution of

one for the other in C does not alter the truth value.”

This definition still has synonyms in a true or false state, meaning that a concept c1 is a

synonym to a concept c2 or not. This is a problem because with that the synonyms are synonyms

in all contexts or in none. Thus, there are only a view words which are synonyms, not regarding

their word sense. We extend this definition to a fuzzy one. Further the definition of Miller et

al. [271] does refer to an undefined “linguistic context” which we cannot refer to. We rather use

our definition of context formalized in Definition 20. So that we use the definition of a synonym

as follows.

Definition 23. Synonym(c1,c2): Concept × Concept→ [0,1]:

Synonym(c1, c2) =

∑

c∈C

synonymMiller(c1, c2, c)

|Cc1 |+ |Cc2 |

Where C is the set of all contexts and Cci
is the set of all context including concept ci. With

synonymMiller(c1, c2, c) being the definition of Miller et al. [271] where two concepts are syn-

40

3.9. Meaning

onyms if there exists a context where the two concepts are substitutable. Definition 23 state that

two concepts are more synonymous if they can be replaced in more contexts. This makes the

synonym relation understandable since we can use our distance measure to look at all contexts

in which a concept is used, and then create a discrete synonym measure.

To grasp a more rigorous definition of synonymMiller(c1, c2, c) we define synonymMiller(c1, c2, c)

in Definition 24 with a semantic distance d:

Definition 24.

synonymMiller(c1, c2, c) =

1 , if d(c1, c2, c) = 0

0 , else
.

Where d(c1, c2, c) is a context-dependent semantic distance measure. Two concepts are then

synonymous when there is a context in which they can be replaced.

Accordingly, we have a true synonym if concept c1 and concept c2 can be exchanged in all

contexts they are used in (Synonym(c1,c2) = 1) and we are having conceptual equivalence, in

fact, fulfilling the definition of Löbner [240, p. 117].

Synonyms of concepts are the first step towards the synonymy of phrases. As in natural lan-

guage, most utterances can be expressed in different sentences (sometimes called paraphrasing).

There has to be a synonym relation between sentences as well. Since this work analyses seman-

tic relations and leaves out the syntactic analysis, we define the problem of sentence synonymy

as out of scope for this work. Nevertheless, the results of this work can be seen as the first step

of a connectionist representation of semantic sentence equivalence, mixed with the symbolic

representation of syntactical information. Besides, we believe that the representation introduced

in this work might be able to represent sentence synonymy, but leave the proof to our future

work.

Antonyms

An antonym relation states an opposite relation like: “The antonym of a word x is sometimes

not-x.” [271]. Miller et al. state with their example of rich and poor of antonyms that rich is the

opposite of poor but not rich does not imply poor [271].

In the same way, concepts can be in a synonym relationship with others they can be in antonym

relationship with each other. Like in synonymy there are no “true” antonyms as one can see in

the example of good being not bad. The example sentence “This example is not bad.” does not

mean that this example is a good one.

To state that antonyms are semantically distant as an opposite of synonyms poses problems

as well since “Elephant” and “build” seem semantically distant, but they are not considered

antonyms. With that, one could ask the questions of what the antonym of a chair is. The list of

answers would be massive: since words like “the,” “lonely” or “like” seem all alike not to be a

chair.

However, there seems to be a difference in word type in relation to antonym. For example,

consider that “hot” and “cold” are semantically closer to each other than “hot” and “which” and

they are labeled as antonyms. Table 3.1 shows the different antonym types.

Further discussions on antonyms for artificial reasoning can be found for instance in Heim [162]

and Novak [287].

For our purpose, we define a threshold similar to what we have done for synonyms but on the

other side of the semantic spectrum.

41

3. Basic Terms and Concepts

Name Description

Gradable: hot vs. cold

Complementary: off vs. on

Convers Relational: seller vs. buyer

Revers relational: adding vs. subtracting

Incompatible: dog vs. banana

Table 3.1.: List of different types of antonyms.

Definition 25.

antonym(c1, c2, c) =

1 , if the meaning of c using c1 is different of c using c2

0 , else
.

Here the difference means any kind of antonymy relation like shown in Table 3.1. We can

notice that our definition of antonymy is compatible with our definition of synonymy since as

soon as two concepts are not true synonyms, they start to be antonyms as well. Two concepts are

true antonyms if concept c1 and concept c2 can be exchanged in any contexts they are used in and

the meaning of the context c is different (Antonym(c1,c2) = 1). This allows us to interpret every

two concepts c1 and c2 as antonyms if they always replace each other as a semantic opposite in

a context, or as incompatible.

For all other antonyms, we have to depend on the word type and the semantic distance. As

stated by Miller et al. [271] an antonym is sometimes seen as a lexical relation between word

types and not as semantic relations. In our example, most humans would agree that “open”

and “closed” are antonyms but it takes longer to realize that “open” and “the” or “and” are

incompatible with the grammatical structure of the sentence, and the truth value of this new

context cannot be evaluated. Hence I argue that an antonym c2 needs to replace a concept c1

and negate the meaning of the sentence as in: “The door is open.” and “The door is closed.” If

this is not the case, we cannot talk about an antonym. With that, we have the definition of a true

antonym.

More precisely, the truth of a fact represented by a lexical context c can be checked against to

beliefs of the agents. Meaning that with the example of Tarski [378] context “Snow is white.”

the fact that snow has a white color can be checked in the ontology which represents the beliefs

of the agent and lead to a truth value. Then in this example, if “black” is an antonym of “white”

the sentence: “Snow is black.” can be checked. If this fact is false in the belief of the agent, then

we have collected evidence that “black” and “white” might be antonyms. Even with the open

world assumption, we can check truth values with a third option stating “we do not know”. With

examples for and against certain uses of the concepts in question, we can build our understanding

of antonyms. This effect can influence our antonymy relation in both ways. If abstracted, and

white is compared to “However”, then “black” can be seen closer to “white” then “However”,

e.g., because they fall both in the category of “colors.”

Hypernyms and Hyponyms

A hypernym relation of concept c1 with a concept c2 is that concept c2 that is a generalization

of c1. For hyponyms the opposite, a specialization is true. We now discuss the properties of the

42

3.9. Meaning

generalization, but the same might be argued for a specialization. This means c2 is more general,

more abstract and can be obtained through the introduction. Meaning can be generated from

different aspects, like the observation of something specific a general rule, common properties,

a super ordinate, governing law, conceptualization, a broader meaning, and an abstraction or a

conception.

Most of these hypernyms leave at least one aspect of the specialization unspecified. Therefore,

it is possible to choose between the different forms for this aspect. These hypernyms especially

mean something similar than their specialization but are fuzzier or cover more realizations. They

stand in contrast to the hyponym relations. This means that not all facts about a specialization

are true about the hypernym as well. However, on the other hand, all facts about the hypernym

are true for all specialization. Let’s look at a little example: Let’s suppose a “dachshund” is

a specialization of a “dog, ” and surely dog is a hypernym of a dachshund. Furthermore, let’s

define that dogs have four legs. This means dachshunds have four legs, too. Now let’s describe

the physic of a dachshund as “sausage-shaped”. However, we are not able to say that all dogs

are sausage-shaped. This is a special attribute of dachshunds.

This means that in most contexts a concept can be replaced with its hypernym, without chang-

ing the sentence truth value. E.g. “this dachshund is sausage-shaped” will become “this dog is

sausage-shaped” which is still true if the dog is a dachshund. Of course, this can be done transi-

tively. Let’s suppose dogs are carnivores. Then the sentence “this carnivore is sausage-shaped”

is equally true.

This means that with hypernyms/hyponyms we can create generalizations about a group of

sub-concepts or entities, without having to specify it for all those entities. In ontological terms,

the hypernym and hyponym relations are mostly combined into a single relation referred to as

“is-a” relation. Meaning that a dachshund is a dog.

Meronyms and Holonyms

A meronym relation of concept c1 with a concept c2 states that c2 is part of concept c1. The in-

verse relation to a meronym is the holonym relation. Starting with Winston [413, 415] meronyms

have been analyzed and classified in different types. Priss [311] brings those relation types into

a formal construct. Here the relation types, e.g., collection, group, ingredient, and organization,

are set into relation with formal attributes like inclusion, parting, possession, and property. Priss

defines the formal context of meronyms as Triple: (G,M, I) where G is the set of objects, M the

set of attributes and I is a binary relation I(g,m) with g ∈ G and m ∈ M which states: “the object

g has the attribute m”. Priss continues by analyzing the relation of sub- and super-concepts and

the effect on meronyms.

Watrouse-deVersterre et al. [400] separates these relations into the “has-a” (meronym) and

“part-of” (holonym) relation. This means with the meronym/holonym relation we can describe

a sense of whole-to-part relationship in either direction. Since in some semantics concepts are

perceived to be more similar the more properties they have in common [232], meronyms are

relevant to the formalization of meaning.

Explanations

The meaning of word or the concepts it stands for can be given by explanations. In the case

of an explanation being provided with other words, we have to assume the Meaning-Text The-

43

3. Basic Terms and Concepts

ory [262] which states that language consists of a mapping between meaning and text. This

mapping can be given by an explanation. Several definitions of explanations have been pro-

posed. Each one specialized for the needs of some domain. To start with, in statistics we can

identify evidence weights in a Bayesian believe network as explanations [161]. These weights

represent the logarithmic likelihood ratio of the influence of an observation on a specific vari-

able. Therefore, they can be and indeed are used to explain in which way the occurrence of an

event influences the current systems state [79]. To ease the access of humans to these statistical

explanations, different classes of techniques can be applied (e.g., verbal explanations [88] and

graphical explanations [56]). Beyond, Druzdzel [79] identified two categories in which such

explanations can be separated: Explanation of Assumptions focusing on the communication of

the domain model of the system and Explanation of Reasoning focusing on how conclusions

are made from those assumptions. It might be worthwhile to transfer these categories to self-

explanation14 since the meaning of concepts used might differ depending on the exogenous or

endogenous origin of the fact explained. Therefore, the reasoner has to distinguish between the

explanations of the system itself and how it can be interpreted related to the current context. This

work focuses on the explanation of assumptions since the audience of such a description is seen

as an external system component. As those approaches are quite fundamental and thus general,

we further want to list some more practical approaches on explaining capabilities from the agent

community:

• Braubach et al. [38] uses the beliefs, desires, and intents to formulate goals, knowledge,

and capabilities for a multi-agent system,

• Grüninger et al. [153] uses First-order Logic Ontology for Web Services (FLOWS) to

describe the functionalities of a service,

• Sycara et al. [373] formulates agent and service capabilities utilizing the Input, Output,

Precondition and Effect (IOPE) approach,

• Martin et al. [255] uses the Ontology Web Language to structure the description of ser-

vices.

The above-listed approaches are used to describe services and with that are used to create

explanations. They can be seen as having some level of self-explanation [93]. Taking this into

account, we can clarify that self-explanation enables the integration of new agents autonomously

into the existing infrastructure [193, 279]. Following the idea of self-explanation this means that

new agents, as well as existing ones, are able to learn the capabilities of each other and to

comprehend in which way they can interact (e.g., which data format and concepts match). The

explanation of new concepts then implies a new problem of interpreting the concepts in a new

context.

Conclusion

In conclusion, we can say that it is hard to define meaning and that many different ways of

defining meaning have different purposes. However, as we have seen, we can define similarity

of meaning. Defining similarity of meaning or more precise synonyms of words is still sub-

ject to discussion. Synonyms can be extended with other semantic relations like meronyms and

14Self-explanation describes a learning process as an act of learning new concepts by explaining them to oneself.

44

3.10. Natural Semantic Metalanguage

hyponyms. Relations like those represent the connectionist interpretation of meaning (see Def-

inition 21). The second part of meaning can be seen as the literal definition of the meaning of

words (see Definition 22). The definition of meaning in a symbolic view that needs some kind

of logic to reason upon. In consequence, creation of a formal representation of meaning leads

to the “neat vs. scruffy” discussion of Minsky [273]. Both Definitions 21 and 22 together form

our representation of meaning combining the neat and the scruffy view of meaning. They rep-

resent the knowledge we learn in a connectionist view and the thoughts using this knowledge

in the symbolic view. Both combined enable our representation of meaning to share semantic

information and to reason depending on context. How we approach this definition for an AI is

subject of Part III of this doctoral thesis.

This notion of meaning coincides with the NSM theory since here the references are contex-

tual. We will use the NSM theory through this work as a basis for our formal representation

of meaning in the research done here exceeds the other theories with its empiric evaluation.

Furthermore, the theory leads to the convenience that the meaning of complex concepts can be

described with less complex concepts, which ends in the benefit for our artificial meaning repre-

sentation that we require ca. 65 definitions of concepts, leaving the construction of meaning of

more complex concepts to the AI. This discussion and the here presented description of meaning

leads to the approach of the here presented doctoral thesis. The approach is further described in

Section 5.

3.10. Natural Semantic Metalanguage

The Natural Semantic Metalanguage (NSM) is a linguistic theory originated in the early 1970s

[137, 138, 142, 141, 143, 144, 145, 146, 406, 407, 408, 409, 410, 411]. It stated that each

expression created in a natural language can be represented using a set of atomic terms – so-

called universal semantic primes. These primes have an indefinable word-meaning and can be

identified in all natural languages [140]. In conjunction with associated grammatical properties,

NSM presents a decompositional system able to describe all expressions built in the appropriate

language. Here an expression is decomposed into less complex expressions, where the process

ends if the expression is decomposed to the atomic level of semantic primes which cannot be

further analyzed. One can imagine that the Decomposition builds a tree, where all leafs are

semantic primes. Consequently, for each natural language, a meta language exists which consists

of the semantic primes in the specific syntax and their appropriated grammatical properties. In

this work, those semantic primes are predefined by the applications domain. About 63 semantic

primes exist which can be divided into 16 categories. Table 3.2 lists these semantic primes for

the English language.

This theory has been tested on natural languages [140, 144, 406, 407, 408] and in many

different cultures. The essential conclusion of NSM is that the primes used to build the meaning

of more complex concepts are limited.

45

3. Basic Terms and Concepts

Category Primes

Substantives I, YOU, SOMEONE, SOMETHING/THING,

PEOPLE, BODY

Relational substantives KIND, PART

Determiners THIS, THE SAME, OTHER/ELSE

Quantifiers ONE, TWO, MUCH/MANY, SOME, ALL

Evaluators GOOD, BAD

Descriptors BIG, SMALL

Mental predicates THINK, KNOW, WANT, FEEL, SEE, HEAR

Speech SAY, WORDS, TRUE

Actions, events, movement, contact DO, HAPPEN, MOVE, TOUCH

Location, existence, possession,

specification

BE (SOMEWHERE), THERE IS, HAVE, BE

(SOMEONE/SOMETHING)

Life and death LIVE, DIE

Time WHEN/TIME, NOW, BEFORE, AFTER, A

LONG TIME, A SHORT TIME, FOR SOME

TIME, MOMENT

Space WHERE/PLACE, HERE, ABOVE, BELOW,

FAR, NEAR, SIDE, INSIDE

Logical concepts NOT, MAYBE, CAN, BECAUSE, IF

Intensifier, augmenter VERY, MORE

Similarity LIKE

Table 3.2.: Semantic primes for the English language [140].

46

4. State-of-the-Art

This section describes the state-of-the-art in the different parts of our approach. Some of the

decisions we have made in Chapter 3, are the product of a discussion and a related work analy-

sis. These discussions and the literature reviews are part of this chapter. For a theoretic base of

our representation of meaning, discussion on the choices in design decisions as well as compar-

ison with other approaches, we will look at different semantic theories in Section 4.1. Semantic

information in computer science is mostly encoded in ontologies. Section 4.2 discusses differ-

ent ontological representations. Then we will look at semantic service description language in

Section 4.3 to decide how to describe our services. Next, we will look at related work for the

first part of our approach: approaches on semantic decomposition in Section 4.4 and the formal-

ization semantic primes. We then look in Section 4.5 at related work on the second part of our

approach: Marker Passing. Finally, in Section 4.6 we will look at different service composition

mechanisms which use AI Planning. State-of-the-art on the different experiments is described

in the respective section of the experiment.

4.1. Semantic Theories

There is a multitude of theories which describe meaning in a semantic sense for computer sci-

ence. This section will describe some of them, which could be an alternative to how we create

our artificial representation of meaning. These theories can be seen as a formal basis on which

we will base later design decisions. This state-of-the-art section shows that the challenge of

creating a formal representation of meaning has been researched and builds a foundation on

which we can build upon. We will start our by describing 11 different semantic theories from

Section 4.1.1 to Section 4.1.11 and classifying them how they represent meaning: connectionist

or symbolic or both.

4.1.1. Formal Semantic

This section contains approaches to formal semantics, which have no name but are grouped by

the main contributors of certain schools of semantics. This is done to get a general overview

of the development of formal semantics and stipulate a notion of formal semantics. Formal

semantic has many explications. In this thesis, we will only look at a few of them, which are

relevant to this work. We will hence not dive into the philosophical discussion as, e.g., presented

by Frege [124] and the same but rather start out with 20th-century definitions of semantic and

meaning with Bloomfield [29, 31, 32] who tried a definition of meaning with its “stimulus-

response” model as follows:

“We have defined the meaning of a linguistic form as the situation in which the

speaker utters it and the response which it calls forth in the hearer [32]”.

47

4. State-of-the-Art

Speaker’s
Situation

Speech
Hearer’s
Situation

Figure 4.1.: Illustration of Bloomfields definition of meaning.

Regular

grammar

finit state

 machines

context free

grammar

push-down

automata

contex-sensitive

grammar

linear bounded

automata

recursively enumerable

grammar

Turing

machines

Figure 4.2.: Illustration Chomsky’s grammatical hierarchy.

The meaning in the definition of Bloomfield, therefore, is not restricted to the speech act itself.

It includes the speaker and the hearer. The meaning, therefore, is described by “the situation”

of the speech act. Bloomfield additionally states that for the response of the hearer to reflect

the meaning intended to be communicated by the speaker, the situation of the speaker has to be

known [32]. This illustrates a pragmatic notion of meaning, which takes the speaker context into

account.

As illustrated in Figure 4.1 the response of the hearer is not seen as a verbal response. The

response is rather a mental interpretation of the speech act. In this case, we can not define

how much information about the speaker is known. In consequence, reducing the definition of

Bloomfield to a semantic meaning: the semantic meaning of an utterance can be defined by the

meaning of Bloomfield when the hearer has no information about the situation of the speaker.

This first try on formalizing meaning is vague as it is abstract. The definition is an extension of

Bloomfield [32] neglects to notice the difference of word to sentence meaning. In a sentence, the

meaning might come from the structure and syntactical features of the words and in consequence

can be analyzed as well to gain semantic insight [12, 36].

The next area of formalization of semantics is the area introduced by Noam Chomsky [53, 55].

His theory on a generative conception of grammar and its influence on meaning has become a

standard content of computer science curriculum. Chomsky argues that grammar is a formal

deduction process, rather than the application of operations on syntactical structures [188]. This

gives us the ability to explicitly formulate a grammar describing an observed language.

With his hierarchy of grammars and their computational expressiveness shown in Figure 4.2

Chomsky introduced formal tools for the explicit description of meaning in an symbolic way.

Since we could build a Turing Machine (or any other computable function) which can enumerate

over all valid words of a natural language, natural languages are recursively enumerable and

belong to the most general (type-0) class of Chomsky grammars.

Out of this research, linguists start to look at the meaning of concepts and with the work of

Fillmore and Lakoff towards the meaning of sentences. The linguistic research began to analyze

48

4.1. Semantic Theories

the difference of natural and artificial language and become aware, that the differences are not as

big as Chomsky has postulated [52]. This leads to the research done today and as we will show

later on, to the contextual meaning named pragmatics, as we attempt in this work. Since Bloom-

field and Chomsky still lack the expressiveness (Chomsky) or are too abstract (Bloomfield),

they can only be used as an abstract framework for our artificial representation of meaning. This

means we have to analyze the other schools of thought which might be a basis for the contribu-

tions of this work. This leads to the next section describing cognitive semantics.

4.1.2. Cognitive Semantic

Cognitive semantics arrises form the field of cognitive linguistics. Here the focus of research is

on the relation between language, cognition and meaning [8]. Supporter of cognitive semantics

argue that not only meaning can be described in a conceptual structure but syntax, morphol-

ogy, and phonology are conceptual as well [62]. The conceptualization of syntax makes this

representation a symbolic one. There are three major hypotheses guiding cognitive semantics

[62]:

Nonautonomous language processing means that the language is part of the whole cog-

nition. This connects the language to the nonlinguistic cognitive abilities. Especially the

way we see things, smell or feel (by touch) does influence our conception of our language.

In simpler words: how we experience the world forms our language.

Syntax is conceptualization means that grammar can not be simply mapped to truth values

of a model of the world. In particular, the syntax of a language forms its meaning and can

not be described without semantics.

Language is learned means that the grammar of a language needs to be used to gain knowl-

edge about it. As a result, there can not be an abstract or general description of syntactical

properties of a language. This is needed because of the contextual manner the language is

seen in cognitive semantics.

With this basis cognitive semantics constructs meaning out of a conceptualization which in-

cludes syntax. This construction is not independent of congestion and depends on how the

world is observed. Different to other models cognitive semantics do not represent meaning

through truth evaluations of statements. One of the most popular versions of cognitive seman-

tics is the Frame-Semantic [62]. Two basic concepts from cognitive semantics are introduced in

our approach: The notion of meaning-construction and knowledge representation. However, the

mix-up of semantic and syntax is making the insight into meaning more complicated. This is

why cognitive semantics are not chosen as used semantic for our endeavor to creating artificial

meaning.

4.1.3. Compositional Semantic

The compositional semantic describes the semantic meaning of concepts as in the structuralist

theory of meaning [67], with its relations. The founding axiom of a compositional semantic:

“Meaning of all elements in languages are not atoms, but are composed.” [235, p. 164]. Hence

the meaning of a concept is defined by its relations with other concepts.

49

4. State-of-the-Art

light

Jet

Bulett

VW Beetle
Porsche 911

Truck

Dredger

Car

fast

Snail

Figure 4.3.: Illustration of two prototypes for the class of car and of fast.

The theory of compositional semantic defines, therefore, distinctive semantic features called

Seme to extract the elements making up the composition (semantic meaning) of a concept. For

example, such a Seme could be +

−

BIG to differentiate the meaning of a river (+BIG) and a creek

(−BIG) [235, p. 164].

The semantic analysis in the compositional semantic works well for nouns, adjectives, and

verbs so-called Autosemantica which have a conclusive lexical morpheme1. The theory is less

used to analyze functional words like preposition and articles so called Synsemantica [235].

Further, there is no fuzziness in the use of Seme. A concept has a relation with a Seme, or it

does not. The theory of compositional semantic neglects this indistinct aspect of language and

in fact seems not well fitted to describe a semantic for an AI. The compositional Semantic can

be seen as a defuzzified version of the Prototypical Semantic, which we will analyze next.

4.1.4. Prototype Semantic

The prototype semantic denotes meaning of concepts with fitting references called prototypes.

The other concepts then are set in relation to this prototype creating a semantic distance to the

prototype [235, pp. 175]. This, in addition to being a connectionist representation, gives the

meaning of a concept a fuzzy notion since a concept might be related to multiple prototypes.

In Figure 4.3 we can see two concepts (car and fast) and different prototypes for the two

concepts (light and the VW Beetle). In this example, a Porsche is close to a car and faster than

a Dredger.

The distance to a prototype and its discretization are problematic in this semantic representa-

tion since the different concepts need to be set into a relation. Here the snail is two times as far

from light than a Porsche, which would introduce a distorted measure of speed.

The prototype semantic as a result, lets us define fuzzy concept relations but lacks a formal

definition of distance between concepts and has the deficit that the prototype needs to be known

to all which use the representation. This might not be the case in different cultural contexts.

Prototypical semantic has the benefit, that abstract concepts can be directly reference by in-

stances. Making it easy to compare their properties even if they are vague or fuzzy. For a

representation of meaning in AI, this would mean to create a data structure for each concept

with all other concepts. With languages like German, with an infinite amount of words, this

1A morpheme is the minimal meaningful linguistic sound

50

4.1. Semantic Theories

counter = 1;

result = 1;

while (counter < x) {

 counter = counter + 1;

 result = result *
counter;

}

return result;

result = 1;

for (counter = 1; counter < x; counter++)
{

 result = result * counter;

}

return result;

Axioms

Instructions

Program 1 Program 2

Figure 4.4.: Example of two similar programs and the annotation for a axiomatic semantic view.

seems impassable. Also, we would need to be able to place those concepts in the distance to

each other. Further, this kind of representations captures the relation of concepts but does not

combine their features as we do in sentences.

4.1.5. Axiomatic Semantic

In the axiomatic semantic approach, computer programs are seen as exact science where a com-

puter program consists of a set of instructions [169]. This school of thinking got to the Hoare

logic, where a set of logical rules and reasoning instructions make up a formal system with its

semantics. Therefore this is an symbolic representations. This means that the meaning of a

program is not given explicitly but needs to be executed to show its properties [348]. Here a

property of a computer program is reasoned by using axioms given by the program and formal

logic for proofing those properties. Here one of these properties could, for example, be the

equality of two programs like shown in Figure 4.4.

The axiomatic semantics are used to guarantee general properties about a program. This is

formally done with logic and formulation of precondition and post conditions. An example post

condition of the example programs in Figure 4.4 could be result = x!.

For the creation of an artificial notion of meaning, the axiomatic semantics is too restricted

in its interpretation. It is thought for probability and explains how program languages are inter-

preted, but it is based on first-order logic which is too restrictive to describe natural language.

4.1.6. Operational Semantic

In Operational Semantics the semantics of a computer program are described through execution

of a program. Here the program code is not translated but interpreted into a mathematical model,

which then serves as a basis for proofs about the behavior of the program. Which makes this

representation of meaning a symbolic one. Similar to Axiomatic Semantics the proofs about

properties of the program are done by logical conclusion. Here the definitions are less abstract

than in Axiomatic Semantics [348]. A common example of an operation semantic is the inter-

pretation of a while loop:

〈Condition, Term〉 ⇒ true

〈while Condition do Body, Term〉 → 〈Body;while Condition do Body, Term〉

51

4. State-of-the-Art

This states in the numerator, that if the condition holds in a given state, then the denominator

is executed. We call the body of the loop Body, the condition of the loop is called Condition,

and the pointer to where to go when the while loop has ended is denoted in “Term.” The above

statement means the Function is executed and the while loop is repeated. This is denoted by the

semicolon which means a sequential execution. If the conditions do no longer hold the following

statement changes the current state:

〈Condition, Term〉 ⇒ false

〈while Condition do Body, Term〉 → Term

Here the condition is false therefore the state is changed to the termination condition Term.

This shows the essential drawback of a while loop: If the body of the loop (in a nonconcurrent

program) does not change the condition, then the loop does never terminate.

Operational semantics are even less abstract then axiomatic semantics and interpret a com-

puter program which restricts its interpretation to the mathematical model it is interpreted in.

With this reason, the interpretative power of operational semantics is not enough to describe

natural language and in consequence can not serve as a basis for this work.

4.1.7. Denotational Semantic

Denotational Semantics is a representation of meaning in simple statements of formal languages

like programming languages. The realization of a statement is called its denotation.

In denotational semantics, the meaning of utterances is created of the composition of symbols.

If we take a symbol like “X ← 3;”. The X as a single symbol does not carry much semantic

information2. Composed with the assignment symbol ← and with that the value 3 being as-

signed, terminated with the “;” as an end of statement symbol, the composition is a statement,

which has to mean: 3 is the denotation of X. Here the denotational semantics postulates that the

composition of those symbols make up the meaning of the statement [348].

Schmidt [348] compares denotational semantics to operational and axiomatic semantics. In

operational semantic, the change in memory an executed program inflicts is the meaning of the

program. In axiomatic semantics axioms of a language in the form of properties of symbols are

given, building up the meaning of a program using, i.e., logical inference.

Durst [82] argues that a denotational semantic is insufficient to describe the meaning of natural

languages. He argues that depending on the context of the utterance the same denotations could

have a different meaning. For example, the same loop of Java code could mean different things

depending on the surrounding program it is used in. A program gets its meaning through the

programmer. Every step from the Java code, through the compiler to the execution, is just

meaning preserving transformations [348].

Here the operations (zero, one,... and +, ∗) are the meaning we want to map. In consequence,

we postulate in the semantic that those operations are interpretable by the one for which this

semantic is written. With this example describe next, we defining one way to interpret a binary

code of numbers. With this semantic we have a direct interpretation which can be seen in small

example of 101:

B(010) = (((D(1) ∗ two) + D(0)) ∗ two) + D(1)

2The pragmatic interpretation might be that as scientists we often use x as a variable, but this is pragmatic (context

dependent) meaning not semantics.

52

4.1. Semantic Theories

Denotational definition of binary numbers

Abstract syntax:

B ∈ {0, 1}∗

D ∈ {0, 1}
Semantic algebra:

Domain : N
Operations : zero,one,two,. . . , +, ∗

Valuation functions:

B(): {0, 1}∗→ N

B(BD) ::= (B(B) * two) + D(D)

B(D) ::= D(D)

D(): {0, 1}∗→ N

D(0)::= zero

D(1)::= one

With D(1) being one. With the continuous replacement of terms we reach:

B(010) = (((one ∗ two) + zero) ∗ two) + one = five

In this example, we can see how denotational semantic directly maps the terms to meaning.

This can be done for the formalization of many simple structures like done in formal specifi-

cations of data structures [85] but lacks the expressiveness to describe more than a functional

adaption of operations on a mathematical domain [108]. Which makes this representation a

symbolic one.

This semantics as been further developed by Wang et al. [399] into a so-called deductive

semantics. Deductive Semantic is used to describe computer programs formally regarding so-

called semantic environments and behaviours [399].

The denotational semantics are less abstract than most of the linguistics models and are well

fitted to describe mainly deterministic computer programs. Especially in the form of a formal

language, this representation lets us reason about the meaning of formally well-defined descrip-

tions. This has the drawback that the formulation of more abstract notions becomes too complex

or not expressible. In the same argument as Durst [82] this kind of semantics can not form the

basis of the approach of this thesis.

4.1.8. Generative Semantic

Generative Semantics has developed out of Chomsky’s ideas and is the part of semantics where

philosophy or more precise logicians meet linguists. Now in the 20th century the structure of

sentences has been taken into account, which leads to the idea that this structure represents the

meaning of the sentence combined with the word senses. This includes the idea that meaning

can be formalized as first order logic. Which makes this representation a symbolic one. Two

of the researchers in this domain are Fillmore [116] and Lakoff [218] which have represented

meaning in this form and extended the logic with so-called “sentence operators”.

The ideas of Frege [124] have been worked on by Kripke and Barwise [19, 210] to generate

something called Generalized Quantifiers. They classify the Generalized Quantifiers in groups

of “Logical” and “Nonlogical” symbols. The logical symbols are based on first order logic like

and or, terms and quantifiers. The Nonlogical Symbols include symbols like for concepts like

53

4. State-of-the-Art

“most”, “many” or “few” [19]. The proposed semantic for those Generalized Quantifiers extends

the idea of Frege for sense, connotation, and denotation. This leads to formalizations like shown

in Figure 4.5.

Many men don’t see Harry.

Many(men) x [~see(x, Harry)]

Figure 4.5.: Formalisation of the sentence “Many men do not know Harry” with the formaliza-

tion of Barweise [19].

With that, we can see the notion in which the 20th century has continued to develop the notion

of meaning. We can see in Figure Figure 4.5 that the logic contains operator “Many(x)” which

is such an Generalized Quantifiers. It extends the First order logic by a fuzzy construct which

reaches from more than one to not all.

This lets us describe more aspects of semantic formally, but is restricted to symbolic meaning.

Leading to a theory where in an application for AI every concept needs modeling like in an

Explanatory Combinatorial Dictionary [261] or another model theoretic semantics which try to

model an exhaustive formalization of meaning [188]. Also, the reasoning for many of those

Generalized Quantifiers becomes undecidable because the extend the description logic and with

that runs into the decision problems.

4.1.9. Discourse Representation Semantic

Further development in this direction of Kripke and Barwise [19, 210] has become research

about Discourse Representation Semantics [188] which lead to the formalization of two prob-

lems: the first one is how to handle fuzzy concepts like some. The second one is a concept

with tenses and aspects3. The Discourse Representation Semantic focuses on the integration

of interpretational aspects of representations of meaning [188]. Here a mental abstraction of

the “discourse” is part of the formal description of the semantics. Making this representation a

symbolic one. This is done to be able to describe meaning on larger entities like sentences or

paragraphs. The formal model describes two types of information: the “reference” which are

the subject of the discourse and the “conditions” holding information about those references.

As shown in Figure 4.6 the references are kept separated from the descriptions of information

about those references. In this way, the reference can overarch multiple sentences, and form a

discourse. Sadly this good idea does not contain a set of grounded primes since it is specially de-

signed to represent discourse. Which leads us to the conclusion that the discourse representation

semantic can not be used as a basis for the here created artificial notion of meaning. However, it

can be part of its extension, when the notion of meaning is extended from concepts and sentences

to larger textual units and finally could be part of future work.

3This analyses grammatical structures like the difference between two types of past tenses like the French “Passe

Simplé” and the “Imparfait”.

54

4.1. Semantic Theories

The author draws an example

a, e :

References

Author(a), Example(e), draws(a,e)

Conditions

Figure 4.6.: Example in discourse representation semantic.

4.1.10. Distributional Semantic

An again hyping semantic representation is the distributional semantic (sometimes called word

embedding) [118, 156]. The basic idea behind this is that words which cooccur carry similar

meaning [156]. This theory origins from statistic linguistics where the usage of words is ana-

lyzed. The meaning of a word is therefor defined by the words it cooccurs with. This theory of

meaning is called the Distributional Hypothesis.

In distributional semantic, the words which are most likely to cooccur with the given word are

added to its representation vector. Depending on which kind of words are added to the vector,

the representation changes. Figure 4.7 shows an example where the cooccurrence is a statistical

one where the corpus “Google News negative 300”4 is used. Here the vector contains the 300

words which are most probable to cooccur with the given word when using 3 million words and

phrases from news articles.

women
Men
males
mens
boys
man

Jackson
Prince
king
Queen
Greene
Saunders

K
in

g

M
e
n

Queen_Elizabeth
queen
Princess
Empress
Queen_Elizabeth_II

Q
u
e
e
n

Man
Couple
Girl
Suspect
Toddler
Teenager

W
o

m
a
n

- Monarch

- m
a
le

 +
 fe

m
a
le

+ Monarch

- m
a
le

 +
 fe

m
a
le

Figure 4.7.: Example of distributed semantics.

In Figure 4.7 we can see an example of how arithmetics are used to calculate with semantic

information in a distributional vector space. This kind of calculation allows us to describe a

similarity measure with geometric distance measures like the cosine distance [269].

4https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=

sharing visited on 2017.03.16

55

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing

4. State-of-the-Art

The drawback of the distributional semantics, as a connectionist model, is that they encode

relatedness not semantic. We can see this in Figure 4.7 that in the corpus which was scanned

for this example Jackson was related to the concept king probably because Michael Jackson was

called “the king of pop”. This disqualifies the distributional semantic for our approach.

4.1.11. Structural Semantic

Structural semantics are semantic which search for semantic meaning full components. We will

look at two of these semantic theories which have a basis for many extensions. First, we will

look at the conceptual semantic, because it is closer to the formal semantics. This is intriguing

for the formalization of meaning for an AI since it lets us structure the semantics of a concept

up a whole phrase.

Conceptual Semantic

Conceptual semantics theory after Jackendoff who was looking for the smallest semantically

rich elements (morphemes) is based on the axiom that semantic meaning is built upon a fi-

nite set of basic semantic concepts called conceptual primitives. Jackendoff beliefs that these

conceptual primitives are based on human cognition and therefore have to be universal [182].

These conceptual primitives are further order and categorized by Jackendoff. As an example,

we look at the movement of objects and with that the primitive GO taken from the Studienbuch

Linguistik [235, pp. 188]:

[ActionCAUSE(PAUL, [(Event)GO([Thingbutter], [PathTO([Placebread])])])]

In the example above we can see that there are Action, Event, Thing, and Place primitives,

which carry meaning which makes this representation a symbolic one. The CAUSE (as in causal-

ity) is classified as an Action and GO is classified as an event. The primitive GO seems to have

two parameters: First a Thing and second a Path primitive. In our example, butter is a thing,

and bread seems to be a place. This leads to the conclusion that example above formalizes the

following sentence: Paul butters the bread. The example of movement and the primitive GO is

further discussed in Goddard’s semantic on coming and going [138].

This approach is more formal then the others looked at so far, but it is mainly concerned with

verbs that can not (without extension) be generalized [235, pp. 188]. Because of its degree of

formalization, this is a candidate for our representation of meaning. The primitives used here are

subsumed by the primitives used in the Natural Semantic Metalanguage which will be discussed

in Section 6.1.

4.1.12. Conclusion

In conclusion we can define the scope of connectionist meaning for this work as described

in Section 3.9. From the literature review done in this section, we can see that no approach

takes account for both sides of meaning: the connectionist and the symbolic. Table 4.1 lists all

analyzed theories and our classification of them into the two sides. Which leads to the gap filled

in this work: the need for an artificial representation of meaning combining connectionist and

symbolic views. Therefore the semantic representation and the language which describes this

56

4.2. Ontology

Table 4.1.: Comparison of semantic approaches regarding the classification into symbolic and

connectionist theories.

The
or

y

Sym
bo

lic

C
on

ne
ct

io
ni

st

4.1.1 Formal Semantic X ×

4.1.2 Cognitive Semantic Section X ×

4.1.3 Compositional Semantic Section X ×

4.1.4 Prototype Semantic Section × X

4.1.5 Axiomatic Semantic Section X ×

4.1.6 Operational Semantic Section X ×

4.1.7 Denotational Semantic Section X ×

4.1.8 Generative Semantic Section X ×

4.1.9 Discourse Representation Semantic Section X ×

4.1.10 Distributed Semantic Section × X

4.1.11 Structural Semantic Section X ×

representation consists of two parts: The connectionist part (represented by an ontology) and the

symbolic part represented by the Marker Passing.

Semantic or with that meaning is hard to grasp - especially if we are looking for a formal

definition. We started with definition 17 and looked at different theories of semantics. Now we

have a broader understanding on what different theories focus on in semantics. The different

theories of semantic look at different aspects of semantics depending on the aspect they want to

explain regarding meaning.

We have seen in this section that the formalized description of semantics are still too abstract

like the Chomsky hierarchy or are too specific for one part of language like conceptual semantics.

To represent our definition of meaning as defined in Section 3.9 we need a semantic theory which

incorporates both, a symbolic and a connectionist interpretation of meaning.

In computer science, this kind of semantic has been described in special semantic languages,

e.g., for the description of functionalities in services. We will look at some of those description

languages next.

4.2. Ontology

The goal of this section is to select an ontology language for the representation of our semantic

graph, modeling the connectionist part of the meaning. We do so by surveying the formal defi-

nitions of ontologies since they are the theoretical foundation for most connectionist knowledge

representations [366]. At first, we will identify a set of language requirements that are relevant

for our semantic graph. We structure our survey by starting with the simpler, more abstract def-

initions and will find our way to more precise and complex definitions, leading to the definition

of an ontology we apply in this work described in Section 3.6. Furthermore, we use the derived

set of language requirements to substantiate the selection of the concrete ontology language,

which we use to model our semantic graph.

We have defined an ontology in Section 3.6 and now we derive language requirements from

57

4. State-of-the-Art

this definition for the language describing our ontology: The first differentiation in Figure 3.8 is

that the ontology consists of concepts and relations. Therefore our first language requirement is:

Language Requirement 1. Concepts and Relations: the language has to be able to describe

concepts and their relations.

Since some of the concepts used in natural language are sometimes ambiguous, we need to be

able to identify concepts uniquely. An example of an ambiguous word is, e.g., the word “can”,

which could be the ability to do something or a metal container. Both have the literal “can”, but

represent other concepts in our ontology. Thus our second languages requirement:

Language Requirement 2. Unique identifiable: the language has to be able to uniquely identify

each concept.

With the semantic prime “I” NSM introduces a self-reference. Our language for our ontology

should be able to describe such a self-reference, which leads us to our third language require-

ment.

Language Requirement 3. Self-Reference: A concept or relation belongs to one of its Complex.

A concept is a self-reference if it belongs to its complex (for the definition of complex

see [250] or Definition 28 on Page 63). A relationship is a self-reference if one concept which

is related by this relationship is the relationship itself. A Complex is a self-reference if the com-

plex belongs to its relations or its concepts. Also, every concept is the content of a conception,

which is a complex [249]. This theoretical requirement means for us that we can use, e.g., the

literal of every concept, every relation or every individual and define it as a concept. This cyclic

definition of a concept is formulated in our forth language requirement:

Language Requirement 4. Cyclicity: Every concept belongs to a Complex.

Some of the relations in an ontology are hierarchical like the inheritance relation. This is why

relations should have the ability to describe a hierarchy, which leads us to our fifth language

requirement:

As defined in Pickert’s definition we derive the need of a hierarchy in concepts. Which lets us

formulate the following language requirement:

Language Requirement 5. Relations should be able to form a Hierarchy. The concept and

relation types can build a hierarchy. As we can see in our example in Figure 6.2 “give” is a

specialization of some kind of transfer here depicted as the “is-a” relation. If those are modeled

as types, then the type graph needs to be able to reflect this kind of inheritance.

How concepts relate and which concept belongs to which conception can be formulated in

axioms. Axioms describe how facts which all concepts in an ontology have to obey. To obey

means here in a logical term: to evaluate to true. Formulating axioms on concepts gives us the

ability to describe facts like “All humans are mortal.”, which leads to the effect that every concept

inheriting from human has to be mortal as well. This brings us the sixth language requirements

that the ontology should have the ability to describe axioms:

Language Requirement 6. The ontology can describe axioms which map a relation with its

concepts (or individuals) to a boolean value.

58

4.2. Ontology

Form the Semiotic Triangle (see Figure 4.8) from Ogden and Richards [291] we derive that

we want to be able to distinguish between concepts and individuals. This differentiation is

equivalent to the difference of symbol and the reference in the Semiotic Triangle, which gives

us our sixth language requirement:

Language Requirement 7. The difference between concepts and instance should be made ex-

plicit.

Since natural language relations do not only connect two concepts but sometimes more, e.g., if

we can express something like: “John writes with chalk on a blackboard.” [189] in one relation,

we need n-ary relations which are formulated in our seventh language requirement:

Language Requirement 8. N-ary relations: the language has to be able to describe relations

with arbitrary many entities.

Because of n-ary relation in natural language like the example as depicted in Figure 6.2:

give(teacher, advice, student), a relation can relate more than two concepts or

relations, making it necessary for our formalism to connect multiple concepts or other relations

with one relation.

Furthermore, the definition of Euzenat and Shavaiko identifies types which are a more prag-

matic notion of a relationship (is-of-type) between a typed concept and a concept of this type.

This is reflected in our definition by the instantiation, which leads us to our ninth language

requirement:

Language Requirement 9. Typed concepts: the language has to be able to describe types for

each concept.

Language Requirement 9 describes that the formal representation of concepts and relations

are typed. This enables a different interpretation for each concept and relation type. We can

see the example decomposition depicted in Figure 6.9 on Page 114 where the different concept

types could be stop-words, negation, syntactic relations or semantic primes.

In addition to typing of concepts, concepts can have additional attributes. The possibility of

modeling those attributes is formulated in Language Requirement 10.

Language Requirement 10. Attributes: In addition the entities and relations need attributes,

e.g., for us to be able to give them names.

The need for modeling relations as concepts can be seen in Figure 6.2 on Page 98 where the

relation “give” as a relation is itself a concept. Concepts which represent relations can again have

relations to other concepts or relations. Making it necessary to introduce a relation-to-relation

connection.

Language Requirement 11. Relations are Concepts: Each relation might be interpreted as a

concept as well, hence the set of concepts and relations are not disjunct.

Language Requirement 11 comes from the need of natural language relations are concepts as

well, and therefore can be described by concepts, a relation should be a concept as well.

With those requirements in mind, we will now analyze different ontology representations and

evaluate their usefulness for our representation of connectionist meaning.

59

4. State-of-the-Art

The representation of information or more accurate of knowledge is a well-researched topic.

Starting with Philosophy5 as a part of structural science our knowledge is formalized in models

called ontologies. The term Ontology is taken from philosophy where an ontology can be seen

as a theory of the things in nature [152]. With this theory, we try to understand the world

and remove errors in our thoughts. For example, the color green is often seen as a property of

something, but a coat of green paint can be modeled as layers of color [41] even though the object

is called green. If we have the knowledge of an object which is of the color red and is covered by

a coat of green paint, would it fall under the description: “This is a green object.”? To formalize

such knowledge, the research in ontologies has fostered many languages and engineering tools.

With an ontology, we try to analyze the meaning of entities. We define entities like Mahr [249]

as everything that is. This includes the real object of interest, e.g., the apple and the word

describing the apple as well as the relations the objects have with each other. The meaning of

things is strongly coupled with our language and the symbols we use. Ogden and Richards [291]

have studied this relationship to conclude the semiotic triangle 6 as shown in Figure 4.8.

Symbol
Word

Concept
Thought or Reference

Reference
ObjectStands for

R
eference to

(a causal relation)

S
ym

bo
lis

es

(a
 c

au
sa

l r
el

at
io

n)

Figure 4.8.: The Semiotic Triangle.

In the Semiotic Triangle entities which exist are referenced by symbols like words, for ex-

ample, “Apple” which symbolizes every fruit which falls under the definition of an apple. If we

read the word “Apple” and we have a reference for that word, then there might be thought, which

references the actual reference (the apple). Here the symbols themselves are entities, which have

references and we consider thoughts as entities as well, hence having symbols and references for

them as well. We investigate the process where the thought is created regarding a symbol and

its references to grasp the notion of meaning which lets us connect symbols to references and

reason upon them. We use the terminology of concepts to describe a symbol and an instance to

describe the reference.

Peacock [303] analyses a philosophical description of concepts, e.g., by Kante as basic build-

ing blocks of an ontology: “...concepts have pride-of-place in epistemology, semantics, and the

philosophy of mind: they function as rules for organizing perceptions, as the primary object of

rational analysis, as singular or general propositional terms and as the basic constituents of

beliefs.” [303, pp. 266]. For our work, we want to transform such a philosophical definition in

5The study of existence or being.
6some times called Semantic triangle or triangle of reference.

60

4.2. Ontology

a more formal one, to be able to implement AI reasoning upon it. This is the way we define

language requirements so that we can select which kind of ontology definition we need.

In computer science, an ontology can be seen as a practical application of such a theoretical

view [365]. In computer science ontologies have earned their place in an own layer of the

technology stack of the Semantic Web [25], which gives the notion of its importance in the

scientific community regarding artificial semantics. However, now let us look more closely at

the definitions of ontologies starting with abstract ones to more technical.

A quite general description of ontologies has been given by Gruber with “an explicit specifi-

cation of a conceptualization” of entities of concern and their relationships7. This definition is

quite abstract and does not formalize the notion of an ontology but rather explains what is done

to create an ontology which can be done by a multitude of modeling techniques.

To grasp the notion of ontologies more formally than the definition of Gruber, we need to look

at similar terms first, to distinct them from ontologies:

Model: A model can be seen as an abstraction of an entity. Containing the relevant information

regarding a given context. Favre [106, 107] would describe it as “a system that enables to

give answers about a system under study without the need to consider directly this system

under study.” [107, p. 3] and further Miller [272, p. 3] describes a model as “... a model

is a formal specification of the function, structure and/or behavior of a system”.

Epistemology: Epistemology can be seen as “the field of philosophy which deals with na-

ture and source of knowledge” [289] (cited in [355, p. 6]). Regarding AI research the

knowledge is interpreted as consisting of propositions and logical reasoning upon those

propositions to create new knowledge in the form of formal structures [154].

Taxonomy: A Taxonomy is the science of classification of entities into classes. Taxonomies

structure entities into an order which can be but does not have to be hierarchical [354].

Further Euzenat and Shavaiko [91, p. 27] define a taxonomy as “a partially ordered set

of taxons (classes) in which one taxon is greater than another one only if what it denotes

includes what is denoted by the other.”

A model as defined above is on the one side to general to examine the meaning, since there

is no formal or better-structured definition of what the model consists of. However, on the other

side, we can define an ontology as a kind of model since an ontology is an abstraction as well.

Euzenat and Shavaiko [91] define an ontology as a conceptual model with features of an entity-

relation model. The ontology is thereby seen as a logical theory with model theoretic semantics.

For this work, Epistemology is, on the one hand, a use case in which an ontology is used to

reason upon and on the other hand, the process of ontology creation8 where the output of this

process is an ontology.

A Taxonomy seems to restricted since the classification of entities is not enough if we need

more details in our ontology then the sub-class or “is-a” relation to represent relationships. This

is necessary for example if we want to reason upon relations like “part of” or concepts like the

relation “give” in an example like: “A teacher gives advice to a student.”

Figure 4.9 illustrates a simple taxonomy using the “is-a” relation which identifies two kinds

of things: living ones and not living ones. Also, a salad and a pig are classified as living and

7http://www-ksl.stanford.edu/kst/what-is-an-ontology.html last visited 2017.09.01
8sometimes called ontology engineering

61

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

4. State-of-the-Art

stone as dead. This gives us an example of how an ontology can capture part of our beliefs and

knowledge.

Thing

living
not
living

StoneSalad Pig

Figure 4.9.: An example ontology for living and not living things.

These definitions so far (here Model, Epistemology, and Taxonomy) is not precise enough

for a formal analysis, and we need to further detail our notion of an ontology. For that, we will

have a detailed look at the most common formalization of structured information and definitions

of the term ontology. They all have in common that they are used to describe the world and

structure it as a model as far as possible.

However, first, we have to look at a different kind of formalization. There are two well-

researched theories to formalize ontologies: Set theory and Mereology [361]. We will have a

short look at both:

Mereotopology We start out with the theory of Mereology which became popular in the

early 20
th century. Mereology is based on the principle of parthood [350] which is similar to

the notion of a subset relation in set-theory. The fundamental element in Mereology is called

“Object” and is specialized into thin and thick objects to model change. Where thick objects

undergo change and, in consequence, are volatile, and the thin objects are invariant. For that

reason, a thick object can be identified over time by its set of thin objects which are its parts9.

Set-theoretic Ontologies A second and more common formalization of an ontology is a

set-theoretic view [361]. Set-theory is one of the most basic concepts in mathematics. The basic

entity in set-theory are elements which are joint to group of elements called sets by using the

element relation (∈). With the subset (⊂) relation one can declare an hierarchy of sets. More for-

mal approaches model set-theoretic ontologies as category10 like in the work of Patterson [300],

e.g., allows only relations between two sets of concepts.

The argument against Set-theoretic Ontologies models for formal ontologies is that they are

inadequate since, e.g., we are not modeling any continuous universe [361]. We argue that in

computer science every data is discretized. Thus continuous models are not needed. Especially,

every sensor value is first discretized before it is passed to the agent. Because of that, we are

going to focus on the set-theoretic approach described next.

9This leads to the question of identity: How much change can an Object undergo before becoming another object?
10Category theory formalized structures in directed graphs with labels on edges and nodes.

62

4.2. Ontology

We now will have a look at different set-theoretic definitions of ontologies next. Again starting

from a more abstract and getting more practical. Starting with an abstract definition of what

entities and their relations are (Section 4.2.1). To a more mathematical definitions (Section 4.2.2,

4.2.3 and 4.2.4) ending in a conclusion in Section 4.2.5.

4.2.1. Mahrs Model of Conception

The first definition we will look at is from the Model of Conception. The model of conception

has been introduced by Mahr [249]. The basic building blocks here are entities.

The first definition of the Model of Conception is an Entity:

Definition 26. Entity:

1. An entity is anything that is.

2. Any two entities are different.

This gives us the basic building block for further investigation. We formalize this in a set E

of all entities. Further entities can have relationships with each other and with them selfs, with

this in mind, Mahr defines a “Relationship” as follows:

Definition 27. Relationship:

1. A relationship is an entity by which entities are related.

2. An entity is an element of a relationship if it is one of the entities related by the relation-

ship.

Since every thing is an entity, a relationship is an entity as well. This is quite general and needs

a formalization. Because the natural language representation of the definitions of Mahr allows

interpretation, let us look at the formalization of the model of Mahr by defining a Signature [85,

pp. 14–15] like it has been done in [189, 405]:

Definition 28. Complex:

1. A complex is an entity by which entities belong to relationships.

2. A relationship is an element of a complex, if the entities which belong to this relationship

belong to this relationship by this complex.

3. An entity is an element of a complex, if it belongs to a relationship which is an element of

the complex.

A complex can be seen as a bigger structure which includes concepts and their relationships.

An example of a complex could be a topic, where certain concepts belong to the topic with

relationships among the concepts, but other do not. In a topic, for example, some word senses

could be excluded so that when we talk about the topic of bank robbery, we do not connect

concepts of rivers or the sea into the complex.

The definition of a model of conception of Mahr [249] describes an abstract view on a con-

ceptualization. This maps to natural language, where each concept can be described by a set of

concepts [262]. With that, we can describe, e.g., the relation “is teacher of” in “Bob is teacher of

Alice.” which in itself is a set of concepts. To be able to implement reasoning upon the connec-

tionist part of our representation of meaning we will further restrict this general description to a

more technical one in the next sections; starting with the definition of an ontology by Pickert.

63

4. State-of-the-Art

4.2.2. Pickert’s Definition

The next definition we look at, is the one of Pickert. We look at this definition because it

introduces a taxonomy and its properties into the definition of an ontology. Pickert11 defines an

ontology as a seven tuple O := {L,C,R,F,G,H,A} with:

L: the lexicon is a set of lexical symbols for concepts LC and relational symbols LR with

L := LC ∪ LR,

C: the set of concepts which are used in the ontology,

R: the set of binary relations over C,

F: a function F : 2LC

→ 2C which maps symbols to concepts,

G: a function G : 2LR

→ 2R which maps symbols to relations,

H: a taxonomy which is an irreflexive, acyclic and transitive relation H :⊂ C × C,

A: is the set of axioms defined in the ontology.

Here function F and G map symbols from the lexicon L to concepts (F) and to relations (G).

This mapping can be seen as a naming of concepts and relations with the symbols.

The first thing to notice in this definition is the distinction between concepts and symbols just

like illustrated in the semiotic triangle shown in Figure 4.8 on Page 60. The second interesting

fact of this formalization is that there is a hierarchy which lets us, for example, build a class

hierarchy like in Figure 4.9 on Page 62. It should be noticed that it is unclear what the set of

axioms A contains. One interpretation of A could be a set of all relations and concepts which

can be extracted out of the hierarchy H. However, the definition is incomplete at this point.

Building such a taxonomy over each relation allows us to define, e.g., a hierarchy in relations

like the “is-a” or “is-part” relations. Next, we look at the definition of an ontology by Maedche

und Staab [245] because they define what an axiom is.

4.2.3. Maedche und Staab

Maedche and Staab [246, 245] use an ontology definition with two semiotic levels. First, the

lexical level which describes how terms are used to convey meaning. Second, the conceptual

level describing the conceptual relations between terms. The definition of an ontology by Maed-

che and Staab can be seen as a formal basis for a Web Ontology Languages (OWL), which has

become a quasi-standard for the semantic web [25]. Maedche and Staab present a conceptual

language with an interpretation. In their formalization, they start out with Definition 29.

Definition 29. A concept Language CL is defined by starting from a domain U which is made

up by individuals, atomic concept and roles, where concepts are unary predicates and roles are

unary predicates over a domain U . A concept symbol is an element ofA ⊆ U and a role symbol

is an element of the subset P ⊆ U . The languages Interpretation I is a function that assigns

each concept symbol a subset of the domain U : I : A → 2U and each role symbol a binary

11Taken form a technical report from http://www.dbis.informatik.hu-berlin.de/dbisold/lehre/

WS0203/SemWeb/artikel/2/Pickert Ontologien final.pdf “Einfhrung in Ontologie”, Gregor

Pickert, last visited on 02.03.2012

64

http://www.dbis.informatik.hu-berlin.de/dbisold/lehre/WS0203/SemWeb/artikel/2/Pickert_Ontologien_final.pdf
http://www.dbis.informatik.hu-berlin.de/dbisold/lehre/WS0203/SemWeb/artikel/2/Pickert_Ontologien_final.pdf

4.2. Ontology

relation of U : I : A → 2U×U . Concept terms and role terms are defined inductively with

terminological axioms and using operators. C and D denote concept terms, R and S denote

roles.

The concept Language from Definition 29 describes how the interpretation of concepts is

mapped to a domain and range, telling the interpreter, on what entities the concepts are defined

on. An example could be the formalization of a relation “IsBookedFor(Flight,Person)” where

the relation has the domain of a flight and the range of a person. Meaning that we can not use

the “IsBookedFor” for trains and cats. Each of these related concepts additional can have a role

like “booked flight” and “ticket owner”.

For Maedche and Staab an atomic concept has as interpretation a subset of I(Catom), which

are elements of the domain and are a result of the interpretation. Here the domain can be seen,

for example, as the real world object and the concepts Catom as a symbol denotating the objects

of one kind. Let Catom be “Apple” then the interpretation I(Catom) are on the one side apples

inheriting from Fruit and inheriting from a company.

Here Maedche and Staab introduce two kinds of symbols: Firstly the equivalent, which lets to

concepts or roles be equivalent if their interpretation is equivalent. Secondly, the subset relation

which defines one concept or role being subsumed by another one if all its interpretations are a

subset of the other. The lexicon of the language can then be defined as set of terms consisting of

concepts and relations of the given concept Language CL. A LexiconL consists of a set of terms

for concepts LC and a set of terms for relations LR thus the lexicon is the union? L := LC ∪LR

Next, we need a reference function linking the lexical entries to the concepts and relation-

ships. A Reference Function links a set of lexical entries LI ⊂ L to concepts and relationships.

Therefore F and G are reference functions with F : sL
C
→ 2A linking concepts to lexical entries

and G : 2L
∫
→ 2P linking relationships to lexical entries.

Here one lexical entry can reference multiple concepts or relationships and one concept or re-

lationship can reference multiple lexical entries. A Core OntologyO is a six-tuple (A,P,D,L,

F ,G) which consists of a set of concept symbols A, a set of relation symbols P , a set of data

or facts D in the concept language with its interpretation function, a lexicon L and two corre-

sponding reference functions F and G

Upon this core Ontology, a concept hierarch can be defined. A Concept hierarchy H is

defined by H := (C,D) | C,D ∈ A ∧ CI ⊆ DI . The domain of a relation and its range are

defined as Domain and Range. Domain d(R) and Range r(R) of a relation R are defined by

d(R) := d | ∃ e(d, e)∈ RI and r(R) := e | ∃ d(d, e) ∈ RI .

This allows us how to map relationships with their arguments to truth values like “isHu-

man(Johannes)” modeling the belief that Johannes is a human is true. Here we have to empha-

size that we do not derive that the fact is false because it is not modeled.

With the addition of the domain and range of relations and the concept hierarchy, this for-

malization of the notion of ontology can be seen as one formal definition of an ontology. There

are some unclear statements in this definition since the definition lacks to describe UI and, e.g.,

what atomic means. The use of a semi-standard set-theoretic definition of semantic formalizes

the meaning of used terms in a sound and appropriate way.

65

4. State-of-the-Art

4.2.4. Euzenat and Shavaiko

Euzenat and Shavaiko define a more practical notion of ontology in their book “Ontology Match-

ing” [91] which is meant for the comparison of ontologies.

Definition 30. Ontology: An ontology is a nine-tuple o := {C, I,R, T,V,≤,⊥,∈,=} Where

C is the set of classes,

I is the set of individuals,

R is the set of relationships,

T is the set of datatypes,

V is the set of values (with C, I, R, T and V being pairwise disjoint),

≤ is a relation on (C × C) ∪ (R× R) ∪ (T × T) called specialization,

⊥ is a relation on (C × C) ∪ (R× R) ∪ (T × T) called exclusion,

∈ is a relation over ((I × C) ∪ (V × T) called instantiation,

= is a relation over I × (I ∪ V) called assignment.

Euzenat and Shavaiko include the typical entities of ontologies: Classes which are interpreted

as a set of individuals. Individuals are with this a synonym for object and instances and represent

the entities referenced by classes. Classes and individuals are connected via relations which are

interpreted as subsets of the products of the domain. For the more practical part, Euzenat and

Shavaiko include in their definition data types and Data values, which are individuals without

identities and make up the individuals. Additionally, Euzenat and Shavaiko do not define what

an individual is, neither what a variable represents.

The functions defined are the relations concepts can have in ontologies using this definition.

The function ≤ describes the inheritance of classes, relationships, and data types. Meaning that

classes can be put into a hierarchy, where the one is a specialization of the other, and the other

is a generalization of the first one. The function ⊥ defines an exclusion of classes, relationships,

and data types. The exclusion states that elements of the one class, relationships, and data types

are not part of the other one. The function ∈ describes the instantiations of individuals or values.

Individuals are instances of classes and values are instances of types. An example instantiation

of a human could be the reader. The function = describes an assignment which maps more

individuals with a relation to other individuals or values. This can be seen like a relation, e.g.,

assigning a variable: int x = 1.

We can see that this definition is more practical and is meant for the comparison of ontologies

since there is an explicit difference between classes and instances as well as between an instanti-

ation and an assignment. Furthermore, Euzenat and Shavaiko declare datatypes and data values

as part of the ontology, which is a kind of relations and entities with the purpose of comparing

the individuals of an ontology.

4.2.5. Conclusion

Regarding our requirements and how we have defined an ontology in Section 3.6 we choose

OWL as ontology description language.

66

4.2. Ontology

This leaves us with an ontology with a model-theoretic semantics after Tarski [378] which

need an interpretation of the language given by an ontology. An interpretation allows us to

define the meaning of expression formulated in the language defined by the ontology. Tarski,

e.g., does this for atomic well-formed formulas and defines that if A is a fell formed formula

so is 6 A. Formal or logical semantics define here the truth value of such an expression. For

example, from first-order predicate logic an expression “A or B” is true if A is true or if B is

true. However, we would probably not agree with this statement. Adding further information,

e.g., by the name a A and B this could change. In our example ontology, we could formulate:

“things are living (A) or are not living (B)”.

All these formalizations have entities which might have some kind of relation with other en-

tities or themselves. The relations are quite general and might differ depending on the language

used to describe the ontology. We will use such an ontology to represent the knowledge and

beliefs of an agent. We will describe reasoning by inference upon such ontologies and represent

the semantics of a capability description with such ontologies.

In such an ontology we can state facts (individuals and their relationships) about entities

(TBox) and facts about the abstract classes (ABox) (concepts and their relationships). We call a

fact grounded if an individual exists in the ontology, which makes the fact true, meaning there

is an axiom mapping the fact to true.

As a language to formulate the ontology in, we chose the OWL because the W3C Semantic

Web suggests OWL [148] as a standard language for the formulation of ontologies. There are

many versions of OWL varying in expressive power and domain specialization [259] and our

choice, OWL 2, is a practical one since OWL 2 suffices most our requirements and the evaluation

framework, as well as the basis for our implementation, is based on OWL 2. Furthermore, all

requirements are met by OWL 2 as shown in Table 4.2:

Table 4.2.: Requirements for the chosen language for the representation of meaning.

Requirement Name Language Feature

Requirement 1 Concepts and Relations OWL Entity [148]

Requirement 2 Unique identifiable OWL IRI [173]

Requirement 3 Self-Reference OWL ObjectHasSelf [173]

Requirement 4 Cyclicity OWL PropertyChain [148]

Requirement 5 Hierarchy OWL SubClassOf [148, p. 312]

Requirement 6 Axioms RDF Axioms [148, p. 311]

Requirement 7 Individuals OWL Individuals [148, p. 312]

Requirement 8 N-ary relations OWL N-ary relations [288]

Requirement 9 Typed concepts OWL entity [173]

Requirement 10 Attributes OWL DataProperties [148]

Requirement 11 Relation are concepts ×

The Language Requirement 11 is not fulfilled by OWL 2 because it the OWL 2 ObjectProperty

is defined for individuals and not for classes. OWL 2 literals are analog to typed RDF literals and

thus could be expressed by a URI. Further, there are drawbacks to using OWL as languages as

well. Now here are a view things that OWL can not do: Being a fragment of first-order predicate

logic, the DL cannot express the following:

Fuzzy expressions OWL does not support fuzzy concepts. This hinders us to express “It

often rains in autumn”.

67

4. State-of-the-Art

Non-monotonicity Exceptions are hard to model in OWL. For instance, something like “Birds

fly, a penguin is a bird, but penguins do not fly.” has to be modeled in the fundamental

class structure.

Propositional attitudes are attributes which are not supported by OWL. This is because the

ontology describes facts in triples which can describe propositional attitudes like: “Eve

thinks that 2 is not a prime number.” (It is true that she thinks it, but what she thinks is not

true.)

Modal logic like possibility and necessity like in the example of “It is possible that it will

rain today.” Alternatively, epistemic modalities with something like “Eve knows that 2

is a prime number.” Further temporal logic is not supported by basic OWL to formulate

something like: “I am always hungry.”. This is the fuzzy representation handled in other

work extending OWL with temporal logic or fuzzy concepts. The same is done with

deontic logic allowing us to model something like: “You must do this.”

Logical relations are relations which have different levels of complexity. An example of a

more complex relationship is the so-called uncle problem [174]. These tasks need reason-

ing or an extension to OWL like a rule language.

Some ontologies are used to describe domain specific object; we will use it to describe our

semantic graph and services. There are many languages describing the functionality of a service.

Next, we will look at some of them.

4.3. Semantic Service Description Languages

In this section, we select a semantic service description language, which is the technical basis for

our semantic representation of services. We do so by looking at the different semantic descrip-

tion languages. These languages are different from service description languages like the Rep-

resentational State Transfer (REST) [115] or Web Service Definition Language (WSDL) [51]

which describe the technical interface of a service. These technical descriptions might be refer-

enced in the grounding of a service. The semantic description languages describe the meaning of

those technical parameters. In an example of a flight-booking-service, the technical description

of a service parameter “Destination” might of type String, e.g., BER. The semantic descrip-

tion of this parameter, in contrast, could be, that this parameter is a name of a destination Airport,

e.g., connecting BER as Airport of Berlin to the city of Berlin.

There are many semantic descriptions of a service [290]. We have selected the most prominent

once since there is a multitude of special purpose description languages, which are less relevant

to the state-of-the-art of service descriptions available in practice or in golden standard data

sets. These description languages can be separated into two groups: Bottom-Up and Top-down.

The Bottom-Up approaches start from a technical description and build upon those with, e.g.,

annotations. The Top-down approaches start from a specification and describe a binding to the

technical description.

Bottom-Up approaches are:

• Semantic Annotations for WSDL (SAWSDL) [205]

68

4.3. Semantic Service Description Languages

• Web Service Modeling Ontology (WSMO-Lite) [81, 390]

• Micro Web Service Modeling Ontology (MicroWSMO) 12

• Reference Service Model (RSM) [241]

Top-down approaches are:

• Semantic Web Services Language (SWSL)13

• Web Service Modeling Ontology (WSMO)14

• Web Service Modeling Language (WSML) [109]

• DIANE Service Description Language (SDS) [214]

• Planning Description Language (PDDL) [132]

• A PDDL XML dialect (PDDXML) [196]

• Linked Universal Service Description Language (USDL) [18]

• Web Ontology Language for Services (OWL-S) [255]

All those description languages have their benefits and drawbacks. Selecting one of them to

describe semantic services might depend on how the tools support it, what will be done with the

service description, how much resources can be allocated for the description or which reasoners

are available.

Conclusion

We chose the OWL-S approach [255]. In OWL-S a service is described by an abstraction of

its interface and side-effects. This kind of description is called Input, Output, Precondition and

Effect Description (short IOPE Description). We selected OWL-S as a description language

since it is standard for service descriptions in the semantic web. This means that most modern

reasoners are implemented to reason upon OWL [2]. This selection fits to the selection of the

ontology description language selected in Section 3.6. In difference to planning languages like

PDDL, it additionally specifies semantic information which will be used in our heuristic we want

to build in this work.

The semantic description language only forms the basis for how to describe the meaning the

concepts carry. The description still needs to be created by humans. To ease this task, research

on the automatization of such a description will be discussed in the next section.

12http://www.wsmo.org/TR/d38/v0.1/ last visited on 09.09.2017
13http://www.w3.org/Submission/SWSF/ last visited on 09.09.2017
14http://www.w3.org/Submission/WSMO/ last visited on 09.09.2017

69

4. State-of-the-Art

sing: do’ (x,[sing’(x)])

break: do’ ((x,) CAUSE [BECOME broken’(y)])φ

Figure 4.10.: Formalisation the concepts to sing and to break taken from [387].

4.4. Semantic Decomposition

In this section, we will look at mechanisms which can split up a meaning of complex concepts

into less complex concepts. The decomposition is checked for its foundation in a linguistic

theory, its implementation of an algorithm, and the amount of automatism it conducts the de-

composition in. We start out by analyzing existing approaches.

Uson et al. [387] present a first approach on formalizing decomposition of meaning using

NSM Primes. They tackle the challenge of finding an interface between the syntax and semantics

by using a generalized syntax called Roles and Reference Grammar (RRG) [388]. The resulting

decomposition creates a theoretical decomposition of concepts into a formal construct based on

Generative Semantic. The result is a formalism which uses some primitive symbols to form

languages. Those primitives are based on the semantic primes of NSM but are restricted to a

few of them.

Figure 4.10 shows two examples of the description of the concepts sing and break. Here we

can see that for more complex concepts (state before the colon), semantic primes like CAUSE

and BECOME (stated in all upper case) are used to describe the concept to sing or break (predi-

cated depicted in bold). The example follows the syntax of the RRG [388], where square bracket

describes a nesting of syntactical structures. However, it is not explained if concepts are created

in their past participle. For the simpler example of the word sing, the only information encoded

is here that something has to do the singing. This is a decomposition by using the same term,

which leads to a cycle of definitions. Upon this language, Uson et al. [387] describe lexical rules

and morphosyntactic structures which allow a more compact description of the decomposition.

The approach is highly theoretical and a methodology on how they are created not included.

Mel’čuk and Polguère [262] describes in their paper the structure of an Explanatory Com-

position Dictionary (ECD) regarding the Meaning-Text Theory. The focus of the paper is the

semantic representation. The different elements of an ECD are described regarding an example.

The formal definition of an ECD is seen as a decomposition of lexemes in a semantic network.

The network is defined in a hierarchical manner so that the definition of a concept is made up of

simpler concepts down to the point of a level of primes. The primes are not given as in NSM but

rather learned from the decomposition. A Maximal block Principle is used to guarantee that if

a more complex element is described, that it is used as a shortcut for other definitions of higher

lexemes. This is an early work and does not include any automatic creation of an ECD part of

any kind but rather formulates the formal basis for an ECD.

Schank and Andelson [345] describe the decomposition of sentences to derive a structured

representation of its meaning. The analysis of a sentence reaches from causal connections among

words, over planning and goal representations to story telling. Schank and Andelson separate

the knowledge to be used for human-like understanding into general and specific scripts. Each

script describes knowledge about situations, constructed or real. The scripts are made up of

conceptualizations which have dependencies.

70

4.5. Activation Propagation, Activation Spreading and Marker Passing

John killt Mary: John DO Mary HEALTH(-10)

Figure 4.11.: Script in the notation of Schank and Andelson [345].

This enables Schank and Andelson [345] to create formal representations like shown in Fig-

ure 4.11.

Here we can see that the example need additional concepts like “to do” which further needs

decomposition to become understandable. This leads to a set of concept which is similar to

those described by Wierzbicka [406] where the found primitives are grounded in applied (spo-

ken) languages. The dependencies between conceptualizations and their semantic description

of meaning presented by Schank and Andelson [345] are more complex and do not separate

specialization of described concept. The concept PTRANS, for example, could be seen as an

abstraction of a set of movements (MOVE). The example of Schank and Andelson here is “to

go” which shows that the decomposition of “to go” as a set of movements is not done so far.

Further, there are no dependencies to time. It could be argued that there should be a concept

like TRANS which describes the abstract relation to time enabling us to describe if two events

occur sequentially or at the same time. This is needed to describe the causal relation of events

and with that the creation of a script in the sense of Schank and Andelson [345].

These approaches are different from the research area of ontology learning [245]. They both

extract formalized knowledge from more or less unstructured data, but the approaches we look

at here use some linguistic representation of meaning to break down the meaning of concepts

into smaller parts.

Conclusion

In conclusion, to not just extracting facts, but doing so with a foundation in the linguistic theory

of meaning is rare. Their implementation of an algorithm is even less common. For an agent

to be able to acquire new knowledge about concepts, the extraction needs to be automatic and

be integrable into the agent’s beliefs. None of the approaches found in the literature review

describe an automatism how their decompositions are constructed. Since we want to describe

an automated mechanism for a decomposition, which allows an Agent to build up a connec-

tionist meaning representations, we will describe in Chapter 6 how we approach our semantic

decomposition.

Now that we have discussed the extraction of facts and building an ontology through semantic

decomposition, we need a mechanism which can use this graph representation of facts. Inspired

by the human brain, the next section will discuss such mechanisms.

4.5. Activation Propagation, Activation Spreading and

Marker Passing

This section describes the state-of-the-art in graph traversal techniques. Those graph traversal

techniques are a way of using the connectionist representation to reason of upon the collected

information. This reasoning represents the symbolic part of our approach. This section is a

literature review to find an approach using symbolic information to reason upon a semantic

71

4. State-of-the-Art

…

Σ F(x)

Activation

Node Function

Node

Relation

Figure 4.12.: Abstract approach of activation spreading.

graph. The approaches described in this section build the foundation upon which we have build

our Marker Passing algorithm in Chapter 7 and motivate why an extension of the existing ap-

proaches is needed. Therefore we are going to analyze research done on Spreading Activation

and token passing over semantic networks in combination with automatic ontology creation aka

semantic decomposition. Activation spreading is a type of graph search. The basis is a graph,

where information is passed from a set of start node to connected nodes. This spreading of

information follows rules which guide the information through the graph. If the information is

some activation, then mostly the nodes have some activation threshold like in Artificial Neuronal

Networks [80].

Figure 4.12 shows the abstract approach of activation spreading. Here the set of start nodes

(blue) carry activation (orange box) to adjacent nodes. Each node has a node function which

decides how to propagate its activation to its neighbors. The result of the activation spreading

can be the activation of specific nodes (in Artificial Neuronal Networks called output-layer) or

the activation of the network. Figure 4.12 shows the activation of two interpreted nodes in green

and red for an exemplary classification task. If one node is more activated than the other, we

need some interpretation for the result.

Using examples from nature, which seem to work well as a prototype for algorithms in Artifi-

cial Intelligence, has become a standard approach. Since the dissertation of M.R. Quillian [314]

about “Semantic memory” at the Carnegie Institute of Technology in 1966, the idea of represent-

ing knowledge in a network and using the connection in the network, has spilled to the Artificial

Intelligence community. Multiple questions have been subject to research like the structure of

the network [59] which has been refined from Collins and Loftus [58], how similarity models

over features of concepts can be determined [362] or how the connection of concepts is influ-

enced by episodic memory [316]. Rogers et al. [333] further extends the features from which the

semantic knowledge is derived to perceptual features. Up to modern neuroscience which maps

72

4.5. Activation Propagation, Activation Spreading and Marker Passing

how the human brain organizes knowledge [301].

All this research has influenced the theory of Artificial Intelligence. Since we are going

to use such an approach in our artificial representation of meaning, we discuss its connection

to our approach next: Creating two theories of how Artificial Intelligence can be formalized:

“Logical versus analogical or symbolic versus connectionist or neat versus scruffy” like the title

of the paper of Minsky [273] suggests. The first one thinks that symbols carry meaning and

that the use of logic like in first order logic can represent intelligence and if the intelligence

is not sufficient, then the logic needs to become more complex. The second one thinks that

the meaning of things is represented in the connection a concept has with other concepts. Our

approach emulates the one of Minsky by trying to connect the both sides and creates a spreading

activation mechanism over a semantic network with the symbolic logic to steer the spreading

activation. This mechanism is used to enable an AI planner to choose actions of a plan wisely;

meaning we create a heuristic to improve the AI action selection step of an AI planning algorithm

in regards to precision a recall [97].

Liu et al. [239] use activation spreading over a semantic network, build from a mix of domain

ontologies and WordNet resources, to identify extension point for semi-automatic ontology re-

finement. The analysis of Liu et al. [239] is limited to nouns only.

Marker Passing is a more general term for activation propagation or activation spreading,

where more general information can be encoded into a maker than just its activation. We are

going to use the more general term Marker Passing from now on to describe that kind of ap-

proaches. P. Maes [247] uses activation spreading for action selection in a task network. Maes

describes an additional parameter of her Marker Passing which is a mean level of activation,

regarding the entire network. Fahlman [92] uses Marker Passing on semantic networks with a

focus on massively parallel computing. Fahlman was the first to use the markers to reason more

complex relations on a knowledge graph. By combining Marker Passing with a special type of

edge, a so-called cancellation edge, reasoning can be done in a more complex manner.

There is much different application of this Marker Passing or activation spreading technique.

One of them is Wang et al. [398], for example, use such an activation spreading for ontology

matching. Another area of Natural Language processing is Fischer [119] like the querying of an

ontology.

Anderson [10] proposed a Theory of memory using Marker Passing to model delay behavior

of human brains. The idea behind the work of Anderson is that the semantic network and the

distance of two concepts in its encoded semantic information can be structured by measuring

how long it takes for a token to reach a given concept from a given start concept. Measuring

the time is such a graph, abstracts the step count. Which is why Anderson’s work has been

subsumed by other more general approaches like the one of Thiel and Berthold [379].

Thiel and Berthold [379] proposes two-word similarity measures which use activation spread-

ing as a basis: node signatures similarity and node activation similarity. The first one is based

on the comparison of norms of the velocity vectors of the activation spreading and can be in-

terpreted as structural similarity. The second one compares the accumulated activation and can

be interpreted as a spatial distance measure. This approach is evaluated through the analysis of

Schools-Wikipedia15 (2008/09) as a data set to firstly find nodes which are structurally similar

to a query node and secondly to find closely connected to the query node. The resulting graphs

are displayed in a centrality layout and analyzed manually for structural similarity.

15http://schools-wikipedia.org/ last visited on 09.09.2017

73

4. State-of-the-Art

Next, we will discuss a formalization of the activation spreading in the form presented by

Thiel and Berthold [379] which allows us to formally grasp activation spreading. They use a

weighted undirected graph G = (V,E,w) The nodes (V) of the graph have three functions:

• Input function: combining all activation passed to the node in the activation step.

• Activation function: determining if the node is activated at time t by the weighted sum of

activation passed through the incoming edges [379, eq. (1)]:

at
v =

∑

u∈N(v)

w(u, v)at−1
u , ∀ v ∈ V (4.1)

With N(v) = {u | {u, v} ∈ E} representing all neighbors of node v and at
v being the

activation of node v at time t and w(u, v) being an element of a weight matrix W with

w(u, v) = 0 if (u, v) 6∈ E, stating the activation passed from node u to node v.

• Out function: determining the outgoing activation depending on the activation level of the

node.

The activation vector is calculated if the weights are seen as a matrix Wi,j and the activation

function is seen as [379, eq. (2)]

at = W ta0 (4.2)

where we can calculate the activation at actiavtion step t be iterativly activationg the network

based on the start activation a0. The activation vector then is normalized by its euclidian length

with each iteration [379, eq. (3)]:

at =
W ta0

‖ W ta0 ‖
(4.3)

where the direction of the vector is not influenced by the normalization because the conver-

gence of the principal eigenvector v is given through lim
t→∞

at = v
‖v‖

This kind of activation as the convergence of activation towards the eigenvector of the weight

matrix independent from the query concept initially activated. Finally having the result that pure

activation spreading leads to a stable state after enough activation steps. This effect is discussed

in detail by Berthold et al. [26].

The speed with which this convergence is reached, on the other hand, depends on the query

node initially activated. The velocity δ is measured for each activation step by [379, eq. (4)]:

δt(v) =

∅ , if t = 0

at(v)− at−1(v) , else,
(4.4)

Here the at(v) is the activation in activation step t and ~0 is a zero vector. With at(v) being

a function of the collected tokens like e.g. the sum of all activation passed by one token. The

velocity of the query node at the start is one:

a0i (v) =

Tstart , if i = v

∅ , else,
(4.5)

With Tstart being the start activation of node v.

74

4.6. Service Planning

Thiel and Berthold [379] additionally introduce a post processing step, in which they normal-

ize the activation of a node by its number of edges the nodes have. The normalisation is done by

the division of the “weighted degree Matrix” D which is a diagonal matrix with each non zero

element being di,i =
n
∑

j=1
wi,j. The normalized activation then is calculated as [379, eq. (7)]:

â∗i (v) = D− 1
2

(

tmax
∑

t=1

αtat(v)

)

(4.6)

This normalization has the effect that well connected node are not over estimated by the

activation. With the decayed activation a∗i (v) multiplyed with an decay 0 ≥ α ≤ 1 [379, eq.

(6)]:

a∗i (v) =

tmax
∑

t=1

αtat(v) (4.7)

With tmax being the maximum amount of activation steps done before evaluating the result.

Hence tmax represents the termination condition of this activation algorithm. This formalization

of activation spreading with its double valued activation is not able to encode further information

into the activation.

The approach of Fahlman [92] extends this activation spreading to Marker Passing but de-

scribes its Marker Passing with a two-way linked list M for each marker, representing all nodes

which are marked with this marker. The Marker Passing is then done by setting and removing el-

ements in those lists. With that Fahlman is able to create queries which state: “if the node holds

marker X, then...”. With that, he can create queries based on multiple markers, but can only

encode the presents of a marker type, no further symbolic information because the information

encoded depends on the order in which the markers are put on the semantic graph.

Conclusion

In conclusion, the current Marker Passing approaches can carry more information than the basic

activation, but we were unable to identify an approach which uses the symbolic information for

reasoning, except the work of Fahlman [92] which has special purpose symbolic information

encoded on the markers. Fahlman encodes the edge information onto the marker, to describe

which edge should be traversed. This is not enough since not only the edge which has to be tra-

versed my change, but the reaction of a concept concerning markers may change as well. All of

those algorithms are thought for the passing of markers and an analysis of the resulting markers

or the marker distribution. Furthermore, none of the approaches used semantic information on

the markers except Anderson [10] more than 30 years ago. The structured analysis of the use of

Marker Passing did not reveal any use of more symbolic information on markers since then.

Additionally, we can see the analyzes done on the Marker Passing so far. The main concern

seems to be an application of Marker Passing for some use case and not the Marker Passing

itself, its benefits, prerequisites or limitations.

4.6. Service Planning

This section surveys the state-of-the-art of service planning approaches. The goal of this survey

is to find planning algorithms which make use of semantic information provided by semantic

75

4. State-of-the-Art

service descriptions to build a heuristic. We do this survey to make sure that we are not rein-

venting some problem-solving mechanism, which uses semantic heuristics for problem-solving.

The heuristic is our point of application; making one step towards filling the performance gap

between static and learning planners [112]. We try to narrow this gap by creating a service

planner using semantic heuristics like it is done in service composition techniques. The related

work on service composition is well researched, but there are only a view approaches using plan-

ning as composition mechanism. The literature provides a set of different service composition

approaches and concepts.

Those planning and composition approaches are analyzed to their composition type describ-

ing if they are (semi-) automatic or manual. Furthermore, we analyze how dynamic an approach

is (Adaption) and on which Basis the planning builds up on, e.g., a Workflow or heuristic search.

Heuristics can be build by simplifying the given problem [304]. Those implications are for

example used by Fast-Forward-Planner by removing the delete list of service effects [171]. Be-

cause of the open world assumption, this does not work in service planning. Other heuristics

guide specific problems which then can not be used in problem independent (sometimes called

general purpose) planning [304], because they do not adapt to, e.g., changes in the goal or to

new services. Thus we need another way of gathering information about the available service

and the goal. In this work, this information is the meaning of the concepts used to describe, e.g.,

the service or goal.

One service composition approach is WSPlan, developed by Peer [305]. WSPlan uses a

knowledge base and services described in WSDL extended by semantic annotations in a PDDL

syntax. The knowledge base and the annotations of web services are transformed into PDDL

documents. It uses an online planning method for service composition which means that the

planning and execution are interleaved.

There are other solutions which also transform service descriptions into another description

language for service composition. The solution developed by Okutan et al. [293] transforms

OWL-S descriptions of services into the Event Calculus framework in which actions and their

effects are expressed, the solution by Kuzu and Cicekli [216] transforms OWL-S descriptions

into PDDL and the solution by Sirin et al. [360] transforms OWL-S descriptions into the SHOP2

domain to use SHOP2 as an HTN planner.

Rodriguez et al. [331] state the Quality of Service (QoS) parameters are a significant research

challenge which is not reflected in the approaches found in our state-of-the-art analysis. Having

QoS parameters in a service description and having planner use this information would be a way

to create an optimization problem out the service composition problem. Markou and Refanidis

[254] analyze nondeterminists methods and whether a heuristic is used or not. Neglecting which

information the heuristic build upon or how it is used.

Zou et al. [430, 431, 432, 433] analyze the performance of different planning methods, but

neglect any semantic information from the service descriptions, which leads to a focus on ap-

proaches which are based on the planning language PDDL. With the translation from OWL and

SWRL to PDDL, most semantic information gets lost and with that the ability of the planning

approach to create a semantic heuristic. Another service composition solution based on such a

translation is OWLS-XPlan, developed by Klusch [196]. It transforms OWL-S descriptions of

services into PDDLXML, an XML dialect for PDDL. For service composition, it uses a combi-

nation of a Fast-Forward-planner and an HTN planner.

Rodriguez-Mier et al. [332] neglects nonfunction parameters but uses a general heuristic

76

4.6. Service Planning

in an A∗ search. This heuristic is build so that the evaluation function f (n) = g(n) + h(n)

counts the already executed service in state n in g(n) and the still needed service execution to

the goal in h(n). Creating the heuristics includes creating a service dependency graph, in which

the mappings from out- to in-put parameters are the edges between the service calls, which are

represented as nodes. With that, the services form layers in the dependency graph and allow an

estimation which layers the current service to call is located in. With this heuristic, the planning

minimizes the number of web service calls. Calculating the service dependency graph includes

solving the planning problem, making the heuristic useful in the path selection, if multiple paths

from start to goal state are found.

Meyer and Weske [264] use a similar heuristic: The number of service calls to achieve the

goal state. The idea is similar to Rodriguez-Mier et al. [332] since graph plan is used in a relaxed

planning problem, by ignoring the negative effects. Then the service dependency graph is used

to estimate the number of service calls to the goal.

Hoffmann and Nebel [171] neglect the delete list of service effects as well to form a fast-

forward planner. This is possible because a PDDL effect consists only of deleted and added

axioms. It can be argued that with the open world assumption of OWL such a heuristic is not

possible since no delete and add list can be identified. Klusch et al. [201] use the heuristic of

Hoffeman and Nebel and use a breadth-fist search in case of heuristic equivalence of to states.

Mediratta and Srivastrava [260] also use the heuristic of Hoffmann and Nebel to buidl an AND/

OR-graph. The heuristic than takes the minimal cost of an OR-branch and a sum of the cost in

case of an AND branch.

Bonet and Geffner calculate their heuristic by taking each fact of the goal state and search-

ing backward to the state space until they find a service which fulfills this fact. The functions

getPrecondition() and getEffect() get the fact describing the service. Services describes here the

set of all available services. Selecting the maximum of all the path reaching to the service which

fulfills the preconditions of the current service guarantees an admissible heuristic. This heuris-

tic uses the semantic information of precondition and effect but neglects the input and output.

Additionally, they ignore any semantic similarity and only check for equivalence of the facts in

precondition and effect.

Akkiraju et al. [6] present an approach called SEMAPLAN, which uses WSDL-S16 service

to create a service description. The focus in SEMAPLAN is on the combination of in- and

output parameters through ontology matching using WordNet or domain specific ontologies.

The planning is done with in iterative forward search using all services which are semantically

close to the wanted ones. The algorithm terminates if all facts in a goal are created through an

effect of a service or if there are no more service to try.

Cavallaro et al. [47] propose a dynamic service composition framework, called Connect,

which focuses more on the software development perspective of a service composition. The

goals of the service composition are formulated as “expectations” and describe requirements of

the services used. The Connect framework then searches for services fulfilling the requirements

during runtime. Goals are formulated as operation calls. Thus the planning at runtime consists

of finding a service providing the operation and connecting they’re in- and output.

Fernandez-Olivares et al. [113] describe a system call SIADEX which can use multiple plan-

ning methods form the domain of Hierarchical Task Network (HTN) to create service composi-

tions. The translation from OWL-S is here to an HTN. A goal is can be formulated in OWL-S

16see https://www.w3.org/Submission/WSDL-S/ for more details. Last visited on 09.09.2017

77

4. State-of-the-Art

syntax and is translated to an HTN goal. The result of the HTN planner then is translated back

into a service composition. A benefit of SIADEX is that it includes a monitoring component to

measure plan failure and trigger a replanning at runtime. The benefit of using HTN as planning

problem formalization is that SIADEX can execute services in parallel.

Kuter et al. [215] describe an HTN based planning called ENQUIRER. Like in the SIADEX

approach the OWL-S descriptions are translated into an HTN, the goal is translated as well, and

an HTN planner is used to create a service composition. Novel in the ENQUIRER approach is

that during the planning, services can be executed to gather dynamic information for the planning

process.

The Eclipse-plugin WS-Engineer proposed from Foster et al. [121] is a manual approach

to service composition. A service composition is described in the Business Process Execution

Language (BPEL) and UML Message Sequence Charts. As a basis for an execution of a service

composition, Foster et al. focus on the development and distribution of service compositions

with execution details like authentication.

Wang et al. [396] propose a web service composition based on Markov Decision Process

(WSC-MDP). The approach is based on an explicit description of service alternatives and the

use of reinforcement learning to learn the best alternative during runtime. The service composi-

tion is modeled as Markov Decision Process, with state transitions modeling service calls. The

reinforcement learning then defines the transition probability, which describes the availability

or performance of the service. Through this learning, better performing services have a high

execution probability. The used languages for service description and implementation details

are omitted by Wang et al.

Rao et al. [321] describe an approach called “Web Service Synthesis Architecture” (WSSA)

which uses linear logic theorem proving to create service compositions. The WSSA approach

translates OWL-S service descriptions into linear logic axioms and goals in theorems. A theorem

prover is then used to find a proof for the given theorem with the given axioms. If a proof is

found, then a service composition can be derived which fulfills the goal. During the prove

finding process semantic reasoning is used to identify type hierarchies which are formalized as

implications and ease the proving. The paper does not describe how the Effect and precondition

are translated, e.g., from SWRL to logical axioms. The analysis of Rao et al. is restricted to a

level of input, output, precondition, and effect as a whole.

El Falou et al. [87] describe a decentralized multi agent approach to handle the ever growing

amount of services. Concerning the heuristic used, the approach assumes that the relevant ser-

vices have been selected beforehand. The plan is separated into partial plans which are handled

by different agents. The result of the partial plan is then combined to a service composition

reaching the given goal. The approach is quite abstract and misses a description of the mecha-

nisms of finding the services or how to evaluate their goal archival.

Papadopoulos et al. [299] describe a decontrolled multi-agent service composition (DMASC),

which implements an self-organizing distributed service composition. Prerequisite is that the

service provides logic to be part of the decomposition where Papadopoulos et al. talk of a

coalition. Each agent then searches for predecessor or predecessor by matching in- and out-

puts.

Hatzi et al. [159] describe the PORSCE II service composition approach which also translates

OWL-S description int PDDL. PORSCE II then uses different external planners to solve the

planning problem. The focus of Hatzi et al. is on the specification of the start and goal state, for

78

4.6. Service Planning

which they provide a user interface. The user interface also provides a visual representation of

the service composition and allows a manual adaption.

Fujii and Suda [126, 127] describe a service composition system called Component Service

Model with Semantics (CoSMoS). The focus of CoSMoS is to create goal descriptions from

natural language. The goal is described in a logical predicate, which they derive from natural

language requests. CoSMoS uses semantic analysis to verify the used service to fit the context

in which the services are called.

Fanjiang and Syu [105] use genetic algorithms for service composition without any heuristic

[226]. Here the logical structure of precondition and effect rules are evaluated to create a correct

plan. By this logical analysis, a causal links are created. This leads to a valid plan but does not

create a heuristic.

Luca and Massimo [339] base their approach upon the BDI agent model. The approach uses

the beliefs of the agent about goals and capabilities to analyze a goal hierarchy by ordering

the goals in an AND/OR-Graph and moving down the graph towards the leaves to see which

goal can be reached. For each step in this search, a “goal-capability deliberation” is done by

simulating the execution of a classical forward search, where the amount of used service to

reach a goal is then used as a heuristic value. Since this approach uses planning on subproblems

as a heuristic, the algorithm might be used for one-shot-planning but does not describe how it

uses the semantic information available. Further, they do not describe how the “selectcapabilities”

function is implemented, which would tell us how the approach selects service to be executed

and they do use some kind of “domain-specific utility function” which lets them rate the services.

Because of these two reasons this heuristic is not a general purpose heuristic.

Oh et al. [292] describe a Web-Service Planner augmented with A* algorithm (WSPR*) based

on WSDL services and OWL parameter descriptions. The main contribution of this paper is a

heuristic based on the QoS parameters of the services. The approach analyzes in input an output

of services but neglects preconditions and effects.

Wang et al. [397] propose an automated web service composition based on uncertainty exe-

cution effects which can handle uncertain and contradicting service effects. The planning used

to create the service composition is the GraphPlan algorithm, which is extended to be able to

support service with multiple effects. The approach translates OWL-S to STRIPS and a STRIPS

planner is used to solve the planning problem.

Wagner et al. [393] describe a QoS-aware automatic service composition by applying func-

tional clustering to the functional description of services and their QoS parameters. Services are

clustered by their functionality, and those clusters are combined to create a service composition.

A cluster represents service alternatives. The service composition neglects the variable bindings

for parameters, and the evaluation of precondition and effect is not described.

Rodriquez et al. [331] provide a survey on automatic service composition and AI methods

in software development. The existence of heuristics in the surveyed planning approaches is

checked, not how they are used or which information the heuristic is based on.

Conclusion

In conclusion, we can say that there are many approaches which use planning for problem-

solving, but only a few of them use semantic information in search of the state space (see Ta-

ble 4.3). Semantic information is used for service composition but is mostly static. There are

79

4. State-of-the-Art

Table 4.3.: Comparison of Service Composition approaches regarding their composition type,

their adaptiveness and the basis they build their solution upon. The approaches are

classified to the heuristic they use: Here “ff” stands for fast forward (problem re-

laxation), “dom” stands for domain specific heuristics and “×” stands for no used

heuristic.

Approach Composition type Adaption Basis

au
to

m
at

ic

se
m

i
m

an
ua

l

dy
na

m
ic

W
or

kfl
ow

Pla
nn

in
g

H
eu

ris
tic

SEMAPLAN [6] × X × × × X sem

Connect [47] × × X X X × ×

SIADEX [113] X × × X × X ×

ENQUIRER [215] X × × X × X ×

WS-Engineer [121] × × X × X × ×

WSC-MDP [396] (X) (X) (X) X X × dom

WSSA [321] X × × × × X sem

Falou et al. [87] X × × X × X ×

PORSCE II [159] X X × × × X ×

CoSMoS [127] X × × X X × sem

Zou [432] X × × X × X dom

Kuzu [216] X × × X × X ×

Wagner [393] X × × X × X ×

WSPR* [292] X × × X × X dom

UDCP [260] × X × X X × dom

DMASC [299] X × × X X × ×

OWLS-XPLAN [196] X × × × × X ff

also service composition solutions which use multi-agent systems for load balancing. One ap-

proach which uses a multi-agent system is the approach by El Falou et al. [87]. There is one

central agent which receives a request from a client which includes the initial and goal state.

It forwards the request to service agents, each managing a group of web services. All service

agents compute a local partial plan and send it back to the central agent. The central agent

merges the partial plans together to obtain a global partial plan. Then it applies it to the initial

state to obtain a new state and sends a new request based on the new state to the service agents.

They, in turn, compute a new plan iterating until the goal state is reached. A similar approach

is DPAWSC (Distributed Planning Algorithm for Web Service Composition) which also uses a

multi-agent system for service composition.

Table 4.3 shows the conclusion of the literature review on semantic service composition ap-

proaches using AI planning. The classification has been done by the following three aspects:

Composition type, which describes the degree of automatism: manual means that the ap-

proach supports developer integration, semi-automatic means that the approach is not able

to create service composition automatically and automatic means the approach is able to

create full service composition automatically.

Adaption, describes the degree of dynamic adaption points the service composition supports.

Dynamic means the composition is formed at runtime, static means the composition is

80

4.6. Service Planning

created during design time and the selection of executing services might be at runtime.

Basis, describes which information the composition is formed on. The description of a work-

flow normally means a human was in the loop. If planning is a basis for the composition,

the composition might be simpler in structure (e.g., fewer loops or if-then-else constructs)

but the developer is supported by an AI planning on creating the service composition.

Heuristics describes which kind of information was used to use an informed search while

creating the service composition. Here the options are “semantic” for semantic problem

analysis, “ff” for problem relaxation, “dom” for domain specific heuristics or “×” if no

heuristic was used.

The overview reveals that there exist different, mostly domain specific approaches for solv-

ing the task of service composition with AI planning. The planner used in this work will not

transform service descriptions into a PDDL like description language. Instead, the planning is

done directly on the results of the semantic Service Matcher and semantic service descriptions.

This requires the creation of sound heuristics and backtracking from dead-ends in the planning

process.

81

Part III.

Approach

83

5. Abstract Approach

This section describes how I will approach the creation of an artificial representation of mean-

ing. Described in Figure 1.2 my approach has two parts: The first part is the connectionist

representation of knowledge. The second part is the symbolic reasoning. As a theoretical foun-

dation I use the Natural Semantic Metalanguage (NSM) (see Section 3.10) theory. The NSM

theory states that from the set of semantic primes, explanations can be created to describe more

complex concepts. I transfer this “bottom-up” approach, to a ”top-down” approach, start with

the complex concepts, facing the problem to find a way to describe complex concepts using less

complex concepts down to the semantic primes of NSM. This process is called decomposition

and identifies the task of describing a concept using less complex, but related concepts. Hence,

the question that is approached with this task is: Which concepts are related to the concept we

are interested in? Figure 5.1 describes the knowledge representation part of Figure 1.2 in Sec-

tion 1.5 in more detail. This part represents how the connectionist part of my representation of

meaning is created. The knowledge acquisition is inspired by the way we adult humans learn a

new concept: If we encounter a new word, we look it up in some resource like a dictionary and

connect the there found explanation with our current knowledge.

In
fo
rm

a
tio

n

Knowledge representation

Semantic Decomposition
WordNet, Wikidata,…

Domain dependent
Gather definitions of the concept

Collect semantic relations between
concepts

Semantic Decomposition
WordNet, Wikidata,…

Create a semantic graph of
concepts and relationsSemantic Decomposition

WordNet, Wikidata,…
WordNet

Wiktionary

Domain Ontologies
Wikidata

ConceptNet

FrameNet

BabelNet

Define a formal semantic graph

Semantic Decomposition
WordNet, Wikidata,…

Normalize Information

Decide on termination condition

Semantic Decomposition
WordNet, Wikidata,…

Corpus linguistic

Figure 5.1.: Abstract description of the knowledge part of this approach.

Figure 5.1 describes which information can be used in the decomposition as input, e.g., Word-

Net or Wikidata. Most of these knowledge sources are general-purpose dictionaries. However,

the input for the decomposition could also be a domain-specific ontology, giving facts about the

concepts needed. This creates a domain dependent representation of knowledge.

The so created knowledge can be seen as the belief of an agent and the process as belief

update. The main steps of this decomposition are the gathering of new information which in-

cludes integrating new concepts and their relations into the agent’s beliefs. Here one problem is

to describe when to stop with this information gathering process to avoid integrating unneeded

information.

The knowledge presentation is the collected information in the form of a semantic graph. Nat-

urally, since the approach collecting connectionist information, we might represent this knowl-

85

5. Abstract Approach

edge as a graph. In this first part, I will describe my graph formally and show how I formalize

the fuzzy semantics of natural language with its concept and relational hierarchies, semantic re-

lations like Synonyms and Meronyms and more complex relations like “giving advice”. In this,

I normalize the information gained from natural language resources to a strict formal model.

Further details for this semantic decomposition are described in Section 6.

Figure 5.2 details the second part of Figure 1.2 in Section 1.5. Here the reasoning part of this

approach is described in more detail. This part has as input the connectionist representation of

meaning from the first part and a problem specific question. These two component are then used

to specify the parameters of a Marker Passing algorithm. These parameters include symbolic

information encoded on the markers.

Reasoning

Q
u
e
s
tio

n

Marker Passing

Symbolic Connectionist

Problem specific

Semantic Distance
Sentence Similarty
Word Sense Disambiguation
Service Matching
Semantic Heuristic

Define Marker Passing Algorithm

Interpret Markers for Problem

Specify Parameters of Algorithm
for a given Problem

Formalize Symbolic Information on
Markers
Use Semantic Graph for reasoning

Figure 5.2.: Abstract description of the reasoning part of this approach.

This symbolic information is then passed through the graph where each node and edge can

change the information on the marker depending on their interpretation. The resulting marker

distribution and the information encoded upon them is used for answering the given questions.

If the first part represents the knowledge of an agent the second part could be seen as the process

of thought over this knowledge. This approach on semantic reasoning is further detailed in

Section 7.

The example problems listed in Figure 5.2 as input for the reasoning is then tested in the

experiments in Section 9. These example applications are selected because they all show some

understanding of the meaning of concepts. The task to determine a semantic distance of two

words, for example, shows that without context, we can still estimate if two concepts are similar

or not. The task of Word Sense Disambiguation as another example shows if we can select the

right word senses of words given a linguistic context.

The so created representation of meaning reflects a cognitive model of humans in the way

that the semantic graph represents an abstracted physical part of our brains, and the Marker

Passing represents the electronic or chemical parts of our brain[315]. Thus the one side repre-

sents learned knowledge (concepts) the other processes like thought to create coherent reasoning

[295].

As illustrated in Figure 5.3 the creation of artificial meaning as defined in Definitions 21

and 22, starts with building a model for all meanings of a concept by decomposing it. Here

Figure 5.3 focuses on temporal dependencies on the approach described in Figure 5.1 and 5.2.

This leads to a semantic graph representation (Ontology) of its denotation that represents the

connectionist knowledge representation of meaning. Such a decomposition is done to create a

86

Semantic Graph

Marker Passing

Symbolic Connectionist

Priming

Meaning rep.

Decomposition

Concept

Meaning
Interpretation

Figure 5.3.: Abstract approach to represent artificial meaning.

semantic graph [98]. One challenge here is to select the right definitions of the word1 from the

utilized data sources to be used in the decomposition.

This semantic graph is used to pass markers through to relevant concepts.2 The information

carried by the markers is denoted by the different colors of markers in Fig. 5.3. The marker

(represented as chips next to each concept in the depiction) might carry symbolic information

that steers the Marker Passing. To be able to react to different markers, each concept in the

semantic graph has an interpretation function reflecting its behavior. The interpretation function

inflects how the concept processes incoming markers, how outgoing markers are passed on to

other concepts and whether it is activated. In this way, e.g., a “NOT” concept passes its markers

to the next concept so that this one activates its opposites (in linguistics named “antonyms”).

Since semantic relations like synonym and antonym relations have different meanings as well,

the relation interpretation function allows specifying how a relation passes on markers. In this

way, symbolic information like temporal logic can be encoded in the graph. One challenge at

this step is the amalgamation of the connectionist representation in the semantic graph and the

symbolic representation provided by a concept and edge in the semantic graph.

During the activation, we can influence how the amalgamation of symbolic and connectionist

representation of meaning is contextualized. By activating the right concepts out of context,

the Marker Passing will activate different concepts in the semantic graph and thus contextualize

the representation of meaning. Here the selection of parameters and concepts to activate is

challenging. Finally, we need an interpretation of the output of the Marker Passing to extract the

represented meaning.

If we want to extract the meaning of the word ‘Bank’ in a text discussing the financial crisis,

the Marker Passing will have more markers on ‘Bank’ as a financial institute then on the seating

accommodation. This is because the activation of contextual concepts will probably activate

concepts like money, accounting, currency or equivalents from the text during the Marker Pass-

ing. Through this combination of activated concepts and interpretation functions, we create a

pragmatic representation, which leads to a context-dependent interpretation of the knowledge

encoded in the graph.

1This challenge is related to the word sense disambiguations and is one reason for the need of contextual information

during the decomposition.
2Marker passing subsumes activation spreading since the classical activation spreading can be modeled with a

marker that carries the activation level as a numeric value.

87

5. Abstract Approach

This part is organized as follows: In Section 6 I will describe the semantic decomposition

and Section 7 describes the Marker Passing algorithm. I then evaluate my approach in Part IV

of this thesis. In Part IV I test the reasoning upon the newly learned facts by letting the AI we

created solve different example problems like the estimation of a word and Sentence Similarity

or Word Sense Disambiguation problems. The implementation of this approach is described in

Section 8 consisting of two parts: The Semantic Decomposition and the Marker Passing. The

short introduction should give the reader the ability to use the implementation of this approach

and apply it to other problems.

88

6. Semantic Decomposition

Semantic decomposition is a process to take apart the meaning of complex concepts into mul-

tiple less complex ones. This section describes the semantic decomposition proposed in this

work. I will look at how knowledge sources like WordNet or Wikidata are used to gather infor-

mation about the target concepts. Then I will look at the result and analyze the outcome, and its

usefulness for our creation of a heuristic.

The goal of the decomposition is to collect all facts about a Concept of Interest (COI) needed

to form an accurate representation of the meaning of these concepts in a given context. Further,

the goal of this decomposition is specialized to an artificial audience, our agents. The decompo-

sition has the purpose of describing the connectionist part of meaning by connecting a concept

with other concepts, which are simpler, or less complex in the notion of the NSM theory [410].

How this is done will be discussed in this section.

The method in which the decomposition is created is the following: We collect all information

available about a COI. Then I filter this information for its relevance to remove unnecessary facts

by, e.g., removing stop words or stopping at semantic primes. The collection of information

about a COI is done by looking up the COI in different information sources, e.g., dictionaries. A

decomposition represents the paraphrases which describe a concept [328, p. 213]. Riemer [ibid.]

describes in the decomposition as it has been practice in dictionaries in the following way: “the

meaning of the definiendum is recast in terms of several defining terms which, if the definition

is to be explanatorily successful, must each in some sense be simpler than the definiendum or,

at least, already understood by the definition’s user.” Here the term simpler is still too unspecific

to understand how we can describe meaning, which I will elaborate closer next: In the theory of

NSM, the simplest concepts are those that make up the semantic primes. I build my approach

to this theory by assuming that the meaning of these primes is known. Based on those primes I

can describe more complex concepts only by using primes. These are then less simple than the

primes itself. I then, define the meaning of more complex concepts by describing concepts which

I was unable to describe by only using primes and the first set of more complex concepts [410,

p. 7]. I repeat this process until all concepts have a definition. The so created hierarchy builds

my scale of complexity (simplicity in anti-proportionally).

There are two reasons for inverting the direction of the theory of NSM in my decomposition:

First in the theory of Wierzbicka [406] and Goddard [145] the idea is that upon semantic primes

every concept of a natural language can be described. This forms different complexity levels,

where the semantic primes are the least complex. Since we are looking for an explanation of a

complex concept, searching from the bottom up (from the primes in complexity upwards) would

result in a big search space since we do not know which concepts are needed, which means

we would need to build all concepts which are solely described by semantic primes and build

our way upwards to the COI. Narrowing the search space, the decomposition tries to find a

decomposition of all concepts defining the COI, top down.

The second reason is: Semantic approaches often struggle with their use in AI since the

89

6. Semantic Decomposition

appropriate knowledge or needed cognition is still not accessible for computers. In combination

with the Natural Semantic Meta Language (NSM) theory, a decompositional approach seems

promising in representing meaning for AI. Decompositional approaches describe lexical content

by splitting it up into smaller parts [328].

Using the theory of NSM, I can use the semantic primes to describe all other concepts in a

natural language from bottom-up, to building the meaning of complex concepts. The funda-

mental idea of the semantic decomposition for AI is: if the meaning of the semantic primes is

given, I want to enable my agent to build the meaning of more complex concepts on its own by

first creating a decomposition and then using the semantic primes to give the complex concept

meaning. The decomposition is seen as a way of an agent to self-explain new concepts by in-

corporating its definition or some other explanation into its beliefs. This means that by looking

up explanations of unknown concepts, e.g., in a dictionary, the agent extend his semantic graph

to include the unknown concept.

In the Cambridge Dictionary1 to explain is defined as follows: ‘to make something clear or

easy to understand by describing or giving information about it’. By examining this definition,

we notice, that explaining is the act of giving information about a COI to an audience with the

intend to foster both the knowledge and the understanding about the COI. The explanation given

here seems to be a description of the relations the COI has with other concepts. This explanation

has to consist of concepts already known to the audience, else the explanations of those concepts

need to follow recursively. This means that the explanation can be context dependent because

if other concepts are known by the audience, the explanation of the same fact about a COI can

change. This can be seen in the way we explain the concept of numbers to children in second

grade and during a course of algebra in mathematic studies. Each new fact about concepts gives

the agent a new connection point, which might allow it to connect the new concept to its beliefs.

Some other approaches have been investigating decompositions and how semantic primes

influence the expressiveness and the reasoning upon such semantic graphs. Schmidtke [349]

represents such meaning in logical concepts and proposes a reasoning with primes for qualita-

tive reasoning on the example of spatial concepts. For this Schmidtke extends the first order

logic with primes, e.g., spatial reasoning. The extension from Schmidtke are pragmatic but are

limited to his use case. Ferrand [114] analyzes priming effects from a psycholinguistic view

by using a decomposition level of letters, words, and semantic-level decomposition. The other

way around the theory of compositionally state the meaning of expressions is composed by the

meaning of its parts and the syntax composing them [208]. But Kracht [209] argues as well, that

logical languages are typically not compassable. This means we can not take an arbitrary logical

language and build our decomposition upon it.

The decomposition of meaning is used here as a basis and is not subject to the research itself.

Andrews [11] analyzes the formal representation of NSM primes and their properties. He started

the analysis of combining NSM semantic with formal semantics. Even though this is only a start

for a subset of primes, it shows that the logico-semantic features of NSM might be formalized.

These approaches show that theories from linguistics are used to describe formal semantics in

a decompositional manner, but these approaches all lack a construction mechanism which allows

the agent to extend its known concepts. The decomposition we propose creates an automated

mechanism which collects explanations for concepts and integrates them into the beliefs of the

agent, i.e., the semantic graph. Depending on the context of the explanations, different facts

1Cambridge Dictionary Online, visit http://dictionary.cambridge.org/ last visited on 09.09.2017

90

http://dictionary.cambridge.org/

6.1. Natural Semantic Metalanguage

about the concepts and its relations to others is described.

Now for us humans, the decompositions to explain new concepts can be based on a multi-

tude of information sources. We can learn through conversations, by processing arguments of a

discussion, by reading a text, by thinking about the information we already know or by experi-

ence. For AI this is different since the cognition is restricted to the implementation of the agent

which encapsulates the AI. The here presented decomposition represents a mechanism which

is motivated by the way adult humans learn new concepts and use dictionaries and at the same

time builds upon the theory of NSM which allows us to give the agent a set of basic concepts,

creating the foundation to bootstrap the creation of an artificial meaning representation for more

complex concepts.

The definition of a dictionary is most likely not of this form since they take into account the

common sense knowledge of humans and therefore do not try to use as many primes as possible.

This is anticipated in the decomposition, and that is why the decomposition replaces concepts

close to semantic primes with semantic primes.

The next sections are structured in the following manner: Now that our objective is clear we

take a deeper look at NSM in Section 6.1. Semantic primes have already been used in artificial

languages which is shown in our analysis of three example semantic description languages for

their containment of semantic primes in Section 6.2. We then take a look at the used data sources

in Section 6.3. In Section 6.4 we look at the formalization of the output of our semantic decom-

position algorithm. This formalization finally allows us to describe an algorithm which will

create such a decomposition automatically in Section 6.5. We conclude our automatic semantic

decomposition in Section 6.6 and describe its benefits and shortcomings.

6.1. Natural Semantic Metalanguage

Above we have described an explanation as breaking a complex concept down into simpler con-

cepts. To determine the complexity hierarchy of concepts, we use a theory from linguistics called

Natural Semantic Metalanguage. To recapitulate: we have looked at NSM in Section 3.10. In

their works, Wierzbicka [411] and Goddard [143] for example have analyzed natural languages

for a common semantic crux, and they found approximately 65 semantic primes. Making up a

hierarchy of concepts only described with primes, then concept described with those ”first-level”

concepts and primes, making up the second level and so forth [p. 7][410]. Our decomposition

will thus stop at those words since they do not need a further decomposition. This leads to the

decision that synonyms of semantic primes are replaced with the prim.

An example of the first level might be the description of surprise [139]:

[X] was surprised:

[X] felt something at that time

like people can feel when they think like this:

‘‘something happened now

I did not think this would happen."

In this example, the complex concept of “surprise” has been described by only using semantic

primes. Accordingly, in future descriptions “surprise” can be used to describe further concepts.

Of course, this example description does not fit our need for AI. We do not restrict our explana-

tion to syntactically well-formatted sentences and add additional information needed by an AI

91

6. Semantic Decomposition

which is naturally available in humans, like the grammatical forms of “to feel” and synonyms

and references for concepts like “time”. This is why we abstract from syntax in our decompo-

sition. Even with this simplification, a decomposition of complex concepts could still become

large. To decompose every concept into solely semantic primes seems like a rather theoretical

goal like creating an Explanatory combinatorial dictionary (ECD), which is not needed since the

level of decomposition can be adapted to the reasoning task the agent has to do.

Utilizing this theory for AI, we have multiple benefits besides the hierarchy of concepts:

First, to bootstrap our natural language understanding we only need to describe the meaning of

65 concepts. Second, the primes fall into categories, which lets us describe syntactical rules

for them in a more abstract way. This could be done, e.g., for logical primes, which might be

handled in other manner or by other components than the other primes because they could be

more universal. Third, those primes are natural language, which makes them understandable by

humans, allowing understanding and analysis of the decomposition it self. This is a benefit over

representations which are regarded black box approaches like artificial neural networks. Fourth,

we have an example decomposition done by humans as in the example of surprised above. This

allows an automatic decomposition since humans can help the automatic decomposition if it

gets stuck. Fifth, the NSM theory gives the decomposition a theoretic grounding, separating

this kind of ontology creation from other ontology learning methods. The theoretic grounding

ensures that the selected primes are not arbitrary or can not be understood by humans. Since the

primes have been shown to occur in many natural languages [144].

A Drawback of our decomposition approach is that it highly depends on the quality of in-

formation sources it can use. Furthermore, since we are using multiple data sources, multiple

definitions of the same concept, which could lead to ambiguity. By using information sources

which are created by humans, the decomposition contains faulty information, contained in those

information sources and hence can be manipulated.

NSM is defined for natural languages. It is not clear if this property of semantic primes is also

present in artificial languages, and if primes exist in artificial languages if they are the same as

in natural languages. Nor is it clear if we can transfer the insight we have gained form natural

languages through the NSM theory, to artificial languages. To see if the primes are as well

present in artificial languages, e.g., as keywords in programming languages, we analyze three

artificial example languages used for semantic modeling if they contain semantic primes. With

that, we want to show, that the theory of NSM can be applied to artificial languages used in AI

by showing that artificial languages already use semantic primes as keywords. Also, we want to

answer the questions which semantic primes are already in use in artificial languages. By finding

semantic primes in artificial languages, we ensure that those primes are not solely representative

for a human fundamental semantic core and with that make it more likely that the rest of our

work will not end into domain specific interpretation of some arbitrary concepts. Furthermore,

with the NSM theory we would only need to provide the semantic for the ca. 65 primes, and with

the right composition, we could create the meaning of all other concepts automatically. With the

analysis of which primes already exists in artificial languages, we have a list of primes for which

we have an explicit semantic defined already. Leaving us with the remaining NSM primes for

which we still have to define a semantic.

92

6.2. NSM Semantic Primes in Artificial Languages

Table 6.1.: List of semantic primes and equivalent concepts found in OWL.

Category Semantic prime OWL

Substantive I self.entry

SOMETHING/ THING owl:thing

Relational KIND owl:SubClassOf

substantives PART owl:topObjectProperty

Determiners THIS owl:entityURI

THE SAME owl:equivalentClass

6.2. NSM Semantic Primes in Artificial Languages

In this section, we look at how NSM semantic primes (see Section 3.10) are used in artificial

languages. Artificial languages have semantic primes which need to be defined with a clear

semantic for a compiler or interpreter to be able to use these languages. In computer science,

such primes are called keywords. Since the NSM theory states that primes make up natural

languages, we are going to analyze which role primes play in artificial languages. The retrieval

of semantic primes as a subset of the natural semantic primes form NSM theory, in artificial

languages shows that those primes are not reserved to natural language and that the implications

drawn from the NSM theory could apply to artificial languages as well. We do so by looking

at OWL as our ontology description language, PDDL as the most common planning description

language and MOF as one of the most used modeling languages. This part of this work has been

published in [97].

We are doing this because we want to show that the implications from NSM theory can be

applied to artificial languages. The existence of semantic primes shows us that primes can be

used in artificial languages as well and that those primes are not only used in natural languages.

Which forms the theoretic basis for our representation of meaning. We use this basis, e.g., in the

decomposition to argue when to stop decomposing,

Our analysis is done in the following way: We select a semantic prime and search for an

equivalent in the given language. All found primes are contained, all not found primes are not

contained, and the other concepts of the language are not primes, they are merely shortcuts or

more complex concepts.

This experiment will allow us to declare the semantic primes from natural language also

relevant for artificial languages and acts as a starting point for further discussions on which

semantic primes are needed in artificial languages and which ones can be ignored. We start out

with the analysis of the Web Ontology Language.

Semantic Primes in the Web Ontology Language (OWL) OWL is a semantic markup

language to create structured knowledge representations and enrich them with semantics. OWL

is a W3C standard since 2004 and has been continuously developed since [148]. OWL is an

extension of the Resource Description Framework [220] and has become one of the most used

languages to describe knowledge for AI. Since OWL is meant to describe structured knowledge

the concepts used are abstract. Table 6.1 list all equivalents found in comparison with NSM

primes.

93

6. Semantic Decomposition

Table 6.2.: List of semantic primes and equivalent concepts found in PDDL.

Category Semantic prime PDDL

Substantive SOMETHING/ THING :define

Determiners THIS ::=

Existence THERE IS :exists

Time BEFORE :precondition

AFTER :effect

A LONG TIME :maintain

A SHORT TIME :wait-for

Logical concepts NOT :not

CAN :action

BECAUSE :imply

IF :when/constrained

Semantic Primes in the Planning Domain Definition Language (PDDL) PDDL is a

first-order logic based language defined as an extended BNF [122]. Commonly, it is used to pro-

vide a standardized way to describe planning problems and the associated domains. The syntax

allows to define among others actions, effects, quantifications and constraints and was intended

to enable developers to describe the “physic” of a domain. Given such a description the reasoner

uses a goal defined in PDDL to search for a plan that satisfies all constraints, requirements, and

preconditions. The concepts which are equivalent to semantic primes are listed in Table 6.2.

Semantic Primes in the Meta Object Facility (MOF) MOF has been introduced by

the Object Management Group and is formally defined, e.g., by Smith et al. [363]. MOF has

been developed to model the structure and behavior of entities in software development. For

example, UML2 implements MOF. MOF has the special properties that it can describe its meta

model, which is exactly what semantic primes are supposed to be for natural language. MOF

has mostly structural semantic primes. Table 6.3 lists all equivalents.

In conclusion, NSM provides a restricted set of primitives, which in the theory of NSM is

sufficient to describe all concepts of natural language. We have shown here that three of the

artificial modeling languages do also contain some of the semantic primes. Also Andrews [11]

has shown that some of them are reconcilable with formal semantics. Depending on the use case

of the modeling language other primes are used.

Since those languages are specially designed to be understood by machines, the primes used

have a specified semantic and can be understood by reasoners. Since those languages are de-

signed for a special purpose, they contain special purpose concepts, which do not map to seman-

tic primes but rather are shortcuts to more complex concepts.

Especially for the creation of an artificial representation of meaning, this seems like a good

choice, because with the interpretation of those primes the semantic becomes more expressive.

If semantic primes are expressive enough to describe all concepts, then we need a way of finding

the right primes in the right order to describe a given concept. The next section discusses where

we can get information as a starting point to construct our decomposition into semantic primes.

2see: http://www.omg.org/spec/UML/

94

6.3. Data Sources used in the Semantic Decomposition

Table 6.3.: List of semantic primes with and equivalent concepts found in MOF.

Category Semantic prime MOF

Substantive YOU uri

SOMETHING/ THING object

BODY instance

Relational KIND type, extent

substantives PART property

Determiners THE SAME element.equals

Quantifiers ONE multiplicityElement

Location BE (SOMEWHERE) link

Existence THERE IS element

HAVE classifier

BE (SOMEONE/SOMETHING) extend

Life and death LIVE create

DIE delete

Logical concepts CAN operation

IF event

6.3. Data Sources used in the Semantic Decomposition

For the decomposition we have to choose the data sources we can use to look up information

about a concept. Here the first idea is to use structured knowledge, which has already been

formalized, sparing us from the effort of formalizing it. This could, e.g., be done by using

ontologies which model information we need. The second idea is to use information in text form

which is semi-structured. Such an information source could be a dictionary, where information

about words is given in the form of definitions, words with the same meaning and how they are

used in example phrases. The third idea then is to structure unstructured information like videos,

speech or figures. Next, we will discuss our selection of data sources and how they are used.

For the structured information, there are many ways of formally describing facts about con-

cepts and the relation between them (see Section 6.4). This ranges from data base schemas, over

annotations to descriptions logics which use formal representations like logic. The decision on

which information sources to include is based on information available and the amount of ef-

fort needed to integrate it into the decomposition. Figure 6.1 describes an estimate of effort to

structure and specificness of the information of data sources. Here, the colors describe the effort

needed for integration into the decomposition: green for less effort and red for more effort.

In Figure 6.1 we draw the line, of which information sources we integrate, between structured

text and text for ontology learning. We selected to integrate the first three types of information

(above the line) ontological, taxonomical and structured text because the fourth one ((unstruc-

tured) text) is still subject to research [245, 274, 28] which is not in the focus of this disserta-

tional thesis. Since the mining of text is less complex than the analysis of audio, where most

approaches translate the audio into a text to do semantic analysis, we will not look at audio in-

formation. The same arguments can be held for visual information. The colored areas symbolize

the range a given information type can be argued to describe. Here, e.g., taxonomical informa-

tion consists of only one relation, which makes its description more specific then ontological

information.

95

6. Semantic Decomposition

general specific

structured

unstructured

e
ffo
r
t

visual moving

visual

audio

structured text

ontological taxonomical

text

Figure 6.1.: Classifiction of data sources in information type and formality.

To select data sources, we surveyed structured data sources displayed in Table 6.4. Here we

selected knowledge graphs which have been automatically generated or handcrafted which is

denoted by the column “automatically extracted”. This differentiation is done because it gives

us information about the quality of the created graph and how much effort an update takes.

The second parameter (Manually modified) distinguishes if the graph can be modified without

modifying the underlying data source. This gives us the choice of correcting errors manually.

The third column (collaborative) indicates if the knowledge is modified by one organization or

by collaboration. This gives us information about which quality the information has, e.g., if it

has been created by one organization or author, e.g., Roget’s Thesaurus or multiple once like

Wikipedia. The amount of information collected in the information source is shown in column

four (number of entities/relations) which is an estimate of how many entities and relations are

collected in the information sources. The last column (availability) describes if the information

source is publicly accessible. This is needed for the information source to be part of our research.

These information sources can be separated into three types of information structures: The

first nine data sources are graph representations like DBPedia [227] and Wikidata [392]. The

second type is dictionaries like WordNet [270] and Wiktionary [263] and the last one is a The-

saurus [257]. Here DBPedia [227], Wikidata [392] and Wiktionary [263] have Wikipedia 3

as source. Each of them extracts different aspects of this crowd created information source.

While Wiktionary creates a dictionary with words and their definitions, word type, and example

sentences, Wikidata extracts an ontology with entities and their relations. Wikidata is mostly

manually created and serves as an upper ontology for DBPedia to extract information out of

Wikipedia articles. Where in BabelNet [283] the number of entities and relations is only given

for all 271 languages. In addition, for the dictionary LDOCE [312] we could not find a relation

count.

For a proof of concept we selected at least one of each category to be integrated into our

decomposition: As the only thesaurus we integrated Roget’s thesaurus. Since WordNet is a

standard for defining word senses in NLP tasks [283] we have integrated WordNet as exam-

3https://www.wikipedia.org/

96

https://www.wikipedia.org/

6.4. Formalization of the Semantic Graph

Table 6.4.: List of knowledge graphs with the amount of entities and relations in thousands (T)

and millions (M).

N
am

e
au

to
m

at
ic

al
ly

ex
tr

ac
tr

ac
te

d

m
an

ual
ly

m
od

ifi
ed

co
lla

-

bor
at

iv
e

#
en

tit
ie

s

#
re

la
tio

ns

av
ai

la
bili

ty

Knowledge Vault [75] X × × 45M\241M ×

YAGO [371] X × × 0.9M\5M X

YAGO2 [170] X × × 9.8M\80M X

YAGO3 [248] X × × 10M\120M X

Freebase [33] × X X 40M\637M X

BabelNet [283] X × X 6M\380M ×

Wikidata [392] × X X 20M\100M X

ConceptNet [238] × X X 1.6M\300T X

DBPedia [227] X × × 3.7M\400M X

WordNet [270] × X X 118T\166T X

LDOCE [312] × X × 230T\? ×

Wiktionary [263] × X X 1.6M\380T X

Rogets Thesaurus [257] × X × 59T\62T X

ple ontology. Because WordNet has missing vocabulary, we added Wikidata [392] to our data

sources. As Dictionary we integrated Wiktionary because of it was the only one freely available

offline.

With this information sources for the decomposition, we are able to look up concepts, and

integrate them with other concepts in a semantic graph automatically. This enables the agent

to integrate additional information about a concept into its current semantic graph by getting

explanations from the different information sources.

Extracting concept form those information sources and integrating them into the beliefs of an

agent to form an artificial representation of meaning, we have to define how the connectionist

part of this representation formally looks like. The formalism we will use is described in the

next section.

6.4. Formalization of the Semantic Graph

This section describes the formalization of the graph which is created by the decomposition. We

first discuss our requirements for the representation, grounded in our use case. We do so by

looking at our example for relations which is the relation “to give advice” shown in Figure 6.2.

Here the relation “give” inherits from an abstract “transfer” relation. It is a tertiary relation since

it has three arguments: The adviser the advisee and the object given. Then we look at different

formalization types and select one of them. We have the requirements regarding this graph which

are an extension of the requirements described in Section 4.2 where only one requirement is not

fulfilled by OWL 2: the requirement that Relations are concepts (see Language Requirement 11

on Page 59). Therefore we define a formalism fulfilling this requirement in this section.

Relations and concepts are often presented as a graph like structure. We have defined our for-

97

6. Semantic Decomposition

transference

give

is-a

teacher

advice

student

object

source target

hyponym

hypernym

Figure 6.2.: Example for a relation which connects three concepts and is it self reference by a

relation.

Minimum Type Graph

Concept Relation

Figure 6.3.: Minimal type graph for the description of a decomposition graph.

malization of an ontology in Section 3.6, which is used here. Since a graph with nodes and edges

where each edge connects two nodes is not expressive enough to satisfy our requirements (e.g.,

n-ary relations and relations between nodes and edges), we need something like an attributed

graph [66]. Attributes allow us to model, e.g., concepts with literals and relations with names.

Further, we need types of concepts and relations which lead us to typed attributed graphs. Fur-

ther, the types we describe for concepts and relations describe a hierarchy which leads us to

attributed typed graphs with a type hierarchy.

Therefore based on the requirements described in Section 4.2 we formalize the graph structure

as an Attributed Type Graph with Type Inheritance introduced by De Lara et al. [66]. For a

formal definition see Section 3.4.

The requirement of having an n-ary relation (multi-graphs or hyper-graph) and the require-

ment of having edges among edges leads to the need of describing more complex edges. The

fact that relations are concepts as well is problematic for standard graph representations. Having

edges which are nodes makes it necessary to extend a hyper-graph. The requirement of having a

type hierarchy and types of concepts and relations leads us to specify a base type graph, which

can be adapted to a specific use case. This basic type graph is shown in Figure 6.3.

To distinguish concepts from relations, we define a minimal type graph shown in Figure 6.3.

This minimal type graph can be extended regarding its use. In this minimal type graph, the

relations inherit from concepts and account for the requirement of “relations are concepts”.

We define a minimal type graph so that we can guarantee for our algorithms, that we have at

least the type of concepts and relations.

Definition 31. Minimum Type graph: The minimum type graph TGmin for describing a semantic

decomposition is the attributed type graph with inheritance depicted in Figure 6.3.

98

6.4. Formalization of the Semantic Graph

The minimum type graph like we have defined it in Definition 31 formalizes the minimal

properties of a graph which describes the types used in the semantic decomposition and later on

during the Marker Passing. The minimum type graph states the following things:

Relations are concepts all relations are inherited from concepts. This means each relation

can be seen as relation or as a concept.

For our requirement of a conjunction of relations being concepts, we have to look at how we

define our Type graph ATG and its Inheritance graph I. We can see in Figure 6.3 that the inher-

itance in the type graph can be used to define that “Relations” are special kinds of “concepts”

where concepts are the nodes and relations are the edges for our application. For an extension

of the type graph we require that the extension is conforming the minimal type graph:

Definition 32. Type conformance: A type graph TG conforms to a minimum type graph TGmin

if the following conditions hold:

1. ∃ Morphism φ : TGmin → TG, meaning that TGmin is contained in TG

2. ∀ nodes N are in the clique of node type ”Concept”, meaning that everything inherits from

concepts.

3. ∀ edges e ∈ TG : source(e) are from the clique of node type ”Relation”, meaning refer-

ences only refer from a relations to the related concepts.

Here the first conditions ensure that all specialization of our type graph at least contain con-

cepts and relations with relations being a special concept. This guarantees that we can work

with those node types in our algorithms later on. The second conditions ensure that everything

is a concept. Allowing us to see each relationship as a concept as well. The third condition de-

scribes the semantic of the arrows used in the type graph: The arrows always have their source

in a relation node and point to concepts which are related to the relations.

The types of nodes and edges can be imagined as a mapping to a common concept in the type

graph. In our decomposition, an “equals”, “is-A” or “synonym” relation could all be mapped to

the same type of an equivalence relation. There is the possibility of introducing cardinality with

constraint languages into such a type graph. We neglect this possibility because it is not used in

our use case.

Furthermore, the requirement of having n-ary edges can also be handled by the type graph.

This is done by the use of outgoing edges from relations to concepts. Each reference has a

name and therefore can describe something like our “gives” relation in our example shown in

Figure 6.2. Since our type graph as multiple references the give relation can have the relations

advisor, advisee, and object as shown in Figure 6.4.

To conclude we use the attributes of the type graph to label our nodes and relations. We

use the type hierarchy to define our node and edge interpretation. For our example shown in

Figure 6.2 we can define the following basic type graph shown in Figure 6.3. The minimal type

graph I = (IV , IE, s, t) of our ATGI is shown in Figure 6.3. It serves as a basic type graph which

can be extended by the different applications like shown in Figure 6.6. This means all edges

have a label which again can be decomposed. To illustrate, in our example give(teacher,

advice, student) we need the label “give” to describe the relation. In consequence, each

edge is a concept, which can be seen as a node having relations with other nodes or edges.

99

6. Semantic Decomposition

Here relations are concepts and with that nodes and edges are no longer strictly separated.

This means each edge can be interpreted as a node. In our semantic graph, the entities are

concepts. This means that relations are concepts, too, which can be imagined as having a sub

graph (its decomposition). In Figure 6.3 we have defined that at least concepts and relations

need to be defined by the type graph.

For the understanding of how we can do so, we now define an example graph with an example

type graph to formally describe our example shown in Figure 6.2.

give: Relation

Advice: Concept
Literal: advice

Teacher: Concept
Literal: teacher

Student: Concept
Literal: student

Name: object

Name: advicer

Hypernym

transfer: Relation

Specialisation: Relation

Name: advisee
Hyponym

Typed Graph

Figure 6.4.: Example of a typed graph.

This leads us to the definition of our typed graph from our example in Figure 6.2 to the typed

graph depicted in Figure 6.4.

Now we can define a type graph and use it to type our nodes and relations of our representation

of meaning in our semantic graph. With the typing of the graph, we want to make sure that each

named relation is represented by a node.

Now we can look at the example application of our formal graph and the description of the

semantic graph with our formalism. With that, we are going to bridge the rhetoric gap between

the formal representation of a graph and our application in the semantic decomposition. We do

this, by explaining how we use nodes and edges and how the above-postulated requirements are

used. Further, we extend the basic type graph to fit our application.

This example is shown in Figure 6.5 is taken from a test data set of Rubenstein and Good-

enough [336] for semantic similarity of words. The example shows two words “Noon” and

noon

midday

opposite

d
efi

ni
tio

n

hy
per

ny
m

holonym

synonym

meronym

midnight

antonym

night

meronym

d
e
fi
n

it
io

n

a
n

to
n

y
ma
n
to

n
y
m

fo
llo

w
e
d
 b

y

afternoon

also know
n as

calendric unit

fra
m

e

fra
me

the middle of the

tim
e of

w
h
e
n
 th

e
 s

u
n
 is

 in
 its

 z
e
n
ith

day

Wikidata
WordNet
Wiktionary
FrameNet

BE

WHEN

Figure 6.5.: Abstract example of an decomposition of midday and noon.

100

6.4. Formalization of the Semantic Graph

“midday” and their relations to other words and each other. The colors of the edges describe

from which data source the relations has been taken (Wiktidata in blue, WordNet in black, Wik-

tionary in reading and FrameNet in green) and the sentences in boxes are definitions of the

words. This is a more complex decomposition regarding two concepts as shown in Figure 6.5.

We can see that some semantically close relations are named differently in different dictionaries.

Here, e.g., “midnight” is in “opposite” relation with noon in the Wikidata and in the Wiktionary

a similar relation is called “antonym”.

Further, we can specialize the type Graph TG with the graph from Figure 6.6 to fit our appli-

cation as an example type graph used in this word. The type graph shown in Figure 6.6 is an

extension of the type graph shown in Figure 6.3. The extension is the specification of different

relation types which are needed to describe the example decomposition shown in Figure 6.5.

With this extension, we can distinguish between the different node types like concepts and se-

mantic primes and between the different relations types, e.g., the named and semantic relations.

Concept
- Literal: String Hypernym

Named Relation

- Name: String

Relational
Specialisation

Refernce
- Name: String

Directed Relation

Source

Stop Word

Not

Relation

Meronym Relation

Synonym Relation Antonym Relation

Also Known as Relation

Hypernym Relation

Opposite Relation

Holonym Relation

Hyponym

Target
Undirected Relation

ref

Semantic Prime

Logical Concepts

Definition Relation

Figure 6.6.: Example of a type graph (big).

In Figure 6.6 we describe all the relations from our example shown in Figure 6.7. This ex-

ample is based on our decomposition example shown in Figure 6.5. Here undirected edges are

depicted by neglecting the target and source reference. Further to safe space, the definitions are

depicted as a set of concepts through the dotted lines. This is done because we could not order

the concepts due to the multiple occurrences of the same concept. For the sake of simplicity, we

neglect this here in our example.

We model these types so that we can react to them with the Marker Passing. This means

that we can interpret the same markers differently in every type of node or relation. To model

a graph like in Figure 6.2 and 6.5 we create a example type graph like depicted in Figure 6.6

which we will use for our formalization in the doctoral thesis. Here, e.g., we modeled relations

as concepts and semantic relations as a relation, and antonymy as one of those semantic relations

which has the subtype of opposite relation. This is done because we see an opposite relation as

binary (complementary antonyms) and with that as a special case of an antonym. With this

differentiation, we can react differently to the special type of opposites during the reasoning

upon the graph. This leaves us with a formalization of our semantic graph. Now the question

remains on how to create such a knowledge graph automatically. We call this creation algorithm

Semantic Decomposition. Now we will describe the basis for the decomposition algorithm

101

6. Semantic Decomposition

Definition Noon

Definition Midday

noon:Concept
Literal: noon

midday:Concept
Literal: midday

midnight:Concept
Literal: midnight

calendric unit:Concept
Literal: calendric unit

:Concept Literal:
afternoon

night:Concept
Literal: night

the:Stop Word
Literal: the

middle:Concept
Literal: middle

WHEN:Semantic Prime
Literal: wehn

sun:Concept
Literal: sun

BE:Semantic Prime
Literal: is

in:Stop Word
Literal: in

itself:Concept
Literal: its

zenith:Concept
Literal: zenith

:Frame Relation

: Frame Relation

:Antonym Relation
:Antonym Relation

:Opposite Relation

:Named Relation
Name: followed by

:Also Known as Relation

:Meronym Relation

time:Concept
Literal: time

of:Stop Word
Literal: of

day:Concept
Literal: day

:Meronym Relation

:Definition Relation

:Definition Relation

:Hyponym Relation

:Synonym Relation

:Antonym Relation

:Holonym Relation

source

target

source

target

source

target

source

target

source

target

source

target
source target

source

ref

target

target

ref

ref

ref

ref

ref

ref

ref

ref

ref

source

ref

Figure 6.7.: Example of a typed graph of noon and midday.

which produces such a graph.

6.5. Decomposition into Semantic Primes

In this section, we will go into details on how we can decompose meaning of complex concepts

into semantic primes. The goal of this chapter is the creation of what Wierzbicka [410] calls

’Mental Lexicon’ for artificial intelligence. For us that means transforming the information

given by the information sources depicted in Figure 5.1 into a graph as described in Section 6.4.

We will define an algorithm for the semantic decomposition in Section 6.5.1. We will go

into detail on how the semantic relations contribute to the decomposition in Section 6.5.2 to

Section 6.5.6. Then we look at the use of syntax in the decomposition in Section 6.5.7 and argue

why it is not being used. We then look at the conditions for the termination of the algorithm in

Section 6.5.8. We conclude our discussion in Section 6.6

6.5.1. Algorithm for the Decomposition of Meaning

This section will propose an automatic decomposition of meaning starting from a more complex

concept and ending up with a description build upon semantic primes. This decomposition is

done similarly like monolingual dictionary4, meta languages like MOF and OWL which both

describe their typing (the meta model of the language) and how Wierzbicka [410] describes

a mental lexicon. Further Melcuk calls this kind of dictionary an Explanatory combinatorial

dictionary [261].

It is important to notice that this is not meant for natural language processing. The languages

decomposed here are formal languages like OWL. Hence our mental lexicon only contains con-

cepts of this language and therefore has the goal to be computer readable. The task of building a

4Even though the dictionary does not forcibly follow the decompositional direction (e.g., the definition of simplicity

of words) proposed in the NSM theory, but it presents us with the possibility to connect one word with a set of

words called its definition.

102

6.5. Decomposition into Semantic Primes

DO

walk

go{

MOVE

TIME SPACE

in

start

Figure 6.8.: Example decomposition of one meaning of the concept “to go”.

concept even if it is composed of multiple words the search for lexical paradigms and inflections

is left to linguists and will not be subject to our work.

However, there are primes which are human readable, which is no surprise, since the artificial

languages have been created by humans. The prime KIND, for example, is part of OWL and

MOF as we have argued in a previous publication [93]. In both languages, such a prime has the

same interpretation of tagging the inheritance of an object. Inheritance means that all properties,

attributes, and methods of the parent object are available to the child objects. This means that if

we tell a reasoner that object B is a sub class of object A, the reasoner knows what to do since

the abstract prime KIND is part of its language.

For concepts which are not part of the language, we can describe all needed facts in the

language itself. This is done in domain specific ontologies like, e.g., in models of MOF or

ontologies in OWL. The argument here is that those languages already include some of the

primes and it seems like the NSM theory is applicable, at least for this subset of primes. This

means that a decomposition of concepts of an artificial language might be possible to.

With decompositions, we want to decompose every concept into those entities, which are

known to the reasoner in a way that the meaning of the concept can be distilled from the meaning

of the primes. One example of a decomposition could be the explanation of “to go”. We take the

English dictionary [394] as a reference for this decomposition: the meaning of “to go” is defined

as to move in time or space. Figure 6.8 illustrated this decomposition as a schematic depiction.

Here the hexagons are semantic primes from the list of NSM primes, round cornered tetragons

are intermediate concepts, and the rhombus is auxiliary words. The decomposition is done by

taking the definition out of a dictionary, where such a complex concept is defined using less

complex concepts. The intermediate concepts can provide different interpretations for different

contexts.

The Algorithm 1 is structured after what we understand as explanations. If we look at humans

and how they learn new concepts, explanations are a common tool to do so. Of course, not

everything can be explained, and some concepts need experience or cognition to capture their

103

6. Semantic Decomposition

meaning, like the notion of pain or the concept of red. Nevertheless, explanations are how

most adult humans learn5. The second and perhaps more important part of this human studying

process is the capability to self-explain. This is needed to integrate the newly learned information

into one’s beliefs. As a result, adjusting the world view to incorporate the new facts, update the

reasoning about this new concept and their relations, and with that change the way one thinks

about the world. For this reason, we look at the decomposition next, and then we glance at

self-explanation.

Algorithm 1 A decompositional algorithm.

Name: Decompose Input: Concept word, Integer depth Output: Semantic Graph

1: SemanticGraph decomposition = ∅

2: function DECOMPOSE(Concept c, Integer depth, SemanticGraph decomposition)

3: if depth ≥ 0 ∧ c 6∈ decomposition then

4: concept← Normalization(c)

5: Relations← getRelations(c)

6: Definitions← lookUpDefinitions(c)

7: AddConcept(c, decomposition)

8: if concept ∈ IsSynonymOfPrime then

9: return decomposition

10: end if

11: for all r ∈ Relations do

12: AddConcept(r, decomposition)

13: AddRelation(r, getTargets(r), decomposition)

14: DECOMPOSE(r, depth− 1)

15: for all target ∈ getTargets(r) do

16: DECOMPOSE(target, depth− 1)

17: end for

18: end for

19: for all definition in Definitions do

20: for all def in definition do

21: AddConcept(def , decomposition)

22: AddRelation(”definition”, {Concept , def}, decomposition)

23: DECOMPOSE(def , depth− 1)

24: end for

25: end for

26: return decomposition

27: else

28: return decomposition

29: end if

30: end function

31: DECOMPOSE(word, depth, decomposition)

32: return decomposition

The functions AddRelation and AddConcept are convenience methods for adding the relation

and concepts into the semantic graph. The functions AddConcept(concept, decomposition) and

AddRelation(relation, getTargets(relation), decomposition) add the concepts or relations to the

graph which represents our decomposition. AddConcept adds the given concept to the graph

5To back up this claim, see how students in Universities learn by studying complex concepts and their relations.

Where the most information is given to them by course consisting of lectures, which can be seen as explanations.

104

6.5. Decomposition into Semantic Primes

nodes and AddRelation adds the relation between the concept its targets to the relations of the

graph.

We now have a look at how such decomposition can be created and how automatisms might

help. We identified the steps for a decomposition as described in the recursive Algorithm 1.

The algorithm takes as input the concept that is subject to the decomposition. As a successful

decomposition will always build a graph, the semantic primes are the termination criterion for

the recursion.

The Algorithm 1 reads as follows: Line 1 initializes the semantic graph which we will build

up during this algorithm and which represents the result at the end.

Line 2 to 29 represents the recursive function which is called on all decomposed concepts.

This function adds the decomposition to the semantic graph initialized in Line 1. Which is called

until the decomposition depth is reached or all concepts have been decomposed into semantic

primes. We will build a hierarchical structure made up of concepts also referred to as lexical

units. Those concepts include a lexical representation, the textual representation of a lexeme

and a decomposition.

Line 3 checks if the concepts have been already decomposed or if the decomposition depth

is reached. The decomposition depth is a parameter of the decomposition, which restricts the

decomposition to an amount of relations to which the decomposition extends. The second part

stops the decomposition of decomposing the same concepts over and over again. Additionally,

the decomposition sops here, if a synonym of the concept has been decomposed previously.

This is because if a synonym has been decomposed previously, its synonyms are added to the

decomposition as well. Thus this synonym, which is supposed to get decomposed now, is already

part of the decomposition and is not decomposed again.

Line 4 takes the concepts to decompose and normalizes it. Here the inflection is removed

revealing the stem of a concept. Furthermore a concept includes all its inflections (all concepts

which can be created by applying grammatical forms to a concept like eating, ate, eaten), all

lexical paradigms for this concept (all concepts rooting from the same word stem like to dine,

dinner) and all sub-categorization frames (like the valence which is the amount of parameters

like ask, ask X, ask X for Y). We remove this kind of inflection because we are interested in

the concepts described by a word, not its relation to other words. We can integrate syntactic

information into the graph, by adding syntax relations and nodes. For this reduction, we use the

linguistic process of Lemmatization6. The function Normalization in Algorithm 1 Line 4 hides

this normalization of a concept.

Line 5 gets all the relations of the concept from the used dictionaries. This means we are look-

ing through all our dictionaries and look up all the semantic relations we can find and remember

them for later processing.

Line 6 looks up the definitions of the concept in all available dictionaries.

Lines 8 to 10 check whether the concept itself is a prime. If this is the case, the prime

is added to the decomposition, and the decomposition is finished for this concept finally the

decomposition is returned. This hides technical optimizations like that we check for synonyms

of primes as well to make the search a bit broader. At the same time, we simplified the stop

word removal here. Stop word represents words which are ignored. Those are taken from

natural language processing theory [412]. These are mostly words with less semantic meaning

6Sometimes Lemmatization is referred to a Stemming, where, e.g., the end of words is removed to remove some-

thing like a plural s.

105

6. Semantic Decomposition

like, e.g., “a”, “an” or “the”. Those nodes are removed and are not further decomposed.

Lines 11 to 18 handle the relation of the concept we are decomposing. Here all relations

are added to the decomposition as a relation between concepts. Then all concepts which are

connected by those relations are recursively decomposed.

Lines 19 to 25 decompose the definitions. Each definition is a list of concepts which get

decomposed again. The definition is connected to the definiendum via a “definition” relations.

The main point to notice here is that the order of words of the definition is lost. The grammar

is, as a result, untouched and does not yet influence the decomposition. Further, this means the

decomposition is highly influenced by the quality of the dictionary.

Algorithm 2 Get the relations of a concept

Name: GetRelations Input: Concept c Output: List<Relations>

1: List<Relations> relations = ∅

2: for all dict in Dictionaries do

3: relations.addAll(GETSYNONYMS(dict, concept, GetWordType(concept)))

4: relations.addAll(GETANTONYMS(dict, concept, GetWordType(concept)))

5: relations.addAll(GETHYPERNYMS(dict, concept, GetWordType(concept)))

6: relations.addAll(GETHYPONYMS(dict, concept, GetWordType(concept)))

7: relations.addAll(GETMERONYMS(dict, concept, GetWordType(concept)))

8: end for

9: return relations

Algorithm 2 describes the GetRelation function which looks up the known relations from

the information sources. Each information sources is encapsulated behind the interface of a

dictionary. The dictionary implements the signature of concept and definition from Section 3.5.

Thus, this dictionary implements the functions GETSYNONYMS, GETANTONYMS,... as

well as the GETDEFINITION function. Algorithm 2 represents an abstraction of how the

information about a concept is collected from the information sources.

Algorithm 3 Get the definitions of a concept

Name: lookUpDefinitions Input: Concept c Output: List<Definitions>

1: List<Definitions> definitions = ∅

2: for all dict in Dictionaries do

3: definitions.addAll(GETDEFINITION(dict, concept, GetWordType(concept)))

4: end for

5: return definitions

Algorithm 3 describes how the definitions are collected from the dictionaries. Each dictionary

implements the signature describe in Section 6.3. Here the GetWordType() function determines

the Part of speech (POS) of a concepts, so that the dictionary can determine which word sense

to return. This parameter can be unspecified in which case all word senses are considered.

Now we will have a look at how the different semantic relations are integrated into the decom-

position to argue why the above algorithm has been implemented the way it is. In the following

discussions, we will look and additional information or ways the information could have been

included into the decomposition. These discussions are held to explain how the decomposition

in Algorithm 1 could be extended. Additionally, we will discuss simplification we have made in

Algorithm 1 to keep clean from distractions and ease the understanding.

106

6.5. Decomposition into Semantic Primes

6.5.2. Decomposing using Synonyms

This section discusses our use of synonyms in our algorithm. We focus on things we have not

explicitly integrated into the algorithm. This is done to show potential improvement points or

our Decomposition.

Since synonyms are equivalent in meaning regarding the context of use, the synonyms can

be replaced in an utterance, without changing the meaning of the utterance. Consequently syn-

onyms play an important role in the decomposition. The decomposition could be stoped, if the

meaning of synonyms is known. Imagine if one concept is not known in an utterance, but by pro-

viding a known synonym, the utterance can be understood completely. Synonyms are collected

with the function getSynonyms : Concept,WordType→ Concept∗ in Algorithm 2.

With that synonyms make the search for primes broader. Depending on the type of semantic

similarity measure and the threshold, from which we call two concepts synonyms the breadth

of the decomposition can be controlled. This again is defined by the information source which

decided which two concepts are seen to be a synonym. Line eight of Algorithm 1 hides this

implementation detail. Here we check if a concept is a prime, but at the same time, we check

whether one of its synonyms is prime or if a synonym of primes contains the concept.

On improvement point of the Algorithm 1 could be the selection of the word sense before

choosing the synonyms narrows the breadth but focuses on the right synonyms for the decom-

position. In detail, there are two parts of the decomposition where synonyms can be used:

Regarding the concept subject of decomposition and regarding the semantic primes. In the first

case we can use the context of uses of the concept to select the word sense, and with that, the

right synonyms, check if one of those synonyms is a prime and if so, we can stop decomposing

since we could replace this concept with a prime without changing any meaning. Another im-

provement point is the caching of concepts we already have decomposed, which is done in our

implementation but neglected in the Algorithm 1 for simplicity.

For further improvement, we could identify all synonyms of the primes, classified in their

context and word sense. Then when decomposing, we can check if, for the given context and

word sense, there is a prime or a synonym of a prime which leads us to again stop the decompo-

sition. Analyzing, the synonyms of primes allows us to specify in which word sense the prime is

used. Since there is a relatively small set of primes (ca. 65), we can do this for all of them in an

insignificant amount of time. At the same time, defining synonyms for semantic primes allows

us to downsize the effect of the neglecting of syntax during the decomposition because all those

synonyms cause the decomposition to stop and do not need further analysis. In Table 6.5 this

can be seen for example for the prime “I”. Here we can define syntactic variations as synonyms

which spare us the effort to find ”yours truly” as one concept and its syntactic analysis.

Further Algorithm 1 neglects the fact that if a synonym is a replaceable concept in a given

context, then the hyperonym and hyponyms can be treated as synonyms, e.g., almost all nouns

could be replaced by SOMETHING/THING. If or when it makes sense to use specialization,

and generalization can be looked at separately, which is done in Section 6.5.4 and Section 6.5.5.

Using a synonym is like explaining what a truck is by explaining something like: “A truck

is like a bus but for transporting goods instead of people.” If the concept bus has already been

decomposed, this can lead the reasoner to extract multiple facts for a truck. If the concept word

type (POS) is known, then this gives some insight into its relations, because not all definitions

have to be looked at, since the definitions with a different POS can be neglected. The implemen-

107

6. Semantic Decomposition

Prime Context Synonym

I self reference me, myself, yours truly

YOU direct refer-

ence

thee, ye, ya

SOMEONE general refer-

ence

individual, soul, person, anybody, anyone,

mortal, somebody

SOMETHING general refer-

ence

THING, sth, item, affair, matter

PEOPLE general refer-

ence

populace, nation, mass, lede, race, common-

ers, community,tribe, folk, clan, folks

BODY physics dead body, torso, soma, organic structure,

corpus, flesh, trunk, physical structure

Table 6.5.: Semantic primes in the category substantive in the English language [140].

tation of our decomposition includes the incorporation of a word POS which in Algorithm 2 but

is neglected in Algorithm 1 for the sake of simplicity.

As primes are concepts as well, they have semantic relations like synonyms and antonyms

like all other concepts. In this section, we look at the synonyms of primes and in which context

they can be replaced. Since synonymy is a fuzzy concept as defined in Section 3.9. With this

definition, it is possible to determine synonyms of primes. Those synonyms then are replaced by

the lemma of the prime7. This means that the lemmatization is the removal of inflection caused

by syntax. In simpler words: This means to remove the effect a grammar has on a word.

Semantic primes are seen as word senses, thus only have one meaning [142, p. 460]. If we

look at the Table 3.2 we can see that there are two primes ”BE”. It is used in two senses: to

be in a location and to be something. Those are separated in Table 3.2 by the specialization in

parentheses (SOMEWHERE and SOMEONE/SOMETHING).

Some of the primes in Table 3.2 have already synonyms defined. If we look at MUCH and

MANY, OTHER and ELSE and finally SOMETHING and THING there primes seem to have

the same meaning. This leads to a decision which one of them should be used. Here we have

selected arbitrary one prime and the other as a synonym.

In natural language, a prime can have multiple words senses in which it could be used. Con-

sequently, different contexts in which it can be used and with that different synonyms. We now

try to identify the synonyms of primes an order them by context. The following methodology is

used to identify synonyms for the primes. All dictionaries of used in the decomposition are used

to look up the synonyms known to the decomposition.

Here we analyze an example category: substantives. Here the primes are to reference others,

one self or in general things. Here is a difference between SOMEONE, SOMETHING, and

PEOPLE. The first semantic discrimination is between humans and the other things in the world.

SOMEONE does address a person, as well as PEOPLE, addresses us as human kind. However,

PEOPLE is more general then SOMEONE, since SOMEONE addresses one of the PEOPLE.

The synonyms of primes have been selected by querying the data sources for synonyms and

selecting the one which fits the word sense of the prime manually. Table 6.5 shows an example

of the category of substantive primes.

7The lemma of a word is its base form. This means we are replacing “are”, “was”, “am”, “is” with its basic form

“BE”

108

6.5. Decomposition into Semantic Primes

The rest of the tables can be found in Appendix A Section A.4. Next, we will look at the

decomposition using antonyms explaining why antonyms are used in the decomposition and

which theoretical role they play in the decomposition.

6.5.3. Decomposing using Antonyms

Using antonyms is similar to using synonyms during the decomposition. Here again, an antonym

is not well defined, and there is a degree of antonymy to every concept pair. Choosing a threshold

of which concepts are an antonym to each other is one parameter which defines the output of a

decomposition.

Also, we will see that selecting how to use antonyms in a decomposition is not as simple as it

is with synonyms. This is because there is a multitude of different antonyms.

From the discussion of antonymy in Section 3.9 we know that this only works for some

primes. If we look at the change of evaluations a sentence to true or false statements, the re-

placement of an antonym again has to depend on the context the concept to be replaced is used

in. If we take the example sentence: “Now it is sunny”, and replace sunny with a negated

antonym cloudy this changes the situations in which this sentence is evaluated to true or false.

You can imagine that it can be not cloudy at night, but it is most of the time not sunny. This non-

symmetrical antonyms special cases we will look at next. In those cases, the antonymy might

not be a undirected edge, but rather has different roles. That antonyms are not symmetric can be

seen on the example of to buy which is not equal to “not to sell”. Where to buy and to sell are

two parts of the same transaction. In consequence to buy and to sell might be antonyms in some

lexical contexts, but they can not be handled by negating them.

Namely, the function getAntonyms : Concept,WordType → Concept∗ in Algorithm 2, gets

the appropriate antonym relation for a given antonym. This is implemented by the signature of

a dictionary described in Section 6.3.

As we have seen in Section 3.9 there are different types of antonyms. Not all antonyms can

be used the same way. Therefore we can not like with synonyms (see Section 6.5.2) stop the

decomposition when we find an antonym of a prime.

Next, we discuss the different types of antonyms and why they could not be used during the

decomposition.

Gradable

Gradable antonyms are antonyms which can not be separated into two classes. A common

example is a temperature: “hot” and “cold”. Since we do not include fuzzy concepts into our

decomposition, these antonyms are handled by a simple default antonym relationship.

Complementary

The complementary concepts are not in an antonym relation as in being the opposite, but rather

to complete a set of states. For a machine to be “off” or “on” are examples of a complementary

antonym. Another example is “dead” and “alive”, where the one can not be without the other.

In opposite to purely relational antonyms, complementary antonyms are not restricted to rela-

tionships. Because of the open world assumption, there is alway a third option of modeling not

knowing if something is “off” or “on”. Since an ontology can explicitly model union of classes,

109

6. Semantic Decomposition

we can model state which exists only of “off” or “on”. In this case, the antonym is part of the

standard antonymy relations, and the complement is explicitly defined.

Converse Relational

The converse relationship describes a relation from its different views. An example of such

a relationship could be the “inheritance” which has two different views: parent and children.

Special about the converse relationship as an antonym is the form the existence of one part; the

other has to exist. As an illustration, in the example of inheritance there is no child without

parents, and if there are no children, then the nodes are just nodes and not parents because we

do not know if the next node in the graph will be inserted as its parent or its child. Converse

antonyms are neglected concerning our decomposition.

Reverse Relational

The reverse relations describes antonyms on relations. Thus if concepts are in one relation of

the relations being in a reverse relationship, they are in the other relationship as well. As the

name implies, the relations in these cases are directed. In particular, if the one relationship is in

one direction, then the other one is in the other direction. An example here is the Hyponym- and

Hypernym-Relation. We neglect reverse relationships in our decomposition because they can be

explicitly described in the ontology by relating them to a reverse relationship if needed.

Incompatible

Incompatibility as an antonym relation is a standard interpretation of classes in OWL. Therefore

if not specified otherwise if to concepts inherit from two independent classes, they are incom-

patible. Thus incompatibility is included in our antonym relations.

Semantically this does not describe all the antonyms we have looked at in this section. Sadly

the information sources unify those types of antonyms in one relation. This unified relation will

be used in our approach until the identification of the different types of antonyms is possible.

Until then we might have an occasional mix in of some other antonym from our dictionaries

since, e.g., Wikipedia is described by humans, which works in such inconsistent ways.

Besides antonyms and synonyms, the most used relation in ontologies is the inheritance rela-

tions. Those can be split into specialization and generalization. The next section will discuss the

generalization and its role in the decomposition.

6.5.4. Decomposing using Hypernyms

Using a more general concept to explain a specialized one allows the explainer to be abstract dur-

ing an explanation. This is done with function getHypernyms : Concept,WordType→ Concept∗

in Algorithm 2. Explanations like: “A human is an animal” are useful since now the reasoner

can infer properties of the more general concept. The hypernyms can lead to primes or can be a

prime, which again stops the decomposition in the direction of a generalization.

The recursive level of which Hypernyms are used during the decomposition effects the ab-

straction the decomposition will have. Abstracting concept will eventually lead to the prime

THING/SOMETHING which can lead to decompositions like: “Someone does a thing to some-

thing.” These decompositions are not useless; a reasoner can now determine the different actors

110

6.5. Decomposition into Semantic Primes

and the action. The interpretation of such a decomposition is that we describe an event which

has two agents, an active and a passive one. This is different too: “A thing is done to some-

thing” since here the active agent is missing. This leads to smaller detailed differentiations in

a decomposition like active or passive, which we neglect in our decomposition since they are

syntactical.

6.5.5. Decomposing using Hyponym

To use hyponyms in the decomposition is a bit like using examples during an explanation. Hy-

ponyms can be collected with function getHyponyms : Concept,WordType → Concept∗ in

Algorithm 2. It eases the access to a reference. By describing abstract entities, the reasoner

might lack the ability to find fitting references. Since some semantic theories like the prototype

semantic 4.1.4 insist on references to describe the meaning of something, we can argue that with

a hyponym these references can be included in the decomposition.

A hyponym describes different manifestations of the decomposed concept. Hence a hyponym

can be added to the decomposition by noting that some of the entities described by this concepts

are of the hyponym type. Therefore in the decomposition, we can add the hyponym by adding:

SOME to it.

This can be used by the reasoner to test examples of the abstract description. If the reasoner

finds an inconsistency with a meronym then he has found a counter example in his beliefs,

which makes additional reasoning necessary for deciding to neglect the property of the hyponym

in favor of integrating new information or if the new fact described by the concept changes

fundamental beliefs which the reasoner is not willing to change. In this case, the decomposition

can not be integrated into its beliefs, but the contradicting part can be extracted and explained,

via an example (the hyponym).

For example, if someone with pointy ears is going to tell you that feelings are bad since he

wants you to make a rational decision you might reason the following: Feelings are bad. Love

is a feeling. Consequently, love is bad. Love is the precipitation of my body of some hormones.

This leads to new entities of my species. This ensures the existing of my species. This can

not be bad for me. Hence love is not bad. Thus not all feelings are bad. If we can create

reasoner which can reason such implications, we can check the decomposition for plausibility.

In contrast to the hypernym, where we check if its logical structure is valid for more abstract or

general statements.

6.5.6. Decomposing using Meronyms

Decomposing a concept by describing its parts is a top-down approach to a definition. Meronyms

can be collected with function getMeronyms : Concept,WordType→ Concept∗ in Algorithm 2.

Since a part of a system is always less or equally as complex as the system itself, the decomposi-

tion can break down a concept into its parts and decompose them to reach the goal of describing

the concept with simpler concepts.

Meronyms describe parts of relations (see section 3.9 for more details). The meronyms are

integrated into the decomposition with an own relation. Showing that a part of the concept

decomposed is the meronym. This can be thought of as an explanation which includes describing

all the parts of a concept if it has some. For example, a computer consists of a hardware and

software part. The hardware part in the von Neumann architecture contains memory and a

111

6. Semantic Decomposition

computational unit. In fact, these parts again can be decomposed and explained. Since each of

these parts is maximal as complex as the whole process, decomposing the parts can be seen as

splitting the complexity and with that reaching simpler concepts.

The part of a concept is not only defined by its meronyms but also by its definition. The defini-

tion contains more or less all of the relations above, depending on how the concept is explained.

Definitions are mostly formed in natural language sentences, like an article in Wikipedia, or an

explanation in a dictionary. These explanations consist of two part, the concepts they are made

of and the syntax cluing them together. How the concepts are handled was subject of the last

sections, the next section will discuss the use of syntax.

6.5.7. Decomposing neglecting syntax

The syntax of sentences allows us to discriminate details of language which are needed to express

precise utterances. In order to formalize the meaning of concepts, this detail can be seen as the

next level, for describing semantically close concepts like past tense and imperfect. Rogers

and Hodges [333] model knowledge representations into two categories: structural description

system and semantic knowledge. Syntactics is part of structured knowledge and as a result, falls

out of the semantic part.

To describe syntactical details, we have to describe each concept which is part of syntax in

primes. Then we can use them to describe the syntactical differences of concepts. This is left to

work after the general feasibility has been shown.

This work concentrates on creating the meaning of concepts which might lead to syntactical

incorrect decompositions. This can be imagined as a three-year-old human child: not grasping

the whole expressiveness of his mother tongue, but able to discriminate itself from others, and

pronouncing simple utterances. For example, an utterance like: “I hunger, need power.” would

be acceptable in the goal of this thesis.

One argument for the neglecting of syntax is that we want to build an artificial intelligence

which can create meaning for concepts not write elaborated syntactically correct phrases. Es-

pecially find references, connect concepts to events in memory, connect similar concepts, select

word senses and use abstraction to producing multi-word utterances. Since concerning the broad

meaning of concepts without syntactical details, we reduce the complexity of the problem by

moving syntax out of the scope of this dissertational thesis.

The tasks of object recognition can be seen as the phase of one-word utterances of a human

child. As we humans learn a language we start out with single words after 12 months of language

development (mostly nouns) and continue to full sentences after about 36 month [211, 319].

During the first 12 month connecting references to concepts and connecting them to events in

memory is done.

During the decomposition, every word is reduced to its stem or paradigm before it is processed

further. For that reason, before searching for synonyms, antonyms or looking up the definition,

the paradigm is searched. This means that sentences like “I am being normalized” reduce to

“I BE normalize”. Here we loose the syntactical information but reduce the complexity for the

decomposition.

Even with the syntactic complexity out of our concern, the decomposition can become too

complex, if the graph does not stop growing. This can be imagined as one explanation leading

to another until a concept is well described. To reduce this size complexity, the next section will

112

6.5. Decomposition into Semantic Primes

discuss our termination conditions of the decomposition.

6.5.8. Termination conditions

The termination of the Algorithm 1 has been chosen in a way that the decompositions are kept

as short and precise as possible. However, the theoretical termination condition is the total

decomposition of the given concept. For some tasks, this might be disadvantageous, and the

order of steps in the algorithm needs to be changed appropriately.

The manner in which a decomposition is created depends – as always in ontology engineering

– on the skills of the engineer, his domain and cultural background in which the information

sources have been described. Although, with this strict framework of decomposition we might

get different results for the same concepts depending on the parameters of the Decomposition

and the included Information Sources. We postulate that those results differ in such a way that

an artificial reasoner can create equivalence classes from those decompositions. This means

that the decompositions might vary in different domains, by syntax, which is irrelevant to the

meaning the decomposition represents. The selection of information sources and the selection

of the decomposition depth thus dictate the termination of the decomposition.

The Algorithm 1 does not have to terminate with the total decomposition of a concept. We

rather define a parameter describing the decomposition depth to terminate earlier. This means

we can decide how often the main recursion is run through and with that shorten the span of the

created graph.

We could think of having multiple termination conditions, e.g., with multiple decomposition

depths for different relations, for the different “directions” of the decomposition. In this way, we

could parametrize the use of synonyms differently than the use of the other relevant concepts.

However, new problems arise, e.g., with the combination of different relations types. Further,

we are not analyzing this kind of threshold and leave research in this direction to future work.

We have mentioned that the result of the decomposition is a graph. To ease the understanding,

we are going to look at a handcrafted example next. For more complex examples the reader is

referred to Figure 9.3 and Figure 9.4.

6.5.9. Example decomposition

Now we will have a look at an example of a decomposition done manually to illustrate how the

result of a decomposition could look like from an abstract view. In Figure 6.9 we illustrate an

example of a decomposition of the concept to use in the sense of putting something to a purpose.

We did remove the formal description we introduced above to restrict the example to the core

concept and show an abstract view on the result of the decomposition. Figure 6.9 even reduces

the edges to only one unlabeled type. In this example, we decomposed the concept used as a

verb and selected a definition out of the Cambridge advanced learner’s dictionary [394]. Here we

neglect the modal particles like to. The decomposition has been created by recursively applying

the decomposition algorithm. The result is a relative short decomposition because we did select

the definitions which are used for the decomposition. Further, we selected the words to use from

the definition by hand. Here the graph reads as follows: To put is to move something inside a

place.

The example from Figure 6.9 shows a theoretic result of the decomposition. In a real decom-

position the decomposition becomes more complex, since, e.g., the same concept is not added

113

6. Semantic Decomposition

{{ {to put somthing to{

MOVE

INSIDESOMETHING

PLACE

{to use: a particular purpose

SOMETHING AND

THIS NO

OTHER

WHY

YOU

DO

SOMETHING

ONE

Figure 6.9.: Example of decomposition using a definition out of the Cambridge Dictionary [394].

twice like the ”SOMETHING” node. The example in Figure 6.9 has been simplified from our

formalism to describe semantic graphs, to ease the readability. However, there are further chal-

lenges, which need to be addressed. Next, we will have a look at the remaining challenges: The

selection of the definition to be used, for the decomposition influences the meaning which is

decomposed. Here the different information sources must use the same sense of the word for the

decomposition. In this way, ambiguities are neglected.

There are many parameters, which need specification reaching the depth of the search for,

i.e., synonyms and the recursion depth for crawling through the dictionary. Further manual

decompositions are needed in case of a deadlock in the recursion of the algorithm. Here we

need to find a way on how a human can be queried for his input. This has been subject to

research in the work of Ghadah Altaiari [9]. Integration of context-dependent meaning is not

yet considered by our algorithm. If context-dependent meaning needs to be described, or if

the decomposition is context dependent, then context needs to be integrated into the recursion,

which could lead to a different termination condition, e.g., if we consider the beliefs of an agent,

we could terminate earlier if some concepts are already known.

6.6. Conclusion

In this section, we have built an algorithm which can create semantic graphs automatically by

using existing ontologies and information sources like Wikipedia or WordNet. This has been

done by others like Alani et al. [7] and has been subject to research until today [63, 212, 307].

However, none of those approaches used a theoretic grounding in a linguistic theory like NSM.

This makes this approach unique and helps us understand more about the structure of semantic

graphs, which leads to more insight on how meaning can be represented for AI. Also, this ap-

proach gives us the ability to define only ca. 65 concepts, to enable the agent to build its meaning

of concepts.

For the goal we have set, we fulfill the first part of our abstract approach shown in Figure 5.1

with this algorithm. We create a semantic graph with includes the collection of definitions we

gather from the information sources and all semantic relations we can extract from them. We

have defined a formal representation of our graph and decided on a mechanism to terminate the

decomposition namely the decomposition depth.

114

7. Marker Passing

The second part of my approach is to use the automatically created semantic graph representation

of the connectionist meaning for reasoning. This section is structured in the following way: We

start our by describing the pragmatic way of representing meaning in Section 7.1. Then we

look at the marker passing algorithm in Section 7.2. Section 7.3 then details the parameters of

my marker passing algorithm. Finally we conclude the pragmatics of my symbolic approach in

Section 7.4.

7.1. Pragmatic Meaning Representation

Building up on the semantic graph representation discussed in Section 6.4 and the automatic

creation of such a semantic graph described in Section 6.5 we now look at an example of what

pragmatics means in natural language and carry this idea over to our representation of mean-

ing. The goal of this section is to show how pragmatic meaning can be described using Marker

Passing. Furthermore, it describes the theoretic basis for the interpretation of the internal mech-

anisms and the result of the Marker Passing and gives the theoretic background to understand

why the algorithm has been created the way it is.

In this thought experiment, I will utter: “I am cold.” moreover, you are sitting next to an open

window which lets cold air into the room. The implicature which you could reason out of my

speech act could be: ‘Would you please close the window because I am cold.” It is easy to see that

such a reasoning is not possible without contextual knowledge, in this case, the knowledge that

the window is open, that is is colder outside and that it would get warmer if the window is closed.

This chapter will look into this kind of contextual reasoning of meaning called pragmatics.

In the agent paradigm, we model two minds: one who utters, the other one understands. If

something is known about the context of the utterance, then the understanding (interpreting)

entity can use this context to create pragmatic meaning. Here the communication can be seen

as: “the successful interpretation by an addressee of a speaker’s intent in performing a linguistic

act.” [149] To clarify this we can adapt the conceptualization of a communication act from Marta

Lenartowicz [228] where communication is seen as a single act, where the uttering uses seman-

tic information to encode information in symbols (signifiers) and the listening agent interprets

those symbols. Both agents use a context in which they concretize the semantics to pragmatic

information. However, this context might differ.

Hence the observing agent can have access to the same contextual information as the uttering

agent, which eases the interpretation, or the current contextual information of the understand-

ing agent needs to suffice. Depicted in Figure 7.1 the two agents might use the same context,

symbols and semantic to communicate. Then there can be three factors to differentiate the com-

munication:

Different Symbols is the fact that different symbols (signifier) are used for the communica-

tion. This can be seen as in different languages where different words reference the same

115

7. Marker Passing

Pragmatics

UtteranceInformation

Marked Signified

Sense

Communication

signifierunmarked

context

Connotation

DenotationConceptualisation

Observer Agent

Uttering Agent

Figure 7.1.: Abstract communication act adapted from [228].

object, e.g., English: Apple, German: Apfel, French: Pomme. All reference the same

object but use other symbols to describe the concept. Without a common context and a

common semantic, the words can not be mapped. One area of research where this ef-

fect is wanted is cryptography. Here the communication is translated into languages only

sender and receiver can decipher. Even in the same context and with the same seman-

tics, the communication becomes subject to interpretation. We will ignore this kind of

communication problem and leave this challenge to other researchers.

Different Semantics If the semantics are different, then the conceptualization of an object,

might be different. This means in the abstraction of conceptualization, different properties

of an object are emphasized. This leads to the problem of resolving the object reference,

which is eased by using the same context and signifiers. This can be seen as the ontology

matching problem [358]. This problem can be tackled with the here presented approach.

Besides the structural comparison of ontologies, a semantic similarity between the con-

cepts used as a basis for ontology matching. We will see that Marker Passing can provide

insight into ontologies, their structure and the similarity of concepts used.

Different Context In a different context the same signifier with the same semantic might have

a different meaning. This means by not sharing a context; the communication becomes

subject to interpretation as well. The problem of integrating context1 can be tackled with

Marker Passing. Integrating contextual information in the interpretation of communica-

tion is the main goal of this work. For that reason, we will analyze in this section, how the

semantic meaning represented in our semantic graph can be interpreted contextually.

We will neglect the utterance side during our analysis since we postulate the willingness

of agents to communicate and leave the analysis of symbolic difference to other researchers.

The semantic decomposition creates a conceptualization depending on the information sources

given to it, which allows a semantic analysis to tackle the ontology matching problem. The

1Here context can be more than the word surrounding a target word, e.g., the special or temporal context of the

utterance.

116

7.1. Pragmatic Meaning Representation

interpretation done by the listening agent to the utterance done by the uttering agent should yield

to be context dependent. So that our artificial meaning is represented by the context-dependent

interpretation of an utterance. For that, we need an approach to integrate contextual information,

to be able to tackle a problem like WSD. We are looking for two types of usage of our semantic

graph: Semantic similarity2 and WSD.

We start out by describing the result of the semantic decomposition and the use of Marker

Passing and how this can be used to describe a representation of meaning. However, first, we

look at how the context-independent meaning is transferred into a pragmatic one.

Since semantics is the theory on how meaning is transferred, a semantic transference and

interpretation process is required. There are four parts for the meaning of a word which are of

concern to an AI:

Denotation The denotation represents the primary or basic meaning of a word. It can be seen

as the definition of a word that is represented in some mental lexicon (or a dictionary).

Denotation is the explicit meaning of a word, the shared explanation of the what is refer-

enced. A dictionary holds denotations for the words described in it. In our representation

of meaning the denotation is described by the definitions in the semantic graph.

Connotation The connotation is the abstract idea presented by the word. It can be seen as the

conceptual representation of the meaning of a word. The connotation is the idea or quality;

the associations brought to mind. It is private, depending on memory and experience and

most of all context dependent. This includes the connectionist interpretation of meaning

since here the meaning is interpreted as the unity of its relations to other concepts. The

connotation in our approach is the result of a Marker Passing of one concept. It consists

of the marked graph which is subject to interpretation.

Conceptualization To be able to come up with a conceptual representation of the meaning

of a word, one needs to abstract from the word to a specific concept (i.e., one needs to

connect the word with a known concept). This process is named Conceptualization and

helps to clarify a word within a language. In our approach, the conceptualization is the

result of the decomposition of one word. It consists of a semantic graph holding all known

information about this word, building its conception.

Pragmatics The meaning of words is not independent of the context the words are used in.

In particular, a context-dependent representation of meaning (a pragmatic one) has to be

created (e.g., mouse (computer) vs. mouse (pet)). The Pragmatics in our approach is

described as the result of a Marker Passing where a concept and its context have been

activated. It consists of the marked graph which is subject to interpretation.

Meaning itself needs to be represented appropriately (in a formal manner) to be handled by

an agent. Since meaning is not precisely defined, this is subject to research. We will look at

meaning in the linguistic sense, which can be defined as follows: Meaning is what the source

of an expression (message) wanted the observer to infer from the expression [240]. This view

is shown in Figure 7.1. Here the inference an observer can make about the communicated

information is seen as meaning. If the observer has access to the context the uttering has been

made in, then the interpretation becomes simpler. This context involves all relevant information

2Here we argue that semantic similarity measures are the core problem of ontology matching.

117

7. Marker Passing

to the communication. From the perspective of the observing agent and in the worst case: if all

uttering context is lost, then the observed utterance can only be seen as denotation.

One example problem in such an utterance is that the similarity of words needs to be estab-

lished, by comparing their meaning. In this case, markers passed from one concept to another

might interact. Thus a node should be able to react to activation to different markers.

Another example is the problem of WSD. In the WSD problem, we want to select a word

sense of a target word, given a linguistic context it is used in. The linguistic context might, e.g.,

be the surrounding sentence. After the decomposition of the target word with all its definitions,

we select one of them via Marker Passing fitting the best to the linguistic context. Doing this

Marker Passing, we want to control which edges pass markers in which way.

The third example is a semantic sentence similarity measure, where multiple concepts might

pass markers. To establish the similarity of the meaning of a sentence, we might not know when

to stop passing markers since we do not know if the meaning of the sentence changes if another

word meaning of one of the words in the sentence changes. This means we want our algorithm

to have a variable and problem specific termination condition.

The fourth example of such an abstract communication is the proposition of a service. The

service providing agent communicates the service interface to other agents. The interpretation

and use of this service could then be seen as our listening agent. The listening agent then can

interpret the concepts of the service description in its context. When looking at services, we

might want to activate some concepts and not others like the input of a service, but not its

precondition to see if we have fitting input arguments. To do so, our Marker Passing should be

able to select which nodes pass markers.

The last example is the creation of a heuristic, where concepts are not compared to their

similarity, but a rather complex construct, like a precondition of an effect or a service, is analyzed

for their usefulness. This includes more symbolic reasoning on nodes and edges, which can

only be done if the information is passed to them. This means we want the liberty to write any

information needed onto the marker.

These five examples lead us to the description of the Marker Passing algorithm we designed

in Section 7.2.

Conclusion

In conclusion, we describe pragmatic meaning as a result of the Marker Passing algorithm,

where, e.g., the COI, as well as its context, has been activated. For the Marker Passing to be

pragmatic, we need to pass the additional concepts to the Marker Passing, and the different

concepts should influence the result. Thus our algorithm needs to provide parameters in a way

that the markers can influence each other. The pragmatic representation of meaning is created

through the influence the markers from the different concepts have on each other. In conse-

quence, we want nodes and edges to be able to react to different markers. Depending on the

parameterization of the Marker Passing algorithm, this might yield different results depending

on when we stop passing markers leading to the need to specify specific termination conditions.

Thus the pragmatic meaning not only depends on the concepts which have initial markers but

also on the Marker Passing algorithm and its parameters, as well as the interpretation of the

result. With this interpretation of pragmatic meaning in mind, we now build our Marker Pass-

ing algorithm. We describe the abstract Marker Passing algorithm in the next section and will

analyze his parameters and its performance to represent meaning later in Section 9.

118

7.2. Marker Passing Algorithm

7.2. Marker Passing Algorithm

After creating the graph representing the semantic knowledge of the agent, this section will

describe how this graph is used to select relevant concepts in a given context. These relevant

concepts are specified as a subgraph of the original graph including the markers passed to them.

We will first describe the Marker Passing algorithm at a higher level to name the different parts

and get an overview of the needed components in Section 7.2.1. Then we dive into the imple-

mentation and all the details of this algorithm in Section 7.2.2.

7.2.1. High Level Marker Passing Algorithm

To start the algorithm, we have to create the underlying graph and prepare it with a set of start

markers, which then are propagated through the graph. Figure 7.2 shows an abstract represen-

tation of our algorithm. Here the idea is to propose a naming of the parts of the algorithm to be

able to discuss those parts later on in more detail.

This algorithm is a generalization of the algorithm described by F. Crestani [61][Figure 5,

p. 461]. Crestani describes the Marker Passing in four steps: Pre-adjustment, spreading, post-

adjustment and termination condition evaluation. This is quite general and can result in inaccu-

rate interpretations of the algorithm. Consequently, we introduce a more precise description of

the algorithm by breaking the activation down into multiple steps without losing generality.

Crestani’s algorithm is based on the following principle: Starting from a start activation, a

concept has a threshold (seen as an upper limit of activation in a node to decide if the node

is activated), with each incoming activation the activation level of the node builds up. If the

threshold is reached the node is selected as activated and is spreading in the next spreading

step. This means that the node passes all its markers on to its neighbors. This is done until a

termination condition is reached [61].

Figure 7.2 shows the input and output of our algorithm3, like documents, named with the

content for the input. At first glance we look at the algorithm from the outside, specifying its

interface.

Marked Graph (input) This is the input representing the graph, which is used to determine

concepts and edges which are used to hold and conduct markers. This graph has to contain

a set of markers to start from. These markers are called the start markers. The graph

specifies which concept can pass markers to which concept. This is the basic restriction

of this kind of algorithm: A concept can never pass markers to a concept when it has no

connection to this concept.

Node Interpretation The underlying graph can contain different concepts and edges. Each

concept or edge can have a different Marker Passing behavior. To specify this behavior, the

algorithm gets a set of concept interpretations as input. Here each concept type specifies

its interpretation by defining what it does with markers passed to it, with that when it is

activated and how it passes marker to other concepts. These two functions allow each

concept (or concept type) to react to different markers or the same markers differently.

Termination condition For our Marker Passing algorithm to terminate the algorithm needs

a specification when it has reached its goal. The goal is to mark the sub graph which

3Our algorithm is based upon Crestani’s work but details some of the design discussions in the algorithm.

119

7. Marker Passing

all Spreading nodes

all Target nodes

N(node).in()

N(node).out()

Edge
Source
Target
Marker

PreProcess()

PostProcess()

Terminate?

SelectSpreadingNodes()

No

Marked
Graph

Marked
Graph

Node
Interpre
tation

Termin
ation

Yes

Spreading Pulse

Select pulse size

Step

Figure 7.2.: Abstract description of our Marker Passing algorithm.

120

7.2. Marker Passing Algorithm

is relevant to the given start activation. If no termination condition is given, the activa-

tion spreads infinitely until no concept is activated anymore. This can be specified in

a termination condition but does only in some cases accomplish the goal of the Marker

Passing [26].

Marked Graph (output) The output of the Marker Passing algorithm is again a marked graph,

with the updated markers. This graph now can be interpreted to determine the answer to a

question which has been encoded in the markers and the graph, to begin with. By looking

at this graph and the markers on it, we can, e.g., decide which other relevant concepts

contain markers on them.

All in all, the algorithm described in this section can be seen to move around markers in a

graph regarding given rules. How the start markers are placed, in which way the markers are

passed over the network and how the result is interpreted is problem specific. Five example

applications can be found in Section 10, e.g., for the application of this algorithm to create a

semantic similarity measure, which has been published in [104].

Now that we have looked at the Marker Passing algorithm from its interface, we can have a

look at the algorithm itself. We start out by looking at the different phases the algorithm can be

separated into.

Pulse The pulse is defined as one iteration from the preprocessing to the check of the termi-

nation condition. All other phases are sub-phases of the Marker Passing pulse. This term

has been coined by F. Crestani in his survey on activation spreading approaches [61]. The

pulse can be imagined as one activation of a set of concepts, where each concept is imaged

to light up if it activates. In this visualization within each pulse, all the activated concepts

light up at the same time, creating a pulsing light which “wander” through the graph.

This visualization gives the Marker Passing pulse its name. The pulse has two interme-

diary steps: the Pre- and Post-Processing here the algorithm can integrate nonactivation

specific tasks like cleaning up the graph or normalizing the activation.

Pulse Size Selection Since during one pulse the termination condition is not checked, we

need the ability to change the pulse size. This means selecting the concepts which activate

during the next pulse. If all concepts which are active, activate then it could be that the

conditions of the termination condition are met without noticing, because further concepts

are activated, where the result does not meet the termination condition anymore when it

is checked, after the pulse. The smallest pulse size is to activate each concept in its pulse,

meaning that after each activation the termination condition is checked. This option has

the problem that the activated concepts are needed to be brought into an order, where the

order influences the result.

Spreading The spreading describes the Marker Passing of all activated concepts. During the

spreading, all active concepts calculate their out-function and specify which markers are

passed to which concepts concurrently. Afterwards, all concepts which have markers

passed to them (these concepts are called targets) activate their in-function and collect

their markers and update their internal activation level.

Spreading Step The spreading consists of one spreading step. The spreading step contains

all markers which were passed by the out-function of all active concepts during this pulse.

121

7. Marker Passing

The spreading step contains all needed information for the in-function to process the in-

coming markers. Here each marker is mapped to an edge (the edge represents an edge

between two concepts in the underlying graph) over which the marker has been passed

and the target it is destined to reach. The link contains sources and targets of an edge, but

since there can be multiple of them, the step needs to specify which target should be the

destination of the marker and from which source it has been spread.

After having an informal overview of the functioning principle of the abstract Marker Passing

algorithm in our extension of Crestani’s algorithm, we now formalize the Marker Passing in the

next section.

7.2.2. Implementation of our Marker Passing Algorithm

To start with the formalization, we start by defining the information stored on a nodes Data in

the following signature:

Signature Information =
sorts:

Data

Marker

opns:

getMarker : Data→ Marker∗
setMarker : Data×Marker∗ → Data

At the same time, we define how we describe a marker. This is done by defining Marker as

the sort of the marker object since the marker is defined regarding the problem specific imple-

mentation of the information encoded on the Marker.

This Marker as a sort can be implemented with any data type which is needed. To implement

a spreading activation, this sort could be a decimal value. This decimal value then can be in-

terpreted as the activation level passed from one concept to another. For another example, the

marker might have an integer type which could be interpreted as markers for a Petri net.

The sort NodeData maps the information encoded in markers (Data) to the concepts. The

Data sort specifies the information encoded on a marker. The method getMarkers allows us to

get the markers of a type of a concept. Equivalent the method setMarkers allows us to set the

markers of a concept.

The marker is typically represented by information objects from the marker signature and

usually assigned to the concepts of the graph structure and passed on via the relations. This

Graph represents the ontology or semantic graph which is the output of the decomposition. We

have defined this graph formally in Section 6.4.

Here the signature Graph is the result of the semantic decomposition and is represented in

the formalism described in Section 6.4. From this graph the two sorts Concept and Relation are

taken as specified in the Figure 6.3 in our minimal type graph.

To enable the assignment of markers to concepts of a graph, we define a signature Marked-

Graph which extends Graph and Marker and is defined as follows:

The function getNodeData gets the Data of a given node.

The Marker Passing algorithm then transforms markers on a concept in a way specified by,

e.g., the implementation of the marker, the concept-interpretation, the in- and out-functions

122

7.2. Marker Passing Algorithm

Signature MarkedGraph = Graph + Information

sorts:

NodeData

opns:

setNodeData : NodeData× Concept × Data→ NodeData

getNodeData : NodeData× Concept→ Data

, getMarkers : NodeData× Concept→ Marker∗

setMarkers : NodeData× Concept ×Marker∗ → NodeData

vars:

M : NodeData

N1,N2 : Concept

D : Data

eqns:

getNodeData(setNodeData(M,N1,D),N1) = D

N1 6= N2 ⇒ getNodeData(M,N1) = getNodeData(setNodeData(M,N2,D),N1)
getMarkers(M,N1) = getMarkers(getNodeData(M,N1))

of the Marker Passing algorithm. The passing of markers is called spreading. Moreover, the

signature MarkerPassing describes the functions which implement the Marker Passing behavior.

Signature MarkerPassing = MarkedGraph + Boolean

opns:

preAdjustment : NodeData→ NodeData

postAdjustment : NodeData→ NodeData

getActiveConcepts : NodeData→ Concept∗

getPassingConcepts : NodeData→ Concept∗

outFunction : NodeData× Concept→ (Relation× Edge×Markers)∗

edgeFunction : NodeData×Relation× (Edge×Markers)∗ → (Concept×Edge×
Markers)∗

inFunction : NodeData× Concept × (Edge×Markers)∗ → NodeData

afterSend : NodeData× Concept→ NodeData

terminationCondition : NodeData→ Boolean

vars:

N1,N2 : Concept

Ns : Concept∗

M : NodeData

M1 : Data

R : Relation

E : Edge

eqns:

getPassingConcepts(M) ⊆ getActiveConcepts(M)
N1 6= N2 ⇒ getNodeData(M,N2) = getNodeData(inFunction(M,N1),N2)
N1 6= N2 ⇒ getNodeData(M,N2) = getNodeData(afterSend(M,N1),N2)
(R,E,M) ∈ outFunction(M,N1)⇒ source(E) = R ∧ target(E) = Ns

(N1,E,M1) ∈ edgeFunction(M,R, (E,M1))⇒ source(E) = R ∧ target(E) = N1

The set Relations contains all the concepts which have a type inherited from a relation. The

function setNodeData sets a Data on the given node returning the updated NodeData.

The function preAdjustment is called in each pulse and enables us to adapt the NodeData of

the graph if needed. This can be used to implement general marker behavior which is concept

123

7. Marker Passing

independent like a normalization of NodeData over the graph. The preAdjustment uses the cur-

rent markers of the graph and produces an updated NodeData. The postAdjustment is similar to

the preAdjustment but is called after the spreading, since here again; we can change the markers

of the graph before the termination condition is checked. For more details see Section 7.3.7.

The getActiveConcepts function filters the concepts which have been activated from the Marked-

Graph. All these concepts have reached their spreading threshold and can potentially spread in

the next pulse.

The getPassingConcepts function then selects from all active concepts the ones which will

pass markers in the next pulse. The passing concepts are always a subset of the active concepts,

which is guaranteed by the first equation.

The outFunction implements the concept behavior on how markers are passed on to its neigh-

bors if the concept is selected as passing concept. For more details see Section 7.3.4. The fourth

equation of this signature describes that the edges always have a source in a relation R and target

the concepts which are related with the relation R.

The edgeFunction describes the behavior of the edge when markers are passed over it. This

allows us to implement, e.g., edge weights. For more details see Section 7.3.5. The fifth equation

of this signature enforces that markers are only passed from an edge to its targets over the edges

of the relation R.

The inFunction and outFunction is the place where we can implement the behavior of the

concept when markers are passed to it. This in-function takes the concept, the markers passed

to it and the edge the marker is passed over as input and converts the incoming markers into a

form which lets the algorithm determine the activation of the node. For more details see e.g.

Section 7.3.3.

The function afterSend can be used to update the markers of a concept after its out function

has been called. It is called with the current markers and respective concept and updates the

markers accordingly. This could be used, e.g., if markers are rejected by the destination and

should be given back to the passing concept.

The terminationCondition defines when the spreading process has finished. It is based on the

current markers. For more details see Section 7.3.6.

The first function enforces that the passing concepts are a subset of the active concepts so

that all passing concepts need to be activated first. The second and third equation of this signa-

ture ensures the compatibility of the inFunction and afterSend functions with the getNodeData

function. The fourth function ensures that markers are passed by the out function which have

their source in the edge and are passed to the target of this edge. The fifth equation ensures that

edgeFunction only passes markers to targets of their edges.

In conclusion, we can say, the Marker Passing is a way of marking concepts in a graph, regard-

ing some rules. These rules are problem specific and change depending on the implementation

of the different points of the algorithm. There is one rule which has to be always true: Markers

can only be passed between concepts connected with a relation.

The pseudo-code of Crestani’s algorithm can be found in Appendix A with Algorithm 22 and

our extension is described in Algorithm 5. The implementation of the algorithm is available4.

With this formalization, we can describe a wide range of algorithms ranging from Petri-Nets

or Artificial Neural Networks to Spreading Activation mechanisms like PageRank-Algorithms.

4git•gitlab.tubit.tu-berlin.de:johannes faehndrich/semantic-decomposition.git

Please contact the author to gain access to the source code.

124

git@gitlab.tubit.tu-berlin.de:johannes_faehndrich/semantic-decomposition.git

7.2. Marker Passing Algorithm

Next, we will look at the different parameters as variation points of the algorithm.

The Marker Passing algorithm is distinguished by four phases. These are depicted in Fig-

ure 7.2 (see page 120): (1) the pre-processing for preparing (priming) the graph; (2) the selec-

tion of the pulse size, which defines which concepts will pass information within the pulse; (3)

the pulse itself, where all spearing concepts are activated and pass on their markers (each pulse

consists of an activation step for each active concept); and (4) the post-processing step, were the

results i.e. are normalized.

We start out with the algorithm proposed by Crestani [61]. Crestani’s three step algorithm

is abstract enough that many activation spreading interpretations are subsumed by it. Hence

starting from Algorithm 4 we dig down into more details, to foster a more precise but still

abstract algorithm.

Algorithm 4 Marker Passing- adapted from Crestani’s Spreading Activation Algorithm

Name: Marker Passing main loop Input: NodeData M Output:NodeData

1: while ¬ terminationCondition(M) do

2: M = preAdjustment(M);

3: M = MarkerPassing(M);

4: M = postAdjustment(M);

5: end while

6: return M

The Algorithm 4 takes a NodeData M as input.

This is a graph consisting of concepts and directed links connecting the concepts as specified

by the minimal type graph depicted in Figure 6.3. This defines that everything is a concept and

with that relations are special concepts as well.

Each concept might carry information in the form of markers. M contains the start markers.

Also, Figure 7.2 describes the Node interpretation and the Termination condition as input. Those

are seen as design discussions on how the algorithm is implementing the spreading functions (in-

, out- and edge-function), its threshold and the information given by the markers. The additional

termination condition is a meta parameter of the algorithm, which is specified separately. For

simplicity reasons, we take those parameters to be given and use them in the pseudocode here.

Algorithm 5 describes our extension of the spreading activation algorithm of Crestani [61].

Active concepts are defined by getActiveConcepts().

The Algorithm 5 holds two maps pulseout and pulsein, which hold the markers passed during a

pulse. The function “addAll()” is a simplification of an iterative get() and add() and the insertion

of the remaining tuple into the appropriate set of, e.g., all markers of the current pulse. We use

a map as a key-value store with such an adapted addAll() function in e.g. the pulseout variable.

The addAll() function gets the values of the given keys and adds the markers on top of the old

value. This is in contrast to replacing them. In line 3 of Algorithm 5 we add the result of the

outFunction in the form of (Relation × Edge × Markers)∗ to the map pulseout, where for each

edge the markers are sorted. We separate the Algorithm 5 into four blocks each consisting of

one loop:

Line 2 - 4: All passing concepts activate their out-function and the result to the current pulse

stored in the variable pulseout. This is the input for the edge functions of the appropriate

relations of the next step.

125

7. Marker Passing

Algorithm 5 Marker Passing Algorithm

Name: MarkerPassing Input: NodeData M Output:NodeData

1: pulseout = new Map<Concept,(Edge,Markers)∗ >();

2: for all sourceConcept ∈ getPassingConcepts(M) do

3: pulseout.addAll(outFuntion(M, sourceConcept));

4: end for

5: pulsein = new Map<Concept,(Edge,Markers)∗ >();

6: for all e ∈ pulseout.keyset() do

7: pulsein.addAll(edgeFunction(M,e,pulseout.get(e)));
8: end for

9: for all targetConcept ∈ pulsein.keyset() do

10: M = inFunction(M, targetConcept, pulsein.get(targetConcept));

11: end for

12: for all sourceConcept ∈ getPassingConcepts(M) do

13: M = afterSend(M, sourceConcept);

14: end for

15: return M

Line 5 - 9: Each marker passed by the current pulse is given to the appropriate relation it is

passed to, and this relation activates its edge-function. The result of the edge-function is

added to the pulse which is used as input for the in-functions of the targets of this relations.

Line 10 - 12: The concepts which are targets of the relations passing markers are given the

markers passed to them and activate their in-function.

Line 13 - 15: The after-send-function is activated to fix the markers on the source concepts if

needed.

In the applied type of Marker Passing the concepts and edges of the underlying graph do not

have to be disjoint. This has the benefit, that if needed an edge can be interpreted as a concept

and pass markers to other edges. Since the part of our Marker Passing algorithm is executed in a

loop displayed in Algorithm 4 we do run through those four loops until the termination condition

returns true. In each iteration of this loop, we have the methods pre- and post-Adjustment to

change the Markers on the graph outside Algorithm 5.

The here described algorithms have variation points, which are not specified in this abstract

algorithm and need specification for the algorithm to work for a specific problem. We call those

variation points the parameters of the algorithm, and we will analyze them in the next section.

7.3. Parameters of Marker Passing

The generic Marker Passing algorithm introduced in Section 7.2 has variation points which allow

a specialization for different areas of application. These parameters are dependent on each other.

In this section, we will discuss possible implementations of algebras of the signatures introduced

in Section 7.2.2. Simple examples of such variation points are the selectActiveConcepts function,

the terminationCondition and the markers: Here the selectActiveConcepts function needs to

interpret the markers to decide if a concept is active or not. These examples show that the

variation points can inter-depend. The needed variation points of the Marker Passing described

in Section 7.1 are the following:

126

7.3. Parameters of Marker Passing

Data: describes the marker and with that the information available to marked node.

Pulse size: selecting which nodes pass markers.

In-Function: describes how the node handles incoming markers.

Out-Function and After-Send: describe how the nodes pass markers and what happens on

the node after passing them.

Edge-Function: describes how the edges handle markers passed over them.

Termination Condition: describes when to stop the passing of markers.

Pre- and Post-Adjustment: describes what happens before and after a pulse.

The selection on how those parameters are implemented influences the behavior of the Marker

Passing, regarding the problem at hand.

Regarding the variety of the parameter, which could be selected, we restrict our discussion

here to general rules and dependencies which are necessary to understand to make informed

design decisions for the application of this algorithm on a domain specific problem.

This section is structured in the following way: We start out with the discussion on the type

of information encoded on the markers in Section 7.3.1. Section 7.3.2 discusses the pulse size

and in Sections 7.3.3 to 7.3.5 we then analyze the In-, Out- and Edge-Function. Afterwards

we analyze the termination condition in Section 7.3.6 and the Pre- and Post-Adjustment in Sec-

tion 7.3.7. We then look at an example of how the Marker Passing can be used in Section 7.3.8.

After the example we discuss the interpretation of marker, concept and edge in Section 7.3.9,

Section 7.3.10 and Section 7.3.11.

7.3.1. Data

The data sort described in the signature NodeData in Section 7.2.2 contains the data sort which

formalizes the information encoded on a marker. The information modeled here influences the

whole Marker Passing algorithm in the spreading functions, the termination condition or the

interpretation of the result. One of the design decisions during the implementation of a Marker

Passing algorithm is, therefore, which information should be encoded in which way.

Examples of data on the markers are a boolean value of tokens assigned to places in Petri-

Nets, or double values like in Artificial Neural Networks (ANN) which describe the activation

of a neuron. We can not describe which information should be implemented on the marker since

this is highly problem-specific. But we will describe an example in Section 7.3.8.

7.3.2. Pulse size

Selecting which nodes pass markers influences which nodes could be active next. Consequently,

it might make a difference if two concepts are activated concurrently or sequentially. Selecting

which nodes are counted as active, meaning they could pass markers and selecting which one do

are two steps towards deciding the pulse size.

A standard way, e.g., in ANN or Petri-Nets is to give a threshold when a node is active. This

threshold is calculated by the function getActiveConcepts. The result of the getActiveConcepts

function is a list of concepts which could pass markers in the next pulse. Which one of them are

127

7. Marker Passing

passing markers is determined by the function getPassingConcepts. The function getPassingConcepts

has the active nodes as input and returns those of them, which should pass markers.

7.3.3. In-Function

The in-function of a concept describes how the markers are processed once they have been

passed to the concept. The in-function is dependent on the concept interpretation. This means

every concept type can have his own implementation of an in-function.

Here, we have to decide how the incoming markers influence the selection of active or passing

concepts. Depending on how these two functions (getActiveConcepts and getPassingConcepts)

are implemented, the in-function can prepare the markers on the node to reflect the new activa-

tion level of the node, to be used in the next selection of the active passing concepts.

Some of the design decisions which can be made in the in-function are discussed next.

Edge interpretation The in-function gets the information over which edge a marker has been

forwarded. This can be interesting information if different edge types exist. The in-

function is the part of the Marker Passing, where this information is available, and where

the edge type might influence how markers are handled on the node. An example would

be that the role of the edges of a relation might make a difference like in the example in

Figure 6.2 (p. 98) where we can interpret in which role of the relation “give” we pass

marker to, e.g., source and target.

Marker interpretation The feature which is unique to the in-function is that it can influence

the activation level of the concept by interpreting the symbolic information passed by the

marker. In particular, depending on the marker types and the information encoded on

it, the implementation of the in-function is responsible for interpreting the markers and

recalculating the activation level for the next pulse. One example decision is whether the

markers of an earlier spreading step are combined with the current markers, or whether the

activation level of a concept depends only on the current markers. We call this behavior

cumulative vs. replacing. If the markers are replaced, then the old markers are ignored,

and the activation level of a concept only depends on the current markers. If the markers

are aggregated with old ones, then the marker interpretation is called cumulative.

Symbolic Information The in-function is one of the places where the symbolic information

on the markers can be changed. Here we could, e.g., write the current marker in a concept

history of markers, to detect loops. The markers passed to a concept do not need to be

interpreted in the same way for each concept. Depending on the information passed by the

marker, the concept the marker was passed over and the concept itself, different markers

can be integrated differently in the activation level of the concept. An example could

be that if a loop is detected with one of the markers, the marker can be marked for the

after-send function to give it back to its previous concept.

The in-function hence depends on the marker, edges and the concept interpretation. The in-

function can only interpret the markers passed to it by the out-function. Both of these functions

are complementary concepts of influencing the marker distribution on the graph. Since between

the out-function and the in-function, there is a potential edge-function, one can not predict the

marker flow from either perspective without knowing how all those functions are implemented.

128

7.3. Parameters of Marker Passing

7.3.4. Out-Function and After-Send

The out-function implements the behavior of a concept when it is passing markers. This means

this function is only executed if the concept is active and has been selected as a passing concept

for this pulse. The out-function takes the current activation level (the set of markers at the

concept in question at pulse t) and specifies how markers are passed over connecting edges of

the concept.

Similar to the in-function, the out-function depends on the concept interpretation as well. The

out-function is one of the places in the algorithm where the symbolic information encoded on the

markers can be interpreted. There the implementation of the concept specific out-function gives

us the possibility to adapt to the markers on the concept and the outgoing edges of the concept.

If for example, the edges connecting concepts specify a weight for a maximal capacity of the

edge, the out-function can distribute the markers of the concept proportional to these weights.

Some of the design decisions which can be made in the out-function are discussed next.

Output to which edge The out-function decides which edge is used to pass markers. This

could depend on the markers available on the concept. This enables us, e.g., to propagate

“antonym-Markers” which only pass over antonym relations between concepts to only

those edges.

Marker creation We need to decide if the out-function is allowed to create new markers or if

it can only modify the way existing markers are passed to the neighbors. This can be done

by copying existing markers or by creating a new kind of marker. Creating new markers

allows us to react to the existing marker combinations. This could, e.g., be helpful if a

common ancestor in a tree structure is searched. When markers are passed to other con-

cepts, one design decision is whether the markers are removed from the passing concept,

or if they are copied to be passed on.

Edge interpretation The out-function can depend on the edge type it passes markers to. This

allows us to pass different markers over different edges types. Like the in-function which

interprets markers depending on the edge they passed over, the out-function can pass

different markers or different amount of markers to different edges. This enables us to,

e.g., pass markers to outgoing edges and not back to the incoming edges.

Discrete vs. Continuous In the out-function, we have to decide if we pass on markers as a

whole, or if we can split markers up, e.g., into new smaller markers. This is correlated

with the design decision if the out-function can create new markers. Additionally, this

depends on how the symbolic information on the markers is specified.

Marker interpretation To be able to react to different markers on the concept, the symbolic

information on a marker needs to be analyzed in the out-function. If for example we want

to implement a negation-concept used to integrate syntactic information into the Marker

Passing, the out-function can look through the concept history of the marker, to see if a

negation concept has been passed right before this concept and with that change the output

of the out-function depending the wished behavior of nested negations. This means that

markers passed to the edges can be modified before they are passed to the neighbors. This

enables us to create something like a decay of markers by, e.g., reducing the activation of

the markers each time it is passed to another concept.

129

7. Marker Passing

Relative vs. Absolute When a node is activated, the out-function can pass an absolute amount

of markers, e.g., proportional to the edge weights meaning that a fixed number of markers

are passed, independent of the markers on the concept. A second design decision could be

to pass a relative amount of markers depending on the markers available on the concept.

With this propagation mode, the weights of the edges can be seen as a distribution of the

existing markers.

After the out-function has given the markers to spreading step, the edge functions distribute

them to the in-functions of the targets of the edges. Now after the in-functions have completed

their work, there could be the case that we want to manipulate the markers of the passing nodes

again. This could be the case, e.g., if a transition is not fired in a Petri-Net, the markers in

the input places are not consumed but could be given back to where they came from. Another

example could be to remove markers from concepts which have been passed on but have not

been deleted by the out-function.

In such cases, the function afterSend is used to update the markers of the passing concepts,

again, after the spreading step has been executed.

7.3.5. Edge-Function

The edge-function implements the behavior of edges when markers are passed over them. This

means the edge-function is invoked during the spreading and passes markers from its sources to

its targets. To decide how the markers are passed, the edge has the information which markers

are passed to it, which concepts passed the markers to it, which concepts are its target concepts

and its own type. Depending on this information the edge-function can change how the markers

are passed to its target concepts.

The edge-function is activated after the out-function of all spreading concepts is activated, and

before all in-function of the target concepts are activated. Here we have to emphasize that the

edge-function of one edge does not have access to all the information encoded in the spreading

step. The edge function has only access to the spreading steps, where it is the declared edge of

the step. Some of the questions which could be answered by the edge function are: How are

multiple markers aggregated when they pass over an edge? How does the aggregated marking

change when it passes over an edge? Which concepts to forward the changed marking to?

How to distribute the changed marking among those edges? Because there can be no answer to

those question without a specific problem which should be solved, we now look at the available

information which could be used to answer such questions.

Dynamic behavior An edge-function can implement dynamic or static behavior. Static means

the edge-function reacts in the same way regarding the same spreading step (e.g., this is

how most Artificial Neural Networks (ANN) work). Dynamic behavior could mean that

the edge-function becomes stateful and passes markers depending on, e.g., when it has

been activated the last time (e.g., this is how ANN with inhibitors work). Inhibitors in

ANN reduce the probability of a neuron to be activated depending on the time of the last

activation.

Marker propagation The edge-function controls only the markers placed on it by the out-

function of its source concepts. Here we can decide how the markers are passed to its

130

7.3. Parameters of Marker Passing

referenced concepts. This allows us to, e.g., implement something like an edge weight in

the edge, not the out-function.

Roles The edge-function has to interpret the type of which the different concepts are connected

to it. In a simple example, these types are source and target of the edge. However, in

examples like described in Figure 6.4, where the edge “give” of type “Relation” has three

different references to concepts, the edge-function implements the marker behavior on

such an edge.

The edge-function depends on the implementation of the underlying graph, and its edges. In

our Knowledge Graph defined in Section 6.4 we can have multiple sources, over which markers

are passed to an edge and multiple targets to which the edge passes markers depending on the

edge type on the type of relation the concepts are connected to the edge.

7.3.6. Termination Condition

The termination condition encodes when the Marker Passing algorithm should stop propagating

markers. The type of termination condition depends on the use case of the Marker Passing, e.g.,

if relevant concepts in a semantic graph should be identified, we could choose a termination

condition which terminates after a few spreading steps to localize the markers around the context

of the initial concepts. We can define the termination condition as a function which maps the

marked graph to boolean values which indicate if the termination condition is satisfied.

If a desired goal condition is reached, regarding the markers in the graph, and the termination

condition is amiss, the markers can change with the next pulse, and the goal might never be

reached. The same is true for a termination condition which stops at pulses too early. This

means the termination condition depends on the pulse size (here the selection of active and

passing concepts).

Furthermore, the termination condition should identify the goal we want to achieve with the

Marker Passing. If for example, the goal is to calculate the length of the shortest path in a graph,

the algorithm should stop if markers of the two starting concepts meet.

During the calculation of the termination condition, all information on the marked graph is

available. In addition to the markers on the graph and the graph itself, the termination condition

might be stateful, for example counting the activation steps. This gives us the ability to react to

any change done in one pulse.

One basic decision here is which information is taken into account by the termination con-

dition. Depending on this, we have to decide under which condition the termination condition

evaluates to true. The termination condition than might have the following properties:

Dynamic behavior The termination condition might not be a fixed kind of threshold but

might develop with the changes of markers in the graph. It might, e.g., be dependent on

the start activation, depend on the markers distribution velocity or simply be probabilistic.

Interactive The termination condition might be interactive so that a user might stop the Marker

Passing by choice. This might be of interest if the problem is computational complex and

a tradeoff between precision and resources has to be made.

Time based In some problems, the termination condition is simply a time interval which de-

termines how long markers are allowed to spread.

131

7. Marker Passing

The termination condition is highly problem-specific. Therefore it might be canny to have

multiple termination conditions, which guarantees a termination of the algorithm.

7.3.7. Pre- and Post-Adjustment

The pre- and post- adjustment are like the termination condition two phases of the algorithm

where the entire graph and its markers are available for analysis. Here we can implement changes

we want to happen to the marking in between pulses. The design decision to make here is how

to change the markers of the graph before and after the result. The pre-adjustment can be used

to change the markers to influence the active and with that the spreading concepts. The post-

adjustment, on the other hand, might influence when the termination condition is fulfilled.

When using these adjustment phases, we have to be careful to not contradict the termination

condition or the thresholds of the concepts. Since with the “right” pre- and post-adjustment we

can render each termination condition useless and at the same time make the spreading pointless

by creating a condition where the marker is passing only consumes resources without producing

results.

7.3.8. Example Marker Passing

Now we are looking at a simple example of this Marker Passing algorithm. This is done so that

the more complicated discussions are founded on a concrete idea on how this algorithm works,

what the effect on the parameters are and how the result could look like. In this example, we

want to find similar concepts to a pair of concepts given. For this reason, we want to answer

the question: Given two concepts, which concepts are similar to those two? We selected this

example because we want to show that markers can carry more than decimal values like in stan-

dard activation spreading algorithms or neural networks. The example is based on the example

decomposition shown in Figure 6.5 on page 100.

We start out by describing the parameters of this example:

Graph The graph is given by the decomposition of the two target concepts, e.g., ”midday” and

”noon” and has the concepts and relations like shown in Figure 6.2 on page 98.

Type-Graph We have an Attributed Type Graph with Inheritance ATGI = (TG, Z, I,A) like

specified by our example in Figure 6.6 on Page 101.

Data The markers encode the concept they have started from as color. The marker count is

represented by a decimal value. We implement the signature Data as a tuple: M =

(Origin,Activation) where Origin is the concept where the marker is created upon which

is depicted by the color of the marker.

Pulse size The pulse size is selected to be all active concepts. This means that all active

concepts are passing concepts in one pulse. Here we have selected an activation function

which uses a threshold for each concept which, if reached, activates the concept. The

activation threshold is τ(n) = 5.0. This means concepts with more than a sum of five

activation of a color are considered active. Here we use the threshold in the absolute value

of activation. For instance, if a concept is activated with -7.5 then it reaches the threshold

as well.

132

7.3. Parameters of Marker Passing

In-function The in-function collects all markers passed to the concept and sorts them by color

and adds the activation to the activation of the respective colored markers already placed

at the concept.

Out-function The out-function spreads all markers equally distributed over all relations of the

concept. The markers of each origin (color) are spread separately. This means in one pulse

one concept is a passing concept which spreads the color of markers it has been activated

with.

Edge-function The edge function changes the markers with a multiplicative weight. In par-

ticular, the edge function is defined by the factor depending on the edge type:

Edge type Factor

Antonym Relation -1

Definition 0.5

Semantic Relations 0.5

Named Relation 0.1

Synonym Relation 1

The edge function, therefore, changes only the activation of a marker. The weights have

been chosen to demonstrate the effect of the edge function and show in our example how

a use case of a semantic similarity can basically be implemented.

Termination Condition: The Marker Passing terminates in our example after no concept is

activated anymore.

Pre/Post-Adjustment: is not needed in this example, so we leave the function to be the iden-

tity function.

With this example we can start out at the beginning with a start marking of 20 green markers

of concept “noon” and 20 orange markers on concept “midday” on the graph shown in Figure 6.2

on page 98. This leads to the following graph shown in Figure 7.3a.

noon

midday

opposite

d
efi

ni
tio

n

hy
per

ny
m

holonym

synonym

meronym

midnight

antonym

night

meronym

d
e
fi
n

it
io

n

a
n

to
n

y
ma
n
to

n
y
m

fo
llo

w
e
d
 b

y

afternoon

also know
n as

calendric unit

fra
m

e

fra
me

the middle of the

tim
e of

w
h

e
n
 th

e
 s

u
n
 is

 in
 its

 z
e
n
ith

day

Wikidata
WordNet
Wiktionary
FrameNet

2
0

2
0

BE

WHEN

(a) Start marking.

noon

midday

opposite

d
efi

ni
tio

n

hy
per

ny
m

holonym

synonym

meronym

midnight

antonym

night

meronym

d
e
fi
n

it
io

n

a
n

to
n

y
ma
n
to

n
y
m

fo
llo

w
e
d
 b

y

afternoon

also know
n as

calendric unit

fra
m

e

fra
me

the middle of the

tim
e of

w
h

e
n
 th

e
 s

u
n
 is

 in
 its

 z
e
n
ith

day

Wikidata
WordNet
Wiktionary
FrameNet

-2
,8

2
0

1
,4 4
,2

1
,4

5
,6

0
,2

8

BE

WHEN

(b) Marked graph after first spreading step of midday.

Figure 7.3.: The example graph (based on the example graph shown in Figure 6.2) with its start

marking is shown in Figure 7.3a. The result of the first spreading step after the

concept midday as been activated in shown in Figure 7.3b.

133

7. Marker Passing

In Figure 7.3 the markers are depicted by three piles of chips with the “color” of the origin

concept. Here the concept noon is described by the color green, and the concept midday is

described with the color orange. In each step, we denote the active concept with the color it has

been activated in. We describe every activation step in one figure, to describe how this algorithm

works.

The gray words in the two example definitions of “midday” and “noon” depicted in boxes in

Figure 6.2 are stop words. Stop words are ignored in this example. Each concept in a definition

gets all the markers passed to the definition. The concept “day” has a special purpose in this

example: It shows what happens if the same concept is used in multiple definitions or is refer-

enced multiple times by different relations. The concept “day” is first used in the concept “time

of day” which is a holonym of “midday”. Secondly, “noon” is a meronym of a day and third and

fourthly it is used in the definition of midday and noon: “The middle of the day.” and “Time of

the day when the sun is in ints zenith”. This explains why the concept “day” has been activated

twice: First, from the definition relationship to “midday” and second by the hypernym relation

with “midday” as well.

Other special concepts are the concepts “is” and “when”: During the decomposition, the

concepts are reduced to their lemma via lemmatization or stemming. This leads to the basic

form of the word, without its inflections. If this basic form corresponds to a semantic prime or

a synonym of a semantic prime as we have described them in Section 6.5.2, then this concept

is marked as semantic prime and is not further decomposed. This is done with the concept “is”

and “when” here. The lemmatization stems the concept “is” to the semantic prime BE and then

concept “when” to the prime WHEN (time). This is denoted with a hexagon enclosing the prime

colored in dark blue. Primes do not activate and consequently just collect markers over pulses.

For simplicity, we do not include those markers in our example.

We start out by selecting a first spreading concept. We do so by selecting all active concepts

and selecting one of them. Since there are two active concepts: “noon” and “midday” we select

one of them (here we select midday at random). Then we calculate the out-function of midday by

counting the outgoing edges which are seven. Then we distribute the start marking of 20 markers

over those seven edges, which leaves us with ca. 2.86 markers for each edge. Depending on the

edge function of each marker we reach the result depicted in Figure 7.3b.

In Figure 7.3b, the markers have been passed to all concepts connected to the concept “mid-

day”. The concept “noon, ” e.g., is connected to midday by two relations (”also known as” and

“synonym”) which leave us with orange 5.6 markers on the concept “noon” 5.

Here, all relations which have a name but are not specially listed in the Table 7.3.8 on Page 133

are subsumed in the category “Named Relation” and have an edge-function with a weight of 0.1.

Therefore the concept “calendric unit” in Figure 7.3b becomes marked with orange markers and

the activation level of 0.1 ∗ 2.8 = 0.28.

Now that we have dealt with the first spreading step taking us from Figure 7.3a to Figure 7.3b

we can proceed to the next concept. This leaves us with one active concept: “noon”. Since we

are still in the first pulse, we activate “noon” next with the green markers. Here again, we count

the outgoing edges of the concept “noon” and divide the markers equally among those relations.

This leaves us with 2.5 outgoing markers for each relationship. Depending on the edge-function

this leaves us with the marked graph like depicted in Figure 7.4a.

5The size of the chips does not reflect its activation value in detail. Concepts with less than 1.0 markers of one color

are depicted with one marker, to have an intuitive view on where the activation has gone in the graph.

134

7.3. Parameters of Marker Passing

Here again, concepts with multiple relationships are activated multiple times like the concept

“midday”. With Figure 7.4a we have reached the end of our first pulse. This means we have

to reselect all active concepts. This time there are three active concepts: midday, noon and

midnight. Since “noon” and “midday” share a non-directed relationship, the two concepts are

activating each other. However, since we divide the markers up among all relationships, the

activation becomes less and less. The relations between “noon” and “midday”, make’s up about

1/4 of their relationships, we have roughly 1/4 of markers left on these to the concept after the

second pulse.

The concept “midnight” which is connected to both starting concepts via an antonym relation,

is activated further negative. We have to remember, that the weights we have chosen for the edge-

function, multiply the markers passed to it by the weight. To illustrate, if a positive marker is

passed over an antonym edge, the edge-function negates its value.

noon

midday

opposite

d
efi

ni
tio

n

hy
per

ny
m

holonym

synonym

meronym

midnight

antonym

night

meronym

d
e
fi
n

it
io

n

a
n

to
n

y
ma
n
to

n
y
m

fo
llo

w
e
d
 b

y

afternoon

also know
n as

calendric unit

fra
m

e

fra
me

the middle of the

tim
e of

w
h
e
n
 th

e
 s

u
n
 is

 in
 its

 z
e
n
ith

day

Wikidata
WordNet
Wiktionary
FrameNet

-2
,80
,2

5

1
,4 4

,2

1
,4

5
,6

0
,2

8

1
,2

5

-5

5

0
,2

5

1
,2

5

1,25

1,25

1,25

1,25

BE

WHEN

(a) Marked graph after second spreading step of noon.

noon

midday

opposite

d
efi

ni
tio

n

hy
per

ny
m

holonym

synonym

meronym

midnight

antonym

night

meronym

d
e
fi
n

it
io

n

a
n

to
n

y
ma
n
to

n
y
m

fo
llo

w
e
d
 b

y

afternoon

also know
n as

calendric unit

fra
m

e

fra
me

the middle of the

tim
e of

w
h
e
n
 th

e
 s

u
n
 is

 in
 its

 z
e
n
ith

day

Wikidata
WordNet
Wiktionary
FrameNet

-2
,80
,2

5

1
,4 4

,2

1
,4

5
,6

0
,2

8

-5
,7

1

0
,3

2

1
,6

1

1,25

1
,4

3

0
,3

6

1,25

1,25

1,61

BE

WHEN

(b) Marked graph after third spreading step of midday.

Figure 7.4.: The example graph (based on the example graph shown in Figure 6.2) describing

the second and third step of the Marker Passing example. The result of the third

spreading step after the concept midday has been activated is shown in Figure 7.4b.

Now selecting from the passing concepts, we select “midday” to spread first. This leads to

the marked graph depicted in Figure 7.4b. This step reduces the green activation of midnight

even further to the activation value of -5.71. Here we can see, that the activation order of the

markers make a difference, since the activation of midday” before “midnight” leaves us with

more negative activation on “midnight” which, when activate next, well spread appropriately to

the neighbors of “midnight”. If the pulse size is increased, this effect can be opposed. Let us

imagine we have selected the pulse size to be all active concepts; then all concepts activate their

out-function before any concept activates their in-function. We can imagine that in a first step

as if all concepts put their markers on the relations, and in a second step, all concepts take the

markers meant for them from the relations.

Next, we activate “noon” since it has 5.6 markers of the color orange. This leads us to the

marked graph depicted in Figure 7.5a. Here, only one concept is still over the markers thresh-

old. Which leaves us no choice but to activate the concept “midnight”. This is possible since

the activation threshold can be reached in absolute values. Since the concept “midnight” passed

negative markers, we can observe an interesting effect of negative weights: concepts semanti-

cally similar to midnight are activated negatively as well. Furthermore, concepts connected to

the antonym might have passed negative markers to “midnight” , but if “midnight” passes mark-

135

7. Marker Passing

ers, they receive positive markers back. This is because our antonym relation is not directed

so markers can be passed to it in any direction and because the edge-function does multiply

the weight on the markers. This leads to the effect that after the fourth activation the concept

“midday” is activated positively again.

noon

midday

opposite

d
efi

ni
tio

n

hy
per

ny
m

holonym

synonym

meronym

midnight

antonym

night

meronym

d
e
fi
n

it
io

n

a
n

to
n

y
ma
n
to

n
y
m

fo
llo

w
e
d
 b

y

afternoon

also know
n as

calendric unit

fra
m

e

fra
me

the middle of the

tim
e of

w
h

e
n

 th
e
 s

u
n

 is
 in

 its
 z

e
n

ith

day

Wikidata
WordNet
Wiktionary
FrameNet

-3
,50
,2

5

1
,4 4
,5

5

1
,4

1
,4

0
,3

5

-5
,7

1

0
,3

2

1
,6

1

1
,4

3

0
,3

6

0,35

0
,0

7

1,25

1,25

1,25

0,35

0,35

1,61

BE

WHEN

(a) Marked graph after third spreading step of noon.

noon

midday

opposite

d
efi

ni
tio

n

hy
per

ny
m

holonym

synonym

meronym

midnight

antonym

night

meronym

d
e
fi
n

it
io

n

a
n

to
n

y
ma
n
to

n
y
m

fo
llo

w
e
d
 b

y

afternoon

also know
n as

calendric unit

fra
m

e

fra
me

the middle of the

tim
e of

w
h

e
n

 th
e
 s

u
n

 is
 in

 its
 z

e
n

ith

day

Wikidata
WordNet
Wiktionary
FrameNet

-3
,50
,2

5

1
,4 4
,5

5

1
,4

1
,4

0
,3

5

-0
,3

6

0
,3

2

1
,6

1

2
,8

6

0
,3

6

0
,0

7

0
,7

1

0,35

1,25

1,25

1,25

0,35

0,35

1,61

BE

WHEN

(b) Marked graph after fourth spreading step of midday.

Figure 7.5.: The example graph (based on the example graph shown in Figure 6.2) describing

the second and third step of the Marker Passing example. The result of the third

spreading step after the concept midday has been activated is shown in Figure 7.4b.

The result of our fourth Marker Passing step can be seen in Figure 7.5b. With the edge-

functions being all smaller or equal to one, the active concepts become less and less until we

do not find any active concepts anymore. So that we can stop since our termination condition is

reached.

Now it is time to interpret our result. The result of our example execution of the Marker

Passing algorithm is shown in Figure 7.5b. Therefore our next objective is to see how we can

use this marked graph to answer questions we want to ask. First, let’s look at the things we

decomposed: First, we decomposed two words: “noon” and “midday”. Then we placed markers

on those concepts and propagated them in a way that similar concepts get more markers than

opposite ones. In fact, the question we have been asking for this example is: What are similar

concepts to noon and midday?

Depending on the questions we ask, the interpretation of the resulting marked graph differs.

For our questions, we wanted to know similar concepts to noon and midday. Then our interpre-

tation of the result could be to select the concepts with a maximum total amount of all colors

of markers as similar and the concept with a minimal amount of markers as not similar. This

would lead to the result that concepts like the day, time, sun and zenith are similar concepts and

that midnight and night are un-similar concepts. This interpretation is just one example of how

the decomposition and the Marker Passing (and their selection of parameters) can work together

to represent meaning. With the result that different decompositions, different marker-passing

algorithms, and different interpretations can be found.

Since we are not the first ones to use Marker Passing on semantic graphs [21, 59, 286, 301,

314, 329, 333, 362, 421], we now look at the contribution of this work in more detail. Starting

out by looking at the difference of our approach to others, we will look at the combination of

connectionist models of meaning with symbolic ones. We do that by looking at the symbolic

136

7.3. Parameters of Marker Passing

information encoded in the markers in Section 7.3.9 and continue by looking at the interpre-

tation of concepts in Section 7.3.10 to finally extend this connections model through an edge

interpretation in Section 7.3.11.

7.3.9. Markers Interpretation in Marker Passing

We have seen above that the definition of the information encoded on the markers is problem

specific and influences further design decisions. Some examples of markers could be: boolean

tokens which are passed over a graph like it is done in Petri Nets [306], a decimal activation

like in Artificial Neural Networks [347] or the information passed on by a Marker Passing can

become more complex like proposed by Minsky [273]. Depending on the use case, different

information can be encoded on our marker. In our example in Section 7.3.8, we have used two

types of symbolic information: the information of an amount of activation, and the origin as a

start concept the markers were placed on. Depending on this information, the rest of our Marker

Passing algorithm has been developed. This means that for example, the threshold of a concept

uses both parts, the amount of activation collected by all markers received from one origin. The

concept interpretation does not stop there: We also used the origin in the in- and out-function.

The main difference to the state-of-the-art here is that this information on the markers is flexi-

ble and if we can have a dynamic interpretation, this interpretation of the markers by the Marker

Passing algorithm enables more expressiveness. We now take a look at which information about

and from markers is available for the Marker Passing algorithm and how this information can be

used to interpret the resulting marked graph.

We separate the information into four parts: First, the symbolic information encoded in the

markers which enable us, e.g., to create specific markers of one or more sorts. Second, the

meta information about markers, like their count. Thirdly, the information about the markers

distribution over the semantic graph, which lets us analyze active areas. Moreover, fourth, the

change in markers over the pulses or time. Each of that information about and from markers can

be used independently on what the markers hold as a sort of symbolic information.

In the simple example, where markers only carry the boolean information if it is present or

not (like in a Petri-Net), there are still all other three information types available regarding the

markers. With more complex marker sorts the symbolic information becomes more complex

and with that its meta information. Looking at the information available we can analyze the

following four groups:

1. Symbolic Information The sort of the markers is the most complex and domain dependent

part of the marker’s information. Choosing which information to model in the marker, and

how to interpret it depends on the questions asked with a query and the answer we want

from the interpretation of the Marker Passing result. The symbolic information of the

markers is the only information available at all time during the Marker Passing algorithm.

Hence we can use it from the pre-adjustment phase to the check of the termination condi-

tion. In our example in Section 7.3.8 the origin (depicted as color) and the activation level

(depicted as a decimal number above the markers) are the symbolic information encoded

by a marker.

2. Meta Information Meta information about the markers and the graph include information

like the total amount of start markers, the number of different types of markers, the total

137

7. Marker Passing

number of edges or concepts in the graph, the pulse size and so on. Depending on this

information, the Marker Passing algorithm can change its behavior. However, there are

some restrictions rooted in the way we have defined the Marker Passing algorithm. Since

we have defined the in-, out- and edge-function (see Section 7.2.2) in a way that their

result depends only on their local information. This means the meta information available

here depends on the current concept which is activated. Thus only some meta information

is available during those functions. Let’s call this information local meta information.

Consequently, we need to define the difference in the meta information:

Global meta information is information about the graph or its marking which take

into account the whole graph and its markers not encoded as symbolic information

on the marker.

With global meta information, we can express things like the total amount of markers

currently marking the graph, the number of concepts or edges in the graph or the number

of the current pulse. Global meta information is available in the pre- and post- adjustment

as well as the selection of active and spreading concepts and the termination condition.

Not all meta information needs to be global. A concept can collect meta information as

well. The concept in its in-function could, for example, keep track of the markers types

and react differently the first time it is activated with a new markers type. For this reason,

we need to define local meta information as well:

Local meta information is information about the concept or its marking which take

into account this concept and its markers not encoded as symbolic information on

the marker.

The local meta information is available to in-, out- and edge-function and can be calcu-

lated for each of those functions and each concept and edge independently. An example

of a global meta information which can not be calculated locally is the total amount of

pulses passed. Since the local concept can only act in the pulses, it has been active. All

meta information can be made available to all phases of the Marker Passing algorithm by

modeling them as symbolic information on the markers. Depending on the information

modeled, this can be done in the pre- and post-adjustment Marker Passing phases.

3. Distribution As markers pass through the graph, the markers form a distribution. This

distribution can foster further information and can be used to influence the Marker Passing.

Distributional information can be seen as a type of global meta information. It describes

the markers about other meta information. Enabling us to define something like a hot-

spot6 or a focus point during the Marker Passing or to express relationships of markers to

concept types. This information is available during the pre- and post-adjustment and the

termination condition.

4. Change The information about markers’ change is another meta information which we want

to discuss separately. We define meta information change as:

Meta information about change is global or local meta information about concepts

and markers which change over time or pulses.

6A hot-spot can be seen as a subgraph which exceeds an activation limit.

138

7.3. Parameters of Marker Passing

We analyze this information separately from other meta information since it takes into ac-

count the change of meta information as well. This enables us to define something like ve-

locity of markers. This lets us analyze information about the markers change which leads

to further meta information like attention points where concepts are more often marked as

active than others. Because this information needs to be collected pulse overarching this

information can only be collected during the pre- and post-adjustment and the termination

condition phases.

Under changing information, we can also include the change in markers’ interpretation.

Here the markers include information on how to react to other markers. An example

application of this use of meta information about markers can be found in the work of

Fahlman [92] where the interpretation of the markers is dependent on the query, and with

that, if modeled in our Marker Passing paradigm, the interpreting information of a marker

is passed on the markers itself.

One could imagine a Marker Passing where markers are added and removed dynamically. In

this case, new marker types can be introduced during the Marker Passing. One use case for such

a scenario is the distributed query7 of one graph by multiple users, where the queries influence

each other. This would enable a conversational behavior of the answers given by the algorithm

which leaves us with an implementation of abstract markers interpretation8, which is left to

future research efforts.

We can conclude that the markers’ interpretation takes place in multiple parts of the Marker

Passing algorithm and that the information passed on with markers is specific to the problem.

The problem inclines the question we ask, which is about to be answered by the interpretation

of the marked graph as a result of the Marker Passing algorithm.

Where Fahlman [92] can encode the presence of a marker type for each node, the novelty

in our extension is, that more information than the presence of a marker type at a node can be

used for the Marker Passing. This includes but is not limited to the information discussed in this

section.

Next we look at how the state-of-the-art marker-passing algorithms is extended by the intro-

duction of concept (see Section 7.3.10) and edge types (see Section 7.3.11).

7.3.10. Concept Interpretation in Marker Passing

In difference to the approach of Fahlman [92] where the symbolic information on the markers is

used to enable reasoning on an entire knowledge graph, we introduce concept types, where each

concept can react differently to markers. In the approach of Fahlman, every concept reacts to the

present markers in the same way. With that, different markers passing through the knowledge,

a graph can cause different marked concepts to react differently to a new marker. We extend

this approach with a concept type which has its own “interpretation” of its marking. We define

interpretation as follows:

7A query can be distributed in parallel or over time. Having one graph queried by multiple queries enables us to

model something like attention or focus to analyze which parts of the knowledge graph or the semantic graph are

of interest, form correlations, topics or causal relations.
8The markers could need to be typed by a hierarchy, and this hierarchy needs interpretation, or the interpretation of

the markers is encoded as symbolic information in the marker.

139

7. Marker Passing

An concept interpretation is the effect of in- and out-function of a concept, given its current

marking, the getActiveConcepts- and getPassingConcepts function and a set of markers.

The interpretation of a concept, therefore, depends on the implementation of the in- and out-

function. The effect of the in- and out-function is again a marking on the graph but with the

restriction of the local context of the concept under study.

To formalize the concept interpretation, we introduce concept types. A concept type is a

mapping of the type graph discussed in Section 6.4 to the concepts of the knowledge graph.

Here we introduced the example concept types: Stop Words, Semantic Primes, Logical Con-

cepts and Not. Additionally, we added the relevant properties of a concept type9 in Figure 6.6 by

giving a Concept it’s in- and out-function and the active- and passing-ConceptFunction. These

conclude the concept interpretation with respect to the definition above.

In our example of ”midday” and ”noon” from Section 7.3.8 on Page 133 a Semantic Primes

concept has an in-function where all incoming markers are ignored. In particular a Semantic

Prime concept is never activated and therefore never passes markers with its out-function.

Like the concept interpretation, we introduce an edge interpretation where different edges can

react differently to markers. How this is done and what can be modeled with that is subject to

the next section.

7.3.11. Edge Interpretation in Marker Passing

Derived forms of the Marker Passing like artificial neural networks, use weights for each edge to

change the behavior of, e.g., the activation spreading over the network to adapt to a given training

set [347]. Like with the concept interpretation we introduce an edge interpretation giving each

edge type the possibility to define its behavior exceeding the setting of weights. In this section,

we will analyze how this edge interpretation influences the Marker Passing.

A Edge interpretation is the effect of edge-function of an edge given an edge and its mark-

ers.

Like with the concept interpretation, the edge interpretation is given by the edge types. The

edge type is defined in the type graph shown in Figure 6.6 on page 101. Here each edge is

assigned to exactly one edge type.

Since the edges are defined in an inheritance hierarchy, like with concepts, the inherited edge-

function can be overwritten in a specialization. An example of such relations is shown in Fig-

ure 6.6 on page 101 where we have a general relation which inherits the edge function to its

children i.e. the semantic relation which can be further specialized like shown in Figure 6.7 on

page 102.

The edge interpretation function allows us to modify the markers passed to the edge by an

out function. It allows each edge to change the symbolic information passed by the markers or

change its connectionist information by choosing to which target of the edge the markers are

passed to. Here the restriction is that only markers passed to the realization can be modified, and

the edge can only pass markers to concepts which are part of its target function codomain.

In our example Marker Passing in Section 7.3.8 the edge-function of, e.g., the antonym re-

lations changes the symbolic information on the markers into a negative activation. Here we

9In our example of a semantic graph the concepts are made up of concepts, and the different concept types are

reflected by different concepts.

140

7.4. Conclusion

selected all activation of all source concepts and then passed the modified information on to the

target concepts.

As we have described in Section 6.4 an edge of our graph can be seen as a concept as well.

Therefore an edge can act as an edge when it is activated by a concept, and it can act as a concept

if it is activated as a concept (if markers are passed to it by an edge).

Also, the edge-function might choose to activate another edge which is part of its targets

depending on the markers passed to it and the implementation of the edge function. In our

example relation in Figure 6.2 the “give” relation inherits from a “transfer” relation. If the

“give” relation is now activated, it can activate the transfer relation by sending markers over the

is-a-relation to the transfer relation. The transfer relation is then handled like every other relation

which has markers passed to it by an out-function in this spreading step.

As the activation of concept cycles, the information about a passed markers in the history

of markers can help to detect loops in edge cycles. This means that for the Marker Passing

algorithm cycles in concepts or edges do not have to influence the termination behavior.

The effect of edge interpretations can be seen in the Marker Passing example shown in Fig-

ures 7.3 to 7.5. In this example, one case of an edge interpretation is the antonym relation. Here

the edge function negates the activation value of the marker, leading to the effect that antonyms

of concepts with decreasing activation.

With this Marker Passing algorithm over the here defined graph structure, we can model

many problems. We will focus our analysis on one kind of problem which veins this thesis: The

modeling of meaning. This is done next, where the graph and the Marker Passing are specialized

to the use case of modeling pragmatic meaning after a short conclusion of this section.

7.4. Conclusion

In this section, we have proposed an abstract Marker Passing algorithm, which uses a semantic

graph to guide the Marker Passing. This extends the state-of-the-art of marker-passing algo-

rithms by having defined four functions (In- Out- Edge- and After Send-Function) which allow

a specialization of the algorithm to a given problem. Also, we have added the marker data type

which allows us to encode symbolic information onto the markers and use this information in

the spreading functions.

This Marker Passing algorithm together with the semantic decomposition present the two

parts of our artificial meaning representation: The semantic decomposition automatically creates

a semantic graph encoding connectionist information. The Marker Passing allows symbolic

information to be encoded on the markers and the spreading functions to use this information

regarding the structure of the semantic graph. Together they form two parts of a thought process

like learning new knowledge (extending the graph) and thinking of this knowledge (Marker

Passing).

Because of its general nature, the algorithm leaves many parameters to the developer for

specification. Selecting the right information on the marker, the spreading functions and how

the result is interpreted are just a few of them. This fosters broader applicability of the algorithm

but generates more effort on using it in special applications.

Next, we will evaluate our approach in the different experiments described in Part IV.

141

8. Implementation

This section describes the implementation of the approach which was used to evaluate the hy-

pothesis in the here performed experiments. For each component, we look at how it can be

used and at the main classes used in the component. With that, we want to give an overview

on the application interfaces and enable other scientists to reuse the results created here. The

implementation has been realized using Java 1.8. The semantic graph is implemented using

JGraph [14]. All dependencies have been managed using Apache Maven1.

Decomposition

Marker Passing

DictionariesExperiments

Word

Marked Graph

Relations
Definitions

Graph creation

Concept

Marked Graph

In
te

rp
re

ta
tio

n

Initial Marking

Figure 8.1.: Architecture of the implementation.

Figure 8.1 shows the architecture of our implementation. We start ours with an experiment,

which needs to decompose some words. Those words are given to the decomposition. At the

same time, the experiment defines how the result of the Marker Passing is interpreted. The words

were given by the experiment then are decomposed by the decomposition component, using the

attached dictionaries. The result of the decomposition is a graph containing all information

gathered during the decomposition. This concept can be transformed into a graph, which then

is passed to the Marker Passing. The result of the Marker Passing is a graph marked with the

appropriate markers. This result then can be interpreted by the experiment.

We first look at the implementation of the Decomposition and how it can be used in Sec-

tion 8.1. We then look at the Implementation of the Marker Passing algorithm in Section 8.2.

8.1. Semantic Decomposition

This section describes the implementation of the semantic decomposition. All components used

in this thesis can be found online2. We will look at the API for the different components and

explain how they are used. An Overview of the classes used by the decomposition can be found

in Figure A.2 and Section A.

1see: https://maven.apache.org/
2To get access to the GIT repositories, please contact the author.

143

8. Implementation

Figure 8.2.: Our IDictionary interface.

The semantic graph is enriched with all available information from the sources: WordNet3,

Wiktionary4, Wikidata5 and BabelNET6. Here the graph is created by a semantic decomposition7

that breaks each concept down semantically until a set of semantic primes is reached [328, 98,

144, 407], the decomposition depth has been reached or no new information can be found in

the information sources. To add another information source as dictionary to be used in the

decomposition an Interface called IDictionary needs to be implemented like shown in Figure 8.2.

The dictionaries therefor all provide a function to get the concepts which are in the different

semantic relation of a concept or its definitions. The main function used in the decomposition

is the function fillConcept(Concept, WordType) which calls all the other function and adds their

result to the given concept. Here the WordType restricts the dictionary to only look up definitions

and relations for the given POS. The word type can be null, which lets the dictionary return the

relations and definitions for all POS.

The decomposition component will download all necessary data sources and extract them

into a “.decomposition” directory in the users home folder. Since this includes downloading and

extracting e.g. Wikipedia, this might take several hours and will need disc space of more than

60 Gigabytes. This download is done in during the first initialization of the decomposition, e.g.

during the first use of the decomposition.

Next, we will describe how to create a decomposition. Creating a decomposition is done like

shown in Listing 8.1. The decomposition expects the word it has to decompose and the depth to

which the concept should be decomposed.

Listing 8.1: Example decomposition creation.

3https://wordnet.princeton.edu/
4https://en.wiktionary.org/
5https://www.wikidata.org
6http://babelnet.org/
7https://gitlab.tubit.tu-berlin.de/johannes faehndrich/semantic-decomposition

144

https://gitlab.tubit.tu-berlin.de/johannes_faehndrich/semantic-decomposition

8.1. Semantic Decomposition

Decompos i t i on d e c o m p o s i t i o n = new Decompos i t ion () ;

Concept dog = d e c o m p o s i t i o n . decompose (” dog ” , 2) ;

In the example shown in Listing 8.1 we decompose the word “dog” with depth two. A class

diagram of the decomposition can be found in the appendix in Section A.2 on Page 260.

The decomposition returns a concept. A concept implemented as shown in Figure 8.3a incap-

sulates all relations the concept has with other concepts. This implements the signature described

in Section 3.5. The concept holds the literal (the word) it represents, as well as its lemma (the

base form of the word) and its named entity id (NER). The class additionally hold organizational

fields like a list of IDs of the word in the different dictionaries, the highest decomposition level it

has been decomposed with and the element count of the decomposition. The “namedRelation”

is a relation extracted from Wikidata, where the relation itself is not a semantic one, but a named

relation like “is-president-of-country”.

(a) Class diagram of a concept. (b) Class diagram of a definition.

Figure 8.3.: Class diagrams of concept and definition.

In addition, a concept has a word type which encapsulates the Part-of-Speech (POS) of the

concept. Here the word type includes the POS representations of the different data sources. The

word type class proposes functions to convert one POS data structure into another.

The concept includes its definitions. A definition is implemented like shown in Figure 8.3a

the concept, it defines is held here as “term” and a list of concepts making up the definition. The

definitions implement the signature described in Section 3.5. A definition additionally includes

a sense key which references the WordNet send key. This is needed if a definition should be

selected in a Word Sense Disambiguation task.

145

8. Implementation

8.2. Marker Passing

This section will describe the implementation of the Marker Passing component and how it can

be used. The Marker Passing algorithm in its basic form is kept abstract in its implementation

as spreading activation algorithm8. In this implementation the basic methods like execute()

are implemented to run the Marker Passing. The interface defines which functions have to be

implemented by a specific implementation of the Marker Passing algorithm, like its in- and

out-function. This is shown as an example in Figure 8.3b. This algorithm is implemented as

an example with the “DoubleMarkerPassing” specialization. This implementation is used as a

basis for all our experiments and is listed in Figure 8.3b.

Figure 8.3b shows the abstract algorithm contains only the functions described in Section 7.2.

A Marker Passing algorithm can be used in the way shown in Listing 8.2. In Figure 8.3b we

create a concrete implementation of the abstract Marker Passing algorithm. The Marker Passing

takes a graph as input, which represents the semantic graph on which the markers are to be

passed on.

Listing 8.2: Example Marker Passing.

Doub leMarke rPas s ing d o u b l e M a r k e r P a s s i n g =

new Doub leMarke rPas s ing (mergedGraph ,

t h r e s h o l d , D o u b l e N o d e W i t h M u l t i p l e T h r e s h o l d s . c l a s s) ;

Doub leMarke rPas s ing . d o I n i t i a l M a r k i n g (s t a r t A c t i v a t i o n ,

d o u b l e M a r k e r P a s s i n g) ;

d o u b l e M a r k e r P a s s i n g . e x e c u t e () ;

The second parameter of the Marker Passing represents the thresholds for the node type passed

in the third argument. The node type has to be passed to the Marker Passing since different node

types of the different experiment have different behavior. Here we created a node which cumu-

lates double activation and has multiple thresholds for the markers encoding origin information.

To implement an instance of the Marker Passing, the (purple) properties shown in Figure 8.3b,

beneath the line, have to be implemented. One implementation of these abstract Marker Passing

functions is shown in the “DoubleMarkerPassing”. The implementation of the specific functions

is explained for the example of a semantic similarity measure in Section 7.3.

8gitlab.tubit.tu-berlin.de:johannes faehndrich/general-spreading-activation.g

it

146

gitlab.tubit.tu-berlin.de:johannes_faehndrich/general-spreading-activation.git
gitlab.tubit.tu-berlin.de:johannes_faehndrich/general-spreading-activation.git

Part IV.

Evaluation

147

9. Experiments with the Decomposition

This chapter will describe the first part of our evaluation of my approach: This first part will

experiment with the parameters of the Decomposition (Section 9). Those parameters are funda-

mental for all other experiments including the decomposition. Since the decomposition is the

basis for all other experiments, its parameters and their effect on the resulting semantic graph

should be analyzed to be able to select the parameter later in the other experiments.

In this chapter we will first look at the parameters of the decomposition in Section 9.1 . We

then analyze in more detail the selection of synonyms in Section 9.2 and the decomposition

depth in Section 9.3.

9.1. Parameters of the Decomposition

In this section, we will describe our experiments with the parameters of the decomposition. Thes

experiments are done before our semantic experiments because these parameters influence all

of those experiments through the output of the decomposition: the semantic graph. Here we

want to analyze how the parameters of the decomposition change resulting semantic graph. The

parameters which are analyzed are the recursion of the semantic relations on the example of

synonyms and which influence the decomposition depth has on the output graph. The analysis

of all semantic relations could further gain insight into the creation of artificial meaning but is

left to future work.

With this experiments, we want to foster more understanding of our decomposition. The re-

sults should enable us to improve its performance and find drawbacks which could be removed in

future specializations. The parameters of the decomposition (e.g., synonyms and decomposition

depth) are general properties and hence are not tied to a specific application.

The theoretic semantic decomposition introduced in Section 6 is not usable in practice because

of two reasons: it takes a long time to create a total decomposition into semantic primes or even

worse, it can not be done with the given information sources. The information source is unusable

for the decomposition, e.g., if no definitions or explanations for concepts are given in them. In

this case, the information source will only replace words with other words without describing

their meaning. If words are only replaced by an agent, meaning can not be established which is

argued in the philosophical ”Chinese Room” argument [353]. For the decomposition to become

more usable we have restricted the theoretic decomposition with a decomposition depth shown

in Algorithm 1. This experiment analysis the effect of the decomposition depth on the resulting

semantic graph.

We start out by looking at the different relations used in the decomposition to identify the

scope of the decomposition depth. Here for the termination of the decomposition we look for

semantic primes or their synonyms because synonyms of primes are handled by the decomposi-

tion like primes themselves.

Finding synonyms depends on the used information sources. The information sources like

149

9. Experiments with the Decomposition

Wikipedia and WordNet describe different relations between concepts. Relations can be of syn-

tactical nature like Part Of Speech (POS) relations or of semantic nature like the “is-part-of”

relation of Synonymy. The selection of the relations used during decomposition makes up the

semantic graph. Using this graph with the Marker Passing influences the result of the Marker

Passing and the information it can encode. Therefore, the selection of the relations during de-

composition and when to stop decomposing influences the result of the Marker Passing. As an

example leaving out the Hypernym (generalization) and the Hyponym (specialization) relations

has the consequence that generalizations like the similarity between “bird” and “cock” is harder

to find and the markers take other routes between the two concepts. Bringing about that the same

Marker Passing algorithm creates a different marker distribution on the graph.

Since we can configure the Marker Passing in a way to ignore relations1 We will first add all

relations to the decomposition and filter them out later if not needed. This is done since we might

not know all application contexts the decomposition is used in. Consequently, we can not decide

which relation will be needed and which one can be left out. One example for this argument is

the Marker Passing done by Fahlman [92] where the edge “eats” connects “bird” and “worm”

in the sense of birds eat worms. If this edge had not been added during the decomposition,

the connection between worms and birds would have been lost, and the reasoning that birds eat

worms but penguins eat fish would not be possible.

The remainder of this section discusses the use of the synonym relation in Section 9.2 and

the decomposition depth in Section 9.3 since both influence the output of our decomposition.

The synonymy relation analyzed here is a surrogate for other semantic relations, which need

further analysis as well but are out of scope for this work. First, we analyze how synonyms

are chosen, since the synonyms of primes are also seen as primes and as a result terminate the

decomposition.

9.2. Selecting Synonyms

The first parameter of the decomposition algorithm we look at is the properties of relations in

the example of the synonym relation. Selecting words which have an equivalent meaning is not

precise enough for a semantic decomposition. The goal of this section is to determine if syn-

onyms have certain properties with the information sources we use in the Decomposition. Most

concepts have different meanings in different contexts, consequently, synonyms of a concept do

too. A synonym might be equivalent in one context of use but not in another one, as discussed

in Section 3.9. As a result, we use the Definition 23 to define a synonym.

Nevertheless, there is a set of agreed on synonyms which are held in different databases like

the Roget’s Thesauri on which WordNet has build its synonym relations [192]. These synonyms

can be used to bootstrap other synonyms from unstructured text like the definitions used in the

semantic decomposition. Kennedy and Szpakowictz [192] suggest adding new word into the

Roget’s Thesaurus by using word context and already known words and their synonyms. The

major drawback of this approach is that the synonymy relation is not dependent on the context

in which the words are used. Because we first have to create our semantic similarity measure

to use Definition 23 as synonyms, we will start out by using the pre defined synonyms by the

information source. In this section, we will discuss the properties of synonyms and analyze if

1This can be done, e.g., by setting the weight for a relation to zero in the out-function of the Marker Passing.

150

9.2. Selecting Synonyms

those properties are given by the synonyms we extract from our information sources.

We consider partial synonymy as defined by Löbner [240] since total synonymy is either

trivial, i.e., abbreviations (e.g., AI is a synonym for Artificial Intelligence) or nonexistent if we

consider if two concepts have the same meaning. If two concepts have the same meaning they

are equivalent hence again a trivial case: each concept is a synonym to itself. To words, on the

other hand, might be equivalent and not be synonyms as this is the case, e.g., for ambiguous

words. In particular, if we talk about synonyms we talk about partial synonyms as defined in

Definition 23 with a fixed context. This means we can look at the following properties to analyze

if they are given by our data sources:

Reflexive: Synonyms are reflexive since a concept can be replaced with it self without chang-

ing the meaning of its word sense. A concept, in consequence, is a synonym to itself since

the semantic similarity of a concept c and itself should be one. This is of cause only the

case if the same word sense is selected.

Symmetry: Replacing one concept with another in a given context without changing its mean-

ing should be symmetric if the context is fixed. Hence if two concepts c1 and c2 are syn-

onyms in a given context, replacing the one with the other does not change the meaning of

the sentence, neither does changing it back to the original concept as long as we select the

appropriate word sense. We can see in Figure 9.1 and Figure 9.2 that both concepts (mid-

day and noon) are synonyms since they are connected by a synonym edge, but a speciality

of the information sources used for our decomposition is that midnight is an antonym of

midday, but not of noon, even though they are synonyms. This means the information

sources we used do not see synonyms as semantically equal because if they would, noon

should have the same antonyms as midday.

Transitivity: Synonyms are transitive in a fixed context. Because of the symmetry of syn-

onyms, if a concept c1 is synonym to a concept c2 in a given context and c2 is synonym

to c3 in the same context then c1 is synonym to c3 as well. This can be proven by the

Hypothetical syllogism [237].

Closure: Has the set of synonym closure under the synonym relations. This means: does the

synonym relation always add new elements or is the set at some point complete and finite.

With our information sources, the synonym sets are complete. This can be shown adding

all synonyms of synonyms to a set of concepts. After running several tests, this recursive

lookup of synonyms terminates and results in a finite set of concepts. E.g., the word “dog”

(as a noun) as 193 recursive synonyms, the word “fly” (as a verb) has 62, and “nice” (as

an adjective) has 150. There could be only two outcomes of this experiment: First, if the

synonyms build a recursive chain and are not complete, then all words of the information

sources become part of the synonym. Second, the recursion at one point does not add any

new synonyms.

Having a measure of semantic similarity, we need to decide which recursion depth of a syn-

onym can still be counted as a synonym. If our definition of a synonym is symmetric, a number

of synonyms regarding one threshold of Definition 23 discussed in Section 3.9 should be finite.

Never the less infinite chains of similarity could be created.

151

9. Experiments with the Decomposition

Concluding we can summarize: Until now synonym relations are given by ontologies like

WordNet. These relations have been modeled by humans like in thesauri where for each concept

there is a set of synonym concepts. If done well, the so defined synonym relation is symmetric.

But with the generalization from context this representation is error-prone: As described in

Section 3.9 two concepts might be synonyms in one context but not in another [176]. In reference

to a financial institution, one would perhaps utter: “This counting house was robbed!” using

“counting house” as a synonym for a bank. But in reference to a bench in the park or a slope of

the earth, this would probably confuse the audience.

The goal of this evaluation is to show the usefulness of our representation of meaning by find-

ing semantic similarity between concepts e.g. of a goal state and some concepts of a service;

we analyze concepts, sentences, word senses and semantic service descriptions for their simi-

larity. We are still using all of the relations available, but do not define their semantics. With

that the analysis of Meronyms, Hypernyms und Hyponyms is left for others to be researched.

The question if a synonym of a synonym is still a synonym of the original concept can be asked

for all semantic relations. The restriction on when we stop following a semantic relation in the

decomposition is discussed in the next section.

9.3. Selecting Decomposition Depth

The decomposition as described in Algorithm 1 is a recursion which ends the decomposition if

a concept is a semantic prime or the decomposition depth is reached. The total decomposition

of a concept includes all concepts found on the path to the prime. The resulting decomposition

graph might become huge depending on the information sources available. Therefore we specify

a parameter describing how often the recursive decomposition should be called. This parameter

is called decomposition depth.

The restriction on the recursion depth allows us to narrow the recursion to exclude concepts

which are too far from the concept which should be decomposed. Including more concepts

leads to the effect similar to the “curse of dimensionality” described by Bellman [22], where

with more dimensions valid data (for us the right concept) becomes sparse since more abstract

concepts are included in the decomposition which adds more and more unwanted concepts. The

inclusion of more abstract or further away concepts leads to additional concepts, which might

not be part of the meaning of the original decomposed concept, hence since the decomposition

should represent the meaning of a concept, adding noise to the decomposition.

To see the effect of the decomposition depth, we will now look at two examples shown in

Table 9.1. Here “Nodes” is the number of nodes and “Edges” the number of edges in the graph.

“Depth” is the parameter of the decomposition depth limit and “Diameter” is the diameter of the

so constructed graph. The “avg Degree” is the average degree of incoming and outgoing edges

per node and “avg Path Length” is the average path length between nodes.

As we can see in Table 9.1 the number of concepts grows fast with the increase of decompo-

sition depth. The average degree of on the other hand grows only slowly. This lets us conclude

that a number of leave nodes grow faster than a number of inner nodes.

Figure 9.1 shows the decomposition of the word noon in a graph representation with depth

one. Here edges in orange are definitions, green are synonyms, red are antonyms, and blue are

hyper- and hyponyms. Figure 9.2 shows an example of the decomposition of the word midday.

We can see in Table 9.1 that for depth of one the degree is smaller than one since the avg degree

152

9.3. Selecting Decomposition Depth

Table 9.1.: Example decomposition properties.

Concept Nodes Edges Depth Diameter avg Degree avg Path Length

noon 38 37 1 2 0.97 1

midday 39 50 1 2 1.28 1.34

noon 1105 1392 2 4 1.26 2,25

midday 1108 1412 2 4 1.2 2.29

noon 6701 13058 3 13 1.95 4.58

midday 6701 13071 3 13 1.95 4.58

Figure 9.1.: Example graph of an example decomposition of “noon” with depth 1.

measured here is an average of in- and out-degree of edges per node. Since most of the nodes

have only one incoming edge and no outgoing edges, the average drops under one. In our

example of “noon”, we have one node with 37 outgoing and 37 nodes with one incoming node.

The size of the graph at depth two is too big to be displayed here. But we can show a part

of the graph in Figure 9.3 and Figure 9.4. The nodes have grown by ca. 29 times and the edge

by ca. 37 times. With the increase of depth, the growth of the nodes becomes smaller, but the

interlinking becomes denser. From depth two to depth three the nodes grow only by a factor of

ca. 6 and the edges by a factor of ca. 10. The observation can explain this that at some point the

same concepts are used more often in multiple definitions, and the average path length is less

than five. This explains as well why the two concepts have almost the same amount of nodes and

Figure 9.2.: Example graph of an example decomposition of “midday” with depth 1.

153

9. Experiments with the Decomposition

Figure 9.3.: Example graph of an example decomposition of “noon” with depth 2.

Figure 9.4.: Example graph of an example decomposition of “midday” with depth 2.

edges the higher the decomposition depth. Since the diameter is the longest of the shortest path

between two nodes, it grows with the size of the graph and the branching factor. This shows that

not all nodes are closely interconnected. The large diameter is created because the stop words

have been removed. The diameter shows that sometimes we have to take long paths through the

graph to get from one concept to another. The average path length, on the other hand, shows that

most paths are still within an interval around the decomposition depth.

We were not able to produce decompositions, with no decomposition limit since the decom-

position then ended in a resources error because our test system did not have enough memory.

In conclusion with this experiment, we have gained the knowledge on how fast and in which

way a decomposition of a concept grows. This insight gives us a basis for the later selection

of the parameter for specific problems and explains why in some problems, the decomposition

depth can not get larger than three since the size of the resulting semantic graph becomes too

big.

154

10. Experiments with the Marker Passing

This section will evaluate the here proposed representation of meaning in five experiments. Start-

ing with a Semantic Similarity Measure in Section 10.1. Then we look at an experiment regard-

ing Word Sense Disambiguation in Section 10.2. We then evaluate our approach with a Sentence

Similarity Measure in Section 10.3. Then we apply our approach to Semantic Service Match-

making in Section 10.4. Finally, we evaluate our approach in an experiment of creating a goal

oriented semantic heuristic in Section 10.5.

The second part will consist of experiments using our approach in different research chal-

lenges (Section 10). Since the main goal is to create a formal representation of artificial mean-

ing, we are facing the problem of proving that this representation constructs meaning in an

agent. Even more complex is the question if the “correct” meaning is represented. We have seen

that there is no correct meaning, only context-dependent meaning which differs from thinker to

thinker. An example is the meaning of colors, which in a context do carry meaning, but there

is no general meaning of, e.g., red. Therefore, we are not evaluating the correctness of mean-

ing of words, but rather six example problems which determine if the artificial representation

of meaning makes sense regarding human thinking. The first experiment is to learn about the

parameters of the decomposition and how they can be selected in the following experiments. For

the evaluation of our representation of meaning we carry out the other five experiments:

Word Similarity experiment: If words carry similar meaning and this meaning can not be

measured, we can try to measure the distance of meaning represented by words as a less

complex problem. Here we can try to find common ground on which is more similar,

e.g., banana to apple or banana to anger. In this way, we do not measure the meaning

of the concepts used, but only the effect this meaning has on certain problem-solving

techniques. The idea is to take data sets where humans assess the semantic similarity of

a list of concept pairs and then try to get a similar result by using our formalization of

meaning. In our example of midday and noon, we might find that midday is closer to

noon than to banana.

Word Sense Disambiguation: Another experiment to analyze the quality of a meaning rep-

resentation is to assess if ambiguous concepts can be disambiguated in a context of use.

Ambiguous words are words which can carry different meaning and therefore need to be

disambiguated. A known example of the ambiguity of the word “rose” is: Rose rose to

put rose roes on her rows of roses1. In contrast to our first experiment, the second one will

establish if our artificial meaning can represent pragmatic (contextual) meaning.

Semantic Sentence Similarity: If words carry meaning, and they are used in syntactical

structures like a sentence, the understanding of the meaning of a sentence is at least as

1Rose [a person] rose [stood] to put rose [pink-colored] roes [fish eggs as fertilizer] on her rows of roses [flower].

155

10. Experiments with the Marker Passing

3. Sentence Similarity
1. Similarity

Concept

Context

Concept

Concept

Goal

5. Service Planning use case
?

Service Service
?

4. Service Matching use case

Service

? ?

2. Disambiguation

Figure 10.1.: Overview of the experiments making up the evaluation of our representation of

meaning.

hard as the understanding of the meaning of the words making up this sentence. In addi-

tion, similar to word similarity the meaning of a sentence is hard to measure, leading us to

our experiment of comparing the similarity of sentences. Calculating sentence similarity

is a common task in AI research, and standard datasets exist. Our experiment will, there-

fore, evaluate our approach on such a data set to see if we can represent the meaning of

sentences as well.

Semantic Service Match Making: The words used to describe the functionality in a service

connect humans with machines. In a service description, concepts in ontologies, logical

axioms and natural language sentences are combined to describe the functionality of a

service. In service descriptions, the position of concepts influences their interpretation,

e.g., the same concept in a precondition vs. an effect. Our first use case explores our

approach applied to service description and its use to find a fitting service given a service

request.

Heuristic for service planning: The assessment, if a service is helpful for a given goal in-

cludes the understanding of the goal, the descriptions of the services and then a reasoning

on how well the described service can “help” to reach the goal. This includes finding

similar concepts (with a semantic similarity measure) and to select the right word sense

for the concepts describing the services or the goal. Further sentence similarity is used to

compare axioms like ”IsBookedFor(Flight, Perter)” reformulated as sentence ”The flight

is booked for Peter.”. Finally, parts of the service matching experiments are used to assess

the services available, e.g., on their preconditions and effects. Consequently, this exper-

156

10.1. Experiment 1: Semantic Similarity Measure

iment is more an application of the results of the first four experiments to a real world

problem: The general purpose service planning.

The evaluation section is structured as depicted in Figure 10.1. First, we describe the pa-

rameters of the decomposition. Second and third, we describe how a similarity measure can be

created and third we describe the experiment of word sense disambiguation. Fourthly, we de-

scribe how we extended the word similarity measure to a sentence similarity measure. Finally,

we dive into the applications of those results and use the insight gained from those experiments

to improve our service matching and a semantic heuristic for service planning.

In more detail, the evaluation in our five experiments has each time a set of parameters which

need specification, a data set, and an evaluation goal. Here parameters are selected with our use

cases in mind. As the parameters have been discussed in Chapter 6 the evaluation keeps this

structure, and we will elaborate the best parameters for each part of the approach through an

experiment.

10.1. Experiment 1: Semantic Similarity Measure

In this section, we will build a semantic similarity measure based on our decomposition and

Marker Passing algorithm. This has been published in Fähndrich et al. [104]2. A semantic

similarity measure returns how similar two concepts are regarding their meaning [336]. Part

of this task is selecting the best word sense fitting the context first discussed by Waver in 1949

in his essay “Translation” in the Cambridge collection “Machine Translation of Languages:

Fourteen Essays”. We divide the problem from Waver into two experiments where the first part

- a semantic similarity measure - is subject to this section and the second part - selection of word

senses - is the experiment in Section 10.2.

To use our Marker Passing in this experiment, we need to choose the information modeled

on the markers, the node, and edge interpretation to guide its markers and the termination con-

dition as well as the final interpretation of the markers. In this experiment, we base the node

and edge interpretation which models the symbolic influence of certain concepts on the idea of

Charniak [48].

First, we define the signature of the semantic similarity measure we want to create:

SemanticSimilarity : Concept × Concept→ Double

Here the semantic similarity measure is context independent because the input allows only

two concepts, therefore, the entire measure is only based on the two concepts for which we want

to calculate the semantic similarity. Next, we describe how we modeled the different parts of

the Marker Passing algorithm, starting with the information encoded in the marker. With that

we describe all the parameters specified in Table 10.2.

Figure 10.2 depicts our abstract approach, from the input of two concepts, which are decom-

posed using the approach described in Section 6. We call these two concepts for which we want

to calculate a semantic similarity between the string concepts. They are the two concepts given

to the algorithm as input parameters. The result is a semantic graph. The only parameter we

selected from the decomposition is its depth. This influences the size of the graph, used for the

Marker Passing.

2This section is based on the thesis of König [203] and Weber [402].

157

10. Experiments with the Marker Passing

Decomposition

Semantic Graph

Marker Passing
Symbolic Connectionist

Merge

Word1 Word2

Word2Word1 Marker
Counting

Word1 Word2
Semantic Distance

Figure 10.2.: Overview of the algorithm to measure semantic similarity of two concepts.

The state-of-the-art analysis in Section 10.1.1 about semantic similarity measures revealed

that the most successful approaches can be clustered in three groups: Approaches using Thesauri

approaches using ontologies like WordNet or Wikipedia or similar online dictionaries and corpus

based approaches. The here proposed approach fits in the first two categories.

Algorithm 6 Semantic Similarity measure.

Name: Semantic Similarity Measure Input: Concept c1, Concept c2 Output: Double

1: Graph g1 = DECOMPOSE(c1,Null)

2: Graph g2 = DECOMPOSE(c2,Null)

3: Graph g = MERGE(g1, g2)

4: NodeData ND1 = SETINITIALMARKERS(g,c1)

5: NodeData ND2 = SETINITIALMARKERS(g, c1)

6: NodeData init = ND1 + ND1

7: NodeData result =MARKERPASSING(init)

8: return dsim(result, c1, c2)

Algorithm 6 describes the overall calculation of the semantic similarity measure. Here line

one and two decompose the given concepts into semantic graphs. The Merge-function in line

three implements a standard merge of the two graphs. Here all nodes and edges of the two

graphs are combined in a new graph. Then, in lines four to six the initial markers are set and

merged into one NodeData which is given in line seven to the Marker Passing. The function

for setting the initial Marking is specified in Algorithm 7 on Page 168. Line eight interprets the

result of the Marker Passing and returns the semantic similarity. This interpretation is described

in Section 10.1.13.

This section is organized in the following oder: We first look at the state-of-the-art in Sec-

tion 10.1.1. Then we define the decomposition depth for this experiment in Section 10.1.2. Then

we define the information modeled on the marker (see Section 10.1.3), how how we interpret a

node (see Section 10.1.4) and how relationships are interpreted (see Section 10.1.5). Then, we

describe how we selected the different parameters described in Table 10.2 in the Sections 10.1.6

and 10.1.7. The functions of our abstract Marker Passing signature defined in Section 7.2.2

158

10.1. Experiment 1: Semantic Similarity Measure

will be specialized in Sections 10.1.8 to 10.1.12. Then, we use Marker Passing to identify

relevant sub-graphs and describe the parameters use to interpret the marker information (Sec-

tion 10.1.13). We then look at the test data sets available in Section 10.1.14. How the parameters

of the Marker Passing are learned will be described in Section 10.1.15. The whole experiment is

used to create a semantic similarity measure that is experimentally evaluated in Section 10.1.16.

The results are then critically discussed in Section 10.1.17.

10.1.1. State-of-the-Art

This section will give a literature overview of existing semantic similarity or distance measures.

This analysis is done to find the best approaches we can compare our approach against. There

are many definitions of semantic similarity. In this section, we will choose the once we compare

our results against, and we will take a deeper dive into some of their details to gain insight into

how the work. The deeper analysis of the results is done to gain insight into the shortcomings

and benefits of the different approaches, in contrast to a single value correlation value over the

whole data set. This insight is needed later on to create a problem specific Marker Passing

algorithm for a semantic similarity measure.

We do not agree with the simplification done by Ballatore [16] who reduces semantic sim-

ilarity measures to hypernym and hyponym relations. This simplification reduces a semantic

similarity measure to a taxonomic measure, contradicting the ontological principle of identity

of indiscernibles which states that as if entities have all properties in common, they are the

same entity. Without taking Meronyms (the part-of relation) into account, a taxonomical simi-

larity measure based on “is-a” relations can not identify if two entities are similar with all their

properties.

There are many surveys on semantic similarity or semantic distance measure like [72] who de-

scribes multiple semantic distance measures or [424] who survey on semantic relatedness. Oth-

ers describe specific approaches using a certain information source like [130, 420] who describe

WordNet based semantic similarity measure. We surveyed all of those approaches, categorized

them to their basic approach and selected the best performing of each category. These three

similarity measures are explained in more detail and are selected for the comparison against our

approach.

Other works describe semantic distance measures like weighted randomized heuristic seman-

tic walks over Wikipedia articles [123] or survey such approaches in a specific application like

done in [155]. Work like those have been reviewed but are not further discussed in the section

because their topic is too far of from our approach.

The research literature on word similarity metrics ranges from thesaurus based approaches

(cf. [183]) to neuronal networks (cf. [269]). These approaches can be classified based on the

used data structure. Most commonly the differentiation is made between knowledge-based and

corpus-based approaches [268]. Zhang et al. [427] use the same classification in their survey,

further subdividing the domain of knowledge-based approaches into taxonomies and ontologies.

Both work on a graph representation of the domain knowledge but taxonomies are organized

by the generalization-specialization relationship only, while ontologies are taxonomic structures

enriched with other semantic relationships [342]. Taxonomical approaches can be specialized to

the part-of (mereological view) relation as well. Based on this classification, we will look at three

state-of-the-art approaches to understand how they work. The insight we gain by understanding

159

10. Experiments with the Marker Passing

RAD89

RES95

WUP94

HSO98

LCH98
BP02

ELKB03

PP06

YP05

ZG07

ESA07

Word2Vec13
PMI-SVD14

Hughes07

ZMG08

BDOS09

Agirre09

Taieb14

coswJ&C15
Corpus

Ontology

Taxonomy

time1980 1990 2000 2010

J&C97

Figure 10.3.: Overview of the state-of-the-art of semantic similarity measures.

how other similarity measures work will help us to make the right design discussions in our

approach later on. We selected the Electronic Lexical Knowledge Base [183] as a taxonomy-

based approach because its use of the Roget’s Thesaurus and its simple functioning principle,

which shows how most of the taxonomical approach work.

Afterwards, we will shortly look at the Bidirectional One-Step approach [49] as a candidate

of the ontology-based based approaches. Here not all types of relations are used. This approach

has been selected because it shows the difference to a taxonomical approach but at the same time

shows how the distance measure in a graph is almost the same.

Last we look at the Word2Vec [269] as a corpus-based approach as typical representatives of its

group using neural networks (aka deep learning). Lastra-Diaz et al. [221] has not been selected

as it mixes corpus-based and ontology-based approaches. The approach of Mikolov [269] has

been selected as it provides better performance than the algorithm of Baroni [17]. Bringing the

categories and approaches together, Figure 10.3 shows the development of the most prominent

word similarity metrics on a time scale, starting with the work of Rada et al. [317] and ranging

to the latest work, which was presented by Lastra-Diaz et al. [221].

Next, we will look at three different semantic similarity measures, one of each of the cate-

gories. This is done to explain the different principles of how the measures work and so that

we can better comprehend the following design discussions. For further state-of-the-art on se-

mantic similarity measures the interested reader is revered to the surveys of Pilehvar et al. [308],

Lastra-Dı́az, Garcı́a-Serrano [221], and Zesch and Gurevych [424].

Taxonomy-based: Electronic Lexical Knowledge Base (ELKB)

The ELKB approach uses the digitized version of Roget’s Thesaurus as a basis for its semantic

distance measure. The structure of the thesaurus is similar to a taxonomy and represents words

in a tree-like network, where most connections are parent-child relations. Here ELKB counts to

the best performing algorithms on this kind of structure was introduced by Jarmasz et al. [183]

in 2003 and named Electronic Lexical Knowledge Base. The semantic similarity between two

words is the length of the shortest path found between the two concepts. That is to say, if r1 and

r2 are the sets of references for the words, then the similarity (simELKB) between the words c1

and c2 is calculated as:

simELKB(c1, c2) = 16− mindistance(r1, r2), (10.1)

160

10.1. Experiment 1: Semantic Similarity Measure

Where 16 is the maximum distance in Roget’s Thesaurus and with that defines the maximal

distance of this approach. Here mindistance is the minimal distance from one word r1 to another

word r2 in the thesaurus, following the network in the Thesaurus. Later, the authors compared

their approach to other state-of-the-art approaches like Hirst-St. Onge [168], Jiang-Conrath,

Leacock-Chororow [223], Lin [233] and Resnik [324] to show that their approach yields better

results.

If a word is not contained in the Thesaurus, the approach can not find a semantic similarity for

it. This is why Kennedy and Szpakowicz [192] introduce an approach to integrate new words

into the Roget’s thesaurus with the help of Wikipedia. This would lead to a broader thesaurus

but does not extend its height.

Ontology-based: Bidirectional One-Step (BDOS)

Another data base used to find semantic similarity between words is WordNet3, a lexical data

base developed at Princeton University. Similar to Roget’s Thesaurus words in WordNet are con-

nected through their relations to each other, creating a graph. Here the relations of concepts are

semantic relations like “synonym” or “antonym” relations. Because of the graph representation

of concepts and their relations, most approaches are similar to taxonomy based approaches: The

distance of the words in the graph is proportional to their semantic similarity. The approaches

differ in how they use the edges of the graph to calculate the distance between words.

One of these approaches is the Bidirectional One-Step algorithm introduced by Chen et

al. [49] in 2009. It uses the hypernym, hyponym and synonym relations and expands up and

down the hierarchy simultaneously. The algorithm starts with two sets each containing one of

the start words. Then in an iteration, each step adds adjacent nodes to the respective sets. After

each iteration, the sets are compared and if an overlap exists the algorithm terminates. The over-

all step count is then the distance which defines the semantic similarity. Chen et al. compare

their results to the results achieved byYang et al..

Corpus-based: Word2Vec

With an ever growing amount of digital information (aka corpora), statistical methods become

more popular in linguistics. Thereupon a way to obtain knowledge about the human perception

of semantic similarity refrains from the use of predefined networks but utilizes the vast amounts

of language data produced by humans. Corpus-based approaches are based on the assumption

that two words are similar if they are used in similar contexts [156].

Most of the corpus-based approaches create a vector representation or a bag of words for

each concept which represents those words occurring in similar contexts. This vectors can be

compared, to define a similarity among words.

We will look at the approach of Mikolov et al. [269] where a neuronal network is trained

to learn the vector space representation of words occurring in the training set. Here different

neural network architectures are proposed like probabilistic feedforward neural or Recurrent

Neural networks. These vectors are trained to learn the co-occurrence probability of the words

in the corpus. Word similarity is then found by taking a distance measure in the vector space

embedding the vectors.

3http://wordnet.princeton.edu/wordnet/

161

10. Experiments with the Marker Passing

Such vector approaches work well on tasks where the relatedness of words is well represented

in the corpora. One such example set of tasks is the Sentence Completion Challenge [434]

which searches for semantic relation by example. The tasks include examples like “France -

Paris, where an equivalent relation would be “Berlin - Germany”. Other relations are, e.g. “big

- bigger” where “quick - quicker” would be an equivalent. The dataset contains other examples

like “Japan - Sushi” and “Germany - Bratwurst” where now equivalent relations are searched

without naming the relations.

Here Mikolov et al. [269] propose vector arithmetics to find such semantic similarities. Hence

to answer the question: What relates to small like big to bigger? They formulate the calculation:

X = vector(bigger)− vector(big) + vector(small) (10.2)

A semantic similarity measure can then be created, by using a norm to measure the distance

between two vectors. Mikolov et al. use the cosine distance measure between the word vectors.

simcos(c1, c2) =
~c1 ~c2

‖~c1‖‖~c2‖
(10.3)

The cosine distance measure describes the cosine of the angel between the vectors.

Not all semantic distance measures can be categorized in only one of these three categories.

One mixture of used information sources is so-called Information based approaches. Three of

them are described next.

Information based similarity measures

Resnik [324] proposes that the semantic similarity of two concepts is the overlap or intersection

of the information which is contained in the concept. In this measure, external information

is used to estimate the similarity. In this context the probability p(c) denoting the likelihood

of a concept c occurring in a text. The entropy or information of a concept is defined as the

negative log likelihood of the concept −log(p(c)). The measure of Resnik uses the inheritance

hierarchy for example of WordNet to find the first common ancestors denoted in set S(c1, cc).

He postulates that the further up this common ancestor is found in the hierarchy the less similar

two concepts are.

simresnik(c1, cc) = maxc∈S(c1,cc)
[− log(p(c))] (10.4)

Practically the measure is elaborated by counting the occurrences of a concept in a corpus. To

calculate this occurrence probability Resnik uses the BrownCorpus of American English. Every

time an occurrence is encountered the counter of this concept, and all hypernym concepts are

incremented. The likelihood p(c) then can be calculated as follows: p(c) = count(c)∑

c∈C

count(c) where

C is the set of all concepts in the corpus. Subsequently if the first common ancestor of to notes

is the root note the similarity is − log(

∑

c∈C

count(c)

∑

c∈C

count(c)) = − log(1) = 0. Since the root note in

WordNet subsumes every word in the corpus. This is interpreted as an similarity of 0 therefore

no similarity at all.

Lin [232] introduces a similarity measure which uses external information as well. Lin defines

the term similarity in an information theoretic sense, meaning that we need a probabilistic model

of the entropy of a concept link with the similarity measure of Resnik [324]. Here the similarity

measure is defined by using assumptions about similarity, rather the formulas, which “if the

162

10.1. Experiment 1: Semantic Similarity Measure

assumptions seems reasonable the similarity measure necessarily follows” [232]. Lin calls this

a “Theoretical Justification” of a measure. The assumptions of Lin are

related The similarity between concept A and concept B is related to their commonality. The

more commonality they share, the more similar they are.

opposite The similarity between concept A and concept B is related to the differences between

them. The more differences they have, the less similar they are.

identity The maximum similarity between concept A and concept B is reached when A and B

are identical, no matter how much commonality they share.

Lin then proposes a similarity measure by:

simlin(c1, cc) =
log(p(common(c1, cc)))

log(p(description(c1)) + p(description(cc)))
(10.5)

Lin’s theory of similarity is only applicable if the domain is described with a theoretic model.

Furthermore, the similarity measure is defined with the notion of “commonality” stating what

two concepts have in common, ergo needing a similarity measure for those commonalities. The

function description(c1) describes the concepts which describe our concept c1.

Ziegler et al. [429] describes an approach in which named entities are included in the tax-

onomy used for the calculation of a similarity measure. The measure builds upon the results

of a query of different taxonomies like the google Directory and a manually created directory

created out of the ’Open Directory Project’ called DMOZ (http://www.dmoz.org/). A concept is

queried, and the returned results are used to build a profile of the concept. The profile is formal-

ized as a vector v which contains the ranked results of the query. Then the ’is-a’ relation of the

taxonomies used are traversed and used for the calculation of a similarity. Here the “symbolic”

and “related” relationships are neglected so far. Spreading activation is used to activate related

concepts to create a ranking for the profile of a concept. The resulting ranked vector~v is used to

calculate a similarity by using the Pearson’s correlation coefficient in the following way:

d(vx, vy) =

|v|
∑

k=0

(~vx,k − v̄x) · (~vy,k − v̄y)

√

|v|
∑

k=0

(~vx,k − v̄x)2 ·
|v|
∑

k=0

(~vy,k − v̄y)2

(10.6)

Where | vx | is the length of the profile vector and v̄x is the mean values of the profile vector

of concept x. Using the ranking of search engines like wwww.google.de to calculate similarities

makes the similarity measure dependable of this ranking. The foundation of the similarity mea-

sure is consequently a black box and can only be empirically evaluated. This leads to a similarity

measure but not into more insight into how such a measure works.

We have only found one approach which uses activation spreading: Thiel and Berthold [379].

They use activation spreading like we described in Section 4.5. They use a double valued acti-

vation like in an ANN, to propagate through a semantic graph. This activation is then used to

calculate the cosine similarity in the following way [379, Eq. (8)]:

dact(u, v) = cos(â∗i (v), â∗i (u)) =
〈â∗i (v), â∗i (u)〉H

‖ â∗i (v) ‖ L2 ‖ â∗i (u) ‖ L2

(10.7)

163

10. Experiments with the Marker Passing

With (Ω,A, at
i(v)) being the separable L2-space over the weights v ∈ W with the created

Hilbert-space (H, 〈., .〉H).

Thiel and Berthold [379] then use the l2 norm to represent the amount of change of one acti-

vation step towards the eigen vector and call this “velocity vector norm”. Here the convergence

speed is measured in:

τt(v) =‖ δt(v) ‖ L2 = ∩Ω〈δt(v), δt(v)〉H dat
i(v) (10.8)

This normalized activation then is used to calculate the cosine similarity or the Jaccard in-

dex [181], which then is used in a cosine similarity [379, eq. (9)]:

dsig(u, v) = cos(τt(u), τt(v)) =
〈τt(u), τt(v)〉H

‖ τt(u) ‖ ‖ τt(v) ‖
(10.9)

Which allows detecting if the activation of two concepts results in a similar activation of

the activated nodes. Since Thiel and Berthold [379] use undirected graphs, this similarity is

symmetric.

Consequently, two parts of the activation are analyzed: The activation vector of the activated

concepts are similar (activation similarity), or the change of activation is similar (signature sim-

ilarity).

Conclusion

In conclusion, we have analyzed the state-of-the-art of semantic similarity measures, catego-

rized them and selected three approaches - one of each category - to learn how they calculate the

similarity. Those three approaches have been explained in more detail to get insight into their

functioning to be able to create our semantic similarity measure similarly. All these approaches

are not context-dependent and, in consequence, cannot select a semantic similarity specific to a

given context. Based on this insight, we now can configure our Marker Passing approach starting

with Section 10.1.3.

10.1.2. Decomposition Depth

The decomposition depth has been evaluated in depth one and two. With the insight of Sec-

tion 9.3 we are not able to decompose with hight decomposition depth, due to resource restric-

tions. Decomposing the RG65 test data set [336] yielding 48 graphs. Those 48 graphs have an

element count like shown in Table 10.1.

Table 10.1.: Node and edge count for different decomposition depth.

Depth Nodes Edges

1 6195 6704

2 1288873 4515376

The growth of node and edge count restricts the decomposition depth to three due to compu-

tations resources available. To connect the so created graphs, we merged them into one graph

by building the union of the set of nodes and edges.

164

10.1. Experiment 1: Semantic Similarity Measure

10.1.3. Marker information

With the decision to test our approach with a semantic similarity measure, one type of design

decision is to select the data type of a Marker. This means we have to think about which in-

formation we want to use at the end of the Marker Passing, to interpret the result as a semantic

similarity measure. We select the symbolic information carried by the marker as two fold: First,

we modeled a token activation level as a double value. Second, we defined a token origin which

contains the concepts, from which the token has first started. The datatype of the marker Marker

then is defined as tuple (Activation:Double, Origin:Concept)

These markers have been chosen because most of the state-of-the-art approaches use some

distance of two concepts in an ontology or a thesaurus. Modeling activation, which can decay

for every concept it passes, allows us to determine a sense of path length the marker has traveled.

This is not to be confused with a simple step count done in other approaches like [129, 183, 374,

423]. This is because, the markers can be changed with the in-, out- and edge-function. This

means the path length can be modeled as one of the information of the activation, but that’s not

all: The importance of the edge, the abstraction level, the degree of connectedness, and a number

of nodes all can play their part in a number of markers passed from one node to another.

The second part of symbolic information “the origin” lets us track which marker has started

from which initial concept. This lets us see which markers of the two starting concepts meet

where and how many markers of which origin have passed over a specific concept. Furthermore,

the origin of the maker gives us the information which concept this marker has started from. This

gives us the possibility to activate multiple different concepts and finding out if their markers

meet somewhere in the graph. With that, we can analyze how fast they meet or if some specific

concept gets in contact with a marker of a specific origin.

Enabling the analysis of which markers have passed over which node, we have to model the

node- and edge-interpretation with an implementation of the NodeData signature. The algebra

implementing NodeData is defined in the Algebra NodeData.

Here the symbol | denotes the list concatenation operation. The symbol ∅ denotes an empty

list. Additionally, we did shortcut extending the NodeData signature by introducing new opera-

tion signatures directly in the algebra.

The Data describes the symbolic information modeled on a concept. Consequently, it is part

of the node-interpretation. In addition, we model a history, which keeps all markers ever passed

to the concept as a copy of the marker passed.

An object of type Markers is a function that for each origin specifies the activation of all

markers for this origin. This encapsulates what we have called “Markers” is a function which

allows a simpler description of the formalization of the algorithm below. Never the less, this is

merely a shortcut to modeling the information on a marker data type. The Markers function can

be applied to the current markers or the history. This is a convenience method which allows us

to access the activation sorted by origin without having to iterate over all markers and origins.

The function getMarkers, setMarkers, getHistory and setHistory are the convenience func-

tions to set the Data” of a node. Here for each function, we can get or set a Markers data type

which includes the appropriate markers. For the current marking of a concept, this includes all

markers currently marking this concept.

165

10. Experiments with the Marker Passing

Algebra NodeData = implements NodeData

sorts:

Data : {(current, history) | current, history ∈ Markers}
Markers : {ofOrigin | ofOrigin : Concept→ Double∗}
NodeData : {ofConcept | ofConcept : Concept→ Data}

opns:

getMarkers((current, history)) = current

setMarkers((current, history), newCurrent) = (newCurrent, history)

setNodeData(nd, concept, data)(x) =

{

data , if x = concept

nd(concept) , else

getNodeData(nd, concept) = nd(concept)
getHistory : Data→ Markers

getHistory((current, history)) = history

setHistory : Data×Markers→ Data

setHistory((current, history), newHistory) = (current, newHistory)
+ : Markers×Markers→ Markers

+ : NodeData× NodeData→ NodeData

m1 + m2(origin) = m1(origin)⊕ m2(origin)
getSumFromOrigin : Markers× Concept→ Double

getSumFromOrigin(markers, origin) =
∑

x∈markers(origin)

x

multiply : Markers× Double→ Markers

multiply(markers, x)(origin) = multiplyD(markers(origin), x)
multiplyD : Double∗ × Double→ Double∗

multiplyD(v1 | rest, x) = v1 ∗ x | multiplyD(rest, x)
multiplyD(∅, x) = ∅

emptyNodeData :→ NodeData

emptyNodeData(concept) = {emptyMarkers, emptyMarkers}
emptyMarkers :→ Markers

emptyMarkers(origin) = ∅

The functions setNodeData and getNodeData set the date of one concept in a NodeData or

get the data for a special concept.

The addition operation + on the data type Markers implements the addition of two markers

by adding up the markers by origin. Therefore the addition operation adds Markers by concate-

nating the respective lists of Markers.

The addition operation + on the data type NodeData implements the addition of two

NodeData by adding up the markers and data by equivalent concepts. Therefore the addition

operation adds NodeData by concatenating the respective lists of marker and data.

The function getSumFromOrigin gets the sum of activation for one origin. Depending on

which Markers it is applied, this function gets the current activation of a given origin, or the

total activation by one origin if applied to the history.

The multiply lets us multiply a marker with a double scalar by multiplying each element of

the list with the scalar. Here we use the helper function multiplyD to extract the activation values

of a marker and multiply it by the given scalar.

The emptyNodeData and emptyMarkers are constructors which initialize a new empty Node-

Data and a new and empty Marker.

This concludes the algebra describing the formal basis of our first experiment. Now we can

166

10.1. Experiment 1: Semantic Similarity Measure

describe the needed function of the Marker Passing algorithm formally.

10.1.4. Relationship Interpretation Function

The relationship- or edge-interpretation influences how markers are passed from one node to

another. This influence is formalized with the weights shown in Table 10.2 on Page 172. Those

weights are not chosen but learned in the experiment. This is done because it is difficult to

predict the influence of the weights to the performance of the similarity measure. Therefore we

can not describe the concrete values of the weights here. They will be selected by a learning

mechanism in Section 10.1.16.

For the experiment of building a semantic similarity measure, the following relationships

weights have been modeled:

Definition edge weight describes how markers are passed over definition relationships. Each

concept in a definition of a concept has a relation to the definiendum. For this reason, all

defining concepts are activated independently of which definition they belong to.

Synonym edge weight describe how relevant synonyms are to measure semantic similarity.

Because of the transitivity of the synonym relation, there is the possibility of the two

concepts we measure the semantic similarity for are connected by a synonym relation

chain. Since synonyms are mostly not complete synonyms, but rather are only replaceable

in some word meanings and context, the meaning might change with each synonym step.

For more details see Section 3.9. This difference in meaning should be reflected through

those synonym weights.

Antonym edges weights are similar to synonym edge weights since the antonym relation-

ship is negatively proportional to the synonym relations. It is transitive as well, and it is

changing the meaning of an antonym depending on context since there are rarely any true

antonyms. See Section 3.9.

Hypernym edges weight reflect how the abstraction is used in the similarity measure. In

most ontologies, there is one root concept, which if two concepts are not related at all, a

connection can be found over this root node. In particular, if markers pass over to abstract

concepts, the weight should reflect this abstraction.

Hyponym edges weight are similar to hypernym weights. Except that they are the opposite

relation. This means they are reflecting the specialization in a semantic graph.

All weights are of type double and are multiplied with the activation level of each marker

passed by them. We do not differentiate the origin of the markers. How the actual weights are

selected, we will discover in Section 10.1.16.

10.1.5. Node Interpretation Function

The node interpretation influences how markers are handled by the nodes. Given a problem we

have to decide which node types are relevant for this problem. In this experiment we have two

types of node interpretations:

167

10. Experiments with the Marker Passing

Concept nodes represent a concept and hold the markers passed to it. The threshold of a

concept node is reached if one of the marker origin reaches the numeric activation thresh-

old τ . Furthermore, the markers passed to concept nodes are added to the activation value

of the last pulse. The markers are sorted after their origin. All the functions implemented

here in the following sections will be implemented for concept nodes.

Prime nodes represent semantic primes from the NSM, which act as leave nodes and collect

markers without passing them. They collect markers of the different origins, and like a

concept, node sort them by origin and add new markers to the old once. This is reflected

in Algorithm 9 where the concepts are only checked for a threshold if they do not belong

to the set of NSM primes.

As a result, the concept markers can tell us from which origin they have been activated and

how much activation in summation they carried. There is no information about time (in which

pulse the markers arrived) nor about over which edge(s) the markers arrived. Since there are only

nouns in the RG65 data set, we did not include Part-of-Speech nodes in our node interpretation.

The edge types are used in the edge function, where each edge type has an own weight determin-

ing how markers are passed over it. How many markers are passed over the edge also depends

on the amount of markers which are placed on the node. Starting with the initial marking given

to the Marker Passing algorithm as start markers.

10.1.6. Start Marker

Because the semantic Decomposition produces an unmarked graph, we need to define initial

markers. For the calculation of a semantic similarity measure, our algorithm has two start mark-

ers. The parameter called start activation defines how much activation is placed on those two

markers. The origin of the initial markers is set to the concept they are placed on.

Algorithm 7 Setting initial Markers.

Name: InitialMarking

Input: Concept c1
Output: NodeData

1: function SETINITIALMARKERS(g,c1)

2: ND = emptyNodeData

3: m1 = λ(x).

{

startActivation , if x = c1 ∧ x ∈ g

∅ , else

4: ND = setMarking (ND, c1,m1)
5: ND = setHistory (ND, c1,m1)
6: return ND

7: end function

Algorithm 7 creates the initial markers and places them on the given concept which is to be

analyzed via our semantic similarity measure. Here the parameter startActivation is the amount

of initial activation of these concepts. This parameter is one which is subject to our analysis and

therefore can vary during our experiment. The value of the variable startActivation is selected

by the learning mechanism discussed later in Section 10.1.16.

168

10.1. Experiment 1: Semantic Similarity Measure

10.1.7. Activation Thresholds

The activation threshold describes when a node is activated. We select our activation threshold

to be origin specific. Meaning that for every origin the markers of this origin can reach the

threshold. Furthermore, the activation threshold for all concept nodes has been set to the same

value. The NSM prime nodes can be seen to have a threshold of infinity since they never activate.

This is the reason for which line two in Algorithm 9 neglects NSM primes.

Next we have to define which concepts are active. This is done in Algorithm 8.

Algorithm 8 Function to select the active concepts.

Name: GetActiveConcepts Input: NodeData ND Output: List<Concepts>

1: return {x | x ∈ Concept ∧ CalculateThreshold(ND, x) == true}

The particular value of the threshold is selected as a parameter, like all other parameters of

this algorithm through a learning method we will discuss in Section 10.1.16. In Algorithm 8

we used a method called CalculateThreshold to evaluate if a certain concept has reached the

threshold and with that is active. Algorithm 9 describes how this is done:

Algorithm 9 Threshold calculation of concept nodes for our semantic similarity measure.

Name: CalculateThreshold Input: NodeData ND, Concept c Output: Boolean t

1: Markers markerOfConcept = getMarkers(ND,c)

2: for all Concept origin ∈ Concept ∧ c 6∈ NSMPrimes do

3: if getSumFromOrigin(markersOfConcept, origin) ≥ theshold then

4: return true

5: end if

6: end for

7: return false

The Algorithm 9 describes how each concept node checks whether it is part of the active

concepts or not. It consists of one checking if for one origin we have enough activation on

markers to reach the threshold value given by the configuration parameter threshold. If this is

the case, the node is marked as active. The function getPassingConcepts then is implemented

trivially: All active concepts become passing concepts.

After being activated and selected as a passing node the node gives all its markers away to

nodes connected to it. How markers are passed to other concepts is defined next in the out-

function.

10.1.8. Out-function

The out-function specifies how the markers of a passing concept are passed to the neighboring

concepts. We have looked at out-functions closer in Section 7.3.4. For our semantic similarity

measure, we selected to pass markers out over all outgoing edges of a node. The activation of

the markers is split up equally amongst all edges.

Algorithm 10 describes how the out-function has been implemented. Here in line 5, the

markers are equally distributed over the outgoing edges of the concepts.

169

10. Experiments with the Marker Passing

Algorithm 10 Out-Function of concept nodes.

Name: Out-Function

Input: NodeData ND, Concept c

Output: List<Relation × Edge ×Markers>

1: List<Relation × Edge ×Markers> result

2: Set<Edge> edges = {e | c ∈ targets(e)}
3: for all Edge e ∈ edges do

4: Relation r = source(e)

5: Markers mnew = multiply(getMarkers(ND,c), 1
|edges|)

6: result.add(r,e,mnew)

7: end for

8: return result

10.1.9. Edge-Function

The edge function determines how markers are passed from one concept to another. For the

semantic similarity measure, we have modeled a list of relation types described in Table 10.2.

Those relations are weighted with a double value which is a parameter of this experiment. Each

marker passed over a relation has its activation value multiplied by the relations weight. The

different weights are part of the algorithm parameters like specified in Table 10.2. Algorithm 11

describes how to calculate the edge function in our case for a semantic similarity measure.

Algorithm 11 Edge-Function.

Name: EdgeFunction

Input: Marking ND, Relation r, List<Edge ×Markers> passedMarkers

Output: Map<Concept, List<Edge, Markers>>

1: Map<Concept, List<Edge × Markers>> result = new Map<Concept, List<Edge ×
Markers>> ()

2: for all (e,m) ∈ passedMarkers do

3: Markers mnew = multiply(m, getWeightOfRelation(r))

4: for all Concept target ∈ {c ∈ Concept | ∃ e2 ∈ Edge : e2 6= e ∧ source(e2) =
r ∧ target(e2) = c} do

5: result.get(target).add(e × mnew)

6: end for

7: end for

8: return result

The getWeightOfRelation function is specified in Algorithm 12. Here the appropriate weight

for the given relation is selected. In line 4 of Algorithm 11 this weight is multiplied with

the markers passed over this relation. The weights are limited to be chosen from the interval

{−1, 1}.

10.1.10. In-function

The in-function of a node collects the markers in the Marker Passing step, for which the current

node is the target of. With the node interpretation of the concept nodes and the prime nodes

incoming markers of all edges are sorted regarding their origin, and their activation is summed

up in regards to the origin and added to the previous activation of this origin.

In Algorithm 13 the calculation of the in-function is defined in a recursive manner. Here the

170

10.1. Experiment 1: Semantic Similarity Measure

Algorithm 12 GetWeightOfRelation.

Name: getWeightOfRelation

Input: Relation r

Output: Double

1: if r instanceOf Synonym Relation then

2: return synonymRelationWeight

3: end if

4: if r instanceOf Antonym Relation then

5: return antonymRelationWeight

6: end if

7: if r instanceOf Hypernym Relation then

8: return hypernymRelationWeight

9: end if

10: if r instanceOf Hyponym Relation then

11: return hyponymRelationWeight

12: end if

13: if r instanceOf Definition Relation then

14: return definitionRelationWeight

15: end if

16: return 0.99

Algorithm 13 In-Function of concept nodes.

Name: In-Function

Input: NodeData ND, Concept c, List<Edge, Markers> incoming

Output: NodeData ND

1: function IN-FUNCTION(NodeData ND, Concept c, List<Edge, Markers> marker)

2: if marker.isEmpty() then

3: return ND

4: end if

5: SetHistory(ND, c,getHistory(ND, c) + getMarkers(ND, c))

6: Marker currentMarkers = marker.first().getMarkers()

7: marker = marker.removeFirst()

8: newNodeData = setMarkers(ND, c, getMarkers(ND, c) + currentMarkers)

9: return IN-FUNCTION(newNodeData, c, marker)

10: end function

11: return IN-FUNCTION(newNodeData, c, incoming)

171

10. Experiments with the Marker Passing

Table 10.2.: The parameters of the Marker Passing approach with replacement in the in-function.

Parameter RG-65

min max best

startActivation 0 1000 184.26

threshold 0 1 0.76

definitionRelationWeight -1 1 -0.25

synonymRelationWeight -1 1 0.53

antonymRealtionWeight -1 0 -0.95

hypernymRelationWeight -1 1 -0.86

hyponymRelationWeight -1 1 0.40

terminationPulsCount 1 100 97

doubleActivationLimit 0 2000 21.61

decompositionDepth 1 3 3

set of markers given to the node is encoded in the parameter List<Edge, Markers> incoming.

If multiple markers are passed over the same edge, then the list contains multiple entries for this

edge with different markers. The incoming markers on the node are added to the history of the

node. The history holds all markers which have ever been passed to the node. Then the markers

are added to the markers of the node recursively.

Since there is an infinite number of in-functions, and not all of them can be discussed here, we

selected two general classes for further analysis: The first class bases its marking on the previous

marking of the node. The second class replaces the old markers. Next, we are looking at a side

experiment on which of these two types of in-functions might be more of interest to use.

We argue why we have chosen an additive in-function instead of replacing the markers on a

node: If markers are replaced, activation of one origin needs to reach the threshold, to activate

the node in one activation step. This contradicts the idea of measuring some graph structure,

since all information about the structure is lost, in the next pulse. To evaluate this decision we

can run both experiments, which leads to the results that both models come to a similar result

but with different configuration of the parameters. This experiment is conducted on the same

data set used later on. We will go in more details on the data set in Section 10.1.14. The results

with the replacement of markers in in-functions are like the following example: The best-found

result is 0.762 Spearman’s correlation with the configuration as shown in Table 10.2.

A result with additive in-function can for example yields better results like with the parameters

shown in Table 10.3 we achieved a result of 0.882 in the Spearman’s correlation. This result has

been reached after 121 generation of the optimisation we will look at in Section 10.1.16.

Even if the performance of both Marker Passing algorithms can further be increased through

adjustment of the parameters, we chose to continue with an additive in-function because of its

better performance.

10.1.11. After-Send-Function

After a concept has been activation and passed its markers, the after-send function allows us to

change the node data of the concept. This is done here by removing all current markers from the

concepts.

After each pulse, the Marker Passing algorithm checks whether the termination condition has

172

10.1. Experiment 1: Semantic Similarity Measure

Algorithm 14 After-Send-Function of concept nodes.

Name: AfterSend-Function

Input: NodeData ND, Concept c Output: NodeData

1: SetMarkers(ND, c,∅)

2: return ND

been reached. We look at how this is done for the semantic similarity measure, next.

10.1.12. Termination Condition

The termination condition of our algorithm is two fold: First, there is a limit to the pulse count.

We introduce a global variable which is call currentPulse which counts the pulses is increased

with each executed pulse. This restricts how many pulses can be created, before the algorithm

terminates4. A pulse count limit allows us to stop the algorithm from passing markers from one

concept to another even thou there could be active concepts. This limit is given by the parameter

terminationPulsCount. We can imagine a graph of decomposition depth of one, where there

are still connections between the two decomposed concepts. In such a graph the markers are

passed from one side to the other and back. To eliminate such a back and forth the second part

of the termination prevents such behavior.

Second, there is a double activation limit. Here we look at the total amount of concepts,

which have activation of multiple origins. Since we are putting start markers only on two con-

cepts, we named this condition “double activation limit”. This part of the termination condition

helps the algorithm to track how much the two subgraphs have to be activated by the oppo-

site concept before the algorithm terminates. Depending on the choice of the relations weights,

the overall activations of the graph can increase, degrees or rest the same. Since we chose our

weights from wi ∈ {−1, 1}, this means the activation decreases if not all weights are 1.0. Fur-

ther, the markers which are adapted through the Out-, Edge-, and In-function are removed by

the after sent, which makes the overall marker activation on increasing. If this parameter is set

to a number near zero, the Marker Passing will terminate with the first contact of markers of the

two origins. If the parameter is selected to be close to the activation of the start markers, almost

all markers have to be passed to double activated nodes before termination. The termination

condition is implemented as shown in Algorithm 15.

Here the currentPulse counts the Marker Passing pulses of the Marker Passing algorithm. For

simplicity, the counting and initialization of the counting variable are neglected in Algorithm 15.

If the double activation limit is set higher than the amount of activation in the start marker, the

first termination condition terminates the algorithm. This lets the algorithm terminate even if

multiple origins have activated no concept.

10.1.13. Interpretation

The interpretation is how we use the result of the Marker Passing to determine a distance between

the two concepts. For our semantic distance measure, we want to collect all those nodes which

have been activated by multiple origins. Since we have only two origins, this means we want to

get all activation of the nodes, ever passed to the node, if the node has been activated by both

4This should happen before the markers are equally distributed over all nodes [26]

173

10. Experiments with the Marker Passing

Algorithm 15 The termination condition for the semantic similarity measure.

Name: TerminationCondition

Input: NodeData ND

Output: Boolean result

1: if currentPulse ≥ terminationPulsCount then

2: return true

3: end if

4: Double doubleActivationSum = 0

5: for all Concept c ∈ Concepts do

6: Double activation = 0

7: Integer numberOfOrigins = 0

8: for all Concept origin ∈ Concepts do

9: if getMarkers(ND,c)(origin) 6= ∅ then

10: activation += getSumFromOrigin(getMarkers(ND,c), origin)

11: numberOfOrigins++

12: end if

13: end for

14: if numberOfOrigins ≥ 2 then

15: doubleActivationSum += activation

16: end if

17: end for

18: return doubleActivation ≥ doubleActivationLimit

starting concepts. In consequence, we want to calculate the following overall activation of a

node given NodeData ND:

â∗(v) =
∑

∀ o∈V

getSumFromOrigin(getHistory(ND, v), o) (10.10)

where â∗t (v) represents the sum of activation of node v ever passed to it.

This activation can then be used to calculate the semantic similarity between concept o1 and

o2 given the NodeDate ND in the following way:

dsim(ND, o1, o2) =

∑

c∈V

Φ(ND, (o1, o2, c))

2 ∗ startActivation
(10.11)

where,

Φ(ND, (o1, o2, c)) =

â∗(c) , if getHistory(ND, c)(o1) 6= ∅ ∧ getHistory(ND, c)(o2) 6= ∅

0 , else
(10.12)

Φ(ND, (o1, o2, x)) filters out of all nodes which have not been activated by at least two of the

start activations. This leaves us with the set of nodes having markers of both origins in their

history set. In this way, if we activate two concepts (in our example “noon” and “midday”) at

the beginning, this set contains all nodes which have been activated by markers of both concepts.

This is normalized by the amount of start activation to obtain the semantic distance. In some

theoretical cases, this value could become bigger than 1 or negative. This could, e.g., be the

174

10.1. Experiment 1: Semantic Similarity Measure

case when the scaling factor of two times the start activation is not fitting. This happens, e.g.,

when the overall activation over the entire history of the node is negative. For these cases, we

then normalize the result so that it is scaled between 0 and 1. This normalization is done by

calculating value′ = (value−min)
(max−min) , where max is the maximal and min is the minimal similarity

which occurred. Here value′ is the normalized value of the input value.

Now that we have a formal description of our Marker Passing algorithm, we need to evaluate

its performance. To do so, we need to select an appropriate data set. This is done in the next

section.

10.1.14. Data Sets

This section will introduce the different evaluation data sets for semantic similarity measure-

ments and select one of them for our experiment.

The task of finding semantic similarity reaches back to 1965 when Rubenstein and Good-

enough first created a small list of noun pairs and conducted a study with humans filling in

the semantic similarity for each pair. Since then four more well-known data sets have been

developed using the English language. There is a multitude of data sets with special purpose

vocabulary or with special tasks for the similarity measure. We will have a look at the most

widely used and compare them for our purpose.

RG65 [336] the data set of Rubenstein and Goodenough is a collection of 65 noun pairs which

have been ranked by 30 humans for their similarity. The similarity values here reach from

0 (less similar) to 4 (more similar).

WordSim353 [117] the data set of Finkenstein et al. [117] proposes 353 noun pairs which

have been rated by 16 subjects with the task to estimate their relatedness. Here a score

from zero to ten has been used, where zero means unrelated and ten means highly related.

Mtruk [318] the data set of Radinsky et al. [318] is essentially word pairs which are taken

for their occurrence in the New York Times, and they have been rated from 23 Amazon

Mechanical Turk workers for their relatedness. Each worker had word pairs of the Word-

Sim353 data set as control pairs, to reject bad workers. The word pairs have been chosen

so that the entire spectrum of co-occurrence in the New York Times is part of the data set.

Rare words (occurrence with less than 1000 time in the looked at time frame) have been

removed. This gives us a data set of 287-word pairs which have been rated from 1 (less

relatedness) to 5 (more relatedness).

MEN [39] is a data set, which was constructed to evaluate multimodal models. Here the word

pairs of the standard data sets like WordSim353 are selected, where the words appear as

well as labels in the ESP-Game5 and MIRFLICKR-1M6 data set. This has been done

to integrate graphical information into the finding of similar concepts. The selection of

data sources seems questionable here since Wackypedia7 includes information like “Fat

Hippos are hippos that are fat. They are often mistaken for galaxies. And the moon. But

they are Hippos...” With quote “Damn, those hippos are fat.” allegedly from Oscar Wilde.

5http://www.cs.cmu.edu/˜biglou/resources/ last visited on 20.10.2016
6http://press.liacs.nl/mirflickr/ last visited on 21.10.2016
7http://wackypedia.wikia.com/wiki/Main Page last visited on 21.10.2016

175

http://www.cs.cmu.edu/~biglou/resources/
http://press.liacs.nl/mirflickr/
http://wackypedia.wikia.com/wiki/Main_Page

10. Experiments with the Marker Passing

This might be a good linguistic resource for contemporary humor and modern slang, but

for embedding words in a distributed meaning, this seems not fitting.

Stanford Rare Word Similarity Dataset [244] Luong et al. [244] composed a data set of

rare words, where words with low frequencies but still having at least one synset in Word-

Net [270]. Consequently, these are words, which are rare but are no proper names or

something similar. The word pairs are constructing by selecting words of WordNet with a

step size of at least one and maximally two apart from the first word. In this way for each

rare word, two pairs are created adding up to 3145-word pairs. Luong et al. [244] used

Amazon’s Mechanical Turk to get a rating of ten humans for each word pair. As a result

of quality measures, this leaves us with 2034 ranked word pairs.

We have selected the RG65 [336] the data set of Rubenstein and Goodenough to compare our

approach with the state-of-the-art since all other data sets are special purpose datasets, which are

mostly used by the authors of the data set but not many other approaches. Therefore, the only

way of comparing our result to the best available semantic similarity measures was to use the

RG65 [336] data set without having to reimplement all other approaches.

The use of the RG65 [336] data set seems insufficient since only nouns are compared. More

complex datasets exist, which could be used in the future for comparison. Using part-of-speech

independent data sets will worsen thesauri approaches like ELKB since mostly nouns are for-

malized in thesauri. For future work, creating more complex data sets with different POS and

different similarity types would be a benefit for the community. But this would mean that ex-

isting approach should be reevaluated for the new data set, which sometimes is not possible

because they are not accessible.

10.1.15. Parameter learning

In this section, we will look at how the parameters of our approach are learned. For the eval-

uation result, we learned the set of parameters with a genetic algorithm. Here the parameters

are interpreted as the DNA of our individuals. Then we use N-Fold-Cross-Validation to separate

the data set into training and test data. Each individual is evaluated regarding its performance

on the data set via its Spearman’s correlation. The best individual is kept alive and mutated to

generate newer generations. The mutation is done by modifying its DNA within the limits of

our configuration shown, e.g., in Table 10.3. Here each parameter has a mutation probability of

0.5. The population size was held at ten, and if no increase in performers has been measured

within 1000 generations, the DNA was reset to random values.

The parameters selected in Table 10.3 depend on the design decisions which we have looked at

in the last few sections. Because of the vast amount of possible combinations of the parameters

the search space is too big to search. Because of the size and its only partially predictable

landscape, many combinations of parameters can yield the same or better results, and we can

not claim that our parameters produce the optimal result.

Since the parameters are learned, we can only interpret why they work well. Some of the

parameter selected depend on others like the double activation limit on the start activation. Some

of the parameters may be randomly chosen and might have done almost none effect on the result.

E.g. Since the double activation limit in the best parameter set we learn in Table 10.3 is almost

176

10.1. Experiment 1: Semantic Similarity Measure

Table 10.3.: Parameters of the Marker Passing approach used for the task of semantic similarity

measurement.

Parameter RG-65

min max best

startActivation 0 1000 33.81

threshold 0 1 0.21

definitionRelationWeight -1 1 -0.78

synonymRelationWeight -1 1 -0.62

antonymRelationWeight -1 0 -0.90

hypernymRelationWeight -1 1 0.02

hyponymRelationWeight -1 1 0.79

terminationPulseCount 1 100 80

doubleActivationLimit 0 2000 1999.99

decompositionDepth 1 3 3

2000, but the start activation is only ca. 34, and additionally half of the edge weights are negative,

and all of them are less than one, it is unlikely that the double activation limit was ever triggered.

Some of the parameters are unintuitive. That a synonym weight is negative seems far from

what humans do if they assess similarity. But since the antonym weight is more negative than

negative synonym and definition relations can be explained by them make similar concepts still

more similar than an antonym relations, having the effect that the semantic distance measure

still works.

Also curious in this parameter configuration is that hyponyms seem to play a more impor-

tant role than hypernyms. This could be interpreted, that example of abstract classes help the

assessment of similarity more.

10.1.16. Evaluation Results

This section describes the evaluation results and compares it with the state-of-the-art. The exper-

iment has been implemented in Java using the WordNet 3.1 and the MIT Java Wordnet Interface

(JWI)8. For the Wiktionary implementation the Java-based Wiktionary Library (JWKTL)9 has

been used with a Wiktionary dump10. With the above-introduced parameter selection, we were

able to reach the results shown in Table 10.4. The other results are taken from [308, p. 116,

Table 9] and from [221, p. 148, Table 4] and present the state-of-the-art in this experiment. We

sort the approaches in Table 10.4 by their Spearman’s correlation because they are given by all

approaches in the related work.

The Spearman’s ranked correlation coefficient ρ is an overall ranking measure. Together with

the Pearson’s r Table 10.4 shows the performance of the state-of-the-art semantic similarity

measures in comparison to each other. The Pearson’s and Spearman’s correlation are used to

seeing how well the approach correlates with the human evaluation of semantic similarity and

the Spearman’s correlation how well the algorithm can bring the pairs of similarity in the right

order. The Spearman’s correlation is more abstract because the actual value of the semantic

8http://projects.csail.mit.edu/jwi/ last visited on 09.09.2017
9https://www.ukp.tu-darmstadt.de/software/jwktl/ last visited on 09.09.2017

10https://dumps.wikimedia.org/ downloaded on 2015.12.19

177

http://projects.csail.mit.edu/jwi/
https://www.ukp.tu-darmstadt.de/software/jwktl/
https://dumps.wikimedia.org/

10. Experiments with the Marker Passing

Table 10.4.: Comparison of Spearman’s ρ and Pearson’s r correlation coefficients of different

approaches with our approach. Anything but our results are taken from [308, p.

116, Table 9] and from [221, p. 148, Table 4].

Approach RG-65

ρ r

MP (this approach) 0.882 0.83

coswJ&C [221] 0.876 –

Ontology based [342] 0.86 –

Word2vec [269] 0.84 0.83

Hughes and Ramage [177] 0.84 –

ZMG-08 [425] 0.84 –

Lin [232] 0.834 –

Agirre et al. [3] 0.83 –

ZG-07 [423] 0.82 0.49

BDOS [49] 0.81 –

Taieb [374] 0.80 0.80

Rad89 [317] 0.79 0.79

HSO [168] 0.79 0.73

LCH [223] 0.79 0.84

WUP [418] 0.78 0.80

ESA [129] 0.75 0.49

Res95 [324] 0.74 0.81

PMI-SVD [17] 0.74 0.74

ELKB [183] 0.65 –

PP06 [302] 0.62 0.58

similarity is neglected as long a the right rank for the concept pair is found.

Table 10.4 shows that our approach can beat the state-of-the-art in respect to the Spearman’s

correlation. Concerning the Pearson’S correlation, our approach still reaches rank two in com-

parison with the state-of-the-art.

We have tested our semantic similarity measure on other data sets as well. With the Word-

Sim353 [117] data set, we achieved a Spearman correlation of 0.553 whereas the results in

Finkenstein et al. [117] reach 0.41 at the best and a linear combination of those approaches they

reach 0.55. With the Mtruk [318] data set, our approach reached a Spearman’s correlation of

0.551 in contrast to the 0.63 of Radinsky et al. [318].

Since the Pearson’s and Spearman’s correlation account for the overall result of the experi-

ment, we will discuss the results in more detail in the next section. This is done so that we can

analyze the strong and weak points of current approaches including ours.

10.1.17. Discussion of the Results

This section discusses the result of our experiment and compares them to the three selected

example measures in more detail. We will look at how the different similarity measure performs

on the similarity scale (from similar concepts to semantically distant concepts) and identify week

sports which could be improved in future extensions the approaches.

Figure 10.4a illustrates the reached results for the RG65 data set, depicting our results. The

x-axes represents the similarity of a word pair out of the RG65 dataset. The y-axis listed the

178

10.1. Experiment 1: Semantic Similarity Measure

je
w
e
l

n
o
o
n

c
a
r

g
ra
v
e
y
a
rd

p
il
lo
w

la
d

ro
o
st
e
r

to
o
l

w
o
o
d
la
n
d

sh
o
re

si
g
n
a
tu
re

v
o
y
a
g
e

sl
a
v
e

sm
il
e

tu
m
b
le
r

st
ri
n
g

m
o
u
n
d

w
iz
a
rd

st
o
v
e

m
a
d
h
o
u
se

m
o
n
k

fr
u
it

c
o
c
k

c
ra
n
e

sa
g
e

w
iz
a
rd

la
d

im
p
le
m
e
n
t

o
ra
c
le

je
w
e
l

m
o
u
n
d

jo
u
rn
e
y

w
o
o
d
la
n
d

ro
o
st
e
r

im
p
le
m
e
n
t

h
il
l

w
o
o
d
la
n
d

v
o
y
a
g
e

w
o
o
d
la
n
d

ro
o
st
e
r

g
ra
v
e
y
a
rd

w
iz
a
rd

sh
o
re

c
u
sh
io
n

sa
g
e

o
ra
c
le

w
o
o
d
la
n
d

la
d

fo
re
st

c
e
m
e
te
ry

sl
a
v
e

je
w
e
l

ro
o
st
e
r

m
a
g
ic
ia
n

m
a
d
h
o
u
se

m
o
n
k

fr
u
it

im
p
le
m
e
n
t

st
o
v
e

w
iz
a
rd

sh
o
re

fu
rn
a
c
e

st
ri
n
g

v
o
y
a
g
e

sm
il
e

0

0,2

0,4

0,6

0,8

1

g
e
m

m
id
d
a
y

a
u
to
m
o
b
il
e

c
e
m
e
te
ry

c
u
sh
io
n

b
o
y

c
o
c
k

im
p
le
m
e
n
t

fo
re
st

c
o
a
st

a
u
to
g
ra
p
h

jo
u
rn
e
y

se
rf

g
ri
n

g
la
ss

c
o
rd h
il
l

m
a
g
ic
ia
n

fu
rn
a
c
e

a
sy
lu
m

b
ro
th
e
r

fo
o
d

b
ir
d

b
ir
d

o
ra
c
le

sa
g
e

b
ro
th
e
r

c
ra
n
e

m
a
g
ic
ia
n

g
la
ss

c
e
m
e
te
ry

c
a
r

h
il
l

c
ra
n
e

fu
rn
a
c
e

c
o
a
st

b
ir
d

sh
o
re

c
e
m
e
te
ry

fo
o
d

fo
re
st

la
d

m
o
u
n
d

a
u
to
m
o
b
il
e

b
o
y

m
o
n
k

sh
o
re

g
ri
n

c
o
a
st

a
sy
lu
m

m
o
n
k

c
u
sh
io
n

b
o
y

g
la
ss

g
ra
v
e
y
a
rd

a
sy
lu
m

a
sy
lu
m

g
ri
n

m
o
u
n
d

a
u
to
m
o
b
il
e

a
u
to
g
ra
p
h

fr
u
it

n
o
o
n

ro
o
st
e
r

c
o
rd

Marker	Passing Humans

(a) Result of the Marker Passing approach with the RG65 dataset.

0

0,2

0,4

0,6

0,8

1

Error	MP

(b) Error of the Marker Passing approach with the RG65 dataset.

Figure 10.4.: Result and Error of the Marker Passing approach with the RG65 dataset.

65 different word pairs ordered from semantically close concepts (synonyms in the best case) to

concepts at greater semantic distances. The underestimation gets worse the smaller the semantic

similarity is until at the far end the measure overestimates the similarity. However, we can

see that the linear progression (dark blue line) of the MP approach is closest to the human

(green line) guess of similarity. Overall the MP approach is in average close to the human

average compared by their line progressions (the light blue line is the linear progression of the

human estimate). The best average performance of the other approaches is reached by the ELKB

approach shown in Figure 10.7a, which overestimates the similarity most of the time. BDOS

and Word2Vec (see Figure 10.5a and Figure 10.6a) overestimate the semantic similarity of far

concepts consistently. This happens because the general knowledge sources like WordNet or

corpora always find a path between two concepts in the example of BDOS.

Figure 10.4b shows the error of our approaches. At this point, we can identify the concepts

where the approaches deliver good/bad results. For example, it can be noticed that the error of

MP is greater in the mid-range of the semantic similarity and that the reference measures get

worse with a rising semantic distance.

There are two pairs of words which create an especially high error. Those are “serf - slave” and

“furnace - stove”. In both cases, one of the concepts is a hypernym of the other one. If we analyze

the information sources, e.g. slave and surf, we can see that the definition of WordNet does not

contain a connection to slave and Wikipedia only noticed slavery as a hypernym of serfdom.

WordNet has no connection between serf and slave not even as a synonym. This explains why

the Marker Passing approach does not find similarity between those two words. This is a good

example of what happens if the underlying information sources of the decomposition are missing

facts or an incomplete. In this case, the Marker Passing approach fails.

Another curiosity the results in the Marker Passing similarity measure is that starting from a

similarity of ca. 0.7 or less the measure produces a greater error. Which then reduces until the

similarity of dissimilar concepts are overestimated at the end. It seems like concepts with this

semantic similarity are so far apart in the created decomposition, that it becomes harder for the

markers to reach common concepts except in some exceptions, which are over estimated like

”asylum” and ”fruit”.

179

10. Experiments with the Marker Passing

je
w
e
l

n
o
o
n

c
a
r

g
ra
v
e
y
a
rd

p
il
lo
w

la
d

ro
o
st
e
r

to
o
l

w
o
o
d
la
n
d

sh
o
re

si
g
n
a
tu
re

v
o
y
a
g
e

sl
a
v
e

sm
il
e

tu
m
b
le
r

st
ri
n
g

m
o
u
n
d

w
iz
a
rd

st
o
v
e

m
a
d
h
o
u
se

m
o
n
k

fr
u
it

c
o
c
k

c
ra
n
e

sa
g
e

w
iz
a
rd

la
d

im
p
le
m
e
n
t

o
ra
c
le

je
w
e
l

m
o
u
n
d

jo
u
rn
e
y

w
o
o
d
la
n
d

ro
o
st
e
r

im
p
le
m
e
n
t

h
il
l

w
o
o
d
la
n
d

v
o
y
a
g
e

w
o
o
d
la
n
d

ro
o
st
e
r

g
ra
v
e
y
a
rd

w
iz
a
rd

sh
o
re

c
u
sh
io
n

sa
g
e

o
ra
c
le

w
o
o
d
la
n
d

la
d

fo
re
st

c
e
m
e
te
ry

sl
a
v
e

je
w
e
l

ro
o
st
e
r

m
a
g
ic
ia
n

m
a
d
h
o
u
se

m
o
n
k

fr
u
it

im
p
le
m
e
n
t

st
o
v
e

w
iz
a
rd

sh
o
re

fu
rn
a
c
e

st
ri
n
g

v
o
y
a
g
e

sm
il
e

0

0,2

0,4

0,6

0,8

1

g
e
m

m
id
d
a
y

a
u
to
m
o
b
il
e

c
e
m
e
te
ry

c
u
sh
io
n

b
o
y

c
o
c
k

im
p
le
m
e
n
t

fo
re
st

c
o
a
st

a
u
to
g
ra
p
h

jo
u
rn
e
y

se
rf

g
ri
n

g
la
ss

c
o
rd h
il
l

m
a
g
ic
ia
n

fu
rn
a
c
e

a
sy
lu
m

b
ro
th
e
r

fo
o
d

b
ir
d

b
ir
d

o
ra
c
le

sa
g
e

b
ro
th
e
r

c
ra
n
e

m
a
g
ic
ia
n

g
la
ss

c
e
m
e
te
ry

c
a
r

h
il
l

c
ra
n
e

fu
rn
a
c
e

c
o
a
st

b
ir
d

sh
o
re

c
e
m
e
te
ry

fo
o
d

fo
re
st

la
d

m
o
u
n
d

a
u
to
m
o
b
il
e

b
o
y

m
o
n
k

sh
o
re

g
ri
n

c
o
a
st

a
sy
lu
m

m
o
n
k

c
u
sh
io
n

b
o
y

g
la
ss

g
ra
v
e
y
a
rd

a
sy
lu
m

a
sy
lu
m

g
ri
n

m
o
u
n
d

a
u
to
m
o
b
il
e

a
u
to
g
ra
p
h

fr
u
it

n
o
o
n

ro
o
st
e
r

c
o
rd

BDOS Humans

(a) Result of the BDOS approach with the RG65 dataset.

0

0,2

0,4

0,6

0,8

1

Error	BODS

(b) Error of the BDOS approach with the RG65 dataset.

Figure 10.5.: Result and Error of the BDOS approach with the RG65 dataset.

The WordNet-Path-length approach (BDOS) (see Section 10.1.1) in comparison finds nearly

the same similarity for close as for distend concepts. The result of the BODS approach can be

seen in Figure 10.5a. We can see that the mean of the similarity from the closest to the furthest

concepts is almost the same. It seems that the path length in WordNet alone is not enough infor-

mation to distinguish between the word senses given by the data set RG65. Because of the right

tendency of the BDOS result, the correlation of the result in Table 10.4 the Spearman’s correla-

tion is still 0.81, which is an overall impressive result regarding the simplicity and computational

speed of the approach. In Figure 10.5a we can see that most of the results are overestimated.

And it seems that the distance between the concepts in WordNet seam all to have more or less

the same path length. Since the BDOS algorithm uses two kinds of semantic relations (Hyper-

nyms/Hyponyms and Meronyms) the distance is the minimal path of along these relations in the

WordNet graph.

Shown in Figure 10.5 this leads to good results with concepts which are semantically similar.

With concepts with a similarity higher than 0.8 the BDOS approach even beats the results of

the Marker Passing approach. Starting from a certain similarity threshold, the error constantly

increases until the error reaches almost 0.8. This leads to the conclusion that the minimal path

length might measure the semantic similarity, but with a decrease of similarity of the concepts

the BDOS’s results worsen. The performance of the BODS might be increased by using different

semantic relations like antonyms. Further, the restriction of the hypernym relation to a certain

maximal height might improve the overestimation of the approach. Since building hyponym

paths, concepts are abstracted to the root node, which leads to paths of almost the same length,

if no other path is found first.

The Word embedding approach Word2Vec depends deeply on the training corpus it uses

to train the neuronal network for later classification. The result in Table 10.4 are taken from

Mikolov et al. [269] since we were not able to reproduce their results. Our result with the train-

ing corpus of the Leipzig Corpora Collection 11 we reached a Pearson correlation of r = 0.25.

Nevertheless, Figure 10.6a describes our results, which can be analyzed as well: The aver-

age is lower than with the BDOS approach. This moves the area in which the metric is correct

towards the middle of the spectrum between close, and distant semantic similar words. In Fig-

11http://corpora2.informatik.uni-leipzig.de/download.html

180

10.1. Experiment 1: Semantic Similarity Measure

ure 10.6b this can be seen in the error rate reducing towards the end of the first half of the data

set. Further, there seem to be words for which the approach works better than for others inde-

pendent of the semantic distance between those words. This can be seen on the error dropping

to almost zero from time to time, e.g., for magician and wizard but as well for asylum and ceme-

tery, where magician has 42 occurrences and wizard hat 184. On the other hand, asylum had

376 occurrences and cemetery had 512. Since slave has 434 occurrences and monk 365, the oc-

currence rate is not the source of the error. From the approach of word embedding, it should be

clear that words not occurring in the same context should not be seen as similar. Consequently,

this depends on the length of the tests and the vocabulary used.

The Word2Vec approach has its benefits as well: The embedding is independent of word

type or grammatical form. Hence on data sets with multiple word types, they might perform

better [17]. Additionally, the performance can continuously improve if new training data is

found. In contrast to the Thesaurus approach ELKB, where the Thesaurus needs to be improved,

which is subject to research [192].

The Word2Vec similarity performance depends on the data set on which the ANN has been

trained. We selected the English one million word News corpus from the Leipzig Corpora Col-

lection12 [313]. Since our selection might have been suboptimal, we used the results of the

original references [269] to compare them to our results.

As a final remark to the results of the Word2Vec approach, we need to notice that the co-

occurrence is not a semantic similarity measure but a measure of relatedness. This relatedness

can be seen in words often co-occurring like homeless and shelter, which are semantically rather

the opposite since a homeless person is one without the shelter provided by a home. But they

still seem related in the Word2Vec approach. For our evaluation, this observation does not make

any difference, since the performance against humans is measured and not an objective or logical

semantic distance. Accordingly, the result measures how well an approach can simulate human

semantic similarity guesses. Because of the co-occurrence of certain words, even humans might

be influenced to guess the semantic similarity wrong. This is also true for words like sun, star,

and planet. Where a human all sees them as round objects of astronomy, where an expert would

disagree on their similarity. Since this argument could be held for most concepts, we rest our

experiment on the simulation of average human estimates.

We can see that the thesaurus based approach (ELKB) (see Section 10.1.1) estimates well

when closely related concepts are the problem, whereas the semantic similarity gets smaller the

metric becomes less accurate and unable to connect two concepts. In Figure 10.7b we can see

that ELKB’s error increases with the decrease of semantic similarity of the concepts. There are

errors even in the semantically close concepts when the thesaurus does not include a concept.

Then the similarity is set to zero. This explains the two error peaks at the beginning of the

Figure 10.7b.

The ELKB approach comes close to the human’s similarity estimates in average but only

reaches a Spearman’s ρ = 0.65. The first thing to notice about the result is that there are discrete

steps in similarity. The steps size is 0.125 since there are only eight steps in the thesaurus

reaching from no connection to being in the same frame. This has the effect that there can not

be a fine grained result like provided by human estimates. This can be seen in Figure 10.7a in

the first 21 word pairs, where most of the estimates are mapped to 1.0.

If one of the words is not contained in the Thesaurus then the ELKB similarity measure returns

12http://wortschatz.uni-leipzig.de/en/download/

181

http://wortschatz.uni-leipzig.de/en/download/

10. Experiments with the Marker Passing

je
w
e
l

n
o
o
n

c
a
r

g
ra
v
e
y
a
rd

p
il
lo
w

la
d

ro
o
st
e
r

to
o
l

w
o
o
d
la
n
d

sh
o
re

si
g
n
a
tu
re

v
o
y
a
g
e

sl
a
v
e

sm
il
e

tu
m
b
le
r

st
ri
n
g

m
o
u
n
d

w
iz
a
rd

st
o
v
e

m
a
d
h
o
u
se

m
o
n
k

fr
u
it

c
o
c
k

c
ra
n
e

sa
g
e

w
iz
a
rd

la
d

im
p
le
m
e
n
t

o
ra
c
le

je
w
e
l

m
o
u
n
d

jo
u
rn
e
y

w
o
o
d
la
n
d

ro
o
st
e
r

im
p
le
m
e
n
t

h
il
l

w
o
o
d
la
n
d

v
o
y
a
g
e

w
o
o
d
la
n
d

ro
o
st
e
r

g
ra
v
e
y
a
rd

w
iz
a
rd

sh
o
re

c
u
sh
io
n

sa
g
e

o
ra
c
le

w
o
o
d
la
n
d

la
d

fo
re
st

c
e
m
e
te
ry

sl
a
v
e

je
w
e
l

ro
o
st
e
r

m
a
g
ic
ia
n

m
a
d
h
o
u
se

m
o
n
k

fr
u
it

im
p
le
m
e
n
t

st
o
v
e

w
iz
a
rd

sh
o
re

fu
rn
a
c
e

st
ri
n
g

v
o
y
a
g
e

sm
il
e

0

0,2

0,4

0,6

0,8

1

g
e
m

m
id
d
a
y

a
u
to
m
o
b
il
e

c
e
m
e
te
ry

c
u
sh
io
n

b
o
y

c
o
c
k

im
p
le
m
e
n
t

fo
re
st

c
o
a
st

a
u
to
g
ra
p
h

jo
u
rn
e
y

se
rf

g
ri
n

g
la
ss

c
o
rd h
il
l

m
a
g
ic
ia
n

fu
rn
a
c
e

a
sy
lu
m

b
ro
th
e
r

fo
o
d

b
ir
d

b
ir
d

o
ra
c
le

sa
g
e

b
ro
th
e
r

c
ra
n
e

m
a
g
ic
ia
n

g
la
ss

c
e
m
e
te
ry

c
a
r

h
il
l

c
ra
n
e

fu
rn
a
c
e

c
o
a
st

b
ir
d

sh
o
re

c
e
m
e
te
ry

fo
o
d

fo
re
st

la
d

m
o
u
n
d

a
u
to
m
o
b
il
e

b
o
y

m
o
n
k

sh
o
re

g
ri
n

c
o
a
st

a
sy
lu
m

m
o
n
k

c
u
sh
io
n

b
o
y

g
la
ss

g
ra
v
e
y
a
rd

a
sy
lu
m

a
sy
lu
m

g
ri
n

m
o
u
n
d

a
u
to
m
o
b
il
e

a
u
to
g
ra
p
h

fr
u
it

n
o
o
n

ro
o
st
e
r

c
o
rd

Word2Vec Humans

(a) Result of the Word2Vec approach with the RG65 dataset.

0

0,2

0,4

0,6

0,8

1
error	Word2Vec

(b) Error of the Word2Vec approach with the RG65 dataset.

Figure 10.6.: Result and Error of the Word2Vec with the RG65 dataset.

je
w
e
l

n
o
o
n

c
a
r

g
ra
v
e
y
a
rd

p
il
lo
w

la
d

ro
o
st
e
r

to
o
l

w
o
o
d
la
n
d

sh
o
re

si
g
n
a
tu
re

v
o
y
a
g
e

sl
a
v
e

sm
il
e

tu
m
b
le
r

st
ri
n
g

m
o
u
n
d

w
iz
a
rd

st
o
v
e

m
a
d
h
o
u
se

m
o
n
k

fr
u
it

c
o
c
k

c
ra
n
e

sa
g
e

w
iz
a
rd

la
d

im
p
le
m
e
n
t

o
ra
c
le

je
w
e
l

m
o
u
n
d

jo
u
rn
e
y

w
o
o
d
la
n
d

ro
o
st
e
r

im
p
le
m
e
n
t

h
il
l

w
o
o
d
la
n
d

v
o
y
a
g
e

w
o
o
d
la
n
d

ro
o
st
e
r

g
ra
v
e
y
a
rd

w
iz
a
rd

sh
o
re

c
u
sh
io
n

sa
g
e

o
ra
c
le

w
o
o
d
la
n
d

la
d

fo
re
st

c
e
m
e
te
ry

sl
a
v
e

je
w
e
l

ro
o
st
e
r

m
a
g
ic
ia
n

m
a
d
h
o
u
se

m
o
n
k

fr
u
it

im
p
le
m
e
n
t

st
o
v
e

w
iz
a
rd

sh
o
re

fu
rn
a
c
e

st
ri
n
g

v
o
y
a
g
e

sm
il
e

0

0,2

0,4

0,6

0,8

1

g
e
m

m
id
d
a
y

a
u
to
m
o
b
il
e

c
e
m
e
te
ry

c
u
sh
io
n

b
o
y

c
o
c
k

im
p
le
m
e
n
t

fo
re
st

c
o
a
st

a
u
to
g
ra
p
h

jo
u
rn
e
y

se
rf

g
ri
n

g
la
ss

c
o
rd h
il
l

m
a
g
ic
ia
n

fu
rn
a
c
e

a
sy
lu
m

b
ro
th
e
r

fo
o
d

b
ir
d

b
ir
d

o
ra
c
le

sa
g
e

b
ro
th
e
r

c
ra
n
e

m
a
g
ic
ia
n

g
la
ss

c
e
m
e
te
ry

c
a
r

h
il
l

c
ra
n
e

fu
rn
a
c
e

c
o
a
st

b
ir
d

sh
o
re

c
e
m
e
te
ry

fo
o
d

fo
re
st

la
d

m
o
u
n
d

a
u
to
m
o
b
il
e

b
o
y

m
o
n
k

sh
o
re

g
ri
n

c
o
a
st

a
sy
lu
m

m
o
n
k

c
u
sh
io
n

b
o
y

g
la
ss

g
ra
v
e
y
a
rd

a
sy
lu
m

a
sy
lu
m

g
ri
n

m
o
u
n
d

a
u
to
m
o
b
il
e

a
u
to
g
ra
p
h

fr
u
it

n
o
o
n

ro
o
st
e
r

c
o
rd

ELKB Humans

(a) Result of the ELKB approach with the RG65 dataset.

0

0,2

0,4

0,6

0,8

1

Error	ELKB

(b) Error of the ELKB approach with the RG65 dataset.

Figure 10.7.: Error of the ELKB approach with the RG65 dataset.

a zero. Which can be seen on examples like cemetery and graveyard or forest and woodland in

Figure 10.7a. In our dataset, these zero estimates occur more often the farther the words are

semantically apart. This is because the algorithm cuts the search for a path from one word to

another when it reaches a set count of eight. In particular, paths longer then eight are counted

as no path found and with that to a similarity of zero. This can be seen on grin and implements

0.125 and grin an lad 0, lad and brother 0.125 and smile and grin 1.0. Here grin and lad are both

parts of the Thesaurus, but grin and lad are too far apart for the approach to find a similarity at

all.

The ELKB approach has less error for distance word pairs as it returns zero if no distance is

found. As a result, the missing error for semantically distant word pairs here is due to failure of

the approach to handle distant words. BDOS, on the other hand, has almost no error for close

concepts. Here short paths between two concepts can be found in WordNet. But the further the

distance of the words, the less accurate BDOS becomes.

A preliminary analysis with the Stanford Rare Word Similarity dataset [244] of 2034 words

has yield the result of Spearman correlation of 0.17 and a Pe arson correlation of 0.19, which

182

10.2. Experiment 2: Word Sense Disambiguation

is subject to improvement now. Furthermore, the extension to have a WSD algorithm which

uses context can be created through the following steps: The contextual words are decomposed,

the results are merged into the graph and markers are passed to them. Then the word sense

is selected with the most semantic similarity by identifying the nodes that received the most

activation from multiple origins. The parameters for such an algorithm are subject to future

work.

Conclusion

In conclusion, we can say, that the Marker Passing approach combines with a semantic de-

composition can be used to build a semantic similarity measure. Although the success in the

performance of our measure, the vast amount of potential parameters and the different design

decisions, leave still room for improvement. With the infinite specialization methods for the

Marker Passing, there could be other interpretations which are even more successful. More ef-

fort could go into designing more sophisticated similarity measures, but we see this as a proof

of concept. Through the learning of the parameters, the parameters might be specific to the data

set, we used for the evaluation, but never the less, we can show that our approach is applicable

for measuring semantic similarity.

As a result, we were able to show that the MP approach can beat the state-of-the-art on the

RG65 data set concerning the Spearman’s correlation. A detailed analysis of the result has

shown that with growing distance of the words compared, the error of the approach gets worse

starting from a distance of approximately 0.7.

The errors in our semantic similarity measure could be from including word senses which are

not relevant in human semantic similarity estimates. The next section will, therefore, tackle the

problem of word sense disambiguation.

10.2. Experiment 2: Word Sense Disambiguation

Word Sense Disambiguation (WSD) is the act of selecting a word sense of one word in a context

of use13. Therefor we can describe our WSD with the following signature:

WSD : Concept × Concept∗ → Definition

The first concept is the target concept, the second list of concepts is the context in which the

target word is used. The result of the WSD is one of the word senses (here called definition) of

the target word.

Now that we can distinguish the semantic similarity of word pairs, we start a new experiment:

Finding the right word sense of a single word in a linguistic context. Since a sense of a word can

be described by its definition, this experiment selects one definition of the target word fitting to

the meaning of the word used in a context14, and then look up the sense key of the word sense

described by the definition to see if we have selected the right one.

Figure 10.8 describes the Marker Passing approach of a word sense disambiguation algorithm.

Here the target Word, its context, and all its definitions are decomposed. The semantic graphs

13This work is based on the bachelor thesis of Lukanek [243] and Marienwald [252] who have implanted a first

version of the marker passing algorithm for WSD.
14Here the context might be the sentence the word is used in

183

10. Experiments with the Marker Passing

Semantic Network

Marker Passing

Symbolic Connectionist

Meaning rep.

Decomposition

TargetWord

Definition Selection

Context

TargetWord

Def
1

Def2

ContextTargetWord

Def
1

Def2

Context

Word Sense

Figure 10.8.: Overview of the algorithm for Word Sense Disambiguation.

are merged to one graph. Each definition, the context, and the target words are given a start

markers noting its origin depicted in Figure 10.8 as the color of the markers. After the Marker

Passing, the definition with the most markers in common with the context and the target word is

selected. The procedure is formalized in Algorithm 16.

In Algorithm 16 line 1 to 6 decompose all the available concepts namely the target concept

(line 1) and all concept in the context (line 3 to 6). We then create initial markers for the target

concept, all concepts in the context and the different definitions of the target concept in line 7

to 13. Line 14 then starts the Marker Passing, and line 15 selects the definition with the most

markers collected in on the concepts of this definition. The Marker Passing parameters the, e.g.,

the in-, out- and edge-functions are selected like in the semantic similarity measure experiment

described in Section 10.1.

The decomposition collects definitions and semantic relations of all dictionaries, and the

Marker Passing uses all those relations to pass markers to concepts. In the end, the defini-

tion with the most markers is selected. All concepts of the context are decomposed as well and

thus contribute to the semantic graph. Since the word senses of those contextual concepts are

not known, all definitions are included.

In this section we will first analyze the state-of-the-art in Section 10.2.1. Then we take a look

at the Marker Passing in Section 10.2.2 configuration and the data sets used in Section 10.2.3.

We then compare our approach to the state-of-the-art and discuss the evaluation results in Sec-

tion 10.2.4 and Section 10.2.5.

10.2.1. State-of-the-Art

The problem of word sense disambiguation is a simplification of the selection of word sense

in context, where a sentence is given and one word, the so called “target word” is to be dis-

ambiguated. With the start of machine translation in the 1940’s WSD has become subject to

research [282]. The first to formulate the relationship of context and the meaning of a word was

184

10.2. Experiment 2: Word Sense Disambiguation

Algorithm 16 Word Sense Disambiguation Marker Passing algorithm.

Name: Word Sense Disambiguation Input: Concept c1, List<Concept> context,

List<Definition> definitions Output: Definition

1: Graph g1 = DECOMPOSE(c1,Null)

2: Graph g = g1;

3: for all Concept c ∈ context do

4: Graph g
′

= DECOMPOSE(c,Null)

5: g = MERGE(g, g
′
)

6: end for

7: NodeData init = SETINITIALMARKERS(g,c1)

8: for all Concept c ∈ context do

9: NodeData init = init+ SETINITIALMARKERS(g,c)

10: end for

11: for all Concept d ∈ GetDefinition(c) do

12: NodeData init = init+ SETINITIALMARKERS(g, d)

13: end for

14: NodeData result =MARKERPASSING(init)

15: return max
Definition d∈definitions

∑

Concept c∈d

GETMARKERS(result, c)

Warren Weaver [401] in 1949. Quickly the research was concerned with the size of the context

and its influence on the meaning of a word [404]. Later on, after the AI winter, the research on

WSD continued [5]. Now there has been the specialization of three types of WSD algorithms

[178]:

Supervised approaches use machine learning methods to learn parameters which distinguish

word sense with a training set [357, 428]. Here methods like decision trees, Navı̈e Bayes

or Support Vector Machine are used.

Unsupervised approaches use methods from machine learning like clustering, which do not

need a labeled training set [3]. This sometimes is called “Words sense discrimination”

since the approaches try to cluster word senses or contexts [73].

Knowledge based approaches use lexical resources like Ontologies, Dictionaries and The-

sauri as bases for their disambiguation [4, 42, 43, 268, 381]. Here algorithms like the

Lesk-Algorithm [229] try to find overlaps of the senses of the target word and its context.

Distributional semantics and with that word embedded approaches can be used to approach

the WSD problem [178]. Here a target word is associated with the most co-occurrent words in

a corpus, which does not reflect any semantic values, but rather a statistical usage of words in

corpora.

Since our Marker Passing approach is unsupervised and knowledge based we compare the

performance of our WSD algorithm against the following three approaches:

Hessami et al. [166] use a connectivity measure (the degree of centrality of a node) on a

semantic graph extracted from WordNet. Hessami et al. create a semantic graph from the

information out of WordNet by interconnecting each word with all its lexical relations to other

words. In this graph, the degree of centrality is then measured for each word sense of the target

word and the maximum is selected.

185

10. Experiments with the Marker Passing

Veronis and Ide [389] do WSD via a “very large neural network extracted from machine

readable dictionaries”. The word senses of the Collins English Dictionary are connected to the

words in the definition of this word sense. This is repeated with all words which have definitions

in the dictionary. This is equivalent to creating a decomposition by only using definition nodes.

All words (nodes of the ANN) are reduced to their lemma. The sense nodes of a word are

interlinked with inhibitory links (edges with negative weights). The activation then is passed

from the input words and passed along the network. The paper of Veronis and Ide [389] does not

specify the concrete parameters of the approach, e.g., the number of cycles and the inhabitation

factor or the start activation is not specified.

There is one contribution which uses spreading activation to create a WSD approach. We

will look at this approach more closely next: Tsatsaronis et al. [380, 381, 382] describe a WSD

approach which utilizes WordNet as a semantic graph. With that the approach of Tsatsaronis et

al. falls into the knowledge based category. In their publication Tsatsaronis et al. [380] they

extend their approach to be unsupervised and with that fall in a second of the above categories

and with that into the related work for our approach.

Tsatsaronis et al. construct a semantic graph from WordNet by adding all directly related

concepts of the concepts making up the sentence, to the semantic graph. Each word sense of

a word is connected with the concept itself, with edges weighted with positive weights (called

activatory edges). The senses of one word are then interlinked with edges with negative weights

(called inhibitory edges).

The activation spreading is then done by checking if a node j activation Aj(p) has reached the

threshold τ at pulse p. The Equation 10.13 describes how the activation is then propagated:

Oj(p) =

0 , if Aj(p) < τ

(1−
Cj

CT
)

p+1 ∗ Aj(p) , else

(10.13)

With Cj being the number of directly connected nodes and CT being the total amount of nodes.

Here p is the pulse count so that with each activation pulse the activation decreases. The edges

are then weighted by their term frequency (the frequency to which the edge type is used) times

its log-inverse of the total frequency of node occurrence. This approach has been evaluated using

the Senseval 2 data set and reached an accuracy of 0.493.

The drawback of the approach described in Tsatsaronis et al. [380, 381, 382] is that a POS

tagging needs to be present for the approach to work. Also, only WordNet is used to build the

semantic graph; this means only words which are described in WordNet are part of the semantic

graph.

The WSD experiment proposed here can be classified as a knowledge based approach since

we are using our semantic decomposition as a basis for our disambiguation. Further, the Marker

Passing is unsupervised. We propose an offline learning phase for the parameters of the Marker

Passing algorithm, but the resulting algorithm can function without a human in the loop.

10.2.2. Marker Passing Configuration

The Marker Passing configuration in this experiment is the same as in the semantic similarity

measure experiment. See Section 10.1 for more details. Every parameter of the Marker Pass-

186

10.2. Experiment 2: Word Sense Disambiguation

ing is here the same as in Section 10.1. From the start Marker, the activation threshold to the

termination condition, the approach here only changes by the amount of start markers initially

distributed and the result interpretation.

The parameters of the weights and amount of start activation, as well as the termination pulse

count and double activation limit, are learned with a genetic algorithm as described in Sec-

tion 10.1.15.

10.2.3. Data Sets

The golden standard for word sense disambiguation is evaluated each year in the SemEval chal-

lenge15. This challenge is organized by Association for Computational Linguistics (ACL) Spe-

cial Interest Group on the Lexicon (SIGLEX). Since our approach is based on English lexical

resources like WordNet or Wikipedia, we had to select an English WSD challenge.

Sadly the Semantic Evaluation Exercises (SemEval-2016) held on the International Workshop

on Semantic Evaluation is again a SemEval without WSD task. This reduces the choice of data

sets to older versions of the data sets provided by SemEval challenge. This is the reason why the

state-of-the-art in word sense disambiguation is tested on the Senseval Task 3 (Senseval-3 Task)

called “Word-Sense Disambiguation of WordNet Glosses” [267].

This task consists of example sentences where one word, the so called target word is ambigu-

ous. The corpus is taken from the British National Corpus, the Penn Treebank corpus, the Los

Angeles Times collection and the Open Mid Common Sense corpus [267]. These are combined

with the word senses of WordNet creating example sentences like the one shown in Figure ??.

 These beliefs so dominate our educational establishment , our media , our politicians , and even…

be
lie

f%
1:

09
:0

0:
:

so%4:02:02::

dominate%2:42:01::

(19){05950141} <noun.cognition>[09] S: (n) belief#1

(belief%1:09:00::) (any cognitive content held as true)

(322){00147630} <adv.all>[02] S: (adv) so#1 (so%4:02:02::)
(to a very great extent or degree) "the idea is so
obvious"; "never been so happy"; "I love you so"; "my
head aches so!"

(6){02653015} <verb.stative>[42] S: (v) dominate#2

(dominate%2:42:01::) (be in control) "Her
husband completely dominates her"

Figure 10.9.: Example sentence with word sense from the Senseval Task 3 data set

In the Senseval data set most of the words of the example sentence are tagged with a WordNet

word sense like in the example in Figure ?? the word “belief” with the sense key “1:09:00::”

which references the definition “any cognitive content held as true.”. The task now is, to identify

the right word sense for each tagged word. For us, this means choosing the right definition we

have found in the decomposition and looking up its sense key to return it as an answer.

15http://www.senseval.org/senseval3/tasks.html last visited on 02.03.2017

187

http://www.senseval.org/senseval3/tasks.html

10. Experiments with the Marker Passing

10.2.4. Evaluation Results

This section describes the evaluation results of our Algorithm 16 on the Senseval Task 3 data

set. We compare our results to the best performing of each of the three categories described

in Section 10.2.1. Here we compare the approaches depending on their accuracy regarding the

selection of word senses for the target words in the different sentences.

Table 10.5.: Results of the WSD approaches on the Senseval Task 3 data set.

WSD approach Accuracy

Hessami et al. [166] 0.482

MP 0.385

Tsatsaronis et al. [382] 0.365

Veronis & Ide [389] 0.308

Table 10.5 shows that the overall performance of our Marker Passing approach (MP) performs

second best in the state-of-the-art. The results are reported in the respective papers proposing

the approach16. Here further optimization of the Marker Passing parameters could result in a

higher accuracy, but this is left to future work.

10.2.5. Discussion of the results

The selection of a definition or word sense of a word is a hard task which can be seen in the low

overall accuracy reached by the here compared approaches. A perfect match has been reached,

e.g., on the sentence “Here the experience of New York City is decisive.” with the target word

being experience with the word sense: “the accumulation of knowledge or skill that results from

direct participation in events or activities”. This works well because the word experience is

already in lemma form. In other cases like in the sentence “Community involvement is an even

worse idea.”, with the target word ”idea” with word sense “the content of cognition; the main

thing you are thinking about”, our approach does not even select the right word: The Marker

Passing resulted in maximally activating the synonym of ideas “thought” with the same word

sense “the content of cognition; the main thing you are thinking about.”. This means we have

selected some word sense which does not have a sense key in WordNet, consequently is not

a possible solution to the question. This means out results could be improved, if additional

problem specific knowledge would be added to the algorithm, selecting only definitions which

have a WordNet sense key.

The calculation of the maximum activation seems to be too general since sometimes synonyms

do have the same definition but are not considered a right response by the dataset. This drawback

could be overcome by altering the result interpretation and filtering the synonyms.

Our result has been achieved without any syntactical information, which makes our approach

a purely semantical one. In future work, the decomposition could be extended by syntactic

information to improve the results.

Since the decomposition collects definitions of all dictionaries, a mapping to WordNet sense

keys is needed if a definition is selected which has its origin, not in WordNet. In addition, the

results could be optimized if the contextual concepts are disambiguated first, or at least their

POS identified so that the decomposition does not contain all relations for all word senses.

16For further details the interested reader is referred to the Thesis of Marienwald [252]

188

10.3. Experiment 3: Semantic Sentence Similarity Measure

In conclusion, we can say that the performance of an unsupervised approach do not reach the

results of supervised approaches [20] but improves over the last years. Overall there is still space

for improvement regarding the performance of unsupervised methods.

10.3. Experiment 3: Semantic Sentence Similarity Measure

This section describes the experiment on semantic sentence similarity. After having experi-

mented with a word meaning similarity in Section 10.1 and word senses in Section 10.2 this

experiment establishes if the here presented approach can be applied to represent the meaning

of sentences. This means that the experiment conducted in this section analyzes how the Marker

Passing approach can be used to create a sentence similarity measure. This is done to show that

the approach is not restricted to single concept similarity. Here we take the idea of the semantic

similarity presented in Section 10.1 and extends this approach to measure sentence similarity17.

The signature of the given problem is defined as follows:

SemanticSentenceSimilarity : Concept∗ × Concept∗ → Double

Here the input is two sentences (given thought two list of concepts), and the result represents

a measure of similarity as a double value. The resulting measure is zero if the sentence is not

similar and is one if the sentences are equivalent in meaning.

Again, this experiment represents only a proof-of-concept to show that the here presented

approach to representing artificial meaning can be used to measure the difference in sentence

meanings. This means we do not optimize parameters of the Marker Passing to fit the data set.

We will see that there are a multitude of design decisions which do not claim completeness nor

optimality. We can regard this experiment as a starting point for future research on specializing

the decomposition, the Marker Passing and its interpretation of to represent sentence meaning.

One result of the WSD experiment in Section 10.2 is that we want to identify sentences (in this

case definitions) with the same meaning so that we can aggregate them and have less redundant

definitions in the semantic graph. The resulting disambiguation could also be used during the

decomposition itself since we want to eliminate duplicates in the definitions there as well to have

less noise in the decomposition.

Figure 10.10 shows our abstract approach to a semantic sentence similarity measure. First,

we decompose every word of both sentences. The resulting graphs are merged into one graph.

In this graph, the concepts of the two sentences are marked with different markers. Our basic

approach is depicted in Figure 10.10 where the different markers are shown as orange and green

marked nodes.

17This section is based on the thesis of Schneider [351]

189

10. Experiments with the Marker Passing

Decomposition

Semantic Graph

Marker Passing
Symbolic Connectionist

Merge

Sentence1 Sentence2

Marker
Counting

Semantic Distance

Sentence1 Sentence2

Sentence2
Sentence1

Figure 10.10.: Overview of the algorithm for our semantic sentence similarity measure.

The Marker Passing then passes the markers through the graph. The resulting marked graph is

interpreted which is called “Marker Counting” in Figure 10.10. Here we have the basic assump-

tion, that sentences which have similar meaning, have more concepts in common and with that,

the resulting marked graph will contain more concepts marker with markers of two colors. The

attentive reader might have noticed that the approach we take on sentence similarity is similar to

the semantic similarity of words described in Section 10.1.

This approach to a sentence similarity measure is implemented like shown in Algorithm 17.

Line 1 to 8 decompose all the words of the two sentences and merger the resulting graphs into

one graph. Line 9 to 14 sets the initial markers on the concepts of the two sentences each time

with the concept and the sentence it occurred in as an origin. The setting of the initial marker is

adapted from Algorithm 7 (on page 168) to Algorithm 18.

In Algorithm 18 we have added line 4, which sets the additional information on the marker,

from which sentence it was first placed on. More about the marker information is described in

Section 10.3.2.

Line 16 in Algorithm 17 executes the Marker Passing based on the initial marking. The result

is used in line 17 where the average activation is collected. In Line 18 the intersection of the

words the two sentence have in common is calculated to account for words which occur multiple

times and in both sentences. Line 19 combines those two parts of the result into our similarity

measure. More details to the Marker Passing are discussed in Section 10.3.3.

We will first look at the state-of-the-art of semantic sentence similarity in Secontion 10.3.1.

We then describe which marker information (Section 10.3.2) and Marker Passing configuration

in Section 10.3.3. We then look at the data sets which can be used for sentence similarity exper-

iments in Section 10.3.4. Afterwards we present the results of our approach in Section 10.3.5

and discuss them in Section 10.3.6.

190

10.3. Experiment 3: Semantic Sentence Similarity Measure

Algorithm 17 Semantic Sentence Similarity Marker Passing algorithm.

Name: Semantic Similarity Measure Input: List<Concept> sentence1, List<Concept>
sentence2 Output: Double

1: for all Concept c ∈ sentence1 do

2: Graph g
′

= DECOMPOSE(c,Null)

3: Graph g = MERGE(g, g
′
)

4: end for

5: for all Concept c ∈ sentence2 do

6: g
′

= DECOMPOSE(c,Null)

7: g = MERGE(g, g
′
)

8: end for

9: NodeData init = emptyNodeData

10: for all Concept c ∈ sentence1 do

11: NodeData init = init+ SETINITIALMARKERS(g, c)

12: end for

13: for all Concept c ∈ sentence2 do

14: NodeData init = init+ SETINITIALMARKERS(g, c)

15: end for

16: NodeData result =MARKERPASSING(init)

17: double avgActivation = GETAVGACTIVATION(result)

18: double intersection =
(size(sentence1+size(sentence2)−(size(sentence1∩sentence2))

size(sentence1)+size(sentence2)
2

19: return intersection + (avgActivation

(size(sentence1∩sentence2)∗StartActivation
)

Algorithm 18 Setting initial markers for sentences.

Name: InitialMarking

Input: Concept c1
Output: NodeData

1: function SETINITIALMARKERS(c1, sentencei)

2: ND = emptyNodeData(c1, sentencei)

3: m1 = λ(x).

{

startActivation | ∅ , if x = c1

∅ , else

4: ND = setOriginSentence(c1,sentencei)

5: ND = setMarking (ND, c1,m1)
6: ND = setHistory (ND, c1,m1)
7: return ND

8: end function

191

10. Experiments with the Marker Passing

10.3.1. State-of-the-Art

This section will analyze the related work of semantic sentence similarity measure. The literature

analysis will show which properties of sentences are used in the different measures and find

suitable state-of-the-art to compare our approach against.

Sentence similarity has recently become subject to research. Most approaches origin from

word similarity measures or represent Information Retrieval Methods which are originally used

to compare bigger text documents [294]. Sentence similarity measures can be divided into two

types of approaches:

Vector Space Models which are corpus-based methods also known as word embedding. In

Vector space models the sentence is seen as a vector where each component of the vector

is one word of the sentence. These vectors are then compared to each other mostly based

on cooccurrence statistical information in corpora and some geometrical measures like the

cosine similarity.

Feature Based approaches split the sentence into its words, and compare features of those

words to each other and aggregate this comparison to become the sentence similarity

measure.

Besides the standard classification into unsupervised and supervised methods in machine

learning, the focus here is on the two types of approaches. As mostly in machine learning,

the supervised approaches have a better performance on the test data sets and bare the usual

deficits like the size of needed training data and the effort to creating this training data.

Gomaa and Fahmy [147] present a survey on text similarity measures older than the year 2013.

These approaches are superseded and therefore are not part of this state-of-the-art analysis.

Corley et al. [60] introduce a semantic similarity measure for larger texts which can be used

for sentences as well. They extract all verbs and nouns from the two sentences and select a

corresponding (semantically the most similar) verb or noun in the other sentence. To choose the

semantic similar verb or noun they use eight different distance measures. Amongst others they

use Wu Palmer [418] and Jiang and Conrath [185, 418]. The rest of the words of the sentence

are compared with a “word-to-word similarity” [60].

Mihalcea et al. [268] present a corpus based approach, so a semantic similarity measure of

texts extending the one of Corley et al. [60] by integrating more part-of-speech classes in the

word similarity, with the result of loosening the restriction of only comparing nouns with nouns.

The result is weighted by the inverse occurrence frequency (so simulate entropy or amount

information content) and normalized.

Approaches like the one of Islam and Inkpen [180, 334, 368] are all using different semantic

distance measures of the text like the length of a “congest common subsequence”, the semantic

similarity of words, or the order in which the words occur. Stabcgev [368], for example, extracts

a similarity graph from WordNet and bases its clustering on the occurrence of words in categories

in this graph.

Oliva et al. [294], on the other hand, describe a syntax-based semantic similarity measure.

Here the abstract syntax tree is calculated then the similarity of the words with the same syntactic

functions are calculated, and the result is summed up and normalized. Here the part-of-speech

are weighted differently. Oliva et al. introduce a fixed penalty factor of 0.3 for syntactic elements

192

10.3. Experiment 3: Semantic Sentence Similarity Measure

which are present in one sentence but not in the other. Those are then subtracted from the

weighted sum of word similarities.

Taib et al. [375] describe a “features-based measure of sentences semantic similarity” (FMS3)

combines word similarity of verbs and nouns and the order of words. Taib et al. [375] use a

PageRank-Algorithm where the links referencing a concept (originally a web page) determine

the amount of similarity of a concept. Hence, if a concept is used in a definition of a word, then

it is seen as referencing this concept. The referencing concepts are weighted according to the

count of incoming references and the weight of the concept which is referencing this concept. If

a word has multiple definitions, the definitions are ranked according to their weights which lead

to a sort of disambiguation of word senses.

Pilehvar et al. [308] as well describe an “Alignment-based Disambiguation of the two lin-

guistic items and random walk” (ADW). Here the words of a sentence are represented by their

definitions (they call this a semantic signature). This semantic network is the represented as a

vector space where the vector contains elements which the definitions have in common. This

is different form the concurrence vector spaces because it is based on properties found in the

semantic network. The ADW seems to be working well on the datasets according to Pilehvar et

al. [308] but the results are not reproducible with the open source variant 18. For that reason, we

neglect from listing those results in our state-of-the-art.

In conclusion, the state-of-the-art of sentence similarity does use a multitude of properties

like word order and part-of-speech or syntax of the sentence and has analyzed different word

similarity measures. In addition to the contribution of Taib et al. [375] even word sense dis-

ambiguation is used to select the right definition of the word in the context of the sentence.

Missing in this approaches is the symbolic part of the meaning of the sentences. This means that

logical concepts like negation can not be appropriately integrated into the sentence similarity

measure. Representing the best sentence similarity measures researched so far, they form the

best candidates as a comparison to our approach.

We selected the paper of Cloey and Mihalecea [268] and Pilehvar et al. [308] for the compar-

ison with our approach since these are the most recent surveys on sentence similarity, and they

use the same data set.

10.3.2. Marker information

The marker information for the sentence equivalent experiment is similar to the of the semantic

distance with the addition that the marker carries the information from which sentence it has

started. Consequently, we can define our marker as follows:

This is done to be able to treat those markers separately. If a concept is present in both

sentences, markers of both “colors” are placed on it.

10.3.3. Marker Passing Configuration

The Marker Passing configuration in this experiment is the same as in the semantic similarity

measure experiment, except the interpretation of the markers after the Marker Passing has been

18https://github.com/pilehvar/ADW/

193

https://github.com/pilehvar/ADW/

10. Experiments with the Marker Passing

Algebra SentenceNodeData = implements NodeData

sorts:

Markers : {(ofOrigin,marker) | ofOrigin : Concept,marker : Double}
opns:

getSumFromOrigin : Markers× Concept × Concept∗ → Double

getSumFromOrigin(markers, origin, concepts) =
∑

x∈markers

xifgeTOrigin(x) =

origin ∧ getConcept(x) = concept

emptyNodeData(concept,Concept∗) = {emptyMarkers, emptyMarkers}
setOriginSentence : Concept × Concept∗ → NodeData

setOriginSentence(concept, sentence) = NodeData(concept, sentence)

executed. See Section 10.1 for more details on how e.g., the in- and out-function or the ter-

mination condition are defined. The main difference is that the marker carries the information

from which sentence they started out from. This information is used in the interpretation of the

markers in the way described in Equation 10.14.

similarity = intersection +

(

GETAVGACTIVATION(result)

| sentence1 ∩ sentence2 | ∗ StartActivation

)

(10.14)

Where sentence1 and sentence2 are two lists of concepts and intersection representing the

activation of the set of concepts activation in both sentences.

intersection = 2 ∗
(| sentence1 | + | sentence2 |)− (| sentence1 ∪ sentence2 |)

| sentence1 | + | sentence2 |
(10.15)

The getAvgActivation gets the average activation as the sum of the activation of all markers of

all concepts that are activated by both sentences. In Equation 10.14 we calculate the concepts

present in both sentences plus the average activation of the concepts activated by markers of

both sentences normalized by the total activation present after the initial marking. The resulting

similarity is then again normalized to one.

With Equation 10.15we calculate the similarity of two sentences by calculating the ratio of

equivalent words in both sentences in intersection. This means if the two sentences are equiva-

lent, then intersection becomes 1. To this ratio, we add the normalized average activation of all

concepts activated by markers of both sentences. This captures that if concepts are semantically

closer together, then more markers of both sentences, carrying more activation exist. In extreme

cases, this value can become larger than one, which makes a normalization to the interval of zero

to one of the result necessary.

10.3.4. Data Sets

The state-of-the-art in semantic similarity measures is evaluated in the SemEval challenge since

1998 irregularly. The contests are documented19. Starting from 2012 the proceedings of the

papers participating in the SemEval challenge are no longer available; this is why we chose

2012 as the year to take the data set from. Since the results of the last challenges in 2016 and

2017 do not have sufficient description of the participating systems we selected two surveys

19https://en.wikipedia.org/wiki/SemEval last visited on 02.03.2017

194

https://en.wikipedia.org/wiki/SemEval

10.3. Experiment 3: Semantic Sentence Similarity Measure

Sentence one Sentence two Similarity

A man with a hard hat is dancing. A man wearing a hard hat is dancing. 5.0

A woman is cutting up a chicken. A woman is slicing meat. 2.75

A woman is slicing big pepper. A dog is moving its mouth. 0.0

Table 10.6.: Example sentences form the SemEval 2012 MSRvid data set.

Sentence one Sentence two Similarity

Neither was there a qualified majority

within this House to revert to Article

272.

It did not not more of the qualified ma-

jority in this Parliament to return to the

Article 272.

4.333

We often pontificate here about being

the representatives of the citizens of Eu-

rope.

We are often here to represent the Euro-

pean citizens.

2.750

That provision could open the door wide

to arbitrariness.

This paves the way for the of the Rules

of Procedure here.

1.500

Table 10.7.: Example sentences form the SemEval 2012 SMTeuroparl data set.

which compare state-of-the-art approaches as a reference like described in Section 10.3.1 these

papers are Cloey and Mihalecea [268] and Pilehvar et al. [308].

The data set was first presented at the SemEval 201220 as task six. This evaluation data

set consists of a set of sentence pairs and their similarity. Table 10.6 shows three example of

sentences of the data set and their similarity measure.

Here 5.0 is the maximum similarity, and 0.0 is the low bound. For our experiment, we have

normalized this scale to the interval of [0, 1] by dividing by 5 to make the results easier to

interpret and comparable with other data sets. We have chosen the data sets: MSRvid, MSRpar,

SMTeuroparl like in [308]. This selection has been made to be able to compare the results

to the state-of-the-art. These tasks are from SemEval-2012 Task 621 which is an “Semantic

Textual Similarity” task and from SEM 2013 Shared Task22 which is also an “Semantic Textual

Similarity” task.

Here the data set MSRvid and MSRpar contain stances out of the press and news like shown

in Table 10.6. The data set SMTeuroparl, on the other hand, contains generic sentences, which

is a harder task. The SMTeuroparl data set consists of sentences like those shown in Table 10.7.

The complexity of words used and the increase in grammatical complexity of the sentences

explains why this data set is harder for similarity measures.

The golden standard rates these sentences from 0 to 5. With the following meaning taken

from the SemEval-2015 Task 2 website23:

5 The two sentences are completely equivalent, as they mean the same thing.

• The bird is bathing in the sink.

• Birdie is washing itself in the water basin.

20https://www.cs.york.ac.uk/semeval-2012/index.html last visited on 10.09.2017
21http://www.cs.york.ac.uk/semeval-2012/task6/ last visited on 10.09.2017
22http://ixa2.si.ehu.es/sts/ last visited on 10.09.2017
23http://alt.qcri.org/semeval2015/task2/index.php?id=semantic-textual-similarit

y-for-english last visited on 03.03.2017

195

https://www.cs.york.ac.uk/semeval-2012/index.html
http://www.cs.york.ac.uk/semeval-2012/task6/
http://ixa2.si.ehu.es/sts/
http://alt.qcri.org/semeval2015/task2/index.php?id=semantic-textual-similarity-for-english
http://alt.qcri.org/semeval2015/task2/index.php?id=semantic-textual-similarity-for-english

10. Experiments with the Marker Passing

4 The two sentences are mostly equivalent, but some unimportant details differ.

• In May 2010, the troops attempted to invade Kabul.

• The US army invaded Kabul on May 7th last year, 2010.

3 The two sentences are roughly equivalent, but some important information differs/missing.

• John said he is considered a witness but not a suspect.

• “He is not a suspect anymore.” John said.

2 The two sentences are not equivalent, but share some details.

• They flew out of the nest in groups.

• They flew into the nest together.

1 The two sentences are not equivalent, but are on the same topic.

• The woman is playing the violin.

• The young lady enjoys listening to the guitar.

0 The two sentences are on different topics.

• John went horse back riding at dawn with a whole group of friends.

• Sunrise at dawn is a magnificent view to take in if you wake up early enough for it.

An alternative data set is provided by Li et al. [231] by taking the word similarity data set

of Rubenstein and Goodenough [336] and replacing the words with their definition. In this

way, sentence pairs are created to measure sentence similarity based on the similarity of the two

words from the Rubenstein and Goodenough [336] data set. This data set has multiple problems:

The selection of a definition of a word removes the ambiguity of the task since now only one

definition is presented, rather than just the word where the task is to find the right definition.

Further, the selection of definition for one concept has not been motivated. With the result that,

by selecting a definition which has a rare use, the task becomes un comparable with the results

of Rubenstein and Goodenough [336].

10.3.5. Evaluation Results

The experiment is conducted with a decomposition depth of two and the set of decomposition

parameters found in Section 10.1. We compare our results against the best state-of-the-art ap-

proach which we could find a publication for and which used the here chosen Dataset. The

results of the ADW measure [308] have been neglected because even though the source code

of their measure is available, their results were not reproducible. Even after trying all signature

comparison methods and variating the parameters like the alignment vector size or whether to

ignore stop words or not, the publication [308] did not indicate enough parameters so that the

experiment can be repeated. The rest of the results have been taken from the survey papers of

Cloey and Mihalecea [268] and Pilehvar et al. [308].

The results of the different approaches can be seen in the Table 10.8. The results are interesting

since our sentence similarity measure MP is performing in average for the data set MSRvid

but outperforms all approaches by far on the data sets SMTeuroparl and MSRpar. Since the

SMTeuroparl data set is more complex not only in word choice but also in syntactical structures,

196

10.3. Experiment 3: Semantic Sentence Similarity Measure

Table 10.8.: Results of the semantic sentence similarity experiment compared to the measure of

Cloey and Mihalecea [268] which encapsulates many different semantic distance

measures and Pilehvar et al. [308] stating the Spearman ρ and Pearson r correlation.

Approach SMTeuroparl MSRpar MSRvid

ρ r ρ r ρ r

MP 0.50 0.45 0.52 0.49 0.65 0.64

ESAWM 0.30 0.22 0.28 0.25 0.78 0.78

C&MRES 0.25 0.25 0.41 0.46 0.74 0.73

RES 0.25 0.25 0.41 0.46 0.74 0.73

C&MLIN 0.23 0.23 0.41 0.45 0.70 0.70

LIN 0.23 0.23 0.41 0.45 0.70 0.70

C&MWUP 0.22 0.11 0.39 0.44 0.65 0.64

WUP 0.22 0.21 0.39 0.44 0.65 0.64

C&MJCN 0.20 0.20 0.39 0.44 0.65 0.65

C&MLCH 0.19 0.18 0.39 0.45 0.68 0.67

the result of our semantic measure is surprising. The cumulative error over all 459 sentences is

131.36 which is an average error of 0.286. This means that in average the results are still of by

ca. 30% of the actual result.

10.3.6. Discussion of the results

The result of the sentence similarity is better than the state-of-the-art for complex sentences.

With this experiment, we have shown that the use of a semantic similarity measure can be ex-

tended to the semantic similarity of sentences.

We can see in Figure 10.11 that the MP measure mostly under estimates the similarity. Fur-

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

1
5
1

1
5
7

1
6
3

1
6
9

1
7
5

1
8
1

1
8
7

1
9
3

1
9
9

2
0
5

2
1
1

2
1
7

2
2
3

2
2
9

2
3
5

2
4
1

2
4
7

2
5
3

2
5
9

2
6
5

2
7
1

2
7
7

2
8
3

2
8
9

2
9
5

3
0
1

3
0
7

3
1
3

3
1
9

3
2
5

3
3
1

3
3
7

3
4
3

3
4
9

3
5
5

3
6
1

3
6
7

3
7
3

3
7
9

3
8
5

3
9
1

3
9
7

4
0
3

4
0
9

4
1
5

4
2
1

4
2
7

4
3
3

4
3
9

4
4
5

4
5
1

4
5
7

SMReuroparl

Humans MP Linear		(MP)

Figure 10.11.: Detailed result of the SMTeuroparl data set.

ther, we can see that the measure is almost never zero. Even though the semantic similarity is

underestimated, the semantic decomposition seems to be large enough to find relations between

the concepts of the sentences. In addition, we can see that the data set SMTeuroparl mostly

consists of semantic similar sentences. Looking at the data set SMTeuroparl, most of the sen-

tences are similar since most of the sample (ca. 440 sample out of 459) have a similarity of 0.7

or higher. Consequently, the results are biased towards measures which work well on similar

sentences.

197

10. Experiments with the Marker Passing

With the variation of the similarity, the Marker Passing approach is still ca. 30% of average

error for the SMTeuroparl data set. The shape of the graph depicted in Figure 10.11 explains the

bad correlation values in Table 10.8. With that, there is still potential left for improvement.

Figure 10.12 shows the result of the MSRpar data set. Here the sentences are longer and more

complex than the example phrases from the MSRvid data set. An example here is: “In 2001

and 2002, wire transfers from 4 of the company’s 40 accounts totaled more than $ 3.2 billion,

prosecutors said.” and “Wire transfers from four of the 40 accounts open at Beacon Hill totaled

more than $ 3.2 billion from 2001 to 2002, Morgenthau said.”

Here the example phrases are well distributed over the spectrum of semantic similarity with a

focus on sentences with a similarity in the interval of [0.4, 0.8]. We can see that with the longer

sentence length our measure starts to overestimate the similarity. The cumulative error of all

750 examples is 105.97, which is an average error of 0.141. This shows that even though the

correlation outperforms the state-of-the-art, there is still potential for improvement. The data set

MSRpar focuses on sentences which are between 0.8 and 0.4 (ca. 140 to 680 which makes 540

of 750 which is 72% of the sentences) on the human similarity value. This means that ca. 72%

of the sentences are placed on 40% of the similarity range.

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

1
0
9

1
1
8

1
2
7

1
3
6

1
4
5

1
5
4

1
6
3

1
7
2

1
8
1

1
9
0

1
9
9

2
0
8

2
1
7

2
2
6

2
3
5

2
4
4

2
5
3

2
6
2

2
7
1

2
8
0

2
8
9

2
9
8

3
0
7

3
1
6

3
2
5

3
3
4

3
4
3

3
5
2

3
6
1

3
7
0

3
7
9

3
8
8

3
9
7

4
0
6

4
1
5

4
2
4

4
3
3

4
4
2

4
5
1

4
6
0

4
6
9

4
7
8

4
8
7

4
9
6

5
0
5

5
1
4

5
2
3

5
3
2

5
4
1

5
5
0

5
5
9

5
6
8

5
7
7

5
8
6

5
9
5

6
0
4

6
1
3

6
2
2

6
3
1

6
4
0

6
4
9

6
5
8

6
6
7

6
7
6

6
8
5

6
9
4

7
0
3

7
1
2

7
2
1

7
3
0

7
3
9

7
4
8

MSRpar

Humans MP Linear		(MP)

Figure 10.12.: Detailed result of the MSRpar data set.

Figure 10.13 shows our result on the MSRvid data set. Here the entire range of similarity is

covered. The difference to the MSRpar data set is that the MSRvid data set consists of short

sentences like shown in Table 10.6. Here almost all sentences consist of less than 20 words.

In addition, the data set is crafted in a way that antonyms like “woman” and “man” are often

interchanged in the two sentences. The cumulative error over all 750 sentences is 205.07 which

yields an average error of 0.273. Looking at the MSRvid data set, the emphasis of the similarity

is on sentences which are less similar since a lot of the examples (ca. 100 of them) have a

similarity of zero.

The bad performance of our measure could be partially explained because those antonyms

are skewing the semantic similarity. One can imagine that markers can pass over an antonym

relation from, e.g., “woman” to “man” and therefore increase the double activation measure

between those sentences. Besides, the MP approach takes into account which concepts are used

in both sentences, so examples like: “The dog did bite John.” or “John did bite the dog.” are

considered similar.

The results are not performing as well in comparison to the state-of-the-art on simple sen-

tences, where the structure of the syntax is not as important as the words used. Because on

198

10.4. Experiment 4: Semantic Service Matching

0

0,2

0,4

0,6

0,8

1
1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

1
0
9

1
1
8

1
2
7

1
3
6

1
4
5

1
5
4

1
6
3

1
7
2

1
8
1

1
9
0

1
9
9

2
0
8

2
1
7

2
2
6

2
3
5

2
4
4

2
5
3

2
6
2

2
7
1

2
8
0

2
8
9

2
9
8

3
0
7

3
1
6

3
2
5

3
3
4

3
4
3

3
5
2

3
6
1

3
7
0

3
7
9

3
8
8

3
9
7

4
0
6

4
1
5

4
2
4

4
3
3

4
4
2

4
5
1

4
6
0

4
6
9

4
7
8

4
8
7

4
9
6

5
0
5

5
1
4

5
2
3

5
3
2

5
4
1

5
5
0

5
5
9

5
6
8

5
7
7

5
8
6

5
9
5

6
0
4

6
1
3

6
2
2

6
3
1

6
4
0

6
4
9

6
5
8

6
6
7

6
7
6

6
8
5

6
9
4

7
0
3

7
1
2

7
2
1

7
3
0

7
3
9

7
4
8

MSRvid

Humans MP Linear		(MP)

Figure 10.13.: Detailed result of the MSRvid data set.

more complex sentences, the syntactic analysis of state-of-the-art becomes more difficult, their

performance decreases more than in the MP approach. Also, the words in those examples are

more basic so that they are mostly included in WordNet. This means measures based on Word-

Net can perform well on those examples. Since WordNet is mainly hand crafted, this shows

that the quality of our automatically generated information sources for semantic tasks are still

improvable.

Furthermore, this experiment shows that with a simple extension of the same principle in token

information and Marker Passing algorithm configuration, the problem of sentence similarity is

not yet solved. This leads to the conclusion that further experiments are needed, where the

marker information is extended to logical, perhaps syntactical information. In addition to that,

the in-, out- and edge-function could make use of this additional symbolic information and

further improve the results.

Further, we can conclude that the semantic representation of the words making up the sentence

is not enough to represent the meaning described by the sentence. The addition of syntactic

information thus is necessary to capture the logical content of the sentence. An example of this

is a negation, which could be included in a sentence like: “John did not bite the dog.” With the

Marker Passing approach, the negation is not reflected in comparison with, e.g., the sentence:

“The dog did bite John.”.

10.4. Experiment 4: Semantic Service Matching

The experiments in Section 10.1, 10.2 and 10.3 showing the applicability of our approach on

academic challenges. To show that our approach can also be used in challenges with more direct

applications, we selected service matching as one use case. Service matching describes the

problem of selecting the right service regarding a service request. This shows that our approach

can also be used for more relevant problems in service oriented architectures24. Parts of this

section are published in [101, 102, 103].

Extending the argumentation of Jennings [184], the development of pervasive, complex and

distributed computing systems is ‘one of the most complex construction tasks humans under-

take’. Challenges which directly evolve from the pervasive nature of applications are currently

countered by development paradigms, such as Service Oriented Architectures (SOA) or Agent-

24This section is based on the thesis of Brand [37]

199

10. Experiments with the Marker Passing

Oriented Software Engineering (AOSE), to name but a few. The basic idea of such development

paradigms is to decrease the level of complexity of programming in dynamic environments.

Euzenat and Shvaiko [91] refer to this principle as ‘level of dynamics’. This level of dynam-

ics increases the number of details that are left unspecified until the runtime of the application.

Applications that we want to put our focus on are those which evolve and subsequently create

additional heterogeneous problems. These problems are mainly due to the many different de-

velopers who are involved in the programming, each one making use of individually preferred

technologies. However, it has been argued that systems with a high level of the dynamic at

runtime and a heterogeneous character, should account for so-called self-* properties [346].

Getting services to connect is a hard problem lacking automatization. Even with standards like

XML25 and W3C Recommendation XSD26 or the Semantic Annotations for WSDL (SAWSDL)

[205] there is to few formalization to remove all the ambiguity entailed in a service description.

This formalization is needed to automize the selection and execution of services, which is needed

by dynamic distributed software as we have motivated earlier.

The problem at hand is the selection of a fitting service. The signature of the service matching

problem is as follows:

ServiceMatching : ServiceDescription× ServiceDescription∗ → ServiceDescription∗

This means given service request and a list of services the list of services are sorted according

to their fit to the request. We call this kind of algorithm, ranking services to their equivalence to

a given request, Service Matcher.

Reasoning algorithms utilized by Service Matchers use different metrics for different aspects

of the service descriptions. One approach is to describe services in four components: Input and

Output parameters, Preconditions and Effects (IOPE) [373] defined in Section 3.2.

Some effort has been made to formalize semantic service descriptions. One of them is meta

description languages we look at in Section 3.2. Such a language is OWL-S [255]. For the

language to be less static, descriptions can be enriched with ontologies which structure semantic

information of the concepts used in such a language [200]. These service descriptions lack

contextual information which makes the information available for interpretation more abstract

and context independent [240], with this in mind; the name is semantic service descriptions.

Semantic Service Matchmaking (we call it service matching) formalizes the problem of find-

ing fitting services in an academic challenge [200]. The special case of the here extended Ser-

vice Matcher is called “Semantic Service Match Maker” (short SeMa2). For more details on the

SeMa2, the interested reader is referred to [102].

Figure 10.14 shows an abstraction of how service matching (blue) is described: A Service

Matcher (here the example of the SeMa2 matcher) gets a request for a service (green) and rates a

list of advertising services (white) according to how well they fulfill the request. Here the Service

Matcher can use a multitude of mechanisms like logical reasoning, metrics about function and

non-function parameters like Quality of service (QoS) parameters or semantic models of the

service interface to analyze the purpose of the service.

Each component of the SeMa2 matcher matches a part of an advertised service description to

25https://www.w3.org/TR/xml/, last visited on 10.09.2017
26https://www.w3.org/XML/Schema, last visited on 10.09.2017

200

https://www.w3.org/TR/xml/
https://www.w3.org/XML/Schema

10.4. Experiment 4: Semantic Service Matching

Service

Input Output

Prec Effect
1

Service

Input Output

Prec Effect
2

Service

Input Output

Prec Effect
3

Service

Input Output

Prec Effect
4

Request

Output

Effect

SeMa2

0.8

0.7

0.2

0.1

Ontologies

Metrics

Reasoning

Semantics

Figure 10.14.: Abstract Service Matching challenge.

a given request [103]. Here, each part of a service description is analyzed by a so-called expert.

This expert provides an opinion about their degree of belief on how well the service request

matches the service advertisement. Figure 10.14 shows that the request does not describe all

parameters of the service, e.g., in Figure 10.14 the request is missing inputs and preconditions.

This means that for example there is an expert looking at the service outputs and judging how

well they fit together, but the inputs are neglected. The opinions of the relevant experts are then

aggregated by aggregating experts who take the opinions of other experts and weight them

together to create their opinion. This could be for example that the “input expert” consolidate

the opinion of an input parameter name expert and a type expert. The first one checks if the

names of the parameter are similar like “StartDate” and the second one checks whether the data

type of the parameter is the same os similar.

We start out by looking at the state-of-the-art in Section 10.4.1. We then continue in Sec-

tion 10.4.2 with the description of the Marker Passing experts. Then we specify the data set to

test our Service Matcher in Section 10.4.3. The performance evaluation on this data set of our

Service Matcher is done in Section 10.4.4. Finally we discuss the results in Section 10.4.5.

10.4.1. State-of-the-Art

In this section, we will look at the state-of-the-art of service matching and analyze how well

those Service Matchers can be adapted to the domain of use. The goal of this section is to

identify relevant related work on service matching to compare our approach against.

The challenge of service matching is well researched [200]. Further state-of-the-art can be

found in [103] and [198]. The here proposed related work has one thing in common: all Service

Matchers analyze the different aspects of a service description. Therefore, all of them need

some semantic description of the functionality encapsulated in the service. To the best of our

knowledge, there exist only two approaches that utilize machine-learning techniques to cope

201

10. Experiments with the Marker Passing

Table 10.9.: Fixed scoring assessments or matcher pats as proposed by [23].

Relationship Weight

Exact 1.0

Plug-in for Preconditions 0.6

Plug-in for Effects 0.4

Subsume for Preconditions 0.4

Subsume for Effects 0.6

Fail 0.0

with the challenge of aggregating service matchmaking techniques. In this section, we will at

first give an overview of the related work of semantic service matchmakers followed by learning

approaches that make service matchmaking adaptable.

M. Klusch and P. Kapahnke [200] present a hybrid service matchmaking component called

iSeM, which performs logical as well as syntactical and structural matching. iSem participated

in the 2012 S3 Contest and was the only matchmaker able to process the provided PE service

specifications in SWRL. Besides logical matching filters for input and output parameters the

solution applied a strict logical specification plug-in matching. This means that the component

checks whether there exists a transformation of the requested/provided preconditions/effects, to

infer from a requested precondition to a provided one and from a provided effect to a requested

one. This process is called θ-subsumption and is in the case of iSem provided without any

consideration of instances. The inferencing is being done after SWRL rules are converted into

PROLOG.

Another work performing PE matching is SPARQLent [344], which not only performs match-

making but also planning. It participated in the 2012 S3 OWL-S Contest and assumed that PE

is described in the query language SPARQL. Hence, the selection process is based on query

containment relations not only considering PE, but also input and output concepts.

In contrast to the other approaches the work of Valle et al. [70] named GLUE is based on

WSML. Since WSML already comes with a conceptual model of service discovery, this work

proposes a refinement that has a specific focus on mediating goals of different ontologies. The

reasoning process itself is performed with F-Logic.

In the work of Lamparter et al. [219] the authors present a proprietary service definition based

on OWL-DL. Besides input and output parameters, the algorithm also considers pricing func-

tions described in SWRL and configurations under which a service is executable. The latter

refers to some form of condition checking since the requester can search for services that pro-

vide a particular, desired configuration. The reasoning on services is being done with SPARQL

queries.

Bener et al. [23] extend SAM (Semantic Advanced Matchmaker) by PE matching strategies

based on OWL-S and SWRL. The matching procedure for conditions is separated into four

matching modules, namely subsumption based scoring, semantic distance scoring, WordNet-

based scoring, finalized and aggregated via a bipartite matching approach. The work introduces

weights for the aggregation of different matching results, which are shown in Table 10.9 taken

from [23].

The relationships shown in Table 10.9 describe how the request fits the advertised service. An

”exact” march, e.g., in output is weighted with 1.0. A ”plugin-in for preconditions” relationship

means that the ”Request is subclass of advertisement = advertisement subsumes request”. Con-

sequently a ”subsume” relationship for preconditions means that the ”Advertisement is subclass

202

10.4. Experiment 4: Semantic Service Matching

of request = request subsumes advertisement”. Those relationships are defined for effects of a

service respectively. The relation ship fail” means no match could be found [23].

The weights, in this case, are fixed and in fact not learned. Furthermore, those weights only

concern discrete level of matches.

In conclusion, the described approaches rely on different languages for the description of

conditions ranging from decidable ones, such as OWL-DL and WSML-DL to undecidable ones,

such as SWRL, F-Logic, and PROLOG. However, in most of the related work on service match-

makers regarding PE matching the undecidable rule languages have been limited in its expres-

siveness to guarantee termination. So far, the service matchmakers have included different simi-

larity measures and have introduced some weights to model their importance against each other.

The weights started out to classify two types of similarity measures and got more detailed to the

point where different parts of the service description like preconditions and effect are weighted

differently. These approaches have one fact in common: the choice of the weights are fixed and

do not adapt to the context of use.

To optimize the result of the service matching a learning phase can be introduced to adjust

the parameters of a service matchmaker to the properties of the domain. The parameters to learn

depend on the service matchmaker and accordingly its flexibility depends on the parameters that

can be observed.

In Klusch et al. [199] the authors introduced a formal model of defining weights for the aggre-

gation of different similarity measures with the names ww−similarity and ws−structural similarity

measure. The aggregation method has been learned using a Support Vector Machine (SVM)

approach based on training data. The matchmaker component that invokes this approach is

designed to match SA-WSDL services.

M. Klusch and P. Kapahnke [197] introduce another learning service matchmaker by extend-

ing the approach of a prior work [195] for OWL-S service descriptions. Here matching results of

different matching types are aggregated using a weighted mean. The authors introduce different

types of matching results that are weighted. Firstly, approximated logical matching, which is di-

vided into approximated logical plug-in and subsumed-by matching. Secondly, non-logic-based

approximated matching, which is text and structural semantic similarity-based signature match-

ing. The weights of this aggregation are also learned using an SVM. This supervised learning

approach is replicated in our work, but with a different learning algorithm. The relevance set

that is used to rank the matching results is reused with a genetic algorithm and a hill-climbing

search.

I extended the winner concerning the average precision of graded relevance of the last service

matching challenge 27 SeMa2 and analyzed its components. Using the same dataset our approach

can be compared to the state-of-the-art of service matches.

The extension of the SeMa2 Service Matcher is described in [102]. Next, we will concentrate

on the implementation of the components which implement our approach: the so called Marker

Passing experts.

10.4.2. MarkerPassing Experts

In this section, we will look at how our decomposition and Marker Passing approach can be

integrated into the Service Matcher SeMa2. As a basis for our comparison of service we take

27http://www.dfki.de/˜klusch/s3/s3c-2012-summary-report.pdf, last visited on 10.09.2017

203

http://www.dfki.de/~klusch/s3/s3c-2012-summary-report.pdf

10. Experiments with the Marker Passing

the description of a Service (see Definition 2 on Page 24). We describe how the name matching,

using our semantic distance measure described in Section 10.1, is implemented. Since the other

Marker Passing experts of the service description, e.g., input, output, precondition, and effect

are implemented similarly, we restrict the description to the name matching expert. Since input,

output, precondition, and effect have more structured descriptions we split the analysis up into

three parts:

Name: The name of a part of the description is analyzed like the same of the service. This

could, e.g., be the name of an input parameter called ”Destination”.

Type: The type of a part of the description is analyzed by decomposing the name of the type.

This could, e.g., be that the parameter ”Destination” is of type ”location”.

Value: The value of a part of the description is analyzed like the name of a service. The value

a parameter is present, e.g., if an individual is referenced. An example could be that the

destination parameter of a flight booking service is bind to the individual ”Berlin”.

For each of these parts, different experts are implemented. Their opinions are then aggregated

into a more abstract opinion of a, e.g., input experts. This can be interpreted so that the input

expert uses the opinion of the three sub-experts (name-, Type-, and Value-Expert) to form its

opinion.

Algorithm 19 Marker Passing Expert - Name Matching.

Name: Name Matching

Input: String Namereq, String Nameadv

Output: double

1: List<String> req = LITERALANALYSIS(Namereq)

2: List<String> adv = LITERALANALYSIS(Nameadv)

3: return SUMMAX(req,adv)

4: function SUMMAX(List<String> req,List<String> adv)

5: return

∑

r∈req

max
a∈adv

(distsemantic(r,a))

|req|
6: end function

Algorithm 19 shows how the semantic distance measure distsemantic(•, •) (described in Sec-

tion 10.1) is used to match service names. Here line 1 and 2 tokenize the service names into

different words after the Camel-case convention and remove stop words. The outcome is a list

of words, which are contained in the service name. This list is compared pairwise creating a

similarity matrix. For each word of the request name, the best matching (in other words the

maximum) of the advertisement service name words is summed up to create the matching score.

This matching score then represents the opinion of this expert.

The mechanism described in Algorithm 19 has been used for the rest of the experts as well.

The main difference is the function LiteralAnalysis() which selects the concepts that should be

compared, from the part of the service description. Here the different parts, e.g., the description

of a service is handled like the name. The text is normalized, each word is decomposed, and our

semantic distance measure as described in Section 10.1 is used to assess the semantic distance

of the concepts. Here all concepts of a request are compared with all concepts of an advertise-

ment, and the maximum of each of those comparisons is summed up. The number of concepts

204

10.4. Experiment 4: Semantic Service Matching

normalizes this, and the resulting double is the value of the expert’s opinion. The precondition

and effect use Algorithm 19 as well but use the axiom names and parameter names as inputs.

The same is done for the input and output parameters of a service.

10.4.3. Data Set

For the evaluation of the Service Matcher we used the OWL-S service retrieval test collection

“OWL-S Test Collection” (S3) v428 which consists of 1083 services and 48 queries. This test

set has been selected because the state-of-the-art Service Matchers have been tested using this

dataset and by providing our results our approach can be compared to other matchers. Since in

the test collection, the services are described in OWL-S 1.1, and we used the OWLAPI 4.1, we

had to translate the services to OWL-S 1.2. The services are ranked with two kinds of ranking

regarding the 1083 services: First, there is a binary rating where a service is either relevant to

a query or not. The second part is a graded relevance where a service can be nonrelevant (0),

potentially relevant (1), relevant (2) and highly relevant (3).

The S3 is the standard for semantic service matching with OWL-S. The preconditions and

effects of the services are described in the Semantic Web Rule Language (SWRL). To compare

our approach to the state-of-the-art, we used this test collection for our evaluation. This use case

utilizes our approach to counter the semi-optimal performance of Service Matchers regarding

the usage of different ontologies in the service description. The performance of the different

Service Matcher can found in the results of the Service matching Contest S329. We, therefore,

compare our results with the performance of the SeMa2 without the Marker Passing experts.

We use the Semantic Service Selection (S3) contest [200, 376] to evaluate our extension of the

SeMa2.

10.4.4. Evaluation Results

The comparison of the SeMa2 to the state-of-the-art in service matching is made with the S3

contest [200]. With an normalized discounted cumulative gain (NDCG) of 0.927 the SeMa2 was

able to outperform the state-of-the-art. This section, therefore, will compare the Marker Passing

experts to the experts of SeMa2 without the Marker Passing. We compare the performance of the

Marker Passing experts to our experts because we do not have data about other implementations

of the state-of-the-art.

We evaluated the performance of the different Marker Passing experts separately on the S3

data set to determine for which parts of the service description our approach is applicable. To

be able to compare the resulting performance of the experts with the other experts of the SeMa2

architecture, we will measure the NDCG to capture how well the similarity of services is es-

timated. To evaluate the introduced calculation overhead, we also measure the total execution

time for the data set, the time it takes to evaluate one service advertisement and one service

request. The performance of the Marker Passing experts are shown in Table 10.10.

In more details, the Marker Passing expert has been evaluated separately to the other experts.

Here we analyze the average time it takes to compare one service advertisement (Avg timeadv)

28http://projects.semwebcentral.org/frs/?group id=89&release id=380, last visited on

10.09.2017
29http://www.dfki.de/˜klusch/s3/s3c-2012-summary-report.pdf, last visited on 27.06.2017

205

http://projects.semwebcentral.org/frs/?group_id=89&release_id=380
http://www.dfki.de/~klusch/s3/s3c-2012-summary-report.pdf

10. Experiments with the Marker Passing

and the average time it takes to respond to one request (Avg timereq (sec)) as well as the total

time it took to evaluate all 42 queries (total time (min)).

Table 10.10.: Service Matching results for the Marker Passing expert. The average time for a

request timereq is calculated over the 42 requests of the S3 data set. The average

time for an advertisement timeadv is calculated for the 1083 service advertisements

of the S3 data set.

Expert NDCG total time (min) avg timeadv (ms) avg timereq (sec)

Name 0.819 8.12 34 10.7

Description 0,844 39.71 320 55.88

Input 0.521 4.177 36 5.03

Output 0.717 4.23 33 5.30

Precondition 0.628 4.43 34 5.44

Effect 0.877 4.82 33 6.03

In Table 10.10 the correlation between execution time and input size can be seen as the result

of the description expert: A description consists of one or more sentences, which consists of

more concepts than a service name or an input description. This is reflected in the average

response time per request, which is ca. 56 seconds for the service description and only 10

seconds for a service name. In comparison to the other experts (shown in Table 10.11) they

perform well, but with more time consumption.

When compared to the performance of the Marker Passing in comparison to the reasoning

mechanisms of the SeMa2 in its functional matching parts shown in Table 10.11 the Marker

Passing can outperform the name, description and effect parts. Since the ”Text Similarity” expert

combined name and description similarity, the evaluation with the Marker Passing experts is

more detailed.

Table 10.11.: Service Matching results for the experts without Marker Passing. The average

time for a request timereq is calculated over the 42 requests of the S3 data set.

The average time for an advertisement timeadv is calculated for the 1083 service

advertisements of the S3 data set.

Expert NDCG total time (min) avg timeadv (ms) avg timereq (sec)

Text Similarity 0.814 3.78 35 4.46

Input 0.793 3.89 34 4.66

Output 0.756 3.73 33 4.45

Precondition 0.635 4.4 39 5.26

Effect 0.565 4.06 38 4.82

From Table 10.10 and 10.11 we can see that the overall performance depends on the semantic

information available to the approach. Where the Marker Passing is outperformed, we can see

that the reasoning on, e.g., the input and output type beats the semantic information solely given

by the input itself. If we analyze the structure of inputs, it is defined by its type and the variable

name. The variable name can be something like “arg0” or “var1”, and the type can be something

like “books.owl:Title.” This reduces the semantic information available for the Marker Passing

to be analyzed.

A surprising result is the effect analysis. Here the intuition was that the logical reasoning

206

10.4. Experiment 4: Semantic Service Matching

would outperform the semantic analysis of SWRL rules. This seems not to be the case since

the Marker Passing effect expert performs with an NDCG of 0.877 and the logical reasoning on

the effects yield an NDCG of 0.565. The increase of performance might be due to the effect

that the predicates of the SWRL description hold more semantic information, e.g. “isBooked-

For(?Customer,?Flight)” contains five concepts which can be subject to the semantic analysis.

The evaluation result of all Marker Passing experts together on the 42 requests for the S3 con-

test data set with equally distributed weights yields an NDCG of 0.91 as shown in Figure 10.15.

This shows, that without weighing the experts to their performance, the experts who perform

badly on some aspect of the service description reduce the overall performance.

Figure 10.15.: NDCG of the overall result with all Marker Passing experts and equal weights.

Here the matcher “SeMa2Neu” is the Service Matcher with the Marker Passing experts. We

have to emphasize that this experiment is done with equal weights. Meaning with our learning

phase, we could still optimize the results to the data set by choosing different weights.

10.4.5. Discussion of the results

The results show that the semantic information created from the service description with the de-

composition can augment the matching results as we have shown in Table 10.10 and Table 10.11

in the case of the effect, name and description expert. This is because all experts except in-

put and precondition performing over average (NDCG 0.713) of the Marker Passing experts.

However, this is not the only consequence of this experiment. Also, we can deduce from those

results, that the semantic information from the service description used in the decomposition is

not necessarily the information we suspected to be helpful in a match. This can be seen in the

207

10. Experiments with the Marker Passing

difference of performance for the input and output. However, we can see in Table 10.10 that the

output experts outperforms the input experts.

The here introduced Marker Passing experts measure the semantic similarity of the words

used to describe the different parts of the service description. These experts do not guarantee

that a service can be replaced by another one since the logical truth value of precondition and

effect are not evaluated. Neither does the Marker Passing expert analyzing the description, use

syntax on the description. Therefore it is unable to determine exact details of the descriptions

like, e.g., negation.

The evaluation of the matching performance shown in Table 10.10 can be seen as an indication

of the fact that humanly created service descriptions use natural language and that the here

encoded information can be useful for finding similar services. The overall performance of an

NDCG of 0.91 shows that there is still performance optimization necessary. This optimization

can be done by selecting the right weights for the Marker Passing experts, or by integrating the

Marker Passing experts into logical experts.

In this experiment, we have pragmatic interpretations of the concepts used in a service descrip-

tion. Because of the markers set to additional concepts (e.g., on advertisement side), different

concepts in a semantic graph get activated. Meaning like depicted Figure 3.9, we can interpret

concepts in a context dependent manner. Consequently, having a conception of the concepts

making up the service. In the service matching experiment, the effect is, that for different ad-

vertisement the concepts of the request are connected differently, and with that markers might

pass over other word senses, or other relations creating a context dependent interpretation of the

concepts.

In conclusion, the results speak for the use of some ontology matching since we could use

our approach on semantic decomposition and Marker Passing to increase the performance of

the semantic service matchmaking. Future work could be the combination of Marker Passing

experts with other experts, e.g., where they perform better. This combination could be the case

in the input- and output-Expert since the Marker Passing experts here perform less well than the

non-marker passing experts. From matching one request to decide which service is suitable to

be used in a plan will be the topic of the next section, where we extend the semantic analysis of

service descriptions to create a semantic goal oriented heuristic.

10.5. Experiment 5: Heuristics in AI Service Planning

This section describes the experiment on the creation of a heuristic for service planning. With

this experiment, we are going to use some of the results established earlier like our semantic

similarity measure and the semantic sentence similarity measure. The goal of this section is

to create a semantic heuristic which takes into account the start and goal state as well as the

semantic service description. Consequently, this section defines what we see as our extension to

those heuristics and which properties of heuristics are important for our approach.

We see a heuristic as a relaxed problem solution, which can estimate the usefulness of an

action to a given goal. Pearl [304] describes a heuristic as “rule of thumb to guide one’s search.”

Russell and Norvig [337] describe a heuristic as a function “h(n) guessing the cheapest cost of

a path from node n to a goal node.” This means that a heuristic is a function: H(n) : State →

Double

The function H(n) maps a node to the length of the path to the goal. This notation shows how

208

10.5. Experiment 5: Heuristics in AI Service Planning

static heuristics are: Their heuristic does not need the goal as an input, because, the goal is fixed

in the heuristic and cannot change. The heuristic is therefore primarily designed for one goal.

Ghallab et al. [134, p. 199] describe such a heuristic as “node selection heuristic” which selects

the node n with the minimal heuristic value H(n).

To create a heuristic we are going to look at the state-of-the-art in Section 10.5.1 We then argue

why those heuristics need to be created at runtime and how this could be done in Section 10.5.2

and analyzes then search problems and their properties in Section 10.5.3. With that, we can

describe an abstract approach on how to use this information to create a heuristic for service

planning in Section 10.5.4. After that, we analyze the information available to the heuristic

like the service description and the start- and goal-state, in Section 10.5.5. Then we look at the

contextual information and analyze how pragmatic our heuristic could become in Section 10.5.6.

Afterwards, we can describe our algorithm calculating our heuristic in Section 10.5.7. Then we

select a data set which allows us to evaluate our heuristic in Section 10.5.8. The performance of

the so created heuristic is thereafter evaluated in our experiment described in Section 10.5.9.

10.5.1. State-of-the-Art

In this section we want to find heuristics for AI planning to which we can compare our heuristic.

Sometimes the heuristic and the search used are entangled. One example could be greedy search.

We will analyze entire classes of heuristics if possible (e.g., greedy heuristics) to describe their

properties. The goal of this section is to find heuristics which use as much semantic information

as possible, by staying usable for general purpose planning.

Additionally, we want to gain insight into how general purpose heuristics are created. That

supports the ability to describe our heuristic appropriately and makes our design decisions un-

derstandable. This means taking heuristics build for optimization problems and adapt them to

work on our non-optimization problem. In other words, we reformulate our nonoptimization

problem in a way, that we can adapt these heuristics for optimization problems.

The state-of-the-art of heuristics is twofold [341]: One part is well researched and theoreti-

cally founded. This part is concerned with the properties of heuristics and the abstract search

methods like A∗ [304]. The other part is concerned with domain specific problem solving like

the research of Hyper Heuristics and Meta Heuristics. These approaches try to find heuristics

by combining old ones with machine learning approaches or optimizing hyper parameters. The

second part can again be classified into the following categories [341]:

Deterministic vs. stochastic: Deterministic means that the heuristic returns the same out-

put for the same input. Stochastic means that this is not the case, like when using random

walks to search the state space.

Parallel vs. one solution at the time: Parallel means that the heuristic returns multiple so-

lutions at the same time like in populations of genetic algorithms. Other heuristics just

return one solution.

Fast vs. powerful: Fast heuristics provide less information about the problem but save re-

sources. Powerful heuristics provide more insight but use more resources.

Classical vs. modern: Classical heuristics are problem specific and use, e.g., abstraction,

landmarking, cost clusters or problem relaxation. Modern heuristics are Hyper- and Meta-

209

10. Experiments with the Marker Passing

Heuristics which use the combination of classical heuristics and machine learning to select

their parameters.

We will have a look at all of those categories of heuristics, concerning the use of semantic

information and the domain independence. Afterwards, we will classify all the here discussed

approach according to these categories. This is done because we want a powerful heuristics

which is not stochastic and uses as much semantic information as possible. Why we do not want

stochastic approach is explained in Section 10.5.2. Since service planning is not an optimization

problem, we want our heuristic to find one possible solution as fast as possible, and we are not

interested in parallel solutions.

Since we are looking for heuristics in non-optimization problems, this section focuses on the

state-of-the-art of heuristics which can be applied in general purpose planning and do not neces-

sarily need an optimization problem. Planning as a non-optimization problem is one particular

type of planning. An overview of different planning problems can be found in [133, 222, 266].

Heuristics are needed if a problem is too hard to solve, and therefore an approximate solution

can suffice [341], where heuristics can be seen as an approximation solution for such problems.

Heuristic search is a fundamental methodology in problem-solving for hard AI [206]. Heuristic

search means analyzing the abstraction of a search for a solution, by solving a similar but less

complicated problem [34].

One way to create a heuristic is by relaxing the original planning problem [34]. One example

relaxation is to ignore the negative effects of an action. In the language PDDL, this means

ignoring the delete list of the effect of an action. Delete relaxation is a quite simple way of

creating domain independent heuristics. The drawback is that we need to know which negative

effects of an action are. In the case of planning with services, we do not know which effects are

negative.

Another way to create heuristics is by abstracting the problem at hand automatically [202].

The idea is that we abstract the problem from a so called ground-level problem to a simpler to

solve the abstract-level problem with fewer details. Abstraction in the sense of Knoblock [202]

is to remove some facts from the description languages of the problem and with that making

the problem easier. This abstraction assumes that ”[t]he existence of an abstract-level solution

implies the existence of a ground-level solution.” (this is called the Downward Solution Property)

[202, p. 54]. An example of such an abstraction is, e.g., if we want to plan a journey we can

abstract from which exact airplane we plan to book, and rather plan the journey with its stops

and how long we want to stay at each stop. This plan can be concretized to actual flights later

on. Of course, there is the probability that there are no fitting flights for our abstract plan and in

consequence, no plan can be found. Accordingly, the abstraction works only in problems where

the Downward Solution Property holds.

Planning problems present many dead ends in the search space, ignoring facts like the delete

list of effects results in bad planning performance [163]. Translation to a SAS+ problem30

restricts the search space and allows a mechanism to prove when tasks are unsolvable. That can

be used for dead end detection. Because the effects of a service might depend on the input and

could be entangled, a service cannot simply be split up unto N services which each having just

one effect. Thus this is not an applicable approach.

30In SAS+ each service has, e.g., only one effect.

210

10.5. Experiment 5: Heuristics in AI Service Planning

Greedy Algorithm

A greedy algorithm has a selection strategy (heuristic) which selects the best next possible move

(for use service to add to the plan). We see a greedy heuristic as a heuristic, which selects the

best fitting service first. Since greedy algorithms are a general class of algorithms, we specify

what we mean by ”best fitting service” next.

Greedy algorithms describe a best first search graph traversal algorithm. Here each node is

marked with a heuristic value regarding its path length to the goal state. The successor function

gets the next best state, for which the successors are part of the frontier. From this new frontier,

we select the next best state. The successor function for a nonoptimization problem has been

selected to be the overlap of facts in the state with the facts in the goal state. This means that the

algorithm is greedy, because it selects those services first, which fulfill more facts of the goal.

This kind of heuristic has the drawback that no looking-ahead is taking place. That means

choosing what is best in a current state might be suboptimal for following states. In consequence,

greedy algorithms do not always find an optimal solution. In other words: the choice of every

local optimum in one state does not guarantee a global optimum.

A* Algorithm

Evolved from the greedy approaches, the A∗ algorithm overcomes some of the drawbacks of the

simpler “take the best fit first” heuristics [338]. The A∗ algorithm can still be seen as a greedy

algorithm but with the difference that it uses an additional informative function which allows it

to decide better how a greedy option is affecting the global optimum. This informative function

sums up the cost of the path so far from the start state to the current state. The cost function of

the A∗ algorithm is, therefore, the cost function displayed in Equation 10.16.

f (x) = g(x) + h(x) (10.16)

In Equation 10.16 g(x) represents the cost of the path through the search space so far to node

x and h(x) the heuristic value of node x. A∗ has some interesting properties one of them being

the optimality guarantee of the solution of the heuristic h(x) is admissible: A∗ finds the optimal

solution if guided by a monotonic heuristics [304, Theorem 10].

There are further properties of heuristics which can be analyzed:

Completeness is the property of a heuristic if it finds a solution when a solution exists. By a

solution, we define a path in the search space from state to goal state.

Dominance is the property of a heuristic H1 compared to a heuristic H2 if H2 extends all nodes

in the search space that H1 expands. Thus H2 does at least evaluate the same node as H1.

Optimality is the property of a heuristic H1 if it dominates all heuristics of a certain class HC.

Then we call H1 optimal over the class HC of heuristics.

There are additional properties of heuristics which allow proving optimality for certain search

strategies using a heuristic with those properties. We will now list those properties and explain

them:

211

10. Experiments with the Marker Passing

Admissibility: A heuristic h is admissible if

h(n) ≤ C(n), ∀ n (10.17)

where C(n) is the minimal cost of the path n to the goal [304].

Consistent: A heuristic h is consistent if

h(n) ≤ c(n, n
′
) + h(n

′
), ∀(n, n

′
), (10.18)

with c(n, n
′
) is the cheapest cost of the state transition from nodes n to nodes n

′
.

Monotone: A heuristic h is monotone if

h(n) ≤ c(n, n
′
) + h(n

′
), ∀(n, n

′
) | n

′
∈ successor(n), (10.19)

where successor(n) denotes all nodes which are successors to n towards the goal.

With those properties, we can prove that, e.g., all consistent heuristics are admissible [304,

Theorem 9 p. 83] or that the search algorithm A∗ finds an optimal solution if it uses an admissible

heuristic [304, Theorem 2 p. 78].

Admissibility is solely concerned with the quality of the out coming solution. However, in

most problems, the best solution is not the only acceptable one. By looking for the best solution

search strategies like A∗ waste resources on evaluating many solutions which are semi-optimal

on the way to find the best solution. By leaving the restriction of optimality the admissibility and

monotony of a heuristic can be relaxed as well. This requires more general search mechanisms

than an A∗ [69] or the best first search [304, Section 3.3].

Lipovetzky and Geffner [236] extend the heuristics by a width-based exploration if the heuris-

tic reaches a plateau. A heuristic plateau is given when in the search a set of service executions

does not get closer to the goal state. Lipovetzky and Geffner shorten such plateaus by adding a

width based search to the heuristic, by adding a novelty measure to the state. States with new

facts meaning which differ more from the current state are visited first. The LAMA System

[326], e.g., uses multiple heuristics to overcome this problem. Both approaches are not satis-

fying because they do not use information about the problem to speed up the search but use

statistical improvements to speed up the search.

Redavid et al. [323] describe how service composition can be done by implementing plan

control structures with OWL-S. Redavid et al. describe how rules in SWRL can be combined

and propose a control structure on how they can be ordered. They create an “SWRL rules plan”

by creating all possible rule combinations to fulfill the goal (the goal is formulated in SWRL

atoms). The focus of this work lies in the description of service composition using OWL-S as

language. The result is some kind of semantic heuristic because the SWRL rules are combined

without variable binding. To explain, the resulting graph of connections between effect and

precondition can be used to speed up the search for a plan. But here the approach neglects the

variable binding and with that cannot produce an executable plan.

Srivastava and Kambhampati [367] separate the planning task into planning and scheduling.

This separation leaves the planner with the task of finding all relevant services and gives the

scheduler the task of bringing them in a specific order. This separation of tasks results in an

212

10.5. Experiment 5: Heuristics in AI Service Planning

abstraction of the problem in both parts: the planner does not have to care about the order of

the services, relaxing the planning problem. The scheduler gets all relevant actions and their

interdependence and needs to find a fitting schedule. Depending on the execution resources and

the planning this approach might create plans which cannot be scheduled, and for that reason,

fails to find a solution at all. If the planner checks for the schedulability of his plan, then the

approach cannibalizes itself.

Since the example application of this thesis is the creation of heuristics for service planning,

we have to look at alternative solution possibilities for the domain and problem independent

creation of heuristics.

The other approach of guiding the search through the state space is called landmarking [190].

In landmarking known plans are analyzed, and services call these which have most in common

and marke them as landmarks. The landmarks, e.g., present states, have to be passed to find a

solution. Sometimes the landmarks can be brought into an order [172]. Landmarks are facts

which must be true on the way of reaching a goal. The two sub problems of landmarks are:

How to find landmarks, e.g., [310] and how to use the information given by a landmark to create

a heuristic, e.g., [426]. These landmarks then can be used to decompose the search problem

and use a local search to search from landmark to landmark [190] iteratively. The problem with

landmarking heuristics is that the problem we want to solve has to be solved already to create

landmarks. Because we want to create heuristics, which can be provided for the first time a

problem is solved; landmarks are merely an optimization to our approach later on.

The state-of-the-art in general heuristics for planning problems is limited. The main Confer-

ence on AI planning and heuristic search is the International Conference on Automated Planning

and Scheduling (ICAPS) / Conference on Artificial Intelligence Planning Systems (AIPS) [1].

Here starting from 1990 the last 27 years the community of AI planning has to discuss the dif-

ferent approaches to problem solving31. Here multiple specializations of the general planning

domain have been identified. This leads to a classification of planning problems described in

Section 3.3.

A common approach on heuristics creates an evaluation function through combination of the

heuristic and the path cost [125] like described in Equation 10.16 on Page 211. With h(n) ≥ 0

is the heuristic function (see Section 10.5.1 for more details). If h(n) = 0 the search is called

not informed. The function g(n) represents the cost of the path from the start state to the current

state. In our example in Figure 10.19 for our current state (blue) g(n) is 0.7. Korf [206] proposes

a real time A∗ which, e.g., takes the distance from the current state to node n as g(n). In this

way the real time A∗ is relative to the current state, and once the planning algorithm leaves the

initial state, every evaluation function is relative to the current state. With this, the real time A∗

becomes more like a best-first search which is semi optimal because the heuristic is almost the

only guidance through the search space.

Nilsson et al. [285] argue that the cost of the path might be ignored since we are interested in a

solution, not a cost effective solution. The purpose of the heuristic is then to speed up the search

for a solution, not to guarantee an optimal solution. There are heuristics like the minimum step

count to the goal which is called a uniform action cost [304]. These heuristics are equal to the

step count if an action cost is equal to 1 [194]. With the uniform cost function of 1, the heuristic

is admissible since it predicts that the next action is always only one step from the goal. An

admissible heuristic is sometimes also called “optimistic”.

31See www.icaps-conference.org for the proceedings. Last visited on 10.09.2017

213

www.icaps-conference.org

10. Experiments with the Marker Passing

Greedy heuristics are those which count the overlap of the effect of a service to the goal

and hence the usefulness of a service is how much of the goal it achieves [125]. Such a greedy

heuristic is a quite simple heuristic which performs well, regarding its calculation effort. The

search traverses the states by looking first at states which are similar to the goal.

As a baseline we use a random heuristic to get a lower bound on the problem. The ran-

dom heuristic assigns each action a random usefulness in the interval [0, 1] for any state. Such

a baseline is needed because it is not possible to compare the here created results to results of

planning competitions. The different nature of a STRIPS-like planning problem without seman-

tic and service planning addresses the problem of a search for a plan in different ways. Classical

planners are highly optimized to solve problems like the 15-puzzle [322] or the four-peg towers

of Hanoi problem [207].

Haslum and Geffner [158] describe a greedy heuristic which they derive from STRIPS plan-

ning problems, where they ignore the delete list of a service effect and add only the add list to the

current state to create a new state. This heuristic creates a relaxed planning problem compared to

the original problem. The relaxed problem can show which services are minimally needed and

then shows which items of the delete list of the used services need to further resolution. With the

relaxed problem, the heuristic counts as a greedy heuristic since the search executes the services

with the most overlap of their add list and the goal, first. This heuristic is admissible and is ap-

plicable for all STRIPS planning problems. Planners using such a search are sometimes called

Fast-Forward-planners (or short: FF-planners). FF-planners are the basis of the most successful

planners according to the International Planning Competition [164].

Another relaxation heuristic is the forward chaining heuristic proposed by Sierra-Santibanez

[359]. Here services are rated “Good(a,s)”, “Bad(a,s)” or “Better(a,b,s)”. Good means here an

optimal service a in state s. Bad services cannot be part of an optimal plan. The annotation

better creates a partial order among the services. These ratings are generated manually by so

called “action selection strategies” and are very problem-specific.

The approach of Haslum et al. [158] has been extended by an optimization in which abstrac-

tion of the effects called Patterns [157]. Those patterns are then subtracted from each effect

and the start and goal state, creating abstract states which are mapped to the state space through

these patterns. The patterns represent sub problem of the original planning problems, which are

already solved. A pattern is a set of variable assignments which reoccurs in different states, e.g.,

the start and goal state, creating homomorphism abstractions. The drawback of those Pattern

Database Heuristics (PDB) is that they do not scale up to real world problems [191].

The approach of Katz et al. [191] again optimizes the result of [157] by adding a Causal

Graph structure and the Domain transition graph to the PDB heuristics. By including the

causal graph, Katz et al. can create “causal graph structural patterns”, which approximates

the original problem but are more abstract. This abstraction is done on SAS+ formalization

of the planning problems [13] which has an additional restriction for the domain descriptions.

The simplification SAS+ has the effect that abstractions like those done by Katz et al. [191]

are possible. Here, e.g. “Post-uniqueness” means that an effect is only given by at most one

action. Additionally, the “Binariness” restriction demands that all state variables have exactly

two possible values. With an open world assumption and a distributed service development, we

cannot fulfill those limitations, so these results cannot apply to our problem.

Learning the domain structure by observing plans is still subject to research [150]. Here

Gregory and Lindsay [150] propose a model of action cost, which learns through the observation

214

10.5. Experiment 5: Heuristics in AI Service Planning

of plan traces. Even though the resulting cost function can be used as a heuristic, its creation,

the observation of executed plans, puts this heuristic into the runtime. This interleaving of a

plan- and runtime is out of scope for this work because we want to study the understanding

of services and measure the degree of understanding by their use in a plan, not the other way

around. Despite this being a valid approach, the idea is a trial and error mechanisms of learning

the usefulness of services, because the services have to be executed to see if the plan succeeds.

For certain services, e.g., indeterministic services, this might be appropriate, but we restrict our

domain to planning problems where deterministic action are analyzed.

The same argument can be applied to approaches learning other planning properties than

plan optimality [284]. The research of Marinescu and Coles [253], for example, is focused on

heuristic creation in uncertainty with numerical effects, which we neglect here.

Using landmarks for creating a heuristic is done for instance, in the LAMA planner form

Richter and Westphal [325] which performed well in the IPC 2008 [190]. Landmarks are used

as a heuristic by Richter through counting fulfilled landmarks in contrast to unfulfilled ones

[325]. In [325] Richter et al. combine this greedy heuristic search with landmarks with preferred

operators, which take into account the usefulness of services by keeping them in a “preferred-

operator queue”. Those preferred operators are in consequence always tried first. Here a constant

value of 1000 is added to the heuristic value of the service if it is a preferred one. Deciding which

service is preferred, is part of the heuristic. Here again, the problem is formalized as a SAS+

problem, which lets Richter et al. decide which service is a landmark (because its effect is

unique). This is not given in our planning problem. In consequence, this kind of heuristic needs

adaptation to be able to function with, e.g., the open world assumption.

Two research areas which analyze the automatic creation of heuristics are called Hyper-

Heuristics and Meta-Heuristics. We will look at both of these research areas with the focus on

understanding the underlying mechanism, which leads to the creating of a heuristic. The goal

of this analysis is to extract ideas on how heuristics are adapted to the specific problem and how

the needed information for the abstraction of a problem is found.

Hyper-Heuristics

Hyper-Heuristics can be seen to have the goal to automate the generation of heuristics. Most

approaches do this by using some machine learning. The motivation here is to be able to gen-

erate more general search strategies to solve hard computational problems [40]. The basic idea

behind Hyper-Heuristics is to use machine learning methods on a set of heuristics to generate a

problem-specific heuristic. Burke et al. [40] separate the Hyper-Heuristics into two parts: heuris-

tic selection and heuristic generation, which both are again separable into constructive heuristics

and perturbative heuristics. Constructive heuristics start with an empty set of solutions and add

new solutions until the problem is solved. Here the optimization is on selecting the best solu-

tions to add. Perturbative heuristics start with a solution and optimize this solution by using

local search and some optimization to improve the quality of the solution.

The drawback of Hyper-Heuristics is that the selection and generation of heuristics out of a

heuristic part needs an learning phase. This learning phase forces us to create test examples of

our problem or to optimize the heuristic during execution of the planning and the execution of

the plan to create a feedback for the learning and selection components of the Hyper-Heuristic

Approach.

215

10. Experiments with the Marker Passing

Meta-Heuristics

Meta-Heuristics sample a search space and optimize a heuristic to fit a problem-solving approach

[27]. Here methods like stochastic optimization can be used to search through possible parameter

sets of a heuristic to generate a sufficiently accurate heuristic for a given problem. For the

optimization to work the Meta-Heuristic algorithms need a reward signal to be able to search the

space of possible heuristic parameters. An overview of Meta-Heuristics sorted by the problem

or machine learning approach can be found in [298, 391].

The drawback of the Meta-Heuristics approach is that it needs a learning phase, where the out-

come of the underlying problem is needed to be able to optimize the parameters of the heuristics.

For our problem in AI planning, this means we need a learning phase, where we monitor plan

execution or learn on old plans to create a Meta-Heuristic. Solving a problem finally becomes

only better if the problem is already solved. The second argument against this kind of optimiza-

tion is that it is done without the semantic knowledge and still can be improved by the selection

of the right samples of the search space.

Conclusion

We now can conclude that building a heuristic is often problem-specific. Creating problem-

specific heuristics has the benefit of having highly specific and performant heuristics. The draw-

back is their lack of generalizability. The approaches like Hyper- and Meta-Heuristics can create

more abstract heuristics from special ones by using machine learning. Meta-Heuristics have the

benefit of not having to design a heuristic but have the drawback that they introduce a learning

phase.

As a conclusion, the state-of-the-art in the heuristic generation bases its approach mainly

on the relaxation, abstraction, and landmarks of an original problem. Some of them use the

domain description to structure the search space; others analyze services to identify landmarks,

which help to break down the search problem. However, no heuristic found so far has used

the semantics of the planning problem. The lacking use of semantics can be explained with

the academic community of AI planning, which is mostly concerned with academic problems

formulated in PDDL, which do not have a semantic description. This fact reflects in the data

sets available for example planning problems discussed next32.

The result of this state-of-the-art analysis is that we will compare our approach to a random

heuristic to have a baseline for the search space, the uniform action cost heuristic and the greedy

heuristic.

Table 10.12 lists the here looked at approaches from the view of the classification proposed by

Salhi [341]. Some of the listed elements are entire classes of approaches, which are discussed

earlier in this section. If an approach might fulfill properties or some of the approaches of a class

do, and some do not, then we set the check mark in parentheses.

None of these approaches use semantics of the domain and problem description to create a

more informed heuristic. Most of the approaches do not even use the semantics of the state, pre-

condition or the goal to select services which could be of interest. The relaxation technique to

creating heuristics additionally needs to decide which facts to ignore from the domain descrip-

tion of the planning problem. If we neglect the wrong ones, then the problem does not fulfill

32The interested reader is reflected to the international planning competition: http://www.icaps-conferenc

e.org/index.php/Main/Competitions, last visited on 24.07.2017

216

http://www.icaps-conference.org/index.php/Main/Competitions
http://www.icaps-conference.org/index.php/Main/Competitions

10.5. Experiment 5: Heuristics in AI Service Planning

Table 10.12.: Comparison of heuristic approach.

H
eu

ri
st

ic

D
et

er
m

in
is
tic

Sto
ch

as
tic

Par
al

le
l

Fas
t

C
la

ss
ic

al

Greedy X (X) × X X

A∗ X × (X) X X

Uniform cost [285] X × × X X

Lipovetzky and Geffner [236] × × × X X

Redavid et al. [323] X × X X X

Srivastrava snd Kambhampati [367] X × × X ×

Random × × × X X

Haslum et al. [158] X × × X X

Hyper-Heuristics X (X) × × ×

Meta-Heuristics X (X) × × ×

Landmarking (X) X × × ×

Relaxation X × × × X

the Downward Solution Property, and the heuristic will not provide information for the original

problem.

Since we do not have the data to learn heuristics, Hyper- and Meta-Heuristics, landmarking

and Srivastava and Kambhampati [367] can be excluded for the comparison with our approach.

This excludes all nonclassical approaches form Table 10.12. The same argument count for

the Approach of Haslum et al. [158] because we do not have a PDB to lookup patterns. The

approach of Redavid et al. [323] is excluded since the evaluation of SWRL rules can only be

done with regards to the individuals given by the grounding. Lipovetzky and Geffner [236]

can be considered as an extension of an already implemented heuristic by adding a novelty

measure to state. Therefore they are not compatible as an own heuristic. With these exclusions,

the abstract approach of Greedy search, a Uniform Cost function and as a baseline Random

heuristic values are used to evaluate the performance of our approach.

Since Greedy heuristics are heuristics which use a best-first search, we will define a greedy

heuristic using the facts stated in a goal state and compare them to the effects of a service.

The Uniform Cost heuristic is an attempt to create an optimization problem out of our planning

problem, by assigning every service call a cost of one.

As an extension of A∗, our approach it will implement different behaviors, like a best-fist-

search depending on the functions g(x) and h(x) used, thus we compare an A∗ approach against

the other selected approaches. This seems like a restricted choice of related work. The next

section will argue why this choice makes sense in the light of service composition.

10.5.2. Dynamic Heuristics during Runtime

We start by answering the question: How do we want to achieve creating heuristics which can

keep up with the state-of-the-art described in Section 10.5.1.

To narrow this search space we humans use heuristics [386] to select services which seem

more likely to bring us further to our goal. This behavior is mapped to planning algorithms,

217

10. Experiments with the Marker Passing

by defining problem-specific heuristics like the Manhattan distance [78] (for more details on

heuristics see Section 10.5.1). Those heuristics are selected for specific problems estimating

the distance of every state to the goal. Classically finding the right heuristic is done during the

problem specification.

In a dynamic environment, where services and the goal are not known during design time, this

approach fails, because fitting heuristics cannot be created during design because the services

and the goal are unknown during design time. One possible approach is to create heuristics

during runtime, taking into account the available services and the goal state. Both parts can

change and above all need a mechanism for interpretation. Consequently, the problem of creat-

ing heuristics can be seen to be at least threefold:

Goal dependence: The goal is unknown during design time. Creating a heuristic which

correctly estimates the usefulness of a service makes it necessary to know the goal.

Service interpretation: The available services are not known during design time. Using only

the services which are known at design time, would reduce the adaptability of our agent

to changing environments where services appear or disappear. If all needed services are

known at design time, the developer can integrate them into a heuristic. At run time there is

no developer. Therefore an explicit description of what the service does is required. Being

able to include unknown services the interpretation of service descriptions is needed.

State/Context awareness: For general purpose planning to be an appropriate approach the

problem and its rules are not known during design time. Hence the agent must be able

to integrate unknown concepts into its knowledge representation to be able to reason with

them. This allows the heuristic to adapt to changing problems and contexts.

Because it is difficult to pass all domain knowledge to the run-time by the developer, or ser-

vices out of other domains might appear during runtime, the interpretation of domain knowledge

has to be extendable during runtime.

As a result, there are three main tasks before we can create a heuristic measure of the useful-

ness of a service: the interpretation of goal, service, and context. We assume that these three

descriptions are again made up of semantic concepts which allow our interpretation. The agent

creating the heuristic for that reason needs to explain unknown concepts of those descriptions to

itself. For this, the service description can contain the information needed, or the agent needs to

create this information. What we want a service to have, is: A self-explanatory description pro-

viding all information necessary for a reasoner in a given context. This includes self-describing

services like discussed in Oake et al. [290].

These self-explanatory descriptions can be created in two ways: The description provides

all the needed information to the receiver, or the receiver adds this information. The first one

we call the activity to self-explain: Self-explanation identifies the process when an agent gives

information about itself and its functionalities to other agents or human beings.

During design time we can create the service description and change which information it

contains. Indeed, we can include contextual information into the description giving the agent

the ability of self-explanation.

How such self-explanatory descriptions can be created and how development tools can help

create them, is described in [101]. Regarding the self-explanation, we have done some engineer-

218

10.5. Experiment 5: Heuristics in AI Service Planning

ing work on providing tools to ease the semantic description of services. For a summary of these

tools see Section A.1.

With such a tool chain it becomes easier to develop self-explanatory descriptions. Neverthe-

less, some problems remain: At design time we cannot foresee all the possible uses of a service

nor the contexts the service is used in. The interpretation of service descriptions can be different

than the intended service the developer wanted to create. Looking at the travel domain again,

wanting to go from A to B could include the service of an ambulance, e.g., if B is the location

of a hospital. This might not be intended by the service provider, but describing an ambulance

service a travel planning agent could interpret the service in this way.

This makes the ability to understand new concepts in new contexts still necessary. We humans

as reasoners need contextual information for interpreting most of the information around us, too.

For example, the number ’4870.88’ might be interpreted in many ways. However, if we know

the context: this number stands in a table with the row monthly income, we can reason with it

more specifically. Sooriamurthi et al. [364] follow this fragmentation and present in an early

work their view point on explanations in the AI research domain. One part of a self-explanatory

description is thereby that contextual information is incorporated in the interpretation and cre-

ation of explanations to enable systems to adapt to dynamic situations and therefore introduce

the use of pragmatics as a context-dependent interpretation of meanings. This is important since

the explaining system might have to cope with partial observable situations while creating an

explanation. Leake [224] substantiates this finding while arguing that with changing system

goals the interpretation of explanation should be changed, too. The author also emphasizes that

this requirement holds in different research fields like Psychology, Philosophy, and AI. At the

same time, Leake [225] uses the factors plausibility, relevance and usefulness for explanations

concerning COI regarding a given goal. Coming to the conclusion that “(m)any explanations can

be generated for any event, and only some of them are plausible” [225]. The requirement we

identify here is that a self-explanatory description must include not only regular information but

also semantic information (about the meaning of the regular information) and context informa-

tion for the context-dependent meaning. This correlates with the overall goal of self-explanation

proposed by Müller-Schloer et al. [278] to enable systems to explain their current state, which

seems to be difficult without providing contextual information.

To project the result of this discussion on to our agents: We want the agent to be able to self-

explain new concepts. To self-explain identifies the ability of an agent acquire new concepts and

their relations and to integrate them into its beliefs. The ability to self-explain is then used to

create heuristics about new services.

We at least have two views on self-explaining: The first one is the learning part where the

system learns new concepts. This part is used to analyze service description in hindsight when

the description has been written, and the context of the author is lost. In this situation, the agent

has to try to recreate the meaning the author of the description had in mind while writing the

description. The second one is the one where semantic and contextual information is added to

a service description to better explain the services of an agent to another. Both approaches on

getting an agent to better understand the meaning of concepts used in service descriptions could

be subject to research.

It should be noticed, that the self-explanation researched in this work does not explain the

adaption of the system to some user as proposed by Sawyer [343] but rather to artificial reasoners

which utilize the self-explaining descriptions for matching or planning tasks.

219

10. Experiments with the Marker Passing

10.5.3. Dynamic Heuristics for Service Planning

This section will describe how we can create a heuristic which can estimate the usefulness of

services given a planning problem. We look at the kind of search we want to use and then look

at the theoretical properties this search has. We do so by looking at our planning algorithm. We

finish up this section by describing how we build our goal oriented heuristic.

In service planning the actions which are choreographed in a plan are implemented by ser-

vices. These services do not necessarily provide some cost function. This is because we do

not take into account Quality of Service (QoS) description or Service Level Agreement because

we are interested in a solution for a given problem, not the best solution. Therefore we cannot

optimize for some quality parameter. This means that our planning problem is not an optimiza-

tion problem. Since some of the services, like booking a plane ticket, are expensive and cannot

always be reverted, we need a one-shot planning algorithm33. This means we cannot try out our

plans to find better combinations of services.

Next, we look at some of the properties of a heuristic introduced in Section 10.5.1 and discuss

their usefulness in non-optimization problems: A heuristic estimates the distance from a state to

the goal state. Since we want to build a heuristic which can be used in general purpose planning,

we do not have an optimization value, to which we can compare our heuristic. Since we do

not have a cost function for our services, there is no actual cost for a state transition in our

planning problem. Neither can we use an abstract optimization function like the step count since

we do not know if the execution of one expensive service is better than executing two cheaper

ones. This means asking for an optimal solution does not make sense in our case. Regarding

admissibility, a heuristic is called admissible if it never overestimates the distance to the goal

[304]. It is then sometimes called optimistic. This property is wanted because we can proof

that with an admissible heuristic the A∗ Algorithm returns an optimal solution [304]. Since we

do not have an optimality citerion for our solution, the question of admissibility does not make

sense in our case, and neither does monotone.

Since we are not interested in an optimal solution, because we do not have an optimization

problem, we do not need our heuristic to be admissible. What we want to find is a solution

without looking at too many services. This is the way we evaluate our heuristic: by how many

nodes are extended during the search for the goal state [50].

The kind of heuristic we are looking for is mostly used in pure heuristic search or sometimes

called best-first-search [304]. Creating such a heuristic includes analyzing the planning algo-

rithm using the heuristic. This is because the search algorithm which does the exploration of

service combinations use a heuristic differently. One example of state space planning is the idea

of minimizing risk or maximizing the usefulness of the plan. This is why we explain out the

planning algorithm first:

The Algorithm 20 describes a standard state-space planning approach [133, pp. 70] applied

to service planning. Here, the planning is entirely in the service world without translating the

service to the Planning Domain Description Language (PDDL) or similar to solve the planning

problem.

This is done because the semantics used in the SOA domain and the available service do

exceed the actions described in PDDL in expressiveness and semantic information. Furthermore,

PDDL does not provide any semantics for the domain. Even though there exist extensions of

33One-shot planning, means we want to find a possible solution to our problem, before executing it.

220

10.5. Experiment 5: Heuristics in AI Service Planning

PDDL to integrate something like a type hierarchy into PDDL, they lack expressiveness and

reasoning support.

Algorithm 20 Service Planner algorithm.

Name: ServicePlan

Input: Sstart, Sgoal, Services Output: Service Composition

1: Closed← ∅

2: Open← {Sstart}
3: while s← StateSearch.next(Open) do

4: if s 6∈ Closed then

5: if s ⊆ Sgoal then

6: return reconstructPath(Sstart, Sgoal, Services)
7: end if

8: grounded← ServiceSearch.UsefulServices(s)
9: succ← {execute(s, g) | g ∈ grounded}

10: Open← (Open ∪ succ) \ Closed
11: Open← Open \ s

12: Closed← Closed ∪ {s}
13: end if

14: end while

15: return failure

In Algorithm 20 the Closed list of nodes is the set of already visited nodes. The Open set of

nodes are possible to visit through a grounded service execution.

The loop in line 1 to 14 searches through all possible state. The search ends if the goal state is

reached or a failure is returned because the goal cannot be reached with the given services. The

search used is defined in the function StateSearch.next(Open). Depending on the implementation

of the state search, the next state to be extended is selected. Here a search mechanism like

breadth- or depth-first search can be used. Since in Line 8, the most useful services are selected

to create the successors of the open state, the function StateSearch.next(Open) can select the

next state based on this usefulness. The usefulness of a state could, e.g., be described by the

overlap it has with the goal state, thus making it a best-first search. The Algorithm 20 leaves

this implementation details open. We selected the best-first search as motivated in [93] for our

experiment. Line 3 filters all state which could be reached from the current state which has

already been visited. If the state has been visited before, it is removed from the open state. Line

4 to 7 check the goal fulfillment. If the goal is fulfilled the needed services are selected from the

path in the function reconstrucPath(path + [s]). Here we walk, e.g., from the goal state to the

start state including all necessary services into the plan.

In line 8 the available services are checked for their executability in the current state. For all

executable services a grounding for input, and the precondition of the service is created. This

gives us a set of grounded services, consisting of all possible grounded services. In each state s

that will be extended next, the selection of the services and their grounding is formalized in the

function ServiceSearch.UsefulServices(s). Here a set of grounded services34 is selected, which

define the transition to the following open states. Depending on the selection of the services, the

search space can be pruned here. If not all possible groundings are returned, e.g., because the

34grounded means here that all preconditions are fulfilled, and all input parameters can be satisfied. This means the

service is applicable and can be executed.

221

10. Experiments with the Marker Passing

heuristic rates them as not useful, then they will not be considered in a future search, because s

will be added to Closed.

Line 9 executes the services to generate the next states. The state transition function is given

by execute(s, g), where the output and the effect of a service are integrated into the given state

s. This is a theoretical execution since the execution at runtime includes backtracking and a

context sensing mechanism to sense the effect of a service. By theoretical execution, we mean

the adding of the effect and output of the service description to the current state.

Line 10 to 12 handle the search space, by removing s from the set of open states and adding

it to the closed set.

The complexity of the algorithm depends on the implementation of the state search and state

pruning mechanism, being the heuristic that selects useful services, including the complexity

of the Service Matcher used. In general, the worst case complexity of such an algorithm is

exponential [134, p.72].

Our heuristic is then implemented in function ServiceSearch.UsefulServices(s). Here we only

rank the executable services due to their heuristic value. Especially no services are pruned from

the search space. The search used in the planning problem then selects the service to execute

regarding our heuristic in the function StateSearch.next(Open) and returns the next state to be

extended. Here the service, leading to the next state, is selected due to their heuristic value, thus

trying our services with high heuristic values first.

Next, we look at how such a heuristic can be built. This means we need to interpret the

service description in the context of the given goal. To this end, depending on the goal, the

service descriptions are interpreted differently.

10.5.4. Abstract Approach

Now we can overview the overall structure of the approach used to create heuristics over our arti-

ficial representation of meaning (ontologies) in a context-dependent manner. The Methodology

used can be structured as shown in Figure 10.16. We will first extract all information possible,

e.g., from service and state. We then look into creating the structured knowledge (Decomposi-

tion) and how this is used to create semantic similarity towards the goal or unknown concepts

(ontology matching).

The ontology matching is done via Marker Passing which integrates connectionist information

from the structures knowledge graph created in the decomposition and symbolic information.

We then use this semantic distance of words or sentences to estimate how useful a service is

regarding a given goal.

Shown in Figure 10.16 we build dynamic heuristics by assessing the similarity between states

and services to a given goal. This is done by decomposing the facts making up the state or the

action description and using Marker Passing to find a semantic similarity metric between those

facts and the facts making up the goal state.

In the next section (Section 10.5.5), we look at the semantics of action, goal and state/con-

text to dived the interpretation into sub problems. Then we will first analyze which contextual

information we have available for our heuristic in Section 10.5.6. Then we look at the semantic

information available in Section 10.5.7 and describe our heuristic here. We then draw a bottom

line in Section 10.7.

222

10.5. Experiment 5: Heuristics in AI Service Planning

State Service

Semantic

Decomposition

Context

Marker Passing

Semantic

Distance

Dynamic

Heuristics

Figure 10.16.: Overview of our methodology to create a heuristic.

10.5.5. Semantics of States, Service and Context

Now we will have a look at the information available in a planning problem. As we have seen in

Section 3.3 a planning problem is defined by the services available and the start and goal state.

These descriptions contain all information needed to create a solution.

The states are represented as ontologies describing all facts known in the state (see Defini-

tion 1). We have looked at the definition of an ontology in Section 3.6 on Page 31. The start and

goal state are states with a special meaning since the goal state is something we want to achieve

to solve our problem and the start state is the facts the agent knows. In this section, we will look

at those separately.

As we have discussed in Section 4.6 our action descriptions are encapsulated in a semantic

service description. Here we look at these service descriptions and discuss how they can be

interpreted to help solve the planning problem. Last we look at the contextual information of the

planning problem.

As depicted in Figure 10.17 the state space is built from a start state by invoking the state

transition function to all possible state. The state transition function is defined by the set of

services available. This means in each state where the preconditions of a service are fulfilled,

and all inputs are available, meaning the service can be grounded and the resulting state is a

consistent state, the service is executed and creates a new state with the application of its effect.

Thereby a graph is built where nodes are states and edges are service calls. Services in this view

of planning, therefore, create or change facts from a state with known facts to goal facts. Since

we look at the planning task as a mental process, information services (services without an effect)

are excluded from the plan because they do not generate a new state. As a mental process, the

planning is hypothetical. For that reason, services execution is simulated by declaring its effect

as known facts.

This lets us create a hypothetical graph like depicted in Figure 10.17 where we then select a

path from the start state to the goal state. We now look at the four different parts of this view

223

10. Experiments with the Marker Passing

Start State

Fact 1

Fact 2

Fact 3

Fact 4

Fact 1

Fact 2

Fact 3

Fact 1

Fact 2

Fact 3

Fact 5

pre

pre

effect

effect

…
Fact 2
Fact 4
Fact 5

Goal State

Service
2

Output

Service
1

Service
3

input

Service
n

Service
k

Figure 10.17.: Abstract example of state space in a planning problem.

of the planning problem and analyze their meaning to be able to create fitting heuristics for the

service selection part. Then we embed these semantics in the context of the planning process.

Semantic of start state

We formalize a state as a set of facts see Definition 1 on Page 23. The start state declares the

facts which are known to be when the planning process starts.

The semantics of the start state is described like every state: as an ontology. Hence it includes

abstract facts called T-Box as well as A-Box35 statements. Both kinds of statements can be

changed by a service during the planning. This means that inconsistencies in both (A-Box and

T-Box) can occur. Inconsistent state reflecting some world state which is either inconsistent

in itself or it is inconsistent with the start state. These inconsistencies have to be handled by

the planning algorithm. The facts of the start state, on the other hand, are seen to be true and

consistent.

In an agent perspective, the start state can be seen as the facts known to the agent. The plan

execution might change something about these facts, or the environment might change which

reflects changes in the context of the planning problem which then induces changes in a state.

Nevertheless, when starting to plan, some of the facts of the start state have to be seen as fixed.

This part of the state is called domain. The domain describes the fact of the planning problem

which needs to hold over the whole plan. We can see them as the rules of the game. E.g.,

while planning to travel, we do not want flights to be booked which arrive before they depart.

35T-Box are terminological descriptions of abstract, conceptual statements. In contrast to that, A-Box statements are

statements about individuals (linguistic references) which are described by the conceptual T-Box statements. For

more detail see Section 3.6

224

10.5. Experiment 5: Heuristics in AI Service Planning

This domain is linked to the start state within import. This import ensures that the facts of this

ontology are known but cannot be changed. An example is shown in Listing 10.1.

Listing 10.1: Reference example of ontologies in an OWL syntax.

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

xml:base="http://www.w3.org/2002/07/owl#"

<Prefix name="j.0" IRI="/ontology/Health-Scallops_Ontology.owl#"/>

<Import>"/ontology/MedicalTransportCompany_Ontology.owl"</Import>

<Import>"/ontology/Health-Scallops_Ontology.owl"</Import>

<Import>"/ontology/FlightCompany_Ontology.owl"</Import>

<Import>"/ontology/MedicalFlightCompany_Ontology.owl"</Import>

<Declaration>

<NamedIndividual abbreviatedIRI="j.0:ArrivalAirport"/>

</Declaration>

</owl:Ontology>

Listing 10.1 shows how, e.g., the SCALLOPS36 domain is integrated into a state ontology,

making all the facts stated in this ontology accessible in the importing ontology.

As an example, an agent could plan how to get to work on Monday, but a state in the state

space states that gravity has ceased to exist. In this fictional start state, everything might be

described as always, but setting the effect of gravity to FG = 0m
ss . Now starting to plan for

this start state, the heuristic for service selections might need to adapt. With enough conceptual

knowledge about the world, one might consider the bus to go to work on a normal day. However,

planning for the “0G-Monday” this needs to change. Knowing about the propulsion system of

a bus, we can reason that without gravity the friction between bus tires and the ground will stop

as soon as the bus hits a bump since it will not fall back to earth. Consequently, all services

provided by this kind of vehicles will be neglected in the creation of the plan.

If this is not the case, and the start state contains contradicting facts or inconsistent statements,

the service selection becomes probabilistic, since one has to determine which fact is more likely

to be true.

To be able to reason upon a consistent start state it needs to state all facts relevant to the

planning problem. If facts are not included the contextual information needs to be involved to

enabling the reasoning process. In our “0G-Monday” scenario the facts about vehicles and basic

physics are included in the domain description, and therefore they are part of the contextual

information which is further discussed in Section 10.5.5.

Classical planning approaches describe their state as a mixture of the domain description, the

type declarations, causal rules or contextual facts [86]. Since the start state is described in an

ontology other ontologies are a reference. This is an easy way to separate the domain description

from the start state. This means that we can include an ontology describing the basic physics of

the world we plan for, simply by referencing the ontology describing those facts.

In conclusion, we can say that a start state describes the knowledge of an agent or a fictional

state for which it wants to plan. The start state needs to include all necessary facts for the

planning algorithm to solve the problem efficiently. The less abstract the facts are described 37

in the start state the more efficient the planning can be done.

36http://www.dfki.de/scallops/, last visited on 29.06.2017
37The more abstract class in ontology is the more individuals could be found to instantiate it.

225

http://www.dfki.de/scallops/

10. Experiments with the Marker Passing

Semantic of a Service

In Section 3.2 we have looked at a definition of service (see definition 2 on page 24). Now

we want to describe the semantics of a service: We start out by separating the service from its

description. The reason for that is that one service can have multiple descriptions. An example

for such a service provider could be a freezer. It provides the service to cool things. The

manufacturer of this freezer might provide a service description describing what cooling means

and which things can be cooled. Now we imagine this freezer in an environment, where we have

to control the grid stability of an electronic grid. Here the freezer can be used to store energy

by cooling it down more than normal when energy needs to be consumed and later on, stopping

the cooling process, if energy is needed by others. In this why the freezer works like an energy

buffer. A new service it can provide, without having to change the freezer or the description by

its manufacturer. This new service needs a description, which we can provide if the service is

separated from the description.

We have looked at how a service is described in Section 3.2. Now we want to analyze this

description on what its parts contain as information for us to use to create a heuristic. We are ne-

glecting informal parts of the service description like quality parameters or the natural language

description because they are collected in the contextual information described in Section 10.5.5.

Input: The input describes the parameters we need to invoke the service. The input is given

by a set of facts. It also describes the parameters on which the service can base its change

in the world upon. This means the input parameters should contain all facts a service will

use. For our heuristic, the inputs are those facts which need a grounding to be able to

use a certain service. Input parameters can be seen as variables. If the variable is free,

meaning not grounded to an individual, then the service does not know how to use this

variable. This means all variables of the input need to be replaced by individuals (TBox)

for the service to be executed. If we have a flight-booking-service as an example, its input

could be start and destination location and a time interval. The description of the input

means then that we have to decide on a start and destination location, to be able to use this

service. This means a concrete manifestation of these facts needs to be specified. These

facts can be part of a state, or we can interpret them as a new sub-goal to be fulfilled by

another service.

Output: The output of a service describes the facts it contributes to a state. Here we can

describe new or changed facts of a state by the executed service. In our example of the

flight-booking-service, the output could be a traveling route. This traveling route might

not have been known before the service invocation, and now it is a fact of the state. Hence

a new fact was created as the outcome of the service. For our heuristic, we might want to

analyze outputs in situations we want new facts in our state. The output of a service needs

to be distinct from its effect. The effect might change the state of the world as well. The

output is the direct return value of a service, not its side effects.

Precondition: The precondition describes rules about the state which have to be true to in-

voke a service. Here the same semantics as for the input applies: If a fact, which is used in

a precondition has no individual who fulfills this fact in the current state, then the service

is not executable. In addition to that, the precondition can describe rules upon those facts,

which restrict the grounding of a fact. These rules need to be fulfilled for the service to be

226

10.5. Experiment 5: Heuristics in AI Service Planning

semantically sound. In our example of the flight-booking-service one precondition could

be that the departure date is before the arrival date in the time interval given as input.

Such a precondition allows us to analyze facts like arrival and departure dates and to ex-

tract knowledge about those facts. Thus we can extract that arrival might only come after

a departure. For our heuristic, we want to analyze preconditions as an extension of our

goal regarding the relations between facts if output or effect of the service is useful.

Effect: The effect describes side-effects of a service. These are changes which might not have

been described as output because they do not include the creation or change of facts but

describe relationships between those facts. In our example of the flight-booking-service

one effect concerning the traveling route might be that tickets are still available for each

route segment and that some of those tickets are now reserved for us. For our heuristic,

we want to analyze an effect if new relations between facts are wanted.

Each part of the IOPE description has its own semantic about the described service. To sep-

arate this specific purpose of each description part multiple conditions need to hold for the

implementation. For the input to have the semantics described above, the service needs to de-

clare all facts, which it bases its calculation upon as input. In consequence, the precondition

should describe the relations between those facts extensively. The same should hold for output

and effect. Also, all effects should be formalized in the effect of the service.

Also a service in OWL-S contains a natural language description and a name. Those can be

used as additional contextual information by the creation of a heuristic. This contributes to the

need for a semantic distance measure for words and sentences.

Here we have analyzed the four formal parts of a service description, for their semantics

regarding their role in creating a heuristic.

Semantic of goals state

The goal state describes a set of states of the world which we want to achieve with our planning

approach. The goal is formalized as a set of facts. A state fulfills a goal state if the facts of a

state, subsume the facts described in a goal state. An example could be, that if the goal state

”IsAt(?x, Berlin)” stating that something should be in Berlin, the state ”IsAt(Johannes, Berlin)”

fulfills the goal.

This means we restrict our goal to goals which describe facts to achieve. These goals are

sometimes called achievement goals. It can be argued that maintenance goals [64] are different

because we want to maintain the state described in the goal.

The facts described in the goal can be subject to our semantic analysis. This analysis leads

to conclusions regarding the semantic relations of the facts in the goal with, e.g., facts from the

effect of a service. If for example some fact is described by a concept which could be described

with the word “open” and can deduce that the antonym, e.g. “closed” might be some unwanted

fact.

Like in every state (e.g., external changes in the context) the facts of the goal state might

change as well. We assume the goal to be fixed throughout the planning process. If the goal

changes at runtime a new planning process can be triggered. To change the current state of the

world to the desired one, change has to occur. This change can be proactively or autonomously

influenced by services the agent can execute.

227

10. Experiments with the Marker Passing

For the heuristic the goal describes wanted facts. Particularly, it defines what the problem

describes as “good”. In our flight-booking-service example, the goal might define that we want

to be in Berlin in two weeks. The fact “being in Berlin” therefore might be seen as wanted

in contrast to being somewhere else. The information from the goal affects the selection of

parameters for services or the selection of services itself. However, this representation entails a

few challenges:

Axioms If an effect is described on not grounded facts, the goal can be fulfilled by multiple

groundings of this fact.

Individuals in goals An individual differs from a general ABox fact since it describes one

concrete entity TBox. In our flight-booking-Service example, a generic goal might be to

bring someone to Berlin. However, if the goal is to bring the author of this work to Berlin,

then we need to specify this individual to book the flight for. As a result, the goal does not

only consist of abstract facts (Abox) but also on individuals. This calls for an extension

of the reasoning for individuals, meaning that the grounding of certain rules (e.g., an

effect of some service) needs to create individuals. Individuals cannot be created in an

effect because the SWRL language does support such an extension only in an extension

(SWRLB) and the Pellet reasoner does not support them.

This leaves us with the goal as the main guidance of the heuristic. Besides the domain descrip-

tion which defines the “rules of the game”, the goal forms the heuristics and the interpretation

of the services. This includes especially which facts are wanted (meaning which services are

useful) and which facts are not wanted (meaning which services should be avoided).

Semantic of context

In Section 3.8 we have defined in Definition 20 on Page 35 what we see as context. This context

definition is now applied to our problem of using service description and a planning problem to

create a heuristic. Therefore we will now collect the information which represents this contextual

information and analyzes its semantics.

First of all, a context is formalized like a state as a set of facts (see Section 3.8 for more

details). These facts include domain descriptions taken from the planning problem, description

parts like the natural language description of a service or Quality of Service parameters. This

contextual information is not problem specific. This means in the same context; multiple plan-

ning problems can occur as well as one planning problem can be seen in different contexts. This

includes the conception of a service from Section 3.8, where the agent using the service has

his conception of the service and creates its context. In our flight-booking-service example, the

context in which the flight might be booked might be spare time and with that count as vacation

or it might be a business trip and count as work. In consequence, depending on this contextual

information, the credit card to pay for the flights might differ. This means our interpretation of

“the right credit card” to be used to pay for the flight, might differ.

We generalize this observation: The contextual information influences how we interpret the

service description. With other words, depending on the context, the words making up the

description can be interpreted in different ways, if those words have multiple word senses. The

semantics of the context will be used by our approach to select the right word senses from a

description, the states or whatever resources we are analyzing. Indeed, the context might change

228

10.5. Experiment 5: Heuristics in AI Service Planning

the meaning of the facts analyzed (to become pragmatic) and with that influences how we create

a heuristic.

10.5.6. Using Pragmatic Meaning

This section describes how the beliefs and the goal of an agent are used to set the context for

creating a heuristic when evaluating service descriptions for service planning.

To be able to build a pragmatic heuristic from a goal state to evaluate service description

for their usefulness we need to distinguish concepts used in the description of the goal and the

service. Since most likely the description of the goal and the description of the service have been

made separately, it may be that the service description formulates similar things than the goal,

but uses other words. This raises the need of comparing two words and establishing a semantic

similarity. Further, some of the used words to describe the service might have different meanings

in different contexts. This leads us to the problem of having to disambiguate word senses in a

service description.

Therefore, we started to build a heuristic by creating a semantic similarity measure (see Sec-

tion 10.1), to be able to decide how close two concepts are. We extended the analysis of the

meaning of single words to sentences (see Section 10.3. Furthermore, we analyzed the different

parts of a service description (see Section 10.4). Using those four tools, we then analyze the

concepts of a goal state and the concepts describing a service, to elaborate if the service might

help to reach the goal.

There are many more linguistic tools like coreference analysis which could help understand

the service description. However, since those are syntactic, we leave their analysis to future

work.

Let’s start out by looking at which information is available for us to build our heuristic upon.

In classical planning problems the domain description, a start and goal state and a list of available

services are given. We have discussed the planning problem closer in Section 3.3. Since we

are looking at service planning, we postulate that the services, the states, and the domain are

described using OWL and OWL-S and SWRL, like we have described in Section 10.5.5.

The different parts of information contain different aspects of the problem. The domain of the

problem might, for example, describe the rules of the world the problem is located in. Like the

goal state, which defines what is good and what is bad in the context of the planning problem;

this information can be used to decide how to interpret the service descriptions. Let’s look at

an example where we have a planning problem in which the goal state is to get money. In this

example the word Bank might be interpreted as a place where money is stored, services giving

information about a bankgeological
38 will most likely not be of interest.

The states and the domain description consequently make up the contextual information which

we can use to create an interpretation of the service descriptions.

Building contextual meaning from the service description now means given the contextual

information; we want to be able to discover those services most likely to be executable and

useful for the goal. This means the heuristic is calculated on grounded services. Grounded

services are used since there is more contextual information available. Imagine a flight-booking-

service, where the grounded effect states that ”Johannes is in Berlin” which fulfills our goal, but

38Here the subscript differentiates the word sense. Here as in edge, shore, rim or slope.

229

10. Experiments with the Marker Passing

if someone else is in Berlin, this does not. The service description is used with the following

course of action:

1. Decompose each new service description output and effect

2. Merge this decomposition with the decomposition of the goal state.

3. Decompose each new service description input and precondition

4. Merge this decomposition with the decomposition of the current state.

5. Using our Marker Passing to measure the amount of fulfilled goals by the effect and mea-

suring a number of preconditions which are fulfilled.

6. The heuristic is built by a weighted sum of the “usefulness for the goal” (amount of sub-

goals fulfilled) and “executability” (amount of preconditions fulfilled) to create a heuristic

for the service.

This approach might vary, depending on the kind of heuristic we are looking for. This means

that if we are using a backward search, we probably want to start the Marker Passing from the

goal state. If we are looking for a heuristic for a FF-planner, we want to start markers from the

current state we are in. We selected a forward search during our plan. The approach suggested

here can be modified to be used with other planning algorithms. In the next section, we will look

at the details on how this heuristic is built for a forward search.

10.5.7. Building Context-Dependent Heuristics

We have motivated our work by the need of a heuristic for AI planning. Since the search space

of domain independent planners for large problems becomes computationally intractable [187]

we need heuristics to guide our search through the state space. The heuristics are needed be-

cause we cannot search the whole search space; therefore the heuristic narrows the search space

to a required part we need to search to find the goal state. We have defined heuristics in Sec-

tion 10.5.1. The interested reader is referred to [304] for a formal description of heuristics and

their properties. During our analysis of this topic (see Section 10.5.2 and Section 10.5.3) we

want to create an heuristic which is goal dependence, service interpretation and State/Context

awareness.

We have found that understanding the described functionality of a service is AI-hard task

[419]. The interpretation of what a description creator might have understood the service to be

is not entirely reflected in the description. Furthermore, the service can have multiple interpre-

tations in different contexts. The context we defined is the additional information relevant to our

problem. As an example strategy for problem solving, we have selected planning. This means

our context consists of the start and goal state which includes a domain description. With this

we are able to extend the signature of a heuristic from the classical one H : State→ Double to:

H : State× State× Service→ ❘ (10.20)

In this work a heuristic is defined as a function H which estimates the usefulness of a service

a ∈ A for a goal state sgoal ∈ S, with the contextual information of a current state s. Our heuristic

function H is calculated upon the description of the service a and the description of the current

230

10.5. Experiment 5: Heuristics in AI Service Planning

and goal state of the planning problem. How we build this heuristic in detail, using the available

semantic information, will be subject to the next sections.

Compare rule facts to state

Sentence
Similarity

Service

Goal State

Extract
predicate

Extract
Arguments

Semantic
Distance

Aggregation

GoalService

* Usefulness + * Executability

Start State
is booked for Flight, Customer

H

Get
Precondition Get Effect

Calculate
Executability

Calculate
Usefulness

Weighted
Aggregation

w
1

w
2

Figure 10.18.: Abstract approach to a greedy A∗ heuristic.

To create a heuristic which is adapted to the problem at hand and can be created at runtime,

we analyze which information is available, and how it can help to create a heuristic. From the

planning problem, we have the start-, and goal-state, as well as all services given as information

sources. As we have discussed in Section 10.5.5 the start state contains the domain description as

part of the context from which the planner needs to start from. Furthermore, the semantics of the

service describes how these facts are the wanted state the search in the planning process should

reach. The description of the service is a basis for the decision if the functionality encapsulated

in the service is helpful for the goal. Additionally, we have discussed the semantic of a service

description are further.

This now leads to the discussion on which part of the service description should be part of

the heuristic? In principle, every part of the description containing helpful information should

be used. We have discussed the service description and its parts, and they’re semantic, now we

look at how we use those parts in our heuristic:

Input: The input is compared with the current state in the state space search to determine which

service can be executed. This is done by looking at the facts of the state and deciding if

the input parameters of the service can be fulfilled.

Output: The output is compared with the goal, checking if some facts of the goal are fulfilled

or if some fact contradicts the goal.

Precondition: The precondition is used as the input to check whether it is more likely that the

service can be executed.

Effect: The effect is used as the precondition but in comparison with the goal to determine to

which degree a service fulfills facts from the goal.

In addition to these parts of the IOPE service description, the facts of the state like start and

goal states are analyzed as well. Each of the facts described has three components which can be

analyzed:

231

10. Experiments with the Marker Passing

Predicate comparison is done with the sentence similarity measure dsen proposed in Sec-

tion 10.3. This is because a predicate mostly describes verbs and their form, direction

and if they are passive or active. Our example “is booked for” is a typical use case for a

predicate in ontologies.

Argument comparison is done with the semantic similarity measure dsem proposed in Sec-

tion 10.1. Here the arguments are compared, and the maximum is summed up. That makes

the argument comparison independent of argument order.

Type comparison is done through the decomposition since all predicates are decomposed

and with that generalizations and specializations are found as well, which will then be

merged in the resulting graph. This might lead to markers passing over those edges and

activating facts with similar types.

This analysis is special for two parts: The precondition and effect because they are formulated

in SWRL. This means the predicates are additionally concatenated with SWRL predicates.

Our approach for the heuristics as described in Algorithm 21 now takes those parts and de-

composes them. The parts which should be compared are then put in merged graphs, e.g., the

effect and the goal graphs. Then we use an appropriate Marker Passing to compare the semantic

distance from, e.g., the effect predicates to the goal predicates. The heuristic is implemented in

the following way:

In Algorithm 21 line 1 to 6 calculate the overall heuristic value of the given service. Here

the weights w1 and w2 describe how important the two components of the heuristic are. Those

weights can be changed over time with the progression of the heuristic to the goal state. We

held the weights static at 0.5. Line 8 to 12 extract the predicates from the given state and stores

the predicate with its arguments in predicatesgoal. Those are the subgoals we want to achieve.

Now we compare each predicate of an effect of a service to those goals and sum up how much

sub goals are achieved. The function getArguments gets the name of the argument, where the

getPredicat function gets the type of the argument.

Line 13 to 27 then extract the effects or precondition, its predicate and arguments to compare

them to the facts in the goal or start state and select the best matches. The outer loop (line 13 to

26) selects each fact of the goal and lets as compare the effects to those facts. The loop from line

15 to 24 compared the facts of the goal to the effect of the service. This is done by comparing the

predicates (line 17) and the parameters (line 19). Line 21 weights the parameter and predicates

similarity. In lines 22 to 24, we then remember the best match result, which then is summed up

in line 25, to form the overall matches to the goal facts so that the service is evaluated to how

much of the goal it fulfills.

Line 27 returns and normalizes this result by a number of predicates in the goal or start state.

This means that if all predicates are fulfilled with an exact match, the heuristic becomes one.

Line 29 to 30 implement a helper function which returns the sum of the normalized maximum

matches between effects and goal.

This argumentation leads us to introduce two weights wpred and wparam which can be adapted

depending on how far the search has progressed towards the goal. In the beginning, the exe-

cutability should, in consequence, be highly weighted and become less important the closer to

the goal the search progresses. This is inverse for the usefulness.

232

10.5. Experiment 5: Heuristics in AI Service Planning

Algorithm 21 Goal oriented heuristic.

Name: GoalHeuristic

Input: State Sgoal, State Sstart Service Service

Output: double

1: double result = 0;

2: List<Rule> effects = GETEFFECT(Service)

3: usefulness = DISTANCETOSTATE(Sgoal, effects)

4: List<Rule> precondition = GETPRECONDITION(Service)

5: executability = DISTANCETOSTATE(Sstart, precondition)

6: return (w1 ∗ usefulness + w2 ∗ executability)
7: function DISTANCETOSTATE(State S, List<Rule> rules)

8: Map<String, List<String>> predicatesS = ∅

9: for zi ∈ S do

10: List<String> argumentszi
= GETARGUMENTS(zi)

11: predicatesS.put(GETPREDICATE(zi),argumentszi
)

12: end for

13: for pS ∈ predicatesS do

14: best = 0

15: for ei ∈ rules do

16: pei
= GETPREDICATE(ei)

17: matchpred = dsentence(pei
, pS)

18: List<String> argumentei
= GETARGUMENTS(ei)

19: double matchparam = SUMMAX(argumentei
, predicatesS.get(pS))

20: doublematch = wpred ∗ matchpred + wparam ∗ matchparam

21: if doublematch ≥ best then

22: best = doublematch

23: end if

24: end for

25: result+ = best

26: end for

27: return result
|predicatesS|

28: end function

29: function SUMMAX(List<String> eff ,List<String> goal)

30: return

|goal|∑

j=1
max

i=1...|eff |

(distsemantic(eff .get(i),goal.get(j)))

|goal|
31: end function

233

10. Experiments with the Marker Passing

Both parts use the same kind of mechanism to check rather a fact is fulfilled (in the precon-

dition or effect of a service) which is given by the goal or start state. To check this fulfillment,

we extract the predicates from the service precondition (effects) and the start (goal) axioms and

their arguments and compare them. The comparison is made in two ways: first, for the predicates

name, we separate the word included in the predicate, e.g. “IsBookedFor(Flight x, Customer c)”

become the predicate “is booked for”. Since this resembles a sentence, the sentence distance

measure dsen is used to compare predicates (see Section 10.3 on Page 189). Second we compare

the arguments with our semantic similarity measure dsem (see Section 10.1 on Page 157). The

result of those both similarities is then aggregated.

The interpretation of the marker resulting from the Marker Passing is done like described in

Equation 10.21 which describes how we calculate the heuristic for a service S:

H(Start,Goal, S) = w1 ∗ Usefulness(S,Goal) + w2 ∗ Executability(S, Start) (10.21)

Usefulness(S,Goal) =

=

∑

g∈Goal

max
e∈S.effct

(

wprd ∗ dsen(n(e), n(g)) + warg ∗

(

∑

argg∈Args(g)

max
arge∈Args(e)

dsem(argg,arge)

|Args(g)|

))

| Goal |
(10.22)

The name of the axiom denoted with n(•). Here the comparison of an axiom is threefold

as described above: The predicate comparison, the Argument comparison, and the Type com-

parison. In OWL typing is described by, e.g., class assertion predicates. That is why in the

Equation 10.22 we have combined all predicate comparison including type comparison into one

part. This means that we include the comparison of all three parts of an axiom. A similar equa-

tion to Equation 10.22 can be formulated for the Executability where the normalization is done

over a number of preconditions. This means that if the sum of w1 and w1 equals to one, the

overall heuristic has values between zero and one.

We selected this two measures for our heuristic, because if we leave out one of the aspects

two effects happen:

Goal overcommitment If we only look at the usefulness the services fulfilling subgoals will

be tried first. Even though the probability of them being on the end of the plan is higher.

This means we are not talking about a planning problem which is trivial because all ser-

vices in the plan are independent. This means that one or more services need to be exe-

cuted to enable a useful service. By only looking at the usefulness the search will always

try services we can not yet execute, first.

Low hanging fruits If we only look at the executability, services which are executable are

always tried first. This is good at the beginning of the planning process because reaching

the goal is less probable at this point. However, the more services are executed, the more

service preconditions have the chance of enablement, and all of them are tried first. The

search then becomes like a breadth-first-search, where most services are tried before we

get closer to the goal.

234

10.5. Experiment 5: Heuristics in AI Service Planning

Now we analyze the different properties of our heuristic. We have discussed at the beginning

of Section 10.5.3 that we do not have an optimization problem. That does not mean that this

heuristic can not be used for optimization problems as well. Depending on the search mechanism

used during the planning, we can have different properties of the outcome. This is why we

restrict our analysis to sub classes of the best-first-search.

The A∗ search algorithm is thought for optimization planning, where each service s executed

has a specific cost. We have discussed earlier that our planning problem is not an optimization

problem. This means we do not have a service cost. In consequence, we need to adapt the A∗

algorithm. The modification is done by selecting the different function g(s) for the optimization

function f (s) = g(s) + (1 − H(Start,Goal, s)) used. By selecting an appropriate g(s), our

planning problem can become like an optimizing problem, since then the cost of the path to the

current state can be estimated. In our problem, where we do not know the cost to the current

state, we analyze the following options:

g(s) = 0: makes the search only rely on heuristic and as a result is a best-first-search.

g(s) =| P |: with P being the shortest known path to state s. This is equivalent to a cost of one

for each service call, in this case, the A∗ optimizes the path length which does not have to

be optimal in cases where service might fulfill many subgoals but are more expensive.

g(s) =
∑

a∈P

(| Precondition(a) |): with P being the shortest known path to state s. Where we

look at the sum of needed preconditions of services leading to state s.

The first option neglects the service cost and thus behaves like a pure heuristic search. The

pure heuristic search is greedy because the services with the best heuristic value are used first.

The second option has a constant service cost of one. In this case, the amount of service is

minimized. The third option is an educated guess for the selection of g. Here any function could

have been selected. The third option punishes the execution of services with a precondition; thus

services with more preconditions are punished as well. During the path to the goal, this g(s)

increases, since more service have been executed. With that the number of services executed is

minimized as well, but also services with fewer preconditions to fulfill are preferred. Because

of its better performance, the third option for g has been selected for the rest of the experiments.

In conclusion, the heuristic produces one value which states how executable and useful a

service call is. Figure 10.19 shows an example of how a state space might look like during

planning. Here the green state is the start state, and the red state is the goal state. Black states

are states to which we already know a heuristic value and gray states are not yet known. Black

states are possible next state (sometimes called open states) in the search. Unknown states are

states which can not be reached with a single service call. The blue state represents the current

state a search algorithm has expanded. In Figure 10.19 shows states which have been visited but

do not reach a gaol as crossed out states. Those state are sometimes called closed states.

Now we need an example problem to test our heuristic upon. The data set used for our

evaluation will be discussed next.

10.5.8. Data Sets

There is one data set which uses semantic service descriptions for service composition using

OWL-S as service description language. This data set is called Secure Agent-Based Pervasive

235

10. Experiments with the Marker Passing

0.56

0.7

0.2

0.34

0.9

0.66

0.76

0.8

Booked(Flight)

Paid(Flight)

Located(Patient 0, Berlin)

Located(Patient 0, London)

0.01

0.4

Figure 10.19.: Example state space with heuristic values.

Computing (Scallop) domain39. It has a collection of 21 services in the domain of health, air

travel and medical transport. It includes a set of 24 ontologies building up the domain model.

Here the scenario in focus is the medical transport of victims to a medical facility mostly by air

plain and some ground transport.

Here the problem to be solved is to transport a patient from one place to a hospital. This

includes finding the nearest airport from which one can fly to an airport which is close to a

hospital. Also, a means of transport from and to the airport has to be organized and booked. To

book a flight a flight account has to be created. A fitting flight has to be found, and the flight

needs to be booked. Having done this, the goal of our example problem is reached.

We created a start and end state of this domain in which a victim has to be transported to a

medical destination. The goal state consists of 64 axiomatic facts which need to be fulfilled to

reach the goal state.

The initial state has declared multiple facts about the domain. We start out with Figure 10.20

which describes the transports available in our domain. Here we see that Vehicle Transports and

Flights are the two possible means of transport.

Figure 10.20.: The transport part of the Scallop health domain start state.

39 http://www.dfki.de/scallops/ Funded in the publicly funded project: BMBF 01-IW-D02-SCALLOPS.

Last visited on 10.09.2017

236

http://www.dfki.de/scallops/

10.5. Experiment 5: Heuristics in AI Service Planning

In our example scenario, we need to create an account to be able to book a flight. This account

requires a credit card to purchase a flight. An account having a credit card is a validated Account.

Figure 10.21 shows how an account is modeled. An account has the subclass of a valid account

and the individual of the desired account.

Figure 10.21.: The account part of the Scallop health domain start state.

Figure 10.22 describes three parts which are interlinked: The credit card, a location and a

person. An example fact here is that a credit card is owned by an EMAWorker who is a person.

Further, this ontology describes the destination hospital and the departure hospital which is

instantiated in the goal state with an individual stating to which hospital we want to transfer the

patient to.

Figure 10.22.: The location part of the Scallop health domain start state.

Figure 10.23 describes the parameters a transport can have. These parameters describe how

the transports can be configured and make up a big part of the individuals which need to be

created to parametrize our plan. Here we have for example Time described in dates, where there

can be an infinite amount of individuals.

The overall domain is additionally described in an ontology. This ontology describes the

individuals and their relations. This ontology is too big to be displayed as a figure here. However,

the interested reader can download this ontology from the project web site39.

Figure 10.24 depicts the facts about the patient in the goal state. The patient which should

be transported is modeled in the individual “patient 0”. The flight, the departure and destination

airport individuals are called “Mustermann” which is a German equivalent to “Johan Doe” for

an unknown name. Thus our ”patient 0” is “Mustermann”. The creation of individuals has to

be done since we need to create those individuals beforehand because SWRLB in combination

with the Pellet reasoner can not create individuals at runtime.

237

10. Experiments with the Marker Passing

Figure 10.23.: The parameters part of the Scallop health domain start state.

Figure 10.24.: The patient and transport part of the Scallop health domain goal state.

Next, we model the individuals who are needed to reach our destination. In Figure 10.25 we

model the departure and arrival airport.

Figure 10.25.: The airport part of the Scallop health domain goal state.

Since we need a valid account to book a flight, we model our account we need in our plan

in Figure 10.26. Here we want that our patient “Max Mustermann” has a personal account to

transport our patient zero and book the relevant flights and transports from and to the airport.

There are many ways to model such a fact. In Figure 10.26 we have modeled the fact that

we want a valid account as sub class relations. In consequence, our account must be of type

“ValidAccount”.

Next, we model the more complex parameters the flight has to fulfill in Figure 10.27. Here

we state that we wish the flight to be booked for “Max Mustermann”, who owns the credit card

the flight can be booked with and that the flight arrives at our goal destination at our goal time.

Figure 10.27 is a way of specifying that we want to be at a certain location at a certain time.

All the modeling around those facts is necessary because we have to make sure all individual are

available so that we can evaluate a potential execution of a service and with that reason upon the

effect of this service.

When starting to plan, the start and goal state already overlap with 57 axioms. The goal state

consists of 64 axioms. Consequently, the plan to be made has to fulfill seven axioms to reach

238

10.5. Experiment 5: Heuristics in AI Service Planning

Figure 10.26.: The account part of the Scallop health domain goal state.

Figure 10.27.: The parameter and person part of the Scallop health domain goal state.

the goal state. These axioms are described in Figure 10.28. The optimal plan for this problem

includes four steps: two requests for flight information for departure and arrival time, creating a

flight account and booking the flights.

The planning problem, with its 21 services which have continuous inputs like dates, has an

infinite search space. But since we do need to describe the inputs as individuals, the search space

is artificially reduced to about 54 valid and reachable states.

The selection of the data set can be criticized because it is a single example of such a plan-

ning problem the SCALLOPS domain described in Section 10.5.8. The planning problem has

been selected because it is prototypical for real world example of services descriptions and the

description of a domain. The service description has been made in an independent project, and

they are not fit to our experiment.

The next section will elaborate on the results of our planner with the different heuristics.

10.5.9. Evaluation Results

The evaluation is run using this data set using the different heuristics. To measure the perfor-

mance, we count the extended nodes during the search for the goal state. The results of our

experiment are listed in Table 10.13. The column avgsteps indicates how many states the search

had to extend to find the goal state. The column avgtime describes how much time one search run

239

10. Experiments with the Marker Passing

hasParameters(MustermannFlight,MustermannFlightParameters)

v

isBookedFor(MustermannFlight,Max_Mustermann)

v

hasArrivalTime(MustermannFlightParameters,MustermannArrivalTime)

v

hasCategory(MustermannFlightParameters,FlightCategory)

v

hasDepartureTime(MustermannFlightParameters,MustermannDepartureTime)

v

ValidAccount(MustermannPersonalAccount)

v

ProvidedFlight(MustermannFlight)

v

Figure 10.28.: Example goal axioms which are different in our goal state to our start state.

to has taken on average in seconds. The average has been created over ten runs40. All heuristics

are tested on the same start and goal state. Hence there is no difference in the planning problem

state space the search has to traverse.

From the state-of-the-art analysis for general purpose heuristics (described in Section 10.5.1)

the greedy heuristic [304], which checks the overlap of the effects of a service, with the facts

wanted in the goal state, is performing well on this data set regarding the time consumption. An

additional comparison is the Uniform Cost Distribution, where each execution of a service is

calculated to cost one abstract cost measure. With that admissible heuristic, A∗ finds an optimal

solution. The random heuristic has been added to the comparison so that we can evaluate how

far from the base line we are with our approach.

Table 10.13 shows the results of the average planner performance of ten runs. The variation of

the performance is rooted in the fact that there are different ways to achieve the goal, depending

on which service is used first. If two services have the same heuristic value41, one of them is

selected randomly. Table 10.13 shows the mean µ and standard derivation σ of the experiment

results regarding a number of steps and execution time.

Table 10.13.: Planning results for an average over ten runs of planner (time is in seconds).

Heuristic µtime σtime µstep σstep

MP 120 31 20.3 5.2

Greedy 292 51.9 43.3 6

Uniform Cost 325.4 27.5 51.4 2.6

Random 358.9 9.7 53.9 0.32

Concerning the overall result, our MP approach is at least twice as fast and looks at half of the

nodes the other heuristics do. This reduction of the search space has to be emphasized because

this shows that less than half of the nodes are extended during the search. Now we will discuss

the rest of the results and analyze what they mean.

10.5.10. Discussion of the results

We start by comparing the different heuristics:

40We have tried the random experiment with 100 runs, which did not yield any different result, which leads to the

conclusion to save the time of running all experiments over 100 runs.
41Two services having the same heuristic value seems unlikely, but the data set shows services which are almost

copies of each other, thus making this likelihood bigger.

240

10.5. Experiment 5: Heuristics in AI Service Planning

The greedy heuristic is the golden standard for general purpose planning. It is used in a best

first search like in the successful Fast-Forward Planners [171]. As the name suggests, the

services with the most overlap with the goal (the “best” once) are tried first. This leads to

the result that in each state of the state space, the same “best” service is tried over and over

again. The evaluation of the goal overlap does take almost as much time as the semantic

heuristic. This can be seen by comparing how many steps on average are looked at, here:

42, and how much time is spent. Here we have an average step calculation time of 6.74

seconds which is close to the 5.91 seconds the Marker Passing heuristic spends on each

state. The standard derivation from the mean can be explained by the random selection of

a service with equal usefulness.

The Uniform Cost function which seems useful for all services creates a breadth first search.

Here we can see that the standard derivation of the steps reduces to 2.6. This is because

we are looking for all service in one state before progressing to the next, it does not matter

in which order we look through the services. The uniform cost heuristic spends an average

of 6.33 seconds on a state.

The Random cost heuristic is the baseline.. If we are worse than this, our heuristic creates

more confusion; then it guides the search. Also, this is used to ground the overall speed

of our heuristics. This can be done because the creation of a random number does almost

consume as few resources as the Uniform Cost heuristic and does not give any information

to the search. Here the standard derivation of steps is less than one because the random

heuristic almost alway searches the entire search space. Of course, the random heuristic

has to look at the most states in the search space (see Table 10.13) which is at an average

of 53.9. The random heuristic spends an average of 6.66 seconds on each state.

The difference in average time spent on a state is not because of the complexity of the heuristic

calculation. An average state visited of 53.9 for the random heuristic seems unintuitive. This

intuition is why we have repeated the experiment with 100 more runs, with the result of an

average sept count of 52.71 and a standard derivation of 2.28. Which seems more plausible and

the result with ten runs can be explained by the arbitrary selection of 10 bad heuristic samples.

The Random heuristic has a height time consumption for states because it looks at more states

deeper into the search space. Since our algorithm represents the state space by keeping the

deltas between the states, the collapse of a state to reason, e.g., its consistency takes time. If we

collapse states further from the start state, we need more time. This explains why a heuristic

extending only a few states before arriving at the goal spends less time in average on a state.

Of course the relation between looking at more states and taking more time correlate. Since

the evaluation of the precondition and the instantiation of the effect take time, and with that, a

uniform cost heuristic (which has no cost to calculate the heuristic) is still ineffective because

each service executed takes some time. The semantic use in the Marker Passing heuristic reduces

the standard derivation from the mean, which means that we gather more useful information then

it is done in just comparing the overlap with the goal. The standard derivation from the mean

can be justified with the random selection of services with the same heuristic value. In addition,

the services are requested from a web server, and the order in which the services are returned

is random, which means that the heuristic is still not precise enough. This might change if

grounded actions would be analyzed.

241

10. Experiments with the Marker Passing

This concludes our experiments. Next, we describe the experimental setup, to enable repro-

ducibility of the experiments.

Now having laid out our our evaluation, we describe the experimental setup with which the

experiments have been conducted.

10.6. Experimental Setup

For reproducibility and scale, we will describe the experimental setup. This is done by listing all

factors known to us which could influence the result of the outcome of our experiment. All here

conducted experiments are done in the same experimental setup. Table 10.14 describes the used

hardware and Table 10.15 describes the external software resources used with their version.

Table 10.14.: Hardware description of the computer used for the experiments.

Part Type

Model Identifier MacBookPro11,3

CPU Intel Core i7

CPU Speed 2,5 GHz

RAM 16 GB

SSD 512 GB

Graphic NVIDIA GeForce GT 750M

Table 10.15.: Software description main external components used.

Software Version or date of download

Docker 1.12.1

WordNet 3.1

Deeplearning4j 0.4-rc3.11-SNAPSHOT

CoreNLP 3.5.0

Wiktionary Dump 28.03.2016

BabelNet 2.5.1

Wikidata JSON Dump 06.10.2016

The downloads of the dictionaries Wiktionary Dump42 and Wikidata JSON Dump43 where

the newest relates at the given dates.

We will now take a step back and look at our results with some mental distance. For that, the

next section will critically analyze the drawbacks of our approach.

10.7. Evaluation Results

In conclusion, we can say that we have tested our approach on different example problems.

Even though we have not used the whole potential of the Marker Passing approach, we could

42https://dumps.wikimedia.org/, last visited on 28.03.2016
43https://dumps.wikimedia.org/wikidatawiki/entities, last visited on 06.10.2016

242

https://dumps.wikimedia.org/
https://dumps.wikimedia.org/wikidatawiki/entities

10.7. Evaluation Results

reach the state-of-the-art in all our experiments. Creating a semantic graph out of a multitude of

data sources and using the graph with our Marker Passing approach to reason upon this graph

has shown to be useful in an application like WSD, Semantic Similarity, Sentence Similarity,

Service Matching and Heuristic Planning. Combining the here gained experience we were able

to create a goal oriented context-dependent heuristic, which outperforms other general planning

heuristics.

All those experiments show that our automatically generated semantic graph in combination

with an appropriate Marker Passing represents some kind of meaning representation. We did not

include our experiments with common sense reasoning into this thesis. To measure our approach

on the task of Common Sense Reasoning (Winograd Schema Challenge44) we implemented a

Winograd Schema resolution algorithm extending our decomposition with semantic edges. With

that we were able to outperform the state-of-the-art by five percent.

Overall the results of our approach are positive and its potential is not yet reached. Fig-

ure 10.29 shows the percentage of performance gain in the different experiments compared to

the best of the state-of-the-art. So there are many more questions open concerning our approach

and many challenges to tackle with our approach like semantic entailment or generalization.

The restriction on problems in the Natural Language Processing domain is a result of the focus

of this work. Extending this narrow application domain with additional symbolic information

on markers, new in-, out,- node-, and edge-functions as well as with new data sources is work in

progress.

One drawback of this experiments is its data dependency. For the here shown example ap-

proximately 90 GB of data sources have been used. The choice of decomposition depth have

been limited to three because the 16GB of memory are not sufficient for bigger graphs. These

resource limitations become noticeable in the execution time, e.g., in the Service Matching use

case. A more comprehensive conclusion of our work follows in the next section.

44http://commonsensereasoning.org/winograd.html last visited 30.06.2017

243

http://commonsensereasoning.org/winograd.html

10. Experiments with the Marker Passing

State-of-the-Art

Performance

Gain in %
S

e
m

a
n
ti
c
 S

im
ila

rt
iy

0.882

0.385

S
e
m

a
n
ti
c
 S

e
n
te

n
c
e
 S

im
ila

rt
iy

S
e
rv

ic
e
 M

a
tc

h
in

g

W
o
rd

 S
e
n
s
e
 D

is
a
m

b
ig

u
a
ti
o
n

SMTeuroparl

0.876

0.482… …

0.50

0.30

S
p

e
a

rm
a

n

0.45

0.22

0.877

0.565

Effect

…

20.3

43.3
…

S
e
rv

ic
e
 P

la
n
n
in

g
 H

e
u
ri

s
ti
c

S
ta

te
s
 e

x
te

n
d

e
d

P
e

a
rs

o
n

A
c
c
u

ra
c
y

10%

-10%

-20%

50%

90% P
e

a
rs

o
n

20%

N
D

C
G

Measure used

State-of-the-Art

Results

Figure 10.29.: Overview of example results in the different experiments in percentage of perfor-

mance difference to the state-of-the-art baseline.

244

Part V.

Conclusion

245

11. Summary

This section concludes the here presented work. We will look at my hypotheses and the contri-

butions I have made. However, first I give a short overview of my approach:

I have created an approach for automatically generating a semantic graph focused on a context

and a reasoning using Marker Passing to answer questions about the knowledge encoded (for an

abstract descriptions see Section 1.5). This approach has two parts:

Knowledge representation: This is the first part of the approach which tackled the chal-

lenge of automatically creating a knowledge representation. I did so by looking at the

different semantic theories, selected the NSM approach and created a semantic decompo-

sition to build a semantic graph automatically.

Reasoning: This is the second part of my approach which tackled the challenge of using se-

mantic graphs to create reasoning capabilities for an agent. I approached this challenge by

extending a cognitive mechanism of activation spreading with more symbolic information

to Marker Passing. The resulting common sense reasoning has been shown by identify-

ing subproblems in AI research, like the Sentence Similarity, Word Sense Disambiguation

and Semantic Similarity for which I have proposed solutions which keep up or beat the

state-of-the-art.

To use this approach one has to select data sources, set up the decomposition and create an

application specific Marker Passing by selecting, e.g., the information on the Marker and in- and

out-functions.

Next, we will look at my hypotheses and discuss the contributions of this work and their

relation to those hypotheses. We start out with my experimental thesis:

I claim in my hypothesis that: “Symbolic and Connectionist representation of meaning

can help agents to reason with new concepts.” I support this claim with a set of experiments

which include the decomposition of new concepts and their integration into the semantic graph

representing the agent’s belief.

I am now able to answer my research questions proposed in Section 1.4, which have guided

my research.

How can meaning formally be described in a context-dependent manner? The formaliza-

tion of the result of the decomposition (see Section 6.4) allows us to encode factual knowledge in

an semantic graph (see Section 6). The context dependence of meaning comes from the Marker

Passing (see Section 7) and finally from the distribution of marker over the graph. This structure

can represent meaning, which has been tested in multiple experiments (see Section 9).

I was able to show the usefulness of the so created artificial representation of meaning by

showing that context-dependent heuristics can be created by observing service descriptions. The

use of the artificial meaning representation to build a heuristic has been done by comparing the

semantic distance of goal concepts and the concept describing a service (see Section 10.5.3). Ad-

ditionally, I was able to show that the performance of agent planner and Service Matcher can be

247

11. Summary

improved by using dynamic heuristics. The performance of Service Matcher improves by adding

a kind of ontology matching to the comparison of service descriptions (see Section 10.4). The

performance of my planner is improved since the heuristic lets us select only relevant services.

This selection is done by combining all approaches build in this work (see Section 10.5).

Of course, there are many more questions which can be asked now like: How do we handle

inconsistency in such a graph? How can logical reasoning be implemented using such a semantic

graph? Which classes of problems are destined to be addressed with such an approach? We will

discuss some of more concrete extensions next.

I did analyze the usefulness of the newly gained meaning representation in five experiments

and with that answered the second research questions: Can the reasoning be improved for the

following tasks:

In my experiment 1 I asked: “Does the representation of meaning include information to

create a state-of-the-art semantic similarity measure?” This question was assured by my

experiment in Section 10.1. Here I am able to use my approach to create a semantic

similarity measure which outperforms the state-of-the-art. I show in Table 10.4 that the

semantic similarity guessed by humans can be reproduced and with that, the meaning of

concepts can be grasped.

In my experiment 2 I asked: “Does the representation of meaning include information to

create a state-of-the-art Word Sense Disambiguation approach?” This was answered by

my experiment in Section 10.2. Here I was able to use my decomposition to capture the

different word meanings in the different definitions of the information sources. Table 10.5

shows that my approach can keep up with the state-of-the-art, even though there are better

performing results. Here we can conclude that the decomposition is still too broad and that

a selection of definitions to decompose should be made during decomposition to specialize

the resulting semantic graph.

In my experiment 3 I asked “Does the representation of meaning include information to cre-

ate a state-of-the-art semantic sentence similarity measure?” This question was answered

by my experiment in Section 10.3. Here I was able to use my approach (including the

results of my first experiment) to create a sentence similarity measure which matches the

state-of-the-art. Table 10.11 shows the results on different data sets. Here we can con-

clude that the more difficult the data set, the more the state-of-the-art is outperformed by

my approach.

In my experiment 4 I asked: “Can we improve the performance of Service Matchers by using

the connectionist and symbolic representation of meaning as Ontology Matching?” This

question was answered by my experiment in Section 10.4. Here I was able to use my

approach to compare name, description, input, output precondition and effect of a service

description. Except for input and precondition I was able to increase the performance of

the Service Matcher. Here we gained the insight that some of the service description parts

contain more semantic information to be analyzed with Marker Passing, other perform

better with logical reasoning. Here the natural language part of the description of a service

outperformed all other experts.

In my experiment 5 I asked: “Can heuristics for general purpose planners profit from using

a connectionist and symbolic representation of meaning?” This question was answered by

248

my experiment in Section 10.5. Here I were able to show that the newly created heuristic

utilizing semantic information narrows the search space in a state space planning problem.

To check this hypothesis, I build a service planner described in Algorithm 20 because I

had to preserve the semantic information of service descriptions. I then build a dynamic

heuristic that takes into account the goal of the given planning problem and uses the results

of my experiments to search for semantically useful services. I showed that this heuristic

performs well in Table 10.13.

With those experiments, I have shown that my approach is useful in different AI problems.

These are convincing arguments for the usefulness of my artificial representation of meaning.

I started out with the idea of an approach, which has more potential than I was able to use in

the here described experiments. By adding additional interpretations for semantic primes, this

approach could prosper further. For now, the specific interpretations of the primes are reduced to

a general rule on how to handle all primes. But there are experiments in progress, which use the

here proposed approach in common sense reasoning problems (e.g., the solution of Winograd

Schemas1) to outperform the state-of-the-art.

After having accomplished all that, I have found drawbacks of the design decision I made

during my scientific endeavor. I will discuss these drawbacks regarding the here analyzed ex-

periments next.

1http://commonsensereasoning.org/winograd.html, last visited on 30.06.2017

249

12. Discussion

This section discusses design decision, drawbacks and the experiments and their relation to the

overall goal of this thesis. Here we will emphasize on the drawbacks of the experiments. This

includes the implicit design decisions which could be altered in a future application or further

research of the here proposed approach.

Starting out from my approach, I had to select some data sources which are used during the

decomposition. Those data sources are imperfect, they contain errors or include beliefs which

are false. Furthermore, the here selected data sources do not forcibly align with the hierarchy of

the NSM theory and the idea of Wierzbicka of a mental lexicon [410]. This has the consequence

that a complete decomposition is unlikely and sometimes impossible. Because of the parameter

of decomposition depth, it becomes questionable how much the NSM primes are beneficial to

my approach. Perhaps this can be answered with an example: In the decomposition of the

semantic similarity data set RG65 of 65 similarity pairs, a total of 227 semantic primes have

been used at a decomposition depth of one. This number increases with decomposition depth of

two to 17317.

Another drawback is the dependence of the Marker Passing on the decomposition. Thus if

the performance of the approach is not as expected, it might at first be unclear if a faulty decom-

position or a misconfigured Marker Passing is the cause. Solving such development problems

needs experience on which data sources contain which kind of information so that the decom-

position can be changed to fit the needs of the problem. Additionally, the developer needs a

sufficient understanding of the Marker Passing and the effect change in parameters have on the

result. During the design of the algorithm, the needed information in the decomposition can be

estimated, and with that information, the needed data sources can be specified. Based on the

available information in the semantic graph the Marker Passing can be specified.

Another uncertainty in the approach is the completeness of the data sources. The decomposi-

tion fails if none of the data sources contain a description of the given concept.

Next, we will look critically at the experiments I conducted and evaluated their outcome.

Experiment 1: Semantic Similarity Measure I tested my semantic similarity measure with

a data set which states the similarity of word pairs as perceived by humans. A critical view

on this approach could argue that the perception of the meaning of humans (especially the

average of multiple human opinions) does not have to be the semantic distance of those

concepts. The response of the humans depends on their education and beliefs. The av-

erage of multiple opinions mixes those different levels of knowledge and beliefs, which

does no longer represent the semantic distance of those words in the sense of a semantic

measure an expert or scientists would evaluate. For instance, an astronomer would not

agree that the sun and a planet are semantically close, but for an average citizen, they are

both round and in the sky, which might make them similar. Those two opinions can be

discussed to be more or less correct, but the average will not yield a similarity representing

what both subjects intended. Measuring an artificial representation of meaning on those

251

12. Discussion

semantic similarities, can in consequence, only partially measure the performance of the

representation. It only shows that the approach can make the same mistakes as humans

do. We would need a set of word pairs, where the semantic similarity is defined by experts

regarding facts about the objects referenced by those words so that the artificial represen-

tation of meaning can be evaluated on how well it can represent the expert knowledge of

humans. Another critique could be that the found weights for the semantic relations are

not intuitive. Further investigations on which information in the semantic graph can be

used by the Marker Passing is needed. This implies that there is room for improvement.

The found result is most likely only a local optimum.

Experiment 2: Word Sense Disambiguation The data sets used in WSD comparisons are

based on WordNet sense keys to identify the word sense. This, of course, is not the case

in other information sources, where different definitions can occur. Those definitions are

then not mapped to the WordNet sense keys; as a result, the do not count as a right answer.

The missing syntactical information makes it even harder for my approach to use all infor-

mation available in the surrounding words of the sentence. The results could be improved

by integrating syntactic information and thus giving the approach more information in

which context the word is used in.

Experiment 3: Semantic Sentence Similarity Measure My approach is a purely seman-

tic approach. This might be good for analyzing the semantics of single concepts, but with

sentences, the order of words, the inflection, and the syntax make up the meaning of the

sentence. Most of this is disregarded in the here proposed results. With the reduction of

concepts to their stem, the inflection is lost. Additionally, the decomposition is combined

to one graph, losing all information about word order or syntax. Hence this approach

can not make a difference between the sentences: “Johannes bit the dog” and “The dog

bit Johannes.” Even though the performance of the semantic sentence similarity measure

shows the ability to outperform the state-of-the-art in some cases, the logical (in means

of truth-value) meaning of a sentence is not captured by it. This shortcoming could be

countered by extending the semantic decomposition with syntactic information and create

a Marker Passing algorithm which uses this syntactic information.

Experiment 4: Semantic Service Matching The results of the service matching experi-

ment have shown that the semantic analysis performs well on semantically rich parts of

the service description, but need far more resources than the compared approaches. Ta-

ble 10.10 shows that the Marker Passing on natural language descriptions takes up to ten

times more time than the other experts. This could be avoided by combining those to

expert types on the different description parts. Also, the overall performance could be im-

proved by learning the expert’s weights. The Marker Passing does some kind of ontology

matching between the concepts used in the service description. This means that before

using such an approach, the service description needed to use the same ontologies. With

the Marker Passing, this is no longer needed since the decomposition creates a merging

ontology. This ability exceeds the state-of-the-art of Service Matcher and should be an-

alyzed further. For example to answer the question on how the inputs are transformed if

they are semantically similar, but have different data types.

Experiment 5: Heuristics in AI service planning The planning problem discussed here

252

is not a straight forward optimization problem because we do not have costs for the ser-

vices. The kind of problem solved here means there is no optimization goal for the solution

plan. The problem can be made to an optimization goal if, e.g., the services provide Qual-

ity of Service parameters which directly include a cost or can be used to calculate a service

execution cost. Additionally, the evaluation data set does not provide a cost function for

the services. The selection of the data set is another weak point of this thesis since I were

unable to find any other OWL-S based planning problem. The work on this topic has pro-

duced an entire tool chain to describe such data sets for the future (see Appendix A.1 for

a short introduction).

253

13. Final Remarks and Future Work

“Because this world doesn’t belong to you, or the people who came before. It

belongs to someone who is yet to come.”

- DOLORES

Stepping back from the research done in this thesis, we can again ask if the overhead of creating,

e.g., semantic service description, an OWLS description of start and goal state and the ontologies

needed for that, is worth the while, regarding the problem to be solved. We can question if this

overhead can be countered by the benefit of reusing services. I have encountered this problem

in applications of this approach in publicly funded research projects. Those projects developed

tools to ease the description of services and their composition as described in the methodology

in Section A.1.

In comparison to PDDL problem descriptions, often used in academic examples, the problem

description includes only services needed to solve the problem. Consequently, a selection of the

appropriate service is not part of the problem. Additionally, the problems typically described

in PDDL are lacking semantics, like the 15-puzzle [322] which is more about making the same

four moves in a particular order, which was difficult to conclude from the semantics of the move.

Making a plan and executing it are two different things. It seems unrealistic to prepare a

plan for the most likely eventualities, meaning that during the execution the environment could

change and a plan could fail. This work presents a mechanism to choose from the large set of

possible services available to an agent.

In the case of incomplete information in the data sources, I have extended the decomposition

with a component which then provides the user with a user interface where a definition can be

described manually. There are multiple points, which can be handled semi-automatically: first

the selection of the concept type. Here the word type needs to be specified. This parameter

influences the definition selection as well as the search for synonyms, antonyms hypernyms, and

hyponyms. Second semi-automatization could be the selection of the definition. Here the sense

of a word is selected. The user can select which definition to use. In the example of “well” this

could be the meaning of in a satisfactory way or a hole in the ground with water in it. The third

semi-automatization point could be the decomposition of a concept which has no definition or

where the definition is circular. A concept could have no definition if the used dictionary does not

contain a description of the word. In this case, the decomposition stops at this prime and might

only continue with the decomposition after a manual definition or decomposition is introduced.

Fourthly the breadth of the recursion needs to be defined. This parameter specifies how many

synonyms and antonyms are searched for in each decomposition step. Fifthly the amount of

additional information included. This parameter specifies how many examples of hypernyms

and hyponyms are included in the decomposition. Further, the information sources need to

be specified. The specification includes the used dictionary and a mapping of the information

sources to the information retrieval parts of the decomposition.

255

13. Final Remarks and Future Work

With every scientific endeavor at the end, there are always more questions to be answered. I

will split the future work into two parts: First the improvement of the approach and second the

improvements for the heuristics in service planning.

Artificial Meaning: This work is restricted to the semantic analysis. This needs to be ex-

tended with a syntactical analysis. The Marker Passing has not yet been tested for its full

potential, e.g., encoding logical symbolic information of negation on a marker and using

it in in-, out- and edge-functions. The selection of the right parameters or a guide how

to select them concerning a type of problem could be investigated in the future. Reason-

ing with the Marker Passing could be tested on more complex problems like Winograd

Schemas [230]. Last but not least, additional data sources can be added to the decompo-

sition to improve future results. For example, the integration of the semantic of the NSM

primes could be an addition to the Marker Passing, since then meaning could be reasoned

bottom up.

Heuristics: This work has stopped with the planning, which leaves the execution and monitor-

ing as well as plan repair to future work. The question to answer here is: How can those

part profits from the semantic information given by the problem? The expressiveness of

the description language can further be developed since modern reasoners do not imple-

ment all SWRL built-ins making the description of a planning problem more complex

than it needs to be. In the end, better data sets are needed to evaluate the drawbacks and

benefits of service planning and proposed heuristics.

256

Part VI.

Bibliography, Glossary, Index, and

Appendix

257

A. Appendix

A.1. Tools

This section describes the tools and the development methodology published in [101]. We

describe this publication here since one o the common question encountered during scientific

presentations of our work is: Does anyone use this semantic approach? It seems like it is too

much work for the benefit.” To show how this creation can be simplified, we have described our

tools to creating semantic services and composing them. The tools are shown in Figure A.1.

Figure A.1.: Service Development tools and their interplay.

In Figure A.1 blue denotes tools that are for manual Development, Green denotes automatic

aids and orange are the surrounding runtimes. We foresee the development process to state with

the ontology engineering, which builds upon existing ontologies. Here the Domain descrip-

tions, with all its entities and their relations are modeled. To ease the ontology engineering for

developers, we create an encore (EMF) to OWL transformation. With that, a developer can use

its usual class modeling tool and translate it into OWL later on. These Ontologies are then used

to create semantic service descriptions, which are the explanation of what we want to do or

have done. This service description is used to find existing service with the Service-Matcher,

to foster reusability or to serve as goal state of the planner. If the service matcher can not locate

a service, which fulfills the request, the service can be engineered using the planner, a Semantic

Service Management, and the Visual Service Design Tool (VSDT) which is a Business Pro-

cess Modeling Notation (BPMN) editor which integrates the other components. The outcome

of this engineering task is a service implementation and a semantic service description which

references this service in its grounding. Here a Java-based Intelligent Agent Componentware

(JIAC) agent is automatically generated which implements the service. The Service description

is automatically deployed into the runtime Environment, and thus further development can use

this new service.

259

A. Appendix

A.2. Class Diagrams

This section holds the overview class diagrams of the implementation of the decomposition.

Figure A.2 shows the main classes and their relations.

Figure A.2.: Class diagram of the decomposition.

260

A.3. Algorithms

Prime Context Synonym

KIND being of one

type

genre, derivative, sort, type, child

PART meronym shed, role, portion, component, parting, piece,

constituent, faction, shoad, position, region,

component part, shode, party, element

Semantic primes in the category relational in the English language [140].

Prime Context Synonym

THIS direct refer-

ence

THE SAME equivalence

relation

identical, equal, similar, alike, equivalent

OTHER discrimination farther, additional, another, unalike, former,

dissimilar, disparate, distinctive, else, un-

like, distinguishable, diverse, further, differ-

ent, early

Semantic primes in the category determiners in the English language [140].

A.3. Algorithms

This section contains the detailed descriptions of the algorithms mentioned in this work which

have been placed here to gain on readability.

A.3.1. Marker Passing algorithm

This section holds a abstraction of the maker passing algorithm in pseudo code.

Algorithm 22 Spreading Activation - adapted from Crestani [61].

Name: Spreading Activation

Input: Marking

Output: Marking

1: function SPREADINGACTIVATION(Min)

2: M← Min

3: while ¬ TERMINATIONCONDITION(M) do

4: M← PREADJUSTMENT(M);

5: M← PASSING(M);

6: M← POSTADJUSTMENT(M);

7: end while

8: return M

9: end function

A.4. Natural Semantic Metalanguage

This section lists the semantic primes with their synonyms and their domain if available.

261

A. Appendix

Prime Context Synonym

ONE Number single, unity, 1, ace,

TWO Number II, 2

MANY Number a lot, loads, plenty, a great deal, greatly, much,

highly, very much

SOME quantifiers a few

ALL quantifiers completely

Semantic primes in the category quantifiers in the English language [140].

Prime Context Synonym

GOOD evaluators commodity, not bad, accomplished, well, sat-

isfactory, decent, good, all right, trade good,

goodness

BAD evaluators badness, spurious, malodorous, wanting, bad,

odious, awful, faulty, foul, wretched, coarse,

poor, horrible, dreadful, unsatisfactory, aban-

doned, badass, terrible, lousy, inadequate, vi-

cious, miserable, ill, dismal, abysmal, horrid,

hideous, detestable, punk, unfavorable, loath-

some, evil, rotten, substandard, incompetent,

inelegant, negative, dire, disgusting, vile, ur-

gent, ungodly, crummy, deficient, wicked,

sloppy, unacceptable, corrupt, inferior, abom-

inable, false, disagreeable, off, wrong, severe,

hopeless, intolerable, base

Semantic primes in the category evaluators in the English language [140].

Prime Context Synonym

BIG size big, prominent, jumbo, bad, large, grown up,

heavy, massive, ample, major leagues, huge,

sizeable, stoor, adult

SMALL size slight, mini, compact, lowercase, insignifi-

cant, young, slim, minuscule, minute, mod-

est, wee, tiny, miniature, small-scale, micro-

scopic, petty, little

Semantic primes in the category descriptors in the English language [140].

262

A.4. Natural Semantic Metalanguage

Prime Context Synonym

THINK cognition imagine, cogitate, deem, ponder, suppose,

opine, reflect, guess, find, regard, ruminate,

judge, consider, reckon

KNOW cognition

WANT cognition wish, set one’s heart on, deficiency, need,

would like, deprivation, neediness, privation,

wishing, lack

FEEL cognition flavor, flavour, tone, tactile property, spirit,

feel, feeling, smell, look

SEE cognition descry, view, get, espy, understand, behold,

follow, observe

HEAR cognition get word, discover, find out, pick up, see, get

wind, get a line, learn

TOUCH cognition trace, touching, cutaneous senses, skin

senses, sense of touch, touch modality

Semantic primes in the category mental predicates in the English language [140].

Prime Context Synonym

SAY speech

WORDS speech wrangle, lyric, dustup, quarrel, language

TRUE logic

Semantic primes in the category speech in the English language [140].

Prime Context Synonym

DO action to-do, bash, do, DO, brawl

HAPPEN event fall out, befall, pass, hap, occur, go on, come

about, take place, pass off

MOVE action motion, affect, instigate, impel, actuate, re-

location, propose, persuade, influence, offer,

rouse, induce, transfer, incite, removal, motil-

ity, trouble, incline, stir, agitate, movement,

prompt

[

Semantic primes in the category actions, events in the English language [140].]Semantic primes

in the category actions, events, movement, contact in the English language [140].

Prime Context Synonym

BEat location

THERE IS exsistence

HAVE possession

BEis−a specification

[

Semantic primes in the category location, possession, in the English language [140].]Semantic

primes in the category location, existence, possession, specification in the English lan-

guage [140].

263

A. Appendix

Prime Context Synonym

LIVE survive, living, last, alive, inhabit, in the flesh,

dwell, in person, live on, populate, endure

DIE live pass away, die, join the choir invisible, pass

on, dice, bite the big one, lose one’s life, snuff

it, pop one’s clogs, cross over, keel over, de-

cease, check out, go the way of all flesh, bite

the dust, cash in, perish, go the way of the di-

nosaurs, go the way of the dodo, croak, shuf-

fle off this mortal coil, pass, buy it, meet one’s

maker, kick the bucket, draw one’s last breath,

give up the ghost, forfare, disincarnate, knock

off, expire, buy the farm, bite the biscuit, cash

in one’s chips, cark, yield up the ghost, take a

dirt nap, succumb, give one’s all, cease to be

Semantic primes in the category life and death in the English language [140].

Prime Context Synonym

WHEN

NOW

BEFORE earlier, previously, before, ahead, in front, by,

in front, lest, in front of, ahead of

AFTER

A LONG

TIME

A SHORT

TIME

FOR SOME

TIME

MOMENT stound, bit, second, moment, minute, instant,

tic, sec, overnight, trice, blink of an eye, here

and now, present moment, moment of force,

jiffy, nothing flat, flash

Semantic primes in the category time in the English language [140]

264

A.4. Natural Semantic Metalanguage

Prime Context Synonym

WHERE

HERE

AVOCE

BELOW down the stairs, beneath, on a lower floor, to

a lower place, below, at a lower place, down-

wards, downstream, infra, under, downstairs,

underneath

FAR

NEAR near side, come on, come near, near, go up,

approach, draw close, draw near

SIDE

INSIDE indoors, inside, interior

Semantic primes in the category space in the English language [140].

Prime Context Synonym

NOT non

MAYBE perhaps, perchance, mayhaps, peradventure,

mayhap, possibly

CAN may, be able to,

BECAUSE causality as, for that, for, therefore, forthy, inasmuch

as, since, forwhy

IF

Semantic primes in the category logical in the English language [140].

Prime Context Synonym

VERY identical, very, swith, selfsame, ilk, main,

sore, ever so

MORE

Semantic primes in the category intensifier in the English language [140].

Prime Context Synonym

LIKE such as

Semantic primes in the category similarity in the English language [140].

265

Bibliography

[1] Proceedings of the Twenty-Sixth International Conference on Automated Planning and

Scheduling, ICAPS 2016, London, UK, June 12-17, 2016. In Amanda Coles, Andrew

Coles, Stefan Edelkamp, Daniele Magazzeni, and Scott Sanner, editors, Proceedings

of the Twenty-Sixth International Conference on Automated Planning and Scheduling,

ICAPS 2016, London, UK, June 12-17, 2016. AAAI Press, 2016.

[2] Sunitha Abburu. A survey on ontology reasoners and comparison. International Journal

of Computer Applications, 57(17), 2012.

[3] Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor

Soroa. A study on similarity and relatedness using distributional and WordNet-based

approaches. In NAACL ’09: Proceedings of Human Language Technologies: The 2009

Annual Conference of the North American Chapter of the Association for Computational

Linguistics, pages 19–27. Charles University in Prague, Association for Computational

Linguistics, 2009.

[4] Eneko Agirre, Oier de Lacalle, and Aitor Soroa. Random Walks for Knowledge-Based

Word Sense Disambiguation. Computational Linguistics, 40(1):57–84, 2014.

[5] Eneko Agirre and Philip Edmonds. Word sense disambiguation: Algorithms and appli-

cations, volume 33. Springer Science & Business Media, 2007.

[6] Rama Akkiraju, Biplav Srivastava, Anca-Andreea Ivan, Richard Goodwin, and Tan-

veer Syeda-Mahmood. SEMAPLAN: Combining Planning with Semantic Matching to

Achieve Web Service Composition. In 2006 IEEE International Conference on Web Ser-

vices (ICWS’06), pages 37–44. IEEE, 2006.

[7] Harith Alani, Sanghee Kim, D Millard, M Weal, W Hall, P Lewis, and N Shadbolt. Auto-

matic ontology-based knowledge extraction from Web documents. IEEE INTELLIGENT

SYSTEMS, 18(1):14–21, 2003.

[8] Jens Allwood and Peter Gärdenfors. Cognitive Semantics, volume 55 of Meaning and

Cognition. John Benjamins Publishing, 1999.

[9] Gahadah Altaiari. Editor zur semantischen Dekomposition. Bachelors thesis, 2014. Tech-

nische Universität Berlin.

[10] John Anderson. A spreading activation theory of memory. Journal of Verbal Learning

and Verbal Behavior, 22(3):261–295, 1983.

[11] Avery Andrews. Reconciling NSM and Formal Semantics. Australian Journal of Lin-

guistics, 36(1):79–111, 2015.

[12] Mark Aronoff and Janie Rees-Miller. The handbook of linguistics. Blackwell Publishers

Ltd, 2003.

[13] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Com-

putational Intelligence, 11(4):625–655, 1995.

267

Bibliography

[14] Jay Bagga and Adrian Heinz. JGraph— A Java Based System for Drawing Graphs and

Running Graph Algorithms. In Graph Drawing, pages 459–460. Springer, Berlin, Hei-

delberg, Berlin, Heidelberg, 2001.

[15] Tina Balke and Nigel Gilbert. How Do Agents Make Decisions? A Survey. Journal of

Artificial Societies and Social Simulation, 17(4), 2014.

[16] Andrea Ballatore, Michela Bertolotto, and David Wilson. An evaluative baseline for geo-

semantic relatedness and similarity. arXiv preprint arXiv:, cs.CL(4):747–767, 2014.

[17] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! A sys-

tematic comparison of context-counting vs. context-predicting semantic vectors. In Pro-

ceedings of the 52nd Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 238–247, Stroudsburg, PA, USA, 2014. Association for

Computational Linguistics.

[18] Alistair Barros and Daniel Oberle. Handbook of Service Description. USDL and Its

Methods. Springer Science & Business Media, Boston, MA, 2012.

[19] Jon Barwise and Robin Cooper. Generalized Quantifiers and Natural Language. In Philos-

ophy, Language, and Artificial Intelligence, pages 241–301. Springer Netherlands, Dor-

drecht, 1988.

[20] Osman Başkaya and David Jurgens. Semi-supervised Learning with Induced Word Senses

for State of the Art Word Sense Disambiguation. Journal of Artificial Intelligence Re-

search, 55:1025–1058, 2016.

[21] Nicole Beckage and Eliana Colunga. Language Networks as Models of Cognition: Un-

derstanding Cognition through Language. In Towards a Theoretical Framework for An-

alyzing Complex Linguistic Networks, pages 3–28. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2016.

[22] Richard Bellman. Dynamic programming. Rand research study. Princeton Univ. Press,

Princeton, NJ, 1957.

[23] Ayse Bener, Volkan Ozadali, and Erdem Ilhan. Semantic matchmaker with precondition

and effect matching using SWRL. 36(5):9371–9377, 2009.

[24] Tim Berners-Lee. Semantic Web Road map: A road map for the future, an architectural

plan untested by anything except thought experiments, 1998. http://www.w3.org/D
esignIssues/Semantic.html Last visited: 07.07.2017.

[25] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific Ameri-

can, 2001.

[26] Michael Berthold, Ulrik Brandes, Tobias Kötter, Martin Mader, Uwe Nagel, and Kilian

Thiel. Pure spreading activation is pointless. CIKM, pages 1915–1918, 2009.

[27] Leonora Bianchi, Marco Dorigo, Luca Gambardella, and Walter Gutjahr. A survey on

metaheuristics for stochastic combinatorial optimization. Natural Computing, 8(2):239–

287, 2009.

[28] Chris Biermann. Ontology Learning from Text: A Survey of Methods. LDV-Forum,

20(2):75–93, 2005.

[29] Leonard Bloomfield. Sentence and Word. Transactions and Proceedings of the American

Philological Association, 45:65, 1914.

268

http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/DesignIssues/Semantic.html

Bibliography

[30] Leonard Bloomfield. Language. University of Chicago Press, New York: Holt, 1933.

[31] Leonard Bloomfield. Language or Ideas? Language, 12(2):89–95, 1936.

[32] Leonard Bloomfield. Meaning. Monatshefte für deutschen Unterricht, 35(3/4):101–106,

1943.

[33] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase

- a collaboratively created graph database for structuring human knowledge. SIGMOD

Conference, page 1247, 2008.

[34] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,

129(1-2):5–33, 2001.

[35] Paolo Bouquet, Fausto Giunchiglia, Frank Van Harmelen, Luciano Serafini, and Heiner

Stuckenschmidt. C-OWL: Contextualizing ontologies. In International Semantic Web

Conference, volume 2870, pages 164–179, 2003.

[36] Ros Bramwell. Education and some aspects of meaning: A background study. British

Journal of Educational Studies, 20(1):12–26, 1972.

[37] Benjamin Brand. Semantic Distance of Service Descriptions through Activation Spread-

ing. Master’s thesis, 2017. Technische Universtität Berlin.

[38] Lars Braubach, Alexander Pokahr, Daniel Moldt, and Winfried Lamersdorf. Goal Rep-

resentation for BDI Agent Systems. volume 3346, pages 44–65. Springer Berlin Heidel-

berg, 2004.

[39] Elia Bruni, Nam Tran, and Marco Baroni. Multimodal Distributional Semantics. Journal

of Artificial Intelligence Research, 49(2014):1–47, 2014.

[40] Edmund Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa,

Ender Özcan, and Rong Qu. Hyper-heuristics: a survey of the state of the art. Journal of

the Operational Research Society, 64(12):1695–1724, 2013.

[41] Johannes Busse, Bernhard Humm, Christoph Lübbert, Frank Moelter, Anatol Reibold,

Matthias Rewald, Veronika Schlüter, Bernhard Seiler, Erwin Tegtmeier, and Thomas Zeh.

Was bedeutet eigentlich Ontologie? Informatik Spektrum, 37(4):286–297, 2014.

[42] José Camacho-Collados, Mohammad Pilehvar, and Roberto Navigli. NASARI - a Novel

Approach to a Semantically-Aware Representation of Items. In Annual Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies (HLT-NAACL), pages 567–577, 2015.

[43] José Camacho-Collados, Mohammad Pilehvar, and Navigli Roberto. A unified multilin-

gual semantic representation of concepts. In International Joint Conference on Natural

Language Processing (ACL), pages 741–751, 2015.

[44] Erik Cambria and Bebo White. Jumping nlp curves: A review of natural language pro-

cessing research. IEEE Computational intelligence magazine, 9(2):48–57, 2014.

[45] Ronnie Cann. Formal Semantics. An introduction. Cambridge University Press, Cam-

bridge, 2009.

[46] Cristiano Castelfranchi. Simulating with Cognitive Agents - The Importance of Cognitive

Emergence. MABS, 1534(Chapter 3):26–44, 1998.

269

Bibliography

[47] Luca Cavallaro, Pete Sawyer, Daniel Sykes, Nelly Bencomo, and Valérie Issarny. Satis-

fying requirements for pervasive service compositions. In Workshop on Models at run.

time, pages 17–22, New York, New York, USA, 2012. ACM Press.

[48] Eugene Charniak. A Neat Theory of Marker Passing. Association for the Advancement

of Artificial Intelligence, pages 584–588, 1986.

[49] Dong Chen, Yan Jianzhuo, Fang Liying, and Shi Bin. Measure semantic distance in

wordnet based on directed graph search. 2009 International Conference on E-learning,

E-Business, Enterprise Information Systems, and E-Government, EEEE 2009, pages 57–

60, 2009.

[50] Jingwei Chen, Robert Holte, Sandra Zilles, and Nathan Sturtevant. Front-to-End

Bidirectional Heuristic Search with Near-Optimal Node Expansions. arXiv.org, page

arXiv:1703.03868, 2017.

[51] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weerawarana. Web

services description language (wsdl) version 2.0 part 1: Core language. W3C recommen-

dation, 2007.

[52] Noam Chomsky. Logical Syntax and Semantics: Their Linguistic Relevance. language,

31(1):36, 1955.

[53] Noam Chomsky. Syntactic Structures. Language, 33(3 Part 1):375–408, 1957.

[54] Noam Chomsky. Aspects of the Theory of Syntax, volume 119. MIT press, 1969.

[55] Noam Chomsky. Syntactic Structures. Walter de Gruyter, 2002.

[56] William Cole. Understanding Bayesian reasoning via graphical displays. volume 20,

pages 381–386, New York, NY, USA, 1989. ACM.

[57] Joe Coleman, Michael O Rourke, and Dean Edwards. Pragmatics and Agent Commu-

nication Languages. In Proceedings of the ESSLLI Workshop on Formal Ontologies for

Communicating Agents, pages 1–13, 2006.

[58] Allan Collins and Elizabeth Loftus. A spreading-activation theory of semantic processing.

Psychological Review, 82(6):407–428, 1975.

[59] Allan Collins and Ross Quillian. Retrieval time from semantic memory. Journal of Verbal

Learning and Verbal Behavior, 8(2):240–247, 1968.

[60] Courtney Corley and Rada Mihalcea. Measuring the semantic similarity of texts. In

Proceedings of the ACL workshop on empirical modeling of semantic equivalence and

entailment, pages 13–18, Morristown, NJ, USA, 2005. Association for Computational

Linguistics.

[61] Fabio Crestani. Application of Spreading Activation Techniques in Information Retrieval.

Artificial Intelligence Review, 11(6):453–482, 1997.

[62] William Croft and Alan Cruse. Cognitive Linguistics. Cambridge University Press, 2004.

[63] Mohamed Dahab, Hesham Hassan, and Ahmed Rafea. TextOntoEx: Automatic ontology

construction from natural English text. Expert Systems with Applications, 34(2):1474–

1480, 2008.

[64] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed requirements

acquisition. Science of Computer Programming, 20(1-2):3–50, 1993.

270

Bibliography

[65] Simon De Deyne, Yoed Kenett, David Anaki, and Miriam Faust. Large-scale network

representations of semantics in the mental lexicon. Big data in cognitive science: From

methods to insights, pages 174–202, 2016.

[66] Juan de Lara, Roswitha Bardohl, Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and

Gabriele Taentzer. Attributed graph transformation with node type inheritance. Theor.

Comput. Sci. (), 376(3):139–163, 2007.

[67] Ferdinand de Saussure, Charles Bally, Albert Sechehaye, Albert Reidlinger, and Wade

Baskin. Course in General Linguistics. The Journal of American Folklore, 73(289):274,

1960.

[68] Joost de Winter and Dimitra Dodou. Why the Fitts list has persisted throughout the history

of function allocation. Cognition, Technology & Work, 16:1–11, 2014.

[69] Rina Dechter and Judea Pearl. Generalized best-first search strategies and the optimality

af A*. Journal of the ACM, 32(3):505–536, 1985.

[70] Emanuele Della Valle, Dario Cerizza, and Irene Celino. The mediators centric approach

to automatic web service discovery of glue. International Workshop on. Mediation in

Semantic Web Services (MEDIATE2005), 168:35–50, 2005.

[71] Anind Dey. Understanding and Using Context. Personal and Ubiquitous Computing,

5(1):4–7, 2001.

[72] Michel Deza and Elena Deza. Encyclopedia of distances. Springer-Verlag, Berlin, Berlin,

Heidelberg, 2009.

[73] Antonio Di Marco and Roberto Navigli. Clustering and Diversifying Web Search Results

with Graph-Based Word Sense Induction. Computational Linguistics, 39(3):709–754,

2013.

[74] Patrick Doherty, Witold Lukaszewicz, and Andrzej Szalas. Efficient Reasoning Using

the Local Closed-World Assumption. In International Conference on Artificial Intelli-

gence: Methodology, Systems, and Applications, pages 49–58. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2003.

[75] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,

Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault. In the 20th ACM

SIGKDD international conference, pages 601–610, New York, New York, USA, 2014.

ACM Press.

[76] David Dowty. Mantague Grammar and The Lexical Decomposition of causative Verbs.

In Montague Grammar, pages 201–245. Academic Press Inc., 1976.

[77] David Dowty. Lexical Decomposition in Montague Grammar. In Word Meaning and

Montague Grammar, pages 193–234. Springer Netherlands, Dordrecht, 1979.

[78] Zvi Drezner, Peter Hahn, and Éeric Taillard. Recent Advances for the Quadratic Assign-

ment Problem with Special Emphasis on Instances that are Difficult for Meta-Heuristic

Methods. Annals of Operations Research, 139(1):65–94, 2005.

[79] Marek Druzdzel. Qualitative Verbal Explanations in Bayesian Belief Networks. Artificial

Intelligence and Simulation of Behaviour Quarterly, 94:43–54, 1996.

[80] Richard Duda, Peter Hart, and David Stork. Pattern classification. Wiley-Interscience,

New York, second edition, 2001.

271

Bibliography

[81] Roman Dumitru, Jacek Kopecký, Tomas Vitvar, John Domingue, and Dieter Fensel.

WSMO-Lite and hRESTS: Lightweight semantic annotations for Web services and

RESTful APIs. Web Semantics: Science, Services and Agents on the World Wide Web,

31:39–58, 2015.

[82] Uwe Durst. The Natural Semantic Metalanguage approach to linguistic meaning. Theo-

retical Linguistics, 29(3):157–200, 2003.

[83] Mnacho Echenim and Nicolas Peltier. A Superposition Calculus for Abductive Reason-

ing. J. Autom. Reasoning, 57(2):97–134, 2016.

[84] Philip Edmonds. SENSEVAL: The evaluation of word sense disambiguation systems.

European Language Resources Association (ELRA) newsletter, 7, 2002.

[85] Hartmut Ehrig and Bernd Mahr. Fundamentals of algebraic specification 1 . Springer

Science & Business Media, 1985.

[86] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. A logic

programming approach to knowledge-state planning: Semantics and complexity. ACM

Transactions on Computational Logic (TOCL), 5(2):206–263, 2004.

[87] Mohamad El Falou, Maroua Bouzid, Abdel-Illah Mouaddib, and Thierry Vidal. Auto-

mated Web Service Composition: A Decentralised Multi-agent Approach. 1:387–394,

2009.

[88] Chris Elsaesser. Explanation of Probabilistic Inference. In Association for Uncertainty in

Artificial Intelligence, pages 387–400, 1987.

[89] Thomas Erl. Service-oriented architecture. concepts, technology, and design. Prentice

Hall, 2005.

[90] Andre Esteva, Brett Kuprel, Roberto Novoa, Justin Ko, Susan Swetter, Helen Blau, and

Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural net-

works. Nature, 542(7639):115–118, 2017.

[91] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag Berlin Heidel-

berg, 2007.

[92] Scott Fahlman. Marker-Passing Inference in the Scone Knowledge-Base System. In

Knowledge Science, Engineering and Management, pages 114–126. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2006.

[93] Johannes Fähndrich. Best First Search Planning of Service Composition Using Incre-

mentally Refined Context-Dependent Heuristics. In 14th German Conference Multiagent

System Technologies, pages 404–407, Berlin, Heidelberg, 2013. Springer Berlin Heidel-

berg.

[94] Johannes Fähndrich, Sebastian Ahrndt, and Sahin Albayrak. Mining Application Devel-

opment for Research. In Highlights in Practical Applications of Agents and Multi-Agent

Systems. 10th International Conference on Practical Applications of Agents and Multi-

Agent Systems, pages 171–178. DAI-Labor, Technische Universität Berlin, Ernst-Reuter-

Platz 7, 10587 Berlin, Germany, Springer Berlin / Heidelberg, 2012.

[95] Johannes Fähndrich, Sebastian Ahrndt, and Sahin Albayrak. Self-Explaining Agents.

Jurnal Teknologi (Science & Engineering), 63(3):53–64, 2013.

272

Bibliography

[96] Johannes Fähndrich, Sebastian Ahrndt, and Sahin Albayrak. Towards Self-Explaining

Agents. International Conference on Practical Applications of Agents and Multi-Agent

Systems (PAAMS), 221:147–154, 2013.

[97] Johannes Fähndrich, Sebastian Ahrndt, and Sahin Albayrak. Are There Semantic Primes

in Formal Languages? 11th International Conference Distributed Computing and Artifi-

cial Intelligence (DCAI), 290:397–405, 2014.

[98] Johannes Fähndrich, Sebastian Ahrndt, and Sahin Albayrak. Formal Language Decompo-

sition into Semantic Primes. ADCAIJ: Advances in Distributed Computing and Artificial

Intelligence Journal, 3(8):56, 2014.

[99] Johannes Fähndrich, Sebastian Ahrndt, and Sahin Albayrak. Self-Explanation through

Semantic Annotation and (automated) Ontology Creation: A Survey. In 10th Interna-

tional Symposium Advances in Artificial Intelligence and Applications, pages 1–15. ACM,

2015.

[100] Johannes Fähndrich, Tobias Küster, and Nils Masuch. Semantic Service Management and

Orchestration for Adaptive and Evolving Processes. International Journal on Advances

in Internet Technology, 9(4):75–88, 2016.

[101] Johannes Fähndrich, Tobias Küster, and Nils Masuch. Semantic Service Management

for Enabling Adaptive and Evolving Processes. In The 11th International Conference on

Internet and Web Applications and Services, pages 46–53, Valencia, 2016.

[102] Johannes Fähndrich, Nils Masuch, Lars Borchert, and Sahin Albayrak. Learning Mecha-

nisms on OWL-S Service Descriptions for Automated Action Selection. In 16th Confer-

ence on Autonomous Agents and MultiAgent Systems, pages 41–57, 2017.

[103] Johannes Fähndrich, Nils Masuch, Hilmi Yildirim, and Sahin Albayrak. Towards Auto-

mated Service Matchmaking and Planning for Multi-Agent Systems with OWL-S - Ap-

proach and Challenges. In Service-Oriented Computing – ICSOC 2013 Workshops, pages

240–247. Springer International Publishing, Cham, 2014.

[104] Johannes Fähndrich, Sabine Weber, and Sebastian Ahrndt. Design and Use of a Semantic

Similarity Measure for Interoperability Among Agents. In Multiagent System Technolo-

gies, pages 41–57. Springer International Publishing, 2016.

[105] Yong-Yi FanJiang and Yang Syu. Semantic-based automatic service composition with

functional and non-functional requirements in design time: A genetic algorithm approach.

Information and Software Technology, 56(3):352–373, 2014.

[106] Jean-Mari Favre. Towards a basic theory to model model driven engineering. In Workshop

in Software Model Engineering, WiSME, pages 262–271, 2004.

[107] Jean-Marie Favre. Foundations of meta-pyramids: languages vs. metamodels. In Episode

II. Story of Thotus the Baboon, Procs. Dagstuhl Seminar, 2004.

[108] Matthias Felleisen. On the expressive power of programming languages. Science of

Computer Programming, 17(1-3):35–75, 1991.

[109] Dieter Fensel, Federico Facca, Elena Simperl, and Ioan Toma. Semantic Web Services.

Springer Science & Business Media, Berlin, Heidelberg, 2011.

[110] Jacques Ferber. Multi-agent systems - an introduction to distributed artificial intelligence.,

volume 1. Addison Wesley Longman, 1999.

273

Bibliography

[111] Innes Ferguson. Touring Machines: autonomous agents with attitudes. Computer,

25(5):51–55, 1992.

[112] Alan Fern, Roni Khardon, and Prasad Tadepalli. The first learning track of the interna-

tional planning competition. Machine Learning, 84(1-2):81–107, 2011.

[113] Juan Fernández-Olivares, Tomás Garzón, Luis Castillo, Óscar Garcı́a-Pérez, and Fran-

cisco Palao. A Middle-Ware for the Automated Composition and Invocation of Semantic

Web Services Based on Temporal HTN Planning Techniques. CAEPIA, 4788(Chapter

8):70–79, 2007.

[114] Ludovic Ferrand and Boris New. Semantic and Associative Priming in the Mental Lexi-

con. Mental lexicon: Some words to talk about words, pages 25–43, 2003.

[115] Roy Fielding and Richard Taylor. Principled design of the modern Web architecture.

ACM Transactions on Internet Technology (TOIT), 2(2):115–150, 2002.

[116] Charles Fillmore, C Wooters, and C Baker. Building a Large Lexical Databank which

Provides Deep Semantics. In Proceedings of the Pacific Asian conference on language,

information and computation, pages 3–25, 2001.

[117] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolf-

man, and Eytan Ruppin. Placing search in context: the concept revisited. ACM Trans.

Inf. Syst. (), 20(1):116–131, 2002.

[118] John Firth. A Synopsis of Linguistic Theory, 1930-1955. Studies in linguistic analysis,

1952-59:1–32, 1957.

[119] Wolf Fischer and Bernhard Bauer. Ontology based Spreading Activation for NLP related

Scenarios. In The Fifth International Conference on Advances in Semantic Processing

(SEMAPRO), pages 56–61, 2011.

[120] Jerry Fodor and Zenon Pylyshyn. Connectionism and cognitive architecture: A critical

analysis. Cognition, 28(1):3–71, 1988.

[121] Howard Foster, S Uchitel, J Magee, and J Kramer. An Integrated Workbench for Model-

Based Engineering of Service Compositions. Services Computing, IEEE Transactions on,

3(2):131–144, 2010.

[122] Maria Fox and Derek Long. PDDL2.1: An Extension to PDDL for Expressing Temporal

Planning Domains. 20:61–124, 2003.

[123] Valentina Franzoni, Marco Mencacci, Paolo Mengoni, and Alfredo Milani. Semantic

Heuristic Search in Collaborative Networks: Measures and Contexts. In IEEE/WIC/ACM

International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technolo-

gies (IAT), volume 1, pages 141–148. IEEE, 2014.

[124] Gottlob Frege. Funktion, Begriff, Bedeutung. Vandenhoeck und Ruprecht, Göttingen,

1892.

[125] Stefan Fricke. Symbolische Künstliche Intelligenz Probleme repräsentieren und lösen

(lassen) , volume 1. 2016.

[126] Keita Fujii and Tatsuya Suda. Component service model with semantics (CoSMoS): a

new component model for dynamic service composition. In International Symposium on

Applications and the Internet Workshops, pages 348–354. IEEE, 2004.

274

Bibliography

[127] Keita Fujii and Tatsuya Suda. Semantics-based context-aware dynamic service composi-

tion. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(2):1–31, 2009.

[128] Ulrich Furbach and Claudia Schon. Commonsense Reasoning Meets Theorem Proving.

In Agents and Computational Autonomy, pages 3–17. Springer International Publishing,

Cham, 2016.

[129] Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using

wikipedia-based explicit semantic analysis. volume 7, pages 1606–1611, San Francisco,

CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[130] Jian-Bo Gao, Bao-Wen Zhang, and Xiao-Hua Chen. A WordNet-based semantic similar-

ity measurement combining edge-counting and information content theory. Engineering

Applications of Artificial Intelligence, 39:80–88, 2015.

[131] Dedre Gentner and Susan Goldin-Meadow. Language in mind: Advances in the study of

language and thought. MIT Press, 2003.

[132] Malik Ghallab, Adele Howe, Drew Knoblock, Ashwin Ram, Manuela Veloso, Daniel

Weld, and David Wilkins. PDDL – The Planning Domain Definition Language. Technical

report, Yale Center for Computational Vision and Control, 1998.

[133] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory & Practice.

Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, San Francisco,

CA, USA, 2004.

[134] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory & Practice.

Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, San Francisco,

CA, USA, 2008.

[135] Malik Ghallab, Dana Nau, and Paolo Traverso. The actor’s view of automated planning

and acting: A position paper. Artificial Intelligence, 208:1–17, 2014.

[136] Thomas Gil. Strukturen sprachlicher Bedeutung. Wehrhan Verlag, Hannover, 2011.

[137] Cliff Goddard. The universal syntax of semantic primitives. Language Sciences,

19(3):197–207, 1996.

[138] Cliff Goddard. The semantics of coming and going. Pragmatics, 7(2):147–162, 1997.

[139] Cliff Goddard. A culture-neutral metalanguage for mental state concepts. In Mental

States, volume 2, pages 11–35. John Benjamins Publishing Company, Amsterdam, 2008.

[140] Cliff Goddard. Cross-linguistic Semantics. John Benjamins Publishing, 2008.

[141] Cliff Goddard. Semantic molecules and semantic complexity (with special reference to

environmental molecules). Review of Cognitive Linguistics, 8(1):123–155, 2010.

[142] Cliff Goddard. The Natural Semantic Metalanguage Approach. The Oxford handbook of

linguistic analysis, pages 459–484, 2010.

[143] Cliff Goddard. Semantic primes, semantic molecules, semantic templates: Key concepts

in the NSM approach to lexical typology. Linguistics, 50(3):711–743, 2012.

[144] Cliff Goddard and Anna Wierzbicka. Semantic and Lexical Universals. Theory and

Empirical Findings. John Benjamins Publishing, 1994.

275

Bibliography

[145] Cliff Goddard and Anna Wierzbicka. Semantic and lexical universals: Theory and em-

pirical findings, volume 25. John Benjamins Publishing Company, 1994.

[146] Edited Goddard. Cross-Linguistic Semantics (Studies in Language Companion Series).

Technical report, 2008.

[147] Wael Gomaa and Aly Fahmy. A Survey of Text Similarity Approaches. International

Journal of Computer Applications, 68(13):13–18, 2013.

[148] Bernardo Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-Schneider, and Ul-

rike Sattler. OWL 2: The next step for OWL. Web Semantics: Science, Services and

Agents on the World Wide Web, 6(4):309–322, 2008.

[149] Georgia Green. Pragmatics and Natural Language Understanding. Psychology Press,

1996.

[150] Peter Gregory and Alan Lindsay. Domain model acquisition in domains with action costs.

In Proceedings of the Twenty-Sixth International Conference on International Conference

on Automated Planning and Scheduling, pages 149–157. AAAI Press, 2016.

[151] Herbert Grice. Meaning. The Philosophical Review, 66(3):377–388, 1957.

[152] Tom Gruber. Ontology. Encyclopedia of Database Systems, 2008.

[153] Michael Grüninger, Richard Hull, and Sheila Mcilraith. A Short Overview of FLOWS: A

First-Order Logic Ontology for Web Services. IEEE Data Engineering Bulletin, 31(3):3–

7, 2008.

[154] Nicola Guarino. Formal ontology, conceptual analysis and knowledge representation.

International Journal of Human-Computer Studies, 43(5-6):625–640, 1995.

[155] Sebastien Harispe, Sylvie Ranwez, Stefan Janaqi, and Jacky Montmain. Semantic Mea-

sures for the Comparison of Units of Language, Concepts or Entities from Text and

Knowledge Base Analysis. Computing Research Repository (CoRR), pages 1–102, 2013.

[156] Zellig Harris. Distributional Structure. Word, 10(2-3):146–162, 1954.

[157] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig. Domain-

independent construction of pattern database heuristics for cost-optimal planning. In

Association for the Advancement of Artificial Intelligence (AAAI), volume 7, 2007.

[158] Patrik Haslum and Hector Geffner. Admissible heuristics for optimal planning. In Pro-

ceedings of the 5th International Conference of AI Planning Systems (AIPS), pages 140–

149, 2000.

[159] Ourania Hatzi, Dimitris Vrakas, Nick Bassiliades, Anagnostopoulos Dimosthenis, and

Ioannis Vlahavas. The PORSCE II framework: Using AI planning for automated se-

mantic web service composition. The Knowledge Engineering Review, 28(02):137–156,

2013.

[160] Barbara Hayes-Roth. An architecture for adaptive intelligent systems. Artificial Intelli-

gence, 72(12):329–365, 1995.

[161] David Heckerman, Eric Horvitz, Stanford University. Computer Science Dept. Knowl-

edge Systems Laboratory, and Bharat Nathwani. Toward Normative Expert Systems:

Part I, the Pathfinder Project, 1992.

276

Bibliography

[162] Irene Heim. Decomposing antonyms. In Proceedings of Sinn und Bedeutung, volume 12,

pages 212–225, 2008.

[163] Malte Helmert. A Planning Heuristic Based on Causal Graph Analysis. International

Conference on Automated Planning and Scheduling (ICAPS), 4:161–170, 2004.

[164] Malte Helmert, Gabriel Röger, and Erez Karpas. Fast Downward Stone Soup: A baseline

for building planner portfolios. In Erez Karpas, Sergio Jimenéz Celorrio, and Subbarao

Kambhampati, editors, International Conference on Automated Planning and Scheduling,

pages 28–35. International Conference on Automated Planning and Scheduling, Proceed-

ings of the ICAPS-2011 Workshop on Planning and Learning (PAL 2011), 2011.

[165] James Hendler. Integrating marker-passing and problem-solving: A spreading activation

approach to improved choice in planning. Hillsdale, N.J. : Lawrence Erlbaum Associates,

1988.

[166] Ehsan Hessami, Faribourz Mahmoud, and Amir Jadidinejad. Unsupervised Graph-based

Word Sense Disambiguation Using lexical relation of WordNet. International Journal of

Computer Science, 8(3), 2011.

[167] Graeme Hirst. Semantic Interpretation and the Resolution of Ambiguity. Studies in Nat-

ural Language Processing. Cambridge University Press, 1992.

[168] Graeme Hirst and David St-Onge. Lexical chains as representations of context for the

detection and correction of malapropisms. WordNet An Electronic Lexical Database,

pages 305–332, 1998.

[169] Sir Charles Hoare. An axiomatic basis for computer programming. Communications of

the ACM, 12(10):576–580, 1969.

[170] Johannes Hoffart, Fabian Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO2

- A spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell.,

194:28–61, 2013.

[171] Jorg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation

through heristic search. Ammerican Association for Artificial Intelligence (AAAI) AI Mag-

azine, 14(1):253–302, 2001.

[172] Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning. Jour-

nal of Artificial Intelligence Research, 22:215–278, 2004.

[173] Matthew Horridge and Peter Patel-Schneider. OWL 2 Web Ontology Language: Manch-

ester Syntax. W3C Working Group Note. Technical report, 2009.

[174] Ian Horrocks and Peter Patel-Schneider. A proposal for an owl rules language. In Pro-

ceedings of the 13th international conference on World Wide Web (WWW), pages 723–

731, New York, New York, USA, 2004. ACM Press.

[175] Ian Horrocks, Peter Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and

Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

Technical report, 2004.

[176] Eric Huang, Richard Socher, Christopher Manning, and Andrew Ng. Improving word

representations via global context and multiple word prototypes. Proceedings of the 50th

Annual Meeting of the Association for Computational Linguistics, 1:873–882, 2012.

277

Bibliography

[177] Thad Hughes and Daniel Ramage. Lexical Semantic Relatedness with Random Graph

Walks. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Lan-

guage Processing and Computational Natural Language Learning, pages 581–589, 2007.

[178] Ignacio Iacobacci, Mohammad Pilehvar, and Roberto Navigli. Embeddings for Word

Sense Disambiguation: An Evaluation Study. In Proceedings of the th Annual Meeting of

the Association for Computational Linguistics, pages 897–907, 2016.

[179] Nancy Ide and Jean Veronis. Introduction to the special issue on word sense disambigua-

tion: the state of the art. Computational Linguistics, 24(1):2–40, 1998.

[180] Aminul Islam and Diana Inkpen. Semantic text similarity using corpus-based word sim-

ilarity and string similarity. ACM Transactions on Knowledge Discovery from Data,

2(2):1–25, 2008.

[181] Paul Jaccard. Étude comparative de la distribution florale dans une portion des alpes et des

jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37(142):547–579, 1901.

[182] Ray Jackendoff. Parts and boundaries. Cognition, 41(1-3):9–45, 1991.

[183] Mario Jarmasz and Stan Szpakowicz. Roget ’ s Thesaurus and Semantic Similarity Roget

’ s Thesaurus Relations as a Measure of Semantic Distance. Proceedings of the Interna-

tional Conference on Recent Advances in Natural Language Processing (RANLP 2003),

pages 212–219, 2003.

[184] Nicholas Jennings. An agent-based approach for building complex software systems.

Communications of the ACM, 44(4):35–41, 2001.

[185] Jay Jiang and David Conrath. Semantic Similarity Based on Corpus Statistics and Lexical

Taxonomy. 1997.

[186] Daniel Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011.

[187] Subbarao Kambhampati and James Hendler. A Validation-Structure-Based Theory of

Plan Modification and Reuse. Artif. Intell., 55(2-3):193–258, 1992.

[188] Hans Kamp and Uwe Reyle. From discourse to logic: Introduction to modeltheoretic

semantics of natural language, formal logic and discourse representation theory, vol-

ume 42. Kluwer Academic Publischers, 2013.

[189] Thomas Karbe. Context and Context Management. PhD thesis, Shaker Verlag, 2014.

Technische Universtität Berlin.

[190] Erez Karpas and C Domshlak. Cost-Optimal Planning with Landmarks. In International

Joint Conference on Artificial Intelligence (IJCAI), pages 1728–1733, 2009.

[191] Michael Katz and Carmel Domshlak. Structural Patterns Heuristics via Fork Decompo-

sition. International Conference on Automated Planning and Scheduling (ICAPS), pages

182–189, 2008.

[192] Alistair Kennedy and Stan Szpakowicz. Evaluation of automatic updates of Roget’s The-

saurus. Journal of Language Modelling, 2(1):1–49, 2014.

[193] Jeffrey Kephart and David Chess. The Vision of Autonomic Computing. Computer,

36(1):41–50, 2003.

[194] Emil Keyder and Héctor Geffner. Heuristics for Planning with Action Costs. CAEPIA,

4788(Chapter 15):140–149, 2007.

278

Bibliography

[195] Matthias Klusch, Benedikt Fries, and Katia Sycara. OWLS-MX: A hybrid Semantic Web

service matchmaker for OWL-S services. Web Semantics: Science, Services and Agents

on the World Wide Web, 7(2):121–133, 2009.

[196] Matthias Klusch, Andreas Gerber, and Marcus Schmidt. Semantic web service compo-

sition planning with owls-xplan. In International Conference on Web Intelligence and

Intelligent Agent Technology Workshops, pages 55–62, 2005.

[197] Matthias Klusch and Patrick Kapahnke. The iSeM matchmaker: A flexible approach for

adaptive hybrid semantic service selection. Web Semantics: Science, Services and Agents

on the World Wide Web, 15:1–14, 2012.

[198] Matthias Klusch, Patrick Kapahnke, Stefan Schulte, Freddy Lecue, and Abraham Bern-

stein. Semantic Web Service Search: A Brief Survey. KI - Künstliche Intelligenz,

30(2):139–147, 2015.

[199] Matthias Klusch, Patrick Kapahnke, and Ingo Zinnikus. SAWSDL-MX2: A Machine-

Learning Approach for Integrating Semantic Web Service Matchmaking Variants. In 2009

IEEE International Conference on Web Services (ICWS), pages 335–342. IEEE Computer

Society, IEEE, 2009.

[200] Matthias Klusch, Ulrich Küster, Alain Leger, David Martin, and Massimo Paolucci. 5th

International Semantic Service Selection Contest - Performance Evaluation of Semantic

Service Matchmakers. In Semantic web services, pages 17–34. Springer, 2012.

[201] Mattias Klusch and Andreas Gerber. Fast Composition Planning of OWL-S Services and

Application. In Fast Composition Planning of OWL-S Services and Application, pages

181–190. IEEE, 2006.

[202] Craig Knoblock. Generating Abstraction Hierarchies: An Automated Approach to Re-

ducing Search in Planning. Springer Science & Business Media, LLC, 1993.

[203] Tom König. Untersuchung semantischer Distanzmaße auf der Grundlage von Ak-

tivierungsausbreitung über ontologiebasierte Hypergraphen. Bachelors thesis, 2017.

Technische Universtität Berlin.

[204] Thomas Konnerth. An Agent-Based Approach to Service-Oriented Architectures. PhD

thesis, 2012. Technische Universtität Berlin.

[205] Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell. SAWSDL: Semantic

Annotations for WSDL and XML Schema. IEEE Internet Computing (), 11(6):60–67,

2007.

[206] Richard Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–211, 1990.

[207] Richard Korf and Ariel Felner. Recent Progress in Heuristic Search - A Case Study

of the Four-Peg Towers of Hanoi Problem. International Joint Conference on Artificial

Intelligence, pages 2324–2329, 2007.

[208] András Kornai and Marcus Kracht. Lexical Semantics and Model Theory: Together at

Last? In Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015),

pages 51–61, Stroudsburg, PA, USA, 2015. Association for Computational Linguistics.

[209] Marcus Kracht. Are logical languages compositional? Studia Logica. An International

Journal for Symbolic Logic, 101(6):1319–1340, 2013.

279

Bibliography

[210] Saul Kripke. Naming and Necessity. In Semantics of Natural Language, pages 253–355.

Springer Netherlands, Dordrecht, 1973.

[211] Patricia Kuhl, Barbara Conboy, Denise Padden, Tobey Nelson, and Jessica Pruitt. Early

speech perception and later language development: Implications for the critical period.

Language Learning and Development, 1(3):237–264, 2005.

[212] Ram Kumar, Shailesh Jaloree, and Thakur. Developing Context Ontology using Infor-

mation Extraction. nternational Journal of Computer Science and Information Security

(IJCSIS), 14(3), 2016.

[213] Ray Kurzweil. The singularity is near. Gerald Duckworth & Co, 2005.

[214] Ulrich Küster, Birgitta König-Ries, Michael Klein, and Mirco Stern. Diane: A

matchmaking-centered framework for automated service discovery, composition, bind-

ing, and invocation on the web. International Journal of Electronic Commerce, 12(2):41–

68, 2007.

[215] Ugur Kuter, Evren Sirin, Dana Nau, Bijan Parsia, and James Hendler. Information Gath-

ering During Planning for Web Service Composition. In International Semantic Web

Conference (ISWC), pages 335–349. Elsevier, 2005.

[216] Mehmet Kuzu and Nihan Cicekli. Dynamic planning approach to automated web service

composition. Applied Intelligence, 36(1):1–28, 2012.

[217] William Labov. The boundaries of words and their meanings. New Ways of analyzing

variation in English, pages 340–373, 1973.

[218] George Lakoff and Mark Johnson. Metaphors We Live By. University of Chicago Press,

2008.

[219] Steffen Lamparter and Anupriya Ankolekar. Automated selection of configurable web

services. In Internationale Tagung Wirtschaftsinformatik, pages 441–458, 2007.

[220] Ora Lassila and Ralph Swick. Resource description framework (RDF) model and syntax

specification, 1999.

[221] Juan Lastra-Dı́az and Ana Garcı́a-Serrano. A novel family of IC-based similarity mea-

sures with a detailed experimental survey on WordNet. Engineering Applications of Arti-

ficial Intelligence, 46:140–153, 2015.

[222] Steven LaValle. Planning algorithms. Cambridge University Press, Cambridge, Cam-

bridge, 2006.

[223] Claudia Leacock, George Miller, and Martin Chodorow. Using corpus statistics and

WordNet relations for sense identification. Computational Linguistics, 24(1):147–165,

1998.

[224] David Leake. Goal-based explanation evaluation. Cognitive science, 15(4):509–545,

1991.

[225] David Leake. Evaluating Explanations A Content Theory. Psychology Press, 1992.

[226] Freddy Lecue, Alain Leger, and Alexandre Delteil. DL Reasoning and AI Planning for

Web Service Composition. In 2008 IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology, pages 445–453. IEEE, 2008.

280

Bibliography

[227] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo

Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and

Christian Bizer. DBpedia - A large-scale, multilingual knowledge base extracted from

Wikipedia. Semantic Web, 6(2):167–195, 2015.

[228] Marta Lenartowicz. Creatures of the semiosphere: A problematic third party in the ‘hu-

mans plus technology’ cognitive architecture of the future global superintelligence. Tech-

nological Forecasting and Social Change, 114:35–42, 2017.

[229] Michael Lesk. Automatic sense disambiguation using machine readable dictionaries: how

to tell a pine cone from an ice cream cone. In Proceedings of the 5th annual international

conference on Systems documentation, how to tell a pine code from an ice cream cone,

pages 24–26, New York, New York, USA, 1986. ACM.

[230] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge.

In Proceedings of the Thirteenth International Conference on Principles of Knowledge

Representation and Reasoning, volume 46, pages 552–561, 2011.

[231] Yuhua Li, David McLean, Zuhair Bandar, James O’shea, and Keeley Crockett. Sentence

similarity based on semantic nets and corpus statistics. IEEE Transactions on Knowledge

and Data Engineering, 18(8):1138–1150, 2006.

[232] Dekang Lin. An information-theoretic definition of similarity. In International Confer-

ence on Machine Learning (ICML), volume 98, pages 296–304, 1998.

[233] Dekang Lin, Shaojun Zhao, Lijuan Qin, and Ming Zhou. Identifying synonyms among

distributionally similar words. IJCAI International Joint Conference on Artificial Intelli-

gence, (4):1492–1493, 2003.

[234] Robert Lindsay. Understanding Understanding. Natural and Artificial Intelligence. Cre-

ateSpace Independent Publishing Platform, 2012.

[235] Angelika Linke, Markus Nussbaumer, and Paul Protmann. Studienbuch Linguistik. Reihe

Germanistische Linguisitk, 5. erweiterte Auflage. De Gruyter, 2004.

[236] Nir Lipovetzky and Hector Geffner. Best-First Width Search: Exploration and Exploita-

tion in Classical Planning. In Association for the Advancement of Artificial Intelligence

(AAAI), pages 3590–3569, 2017.

[237] Baoding Liu. Uncertain entailment and modus ponens in the framework of uncertain

logic. Journal of Uncertain Systems, 3(4):243–251, 2009.

[238] Hugo Liu and Push Singh. ConceptNet - A Practical Commonsense Reasoning Tool-Kit.

BT technology journal, 22(4):211–226, 2004.

[239] Wei Liu, Albert Weichselbraun, Arno Scharl, and Elizabeth Chang. Semi-automatic on-

tology extension using spreading activation. Journal of Universal Knowledge Manage-

ment, 1(1):50–58, 2005.

[240] Sebastian Löbner. Semantik: Eine Einführung. Walter de Gruyter GmbH & Co KG, 2013.

[241] Nikolaos Loutas, Vassilios Peristeras, and Konstantinos Tarabanis. Towards a reference

service model for the Web of Services. Data & Knowledge Engineering, 70(9):753–774,

2011.

281

Bibliography

[242] Marco Luetzenberger, Tobias Kuester, Nils Masuch, and Johannes Fähndrich. Multi-

Agent System in Practice – When Research Meets Reality. In John Thangarajah, Karl

Tuyls, Catholijn Jonker, and Stacy Marsella, editors, Proceedings of the 15th Interna-

tional Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016), Sin-

gapore, pages 796–805. IFAAMAS, 2016.

[243] Pascal Lukanek. Ein auf Marker-Passing basierender Word-Sense-Disambiguation

Ansatz. Bachelors thesis, Berlin, 2017. Technische Universtität Berlin.

[244] Thang Luong, Richard Socher, and Christopher Manning. Better word representations

with recursive neural networks for morphology. The SIGNLL Conference on Computa-

tional Natural Language Learning, pages 104–113, 2013.

[245] Alexander Maedche. Ontology Learning for the Semantic Web. IEEE Intelligent systems,

16(2):72–79, 2001.

[246] Alexander Maedche and Steffen Staab. Learning ontologies for the semantic web. In Pro-

ceedings of the Second International Conference on Semantic Web, pages 51–60. CEUR-

WS.org, 2001.

[247] Pattie Maes. How to do the Right Thing. Connection Science, 1(3):291–323, 1989.

[248] Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. YAGO3 - A Knowledge

Base from Multilingual Wikipedias. CIDR, 2015.

[249] Bernd Mahr. Gegenstand und Kontext - Eine Theorie der Auffassung. In K. Eyferth,

Bernd Mahr, R. Posner, and F. Wysotzki, editors, Prinzipien der Kontextualisierung.

Technische Universität Berlin, 1997.

[250] Bernd Mahr. Intentionality and modeling of conception. Technical report, 2010.

[251] Arun Majumdar, John Sowa, and John Stewart. Pursuing the Goal of Language Un-

derstanding. In Conceptual Structures: Knowledge Visualization and Reasoning, pages

21–42. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[252] Florian Marienwald. How Does the Interpretation of Word Relations Help Word Sense

Disambiguation Via a Marker Passing Approach? Bachelors thesis, 2017.

[253] Liana Marinescu and Andrew Coles. Heuristic guidance for forward-chaining planning

with numeric uncertainty. In Proceedings of the Twenty-Sixth International Conference on

International Conference on Automated Planning and Scheduling (ICAPS), pages 230–

234. AAAI Press, 2016.

[254] George Markou and Ioannis Refanidis. Non-deterministic planning methods for auto-

mated web service composition. Artificial Intelligence Research, 5(1):14, 2016.

[255] David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein, Drew McDermott,

Deborah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou, Monika Solanki, Naveen

Srinivasan, and Katia Sycara. Bringing Semantics to Web Services: The OWL-S Ap-

proach. In Semantic Web Services and Web Process Composition, pages 26–42. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2004.

[256] Cynthia Matuszek, John Cabral, Michael Witbrock, and John DeOliveira. An Introduc-

tion to the Syntax and Content of Cyc. In AAAI Spring Symposium - Formalizing and

Compiling Background Knowledge and Its Applications to Knowledge Representation

and Question Answering, 2006.

282

Bibliography

[257] Sylvester Mawson and Peter Roget. Roget’s international thesaurus. 1911.

[258] John McCarthy. Notes on formalizing context. Technical report, 1993.

[259] Deborah McGuinness, Frank Van Harmelen, and others. OWL web ontology language

overview. W3C recommendation, 10(2004-03):10, 2004.

[260] Anupam Mediratta and Biplav Srivastava. Applying planning in composition of web

services with a user-driven contingent planner. Technical report, IBM Research Division

IBM India Research Lab, 2006.

[261] Igor Mel čuk. Explanatory Combinatorial Dictionary. Open problems in linguistics and

lexicography, pages 225–355, 2006.

[262] Igor Mel’čuk and Alain Polguère. A Formal Lexicon in the Meaning-Text Theory (or

How to Do Lexica with Words). Computational Linguistics, 13(3-4):261–275, 1987.

[263] Christian Meyer and Iryna Gurevych. Wiktionary: A new rival for expert-built lexicons?

Exploring the possibilities of collaborative lexicography. In Electronic Lexicography,

pages 259–292. Oxford University Press, 2012.

[264] Harald Meyer and Mathias Weske. Automated Service Composition Using Heuristic

Search. In International Conference on Business Process Management, volume 4102,

pages 81–96. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[265] Loizos Michael. Jumping to Conclusions. In Proceedings of the 2015 International

Conference on Defeasible and Ampliative Reasoning, volume 1423, pages 43–49, Buenos

Aires, 2015.

[266] Zbigniew Michalewicz and David Fogel. How to Solve It: Modern Heuristics. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2004.

[267] Rada Mihalcea, Timothy Chklovski, and Adam Kilgarriff. The Senseval-3 English lex-

ical sample task. In Proceedings of Senseval-3, the third international workshop on the

evaluation of systems for the semantic analysis of text. Association for Computational

Linguistics, 2004.

[268] Rada Mihalcea, Courtney Corley, and Carlo Strapparava. Corpus-based and Knowledge-

based Measures of Text Semantic Similarity. Association for the Advancement of Artificial

Intelligence, pages 775–780, 2006.

[269] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word

Representations in Vector Space. arXiv.org, page arXiv:1301.3781, 2013.

[270] George Miller. WordNet: a lexical database for English. Communications of the ACM,

38(11):39–41, 1995.

[271] George Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine

Miller. Introduction to WordNet: An On-line Lexical Database*. International Jour-

nal of Lexicography, 3(4):235–244, 1989.

[272] Joaquin Miller and Jishnu Mukerji. Model Driven Architecture (MDA). Technical report,

2001.

[273] Marvin Minsky. Logical versus analogical or symbolic versus connectionist or neat versus

scruffy. AI Magazine, 12(2):34, 1991.

283

Bibliography

[274] Sonam Mittal and Guarav Sahu. Ontology Learning. International Research Journal of

Engineering and Technology (IRJET), 3(10), 2016.

[275] Charles Morris. Foundations of the Theory of Signs. University of Chicago Press, 1938.

[276] Erik Mueller. Commonsense Reasoning. An Event Calculus Based Approach. Morgan

Kaufmann, 2014.

[277] Jörg Müller and Markus Pischel. The agent architecture InteRRaP : concept and applica-

tion. Technical report, 2011.

[278] Christian Müller-Schloer, Christoph Schmeck, and Hartmut Ungerer. Organic Comput-

ing. Springer-Verlag, 2004.

[279] Christian Müller-Schloer and Hartmut Schmeck. Organic Computing: A Grand Chal-

lenge for Mastering Complex Systems. IT – Information Technology, 52(3):135–141,

2010.

[280] Letitia Naigles, Anne Fowler, and Atessa Helm. Developmental shifts in the construction

of verb meanings. Cognitive Development, 7(4):403–427, 1992.

[281] Dana Nau, Malik Ghallab, and Paolo Traverso. Blended Planning and Acting: Prelimi-

nary Approach, Research Challenges. Association for the Advancement of Artificial In-

telligence (AAAI), pages 4047–4051, 2015.

[282] Roberto Navigli. Word sense disambiguation: A survey. ACM Computing Surveys

(CSUR), 41(2):1–69, 2009.

[283] Roberto Navigli and Simone Ponzetto. BabelNet - The automatic construction, evaluation

and application of a wide-coverage multilingual semantic network. Artificial Intelligence,

193:217–250, 2012.

[284] Srinivas Nedunuri, William Cook, and Douglas Smith. Cost-based learning for planning.

In International Conference on Automated Planning and Scheduling, pages 68–75, 2011.

[285] Nils Nilsson and Richard Fikes. Problem-Solving Methodes in Artificial Intelligence.

Artificial Intelligence, 2(3-4):189–208, 1971.

[286] Peter Norvig. Marker Passing as a Weak Method for Text Inferencing. Cognitive science,

13(4):569–620, 2010.

[287] Vilém Novák. Antonyms and linguistic quantiers in fuzzy logic. Journal of Web Seaman-

tics, 124(3):335–351, 2001.

[288] Natasha Noy, Alan Rector, Pat Hayes, and Chris Welty. Defining N-ary Relations on the

Semantic Web. Technical report, 2006.

[289] Ervin Nutter. Epistemology. Encyclopedia of Artificial Intelligence, 1:460–468, 1987.

[290] Phillipa Oaks, Arthur ter Hofstede, and David Edmond. Capabilities: Describing What

Services Can Do. In Service-Oriented Computing - ICSOC 2003, pages 1–16. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2003.

[291] Charles Ogden and Ivor Richards. The Meaning of Meaning. Harcourt Brace Jovanovich,

Publishers, 1923.

284

Bibliography

[292] Seog-Chan Oh, Ju-Yeon Lee, Seon-Hwa Cheong, Soo-Min Lim, Min-Woo Kim, Sang-

Seok Lee, Jin-Bum Park, Sang-Do Noh, and Mye Sohn. WSPR*: Web-Service Planner

Augmented with A* Algorithm. In EEE Conference on Commerce and Enterprise Com-

puting, pages 515–518. IEEE, 2009.

[293] Cagla Okutan and Nihan Cicekli. A monolithic approach to automated composition of

semantic web services with the Event Calculus. Knowledge-Based Systems, 23(5):440–

454, 2010.

[294] Jesús Oliva, José Serrano, Marı́a del Castillo, and Ángel Iglesias. SyMSS: A syntax-based

measure for short-text semantic similarity. Data & Knowledge Engineering, 70(4):390–

405, 2011.

[295] Michael Öllinger and Albrecht von Müller. Search and Coherence-Building in Intuition

and Insight Problem Solving. Frontiers in psychology, 8:827, 2017.

[296] Charles Osgood. The nature and measurement of meaning. Psychological bulletin,

49(3):197–237, 1952.

[297] Charles Osgood, George Suci, and Percy Tannenbaum. The Measurement of Meaning.

University of Illinois Press, 1957.

[298] Ibrahim Osman and Gilbert Laporte. Metaheuristics: A bibliography. Annals of Opera-

tions Research, 63(5):511–623, 1996.

[299] Petros Papadopoulos, Huaglory Tianfield, David Moffat, and Peter Barrie. Decentralized

multi-agent service composition. Multiagent and Grid Systems An International Journal,

9(1):45–100, 2013.

[300] Evan Patterson. Knowledge Representation in Bicategories of Relations. Technical report,

2017.

[301] Karalyn Patterson, Peter Nestor, and Timothy Rogers. Where do you know what you

know? The representation of semantic knowledge in the human brain. Nature Reviews

Neuroscience, 8(12):976–987, 2007.

[302] Siddharth Patwardhan and Ted Pedersen. Using WordNet-based context vectors to esti-

mate the semantic relatedness of concepts. In Proceedings of the Eleventh Conference

of the European Chapter of the Association for Computational Linquistics, volume 1501,

pages 1–8, 2006.

[303] Christopher Peacocke. A Study of Concepts. The MIT Press, 1992.

[304] Judea Pearl. Heuristics. Intelligent search strategies for computer problem solving. The

Addison-Wesley Series in Artificial Intelligence, 1985.

[305] Joachim Peer. A PDDL based tool for automatic web service composition. Principles

and Practice of Semantic Web Reasoning, 3208(Chapter 11):149–163, 2004.

[306] Carl Petri. Kommunikation mit Automaten. PhD thesis, Technische Hochschule Darm-

stadt, 1962.

[307] Giulio Petrucci. Information Extraction for Learning Expressive Ontologies. In Agents

and Computational Autonomy, pages 740–750. Springer International Publishing, Cham,

2015.

285

Bibliography

[308] Mohammad Pilehvar and Roberto Navigli. From senses to texts: An all-in-one graph-

based approach for measuring semantic similarity. Artificial Intelligence, 228:95–128,

2015.

[309] Martha Pollack and Marc Ringuette. Introducing the Tileworld: Experimentally Evalu-

ating Agent Architectures. In Association for the Advancement of Artificial Intelligence

Conference on Artificial Intelligence, volume 90, pages 183–189, 1990.

[310] Julie Porteous, Laura Sebastia, and Joerg Hoffmann. On the Extraction, Ordering, and

Usage of Landmarks in Planning. In Sixth European Conference on Planning, pages

174–182, 2014.

[311] Uta Priss. Classification of meronymy by methods of relational concept analysis. In

Midwest Artificial Intelligence and Cognitive Science Conference. unknown, 1996.

[312] Paul Procter. Longman dictionary of contemporary English. Harlow [Eng.] : Longman,

1978.

[313] Uwe Quasthoff, Dirk Goldhahn, and Thomas Eckart. Building Large Resources for Text

Mining: The Leipzig Corpora Collection. In Text Mining, pages 3–24. Springer Interna-

tional Publishing, Cham, 2014.

[314] Ross Quillian. Semantic Memory. PhD thesis, Bolt Beranek And Newman Inc. Unpub-

lished doctoral dissertation, Carnegie Institute of Technology. (Reprinted in part in M.

Minsky [Ed.], Semantic information processing. Cambridge, Mass.: M.I.T. Press, 1968.).

Carnegie Institute of Technology.

[315] Rodrigo Quian Quiroga. Concept cells: the building blocks of declarative memory func-

tions. Nature reviews. Neuroscience, 13(8):587, 2012.

[316] Jeroen Raaijmakers and Richard Shiffrin. Search of associative memory. Psychological

Review, 88(2):93–134, 1981.

[317] Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Development and application

of a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics,

19(1):17–30, 1989.

[318] Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. A word

at a time: computing word relatedness using temporal semantic analysis. In Proceedings

of the 20th international conference on World wide web, computing word relatedness

using temporal semantic analysis, pages 337–346, New York, New York, USA, 2011.

ACM.

[319] Nairán Ramı́rez-Esparza, Adrián Garcı́a-Sierra, and Patricia Kuhl. Look who’s talking:

speech style and social context in language input to infants are linked to concurrent and

future speech development. Developmental science, 17(6):880–891, 2014.

[320] Anand Rao and Michael Georgeff. BDI Agents: From Theory to Practice. In Victor Lesser

and Les Gasser, editors, Proceedings of the First International Conference on Mutiagent

Systems (ICMAS), pages 312–319. The MIT Press, 1995.

[321] Jinghai Rao, Peep Küngas, and Mihhail Matskin. Composition of semantic web services

using linear logic theorem proving. Information Systems, 31(4-5):340–360, 2006.

[322] Daniel Ratner and Manfred Warmuth. Finding a Shortest Solution for the NxN Extension

of the 15-Puzzle Is Intractable. In Association for the Advancement of Artificial Intelli-

gence (AAAI), pages 168–172, 1986.

286

Bibliography

[323] Domenico Redavid, Stefano Ferilli, and Floriana Esposito. SWRL Rules Plan Encoding

with OWL-S Composite Services. In Agents and Computational Autonomy, pages 476–

482. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[324] Philip Resnik. Using Information Content to Evaluate Semantic Similarity in a Taxon-

omy. In Proceedings of the 14th International Joint Conference on Artificial Intelligence,

page 6, 1995.

[325] Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks Revisited. In Associ-

ation for the Advancement of Artificial Intelligence, pages 975–982, 2008.

[326] Silvia Richter and Matthias Westphal. The LAMA Planner - Guiding Cost-Based Any-

time Planning with Landmarks. Journal of Artificial Intelligence Research, 39(1):127–

177, 2014.

[327] Burghard Rieger. Unscharfe Semantik. Die empirische Analyse, quantitative Beschrei-

bung, formale Repräsentation und prozedurale Modellierung vager Wortbedeutungen in

Texten. Peter Lang, Frankfurt am Main, 1990.

[328] Nick Riemer. The Routledge Handbook of Semantics. Routledge, 2015.

[329] Christopher Riesbeck and Charles Martin. Direct Memory Access Parsing. Experience,

Memory, and Reasoning, pages 209–226, 1986.

[330] Paul Robertson, Howard Shrobe, and Robert Laddaga. Self-adaptive Software, volume

1936 of Revised Papers. Oxford, UK, April 17-19, 2000. Springer Science & Business

Media, Berlin, Heidelberg, 2001.

[331] Guillermo Rodrı́guez, Álvaro Soria, and Marcelo Campo. Artificial intelligence in

service-oriented software design. Engineering Applications of Artificial Intelligence,

53(C):86–104, 2016.

[332] Pablo Rodriguez-Mier, Manuel Mucientes, and Manuel Lama. Automatic Web Service

Composition with a Heuristic-Based Search Algorithm. In 2011 IEEE International Con-

ference on Web Services (ICWS), pages 81–88. IEEE, 2011.

[333] Timothy Rogers, John Hodges, Karalyn Patterson, and Matthew Lambon Ralph. Object

recognition under semantic impairment: The effects of conceptual regularities on percep-

tual decisions. Language and Cognitive Processes, 18(5-6):625–662, 2003.

[334] Chuitian Rong, Yasin Silva, and Chunqing Li. String similarity join with different sim-

ilarity thresholds based on novel indexing techniques. Frontiers of Computer Science,

11(2):307–319, 2016.

[335] Louise Röska-Hardy. Die Bedeutung in natürlicher Sprache. Athenäums monografien:

Philosophie. Athenäum Verlag GmbH, Frankfurt am Main, 1988.

[336] Herbert Rubenstein and John Goodenough. Contextual correlates of synonymy. Commu-

nications of the ACM, 8(10):627–633, 1965.

[337] Stuart Russel and Peter Norvig. Artifical Intelligence: A Modern Approach, volume 2.

Prentice Hall, 2002.

[338] Stuart Russell and Peter Norvig. Artificial Intelligence. A Modern Approach, Global

Edition. 2016.

287

Bibliography

[339] Luca Sabatucci and Massimo Cossentino. From Means-End Analysis to Proactive Means-

End Reasoning. In 2015 IEEE/ACM 10th International Symposium on Software Engineer-

ing for Adaptive and Self-Managing Systems (SEAMS), pages 2–12. IEEE, 2015.

[340] Hadi Saboohi and Sameem Kareem. A Resemblance Study of Test Collections for World-

altering Semantic Web Services. In Proceedings of the International MultiConference of

Engineers and Computer Scientists IMECS, volume 1, pages 1–5, 2011.

[341] Saı̈d Salhi. Heuristic Search: The Emerging Science of Problem Solving. Springer, 2017.

[342] David Sánchez, Montserrat Batet, David Isern, and Aida Valls. Ontology-based se-

mantic similarity: A new feature-based approach. Expert Systems With Applications,

39(9):7718–7728, 2012.

[343] Pete Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier, and Anthony Finkelstein.

Requirements-Aware Systems: A Research Agenda for RE for Self-adaptive Systems.

2010 IEEE 18th International Conference on Requirements Engineering (RE), pages 95–

103, 2010.

[344] Marco Sbodio, David Martin, and Claude Moulin. Discovering Semantic Web services

using SPARQL and intelligent agents. Web Semantics: Science, Services and Agents on

the World Wide Web, 8(4):310–328, 2010.

[345] Roger Schank and Robert Abelson. Scripts, Plans, Goals, and Understanding . An

Inquiry into Human Knowledge Structures. 1977.

[346] Hartmut Schmeck. Organic computing - a new vision for distributed embedded systems.

pages 201–203, 2005.

[347] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,

61:85–117, 2015.

[348] David Schmidt. Denotational Semantics. A Methodology for Language Development.

1997.

[349] Hedda Schmidtke. Contextual Reasoning in Context-Aware Systems. In Workshop Pro-

ceedings of the 8th International Conference on Intelligent Environments, pages 82–93,

2012.

[350] Luc Schneider. How to Build a Foundational Ontology. In Agents and Computational

Autonomy, pages 120–134. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[351] Nico Schneider. Quantifizierung semantischer Satzähnlichkeit basierend auf lexikalischer

Deckomposition und Marker Passing. Bachelors thesis, 2017. Technische Universtität

Berlin.

[352] Susan Schneider. Non-Reductive Physicalism and the Mind Problem. Noûs, 47(1):135–

153, 2013.

[353] John Searle. Minds, brains, and programs. Behavioral and brain sciences, 3(3):417–424,

1980.

[354] David Shanks and Koen Lamberts. Knowledge, Concepts, and Categories. Psychology

Press, 1997.

[355] Raj Sharman, Rajiv Kishore, and Ram Ramesh. Ontologies: A Handbook of Principles,

Concepts and Applications in Information Systems. Springer Science + Business Media,

LLC, New York, 2007.

288

Bibliography

[356] Lokendra Shastri and Venkat Ajjanagadde. From simple associations to systematic rea-

soning: A connectionist representation of rules, variables and dynamic bindings using

temporal synchrony. Behavioral and brain sciences, 16(03):417–451, 2010.

[357] Hui Shen, Razvan Bunescu, and Rada Mihalcea. Coarse to Fine Grained Sense Disam-

biguation in Wikipedia. In Conference of the North American Chapter of the Association

for Computational Linguistics - Human Language Technologies (NAACL HLT), pages

22–31, 2013.

[358] Pavel Shvaiko and Jérôme Euzenat. Ontology Matching: State of the Art and Future Chal-

lenges. IEEE Transactions on knowledge and data engineering, 25(1):158–176, 2013.

[359] Josefina Sierra-Santib ez. Heuristic planning: A declarative approach based on strategies

for action selection. Artificial Intelligence, 153(1-2):307–337, 2004.

[360] Evren Sirin and Bijan Parsia. Planning for semantic web services. In Semantic Web

Services Workshop at 3rd International Semantic Web Conference, pages 33–40, 2004.

[361] Barry Smith. Basic Concepts of Formal Ontology. Formal Ontology in Information

Systems, pages 19–28, 1998.

[362] Edward Smith, Edward Shoben, and Lance Rips. Structure and process in semantic mem-

ory: A featural model for semantic decisions. Psychological Review, 81(3):214–241,

1974.

[363] Jeffrey Smith, Scott DeLoach, Mieczyslaw Kokar, and Ken Baclawski. Category theo-

retic approaches of representing precise UML semantics. In Proceedings of the ECOOP

Workshop on Defining Precise Semantics for UML, 2000.

[364] Raja Sooriamurthi and David Leake. Towards Situated Explanation. In Midwest Artificial

Intelligence and Cognitive Science Conference, page 1492, 1994.

[365] John Sowa. Conceptual Structures. Information Processing in Mind and Machine. Addi-

son Wesley Publishing Company, 1984.

[366] John Sowa. Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Thomson Learning, 2000.

[367] Biplav Srivastava and Subbarao Kambhampati. Scaling up Planning by Teasing out Re-

source Scheduling. ECP, 1809(Chapter 14):172–186, 1999.

[368] Lubomir Stanchev. Semantic Document Clustering Using a Similarity Graph. In IEEE

Tenth International Conference on Semantic Computing (ICSC), pages 1–8. IEEE, 2016.

[369] Luc Steels. Modeling the cultural evolution of language. Physics of Life Reviews,

8(4):339–356, 2011.

[370] Peter Strawson. Meaning and Truth. Logico-Linguistic Papers. London: Methuen, 1971.

[371] Fabian Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago. In the 16th international

conference, pages 697–706, New York, New York, USA, 2007. ACM Press.

[372] Katia Sycara. Multiagent Systems. AI Magazine, 19(2):79–92, 1998.

[373] Katia Sycara, Matthias Klusch, Seth Widoff, and Jianguo Lu. Dynamic service match-

making among agents in open information environments. SIGMOD Record, 28(1):47–53,

1999.

289

Bibliography

[374] Mohamed Taieb, Mohamed Ben Aouicha, and Abdelmajid Ben Hamadou. A new se-

mantic relatedness measurement using WordNet features. Knowledge and Information

Systems, 41(2):467–497, 2014.

[375] Mohamed Taieb, Mohamed Ben Aouicha, and Yosra Bourouis. FM3S: Features-Based

Measure of Sentences Semantic Similarity. In Hybrid Artificial Intelligent Systems, pages

515–529, Cham, 2015. Springer International Publishing.

[376] Electra Tamani and Paraskevas Evripidou. Combining Pragmatics and Intelligence in

Semantic Web Service Discovery. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[377] Alfred Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen. Leopoli, 1936.

[378] Alfred Tarski. The Semantic Conception of Truth: and the Foundations of Semantics.

Philosophy and phenomenological research, 4(3):341, 1944.

[379] Kilian Thiel and Michael Berthold. Node Similarities from Spreading Activation. Biso-

ciative Knowledge Discovery, 7250(Chapter 17):246–262, 2012.

[380] George Tsatsaronis, Iraklis Varlamis, and Kjetil Nørvåg. An Experimental Study on Un-

supervised Graph-based Word Sense Disambiguation. CICLing, 6008(Chapter 16):184–

198, 2010.

[381] George Tsatsaronis, Iraklis Varlamis, and Michalis Vazirgiannis. Word Sense Disam-

biguation with Semantic Networks. In Text, Speech and Dialogue, pages 219–226.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[382] George Tsatsaronis, Michalis Vazirgiannis, and Ion Androutsopoulos. Word Sense Dis-

ambiguation with Spreading Activation Networks Generated from Thesauri. In Interna-

tional Joint Conference on Artificial Intelligence, pages 1725–1730, 2007.

[383] Endel Tulving and Daniel Schacter. Priming and Human Memory Systems. Science,

247(4940):301–306, 1990.

[384] Alan Turing. Computing Machinery and Intelligence. Mind, LIX(236):433–460, 1950.

[385] Peter Turney. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In Pro-

ceedings of the 14th International Joint Conference on Artificial Intelligence, pages 491–

502, 2002.

[386] Amos Tversky and Daniel Kahneman. Judgment under Uncertainty: Heuristics and Bi-

ases. 11(4157):141–162, 1974.

[387] Ricardo Usón and Pamela Faber. Decomposing semantic decomposition: Towards a se-

mantic metalanguage in RRG. In International Course and Conference on Role and

Reference Grammar. Institute of Linguistics, Academia Sinica, Nankang, Taipei, Taiwan,

pages 1–28, 2005.

[388] Robert Van Valin Jr. An Overview of Role and Reference Grammar. Technical report, De-

partment of General Linguistics Institute for Language and Information Heinrich-Heine-

University Düsseldorf Universitätsstr. 1 40225 Düsseldorf, 2008.

[389] Jean Veronis and Nancy Ide. Word sense disambiguation with very large neural networks

extracted from machine readable dictionaries. In Proceedings of the 13th conference

on Computational linguistics-Volume 2, pages 389–394, Morristown, NJ, USA, 1990.

Association for Computational Linguistics.

290

Bibliography

[390] Tomas Vitvar, Jacek Kopecký, Jana Viskova, and Dieter Fensel. WSMO-Lite Annotations

for Web Services. In The Semantic Web: Research and Applications, pages 674–689.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[391] Stefan Voß. Meta-heuristics: The State of the Art. In Workshop on Local Search for

Planning and Scheduling, pages 1–23. Springer, Berlin, Heidelberg, 2001.

[392] Denny Vrandečić and Markus Krötzsch. Wikidata. Communications of the ACM,

57(10):78–85, 2014.

[393] Florian Wagner, Fuyuki Ishikawa, and Shinichi Honiden. QoS-Aware Automatic Ser-

vice Composition by Applying Functional Clustering. International Conference on Web

Services (ICWS), pages 89–96, 2011.

[394] Elizabeth Walter. Cambridge advanced learner’s dictionary. Ernst Klett Sprachen, 2008.

[395] Fei-Yue Wang, Jun Zhang, Xinhu Zheng, Xiao Wang, Yong Yuan, Yiaoxiao Dai, Jie

Zhang, and Liuqing Yang. Where does AlphaGo go: from church-turing thesis to Al-

phaGo thesis and beyond. IEEE/CAA Journal of Automatica Sinica, 3(2):113–120, 2016.

[396] Hongbing Wang, Xuan Zhou, Xiang Zhou, Weihong Liu, Wenyo Li, and Athman

Bouguettaya. Adaptive Service Composition Based on Reinforcement Learning. In In-

ternational Conference on Service-Oriented Computing, pages 92–107, 2010.

[397] Pengwei Wang, Zhijun Ding, Changjun Jiang, Mengchu Zhou, and Yuwei Zheng. Auto-

matic Web Service Composition Based on Uncertainty Execution Effects. IEEE Trans.

Services Computing, 9(4):551–565, 2015.

[398] Ying Wang, Weiru Liu, and David Bell. A Structure-Based Similarity Spreading Ap-

proach for Ontology Matching. In Scalable Uncertainty Management, pages 361–374.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[399] Yingxu Wang and Y Wang. Discoveries and Breakthroughs in Cognitive Informatics and

Natural Intelligence. Information Science Reference, 2009.

[400] Lori Watrous-deVersterre, Chong Wang, and Min Song. Concept chaining utilizing

meronyms in text characterization. In Proceedings of the 12th ACM/IEEE-CS joint con-

ference on Digital Libraries, pages 241–248, New York, New York, USA, 2012. ACM.

[401] Warren Weaver. Translation. Machine translation of languages, 14:15–23, 1955.

[402] Sabine Weber. Die Rolle von Synonymen bei der Dekomposition. Bachelors thesis, 2016.

Technische Universtität Berlin.

[403] Gerhard Weiss. Multiagent Systems. Intelligent Robotics and Autonomous Agents series.

MIT Press, 2 edition, 2013.

[404] Heinz Werner and Edith Kaplan. Development of Word Meaning Through Verbal Con-

text: An Experimental Study. The Journal of Psychology, 29(2):251–257, 1950.

[405] Tina Wieczorek. On Foundational Frames for Formal Modelling: Sets, Epsilon-sets and

a Model of Conception. PhD thesis, Technische Universität Berlin, 2009. Technische

Universtität Berlin.

[406] Anna Wierzbicka. Semantic primitives. Athenäum-Verlag, 1972.

[407] Anna Wierzbicka. Semantics: Primes and Universals. Oxford University Press, USA,

1996.

291

Bibliography

[408] Anna Wierzbicka. English : Meaning and Culture. Oxford University Press, 2006.

[409] Anna Wierzbicka. NSM Semantics versus Conceptual Semantics: Goals and standards

(A response to Jackendoff). Intercultural Pragmatics, 4(4):521–529, 2007.

[410] Anna Wierzbicka. The Theory of the Mental Lexicon. The Slavic Languages: An inter-

national handbook of their history, their structure and their investigation, pages 848–863,

2009.

[411] Anna Wierzbicka. Common language of all people: The innate language of thought.

Problems of Information Transmission, 47(4):378–397, 2011.

[412] Wilbur Wilbur and Karl Sirotkin. The automatic identification of stop words. Journal of

information science, 18(1):45–55, 1991.

[413] Morton Winston, Roger Chaffin, and Douglas Herrmann. A taxonomy of part-whole

relations. Cognitive science, 11(4):417–444, 1987.

[414] Ludwig Wittgenstein. Philosophische Untersuchungen . Akademie Verlag GmbH Berlin,

Frankfurt, 1998.

[415] William Woods. Understanding Subsumption and Taxonomy. The Morgan Kaufmann

Series in Representation and Reasoning, pages 45–94, 1991.

[416] Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley Publishing, 2nd

edition, 2009.

[417] Michael Wooldridge and Nicholas Jennings. Intelligent Agents: Theory and Practice.

10(2):115–152, 1995.

[418] Zhibiao Wu and Martha Palmer. Verbs Semantics and Lexical Selection. In Proceedings

of the 32nd Annual Meeting on Association for Computational Linguistics, pages 133–

138, Stroudsburg, PA, USA, 1994. Association for Computational Linguistics.

[419] Roman Yampolskiy. AI-Complete, AI-Hard, or AI-Easy - Classification of Problems in

AI. In Twenty-third Midwest Artificial Intelligence and Cognitive Science Conference,

pages 94–101, 2012.

[420] Dongqiang Yang and David Powers. Measuring semantic similarity in the taxonomy of

WordNet. In Proceedings of the Twenty-eighth Australasian conference on Computer

Science, pages 315–322. Australian Computer Society, Inc., 2005.

[421] Yeong-Ho Yu and Robert Simmons. Truly Parallel Understanding of Text. In Association

for the Advancement of Artificial Intelligence, pages 996–1001, 1990.

[422] Edward Zalta. The Stanford Encyclopedia of Philosophy. Winter 2015 Edition. The

Metaphysics Research Lab Center for the Study of Language and Information Stanford

University, Stanford, 2015.

[423] Torsten Zesch and Iryna Gurevych. Analysis of the Wikipedia category graph for NLP ap-

plications. In TextGraphs-2: Graph-Based Algorithms for Natural Language Processing,

pages 1–8, 2007.

[424] Torsten Zesch and Iryna Gurevych. Wisdom of crowds versus wisdom of linguists -

measuring the semantic relatedness of words. Natural Language Engineering, 16(1):25–

59, 2010.

292

Bibliography

[425] Torsten Zesch, Christof Müller, and Iryna Gurevych. Using Wiktionary for Comput-

ing Semantic Relatedness. In Association for the Advancement of Artificial Intelligence

(AAAI), volume 8, pages 861–866, 2008.

[426] Lei Zhang, Chong-Jun Wang, and Jun-Yuan Xie. Cost optimal planning with multi-valued

landmarks. AI Communications, 28(3):579–590, 2015.

[427] Ziqi Zhang, Anna Gentile, and Fabio Ciravegna. Recent advances in methods of lexical

semantic relatedness – a survey. Natural Language Engineering, 19(4):411–479, 2013.

[428] Zhi Zhong and Hwee Ng. It makes sense: a wide-coverage word sense disambiguation

system for free text. In Proceedings of the Association for Computational Linguistics,

System Demonstrations, pages 78–83. Association for Computational Linguistics, 2010.

[429] Cai-Nicolas Ziegler, Kai Simon, and Georg Lausen. Automatic computation of semantic

proximity using taxonomic knowledge. In Proceedings of the 15th ACM international

conference on Information and knowledge management, pages 465–474. ACM, 2006.

[430] Guobing Zou, Yixin Chen, Yang Xiang, Ruoyun Huang, and You Xu. AI Planning

and Combinatorial Optimization for Web Service Composition in Cloud Computing. In

Annual International Conference on Cloud Computing and Virtualization (CCV 2010),

pages 28–35. Global Science and Technology Forum, 2010.

[431] Guobing Zou, Yixin Chen, You Xu, Ruoyun Huang, and Yang Xiang. Towards Automated

Choreographing of Web Services Using Planning. In Association for the Advancement of

Artificial Intelligence, pages 178–184, 2012.

[432] Guobing Zou, Yanglan Gan, Yixin Chen, and Bofeng Zhang. Dynamic composition of

Web services using efficient planners in large-scale service repository. Knowledge-Based

Systems, 62:98–112, 2014.

[433] Guobing Zou, Qiang Lu, Yixin Chen, Ruoyun Huang, You Xu, and Yang Xiang. QoS-

aware dynamic composition of Web services using numerical temporal planning. IEEE

Transactions on Service Computing, 5, 2012.

[434] Geoffry Zweig and Christopher Burges. The Microsoft Research sentence completion

challenge. Technical report, Technical Report MSR-TR-2011-129, Microsoft, 2011.

293

Index

A∗, 209, 211, 212, 220, 235, 240

Admissibility, 77, 211, 214, 220

Agent, 19, 27, 31, 80, 90, 218, 259

AI planning, iii, 3, 5, 8, 19, 73, 81, 157, 209,

213, 216, 230

Artificial Intelligence Planning, see AI plan-

ning

Closure, 151

Completeness, 211, 251

Decomposition, 39, 45, 143, 149, 152, 157,

168, 247

Decomposition Depth, 113, 149, 152, 164,

173, 196, 243

Edge-Function, 128, 130, 138, 165, 170

Executability, 221, 234

Heuristic, 81, 89, 208, 211, 215, 220, 228

In-function, 121, 128, 130, 170, 172

Irreflexive, 64

Learning, 167, 192

Natural Semantic Metalanguage , see NSM

NSM, 45, 70, 90, 91, 93, 94, 168, 169, 247,

261

Ontology, 6, 31, 32, 42, 57, 62, 66, 71, 86,

92, 224, 248, 252, 259

Out-function, 121, 129, 133, 150, 169

OWL, 24, 67, 93, 103, 225, 229

OWL-S, 24, 25, 69, 76, 200, 205, 227, 229

PDDL, 69, 76, 93, 220, 255

Planning Domain Description Language, see

PDDL

Reasoning, 206

Reflexive, 151

S3 contest, 202, 205

SeMa2, 200, 203, 206

Semantic Service Match Maker, see SeMa2

Semantic Web Rule Language, see SWRL

Service Matcher, 10, 81, 200, 203, 205, 207,

222, 247, 248

SWRL, 25, 205, 207, 229

Symmetry, 151

Synonyms, 40, 91, 150, 167, 179, 188, 255

Transitivity, 151, 167

Web Ontology Language, see OWL

Web Ontology Language for Services, see

OWL-S

295

	Title page
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	List of Publications
	List of Supervised Theses
	I Introduction
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Statement
	1.4 Research Questions
	1.5 Research Approach

	2 Thesis Document
	2.1 Thesis Structure
	2.2 Contributions

	II Foundations
	3 Basic Terms and Concepts
	3.1 Agents
	3.2 Actions, Services and Capabilities
	3.3 Planning
	3.4 Graphs
	3.5 Concept
	3.6 Ontology
	3.7 Semantic
	3.8 Context
	3.9 Meaning
	3.10 Natural Semantic Metalanguage

	4 State-of-the-Art
	4.1 Semantic Theories
	4.2 Ontology
	4.3 Semantic Service Description Languages
	4.4 Semantic Decomposition
	4.5 Activation Propagation, Activation Spreading and Marker Passing
	4.6 Service Planning

	III Approach
	5 Abstract Approach
	6 Semantic Decomposition
	6.1 Natural Semantic Metalanguage
	6.2 NSM Semantic Primes in Artificial Languages
	6.3 Data Sources used in the Semantic Decomposition
	6.4 Formalization of the Semantic Graph
	6.5 Decomposition into Semantic Primes
	6.6 Conclusion

	7 Marker Passing
	7.1 Pragmatic Meaning Representation
	7.2 Marker Passing Algorithm
	7.3 Parameters of Marker Passing
	7.4 Conclusion

	8 Implementation
	8.1 Semantic Decomposition
	8.2 Marker Passing

	IV Evaluation
	9 Experiments with the Decomposition
	9.1 Parameters of the Decomposition
	9.2 Selecting Synonyms
	9.3 Selecting Decomposition Depth

	10 Experiments with the Marker Passing
	10.1 Experiment 1: Semantic Similarity Measure
	10.2 Experiment 2: Word Sense Disambiguation
	10.3 Experiment 3: Semantic Sentence Similarity Measure
	10.4 Experiment 4: Semantic Service Matching
	10.5 Experiment 5: Heuristics in AI Service Planning
	10.6 Experimental Setup
	10.7 Evaluation Results

	V Conclusion
	11 Summary
	12 Discussion
	13 Final Remarks and Future Work

	VI Bibliography, Glossary, Index, and Appendix
	A Appendix
	A.1 Tools
	A.2 Class Diagrams
	A.3 Algorithms
	A.4 Natural Semantic Metalanguage

	Bibliography
	Index

