
Semantic Deformation Transfer

Ilya Baran1 Daniel Vlasic1 Eitan Grinspun3 Jovan Popović1,2,4

1Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

2Advanced Technology Labs

Adobe Systems Incorporated

3Columbia University
4University of Washington

Figure 1: Semantic deformation transfer learns a correspondence between poses of two characters from example meshes and synthesizes
new poses of the target character from poses of the source character. In this example, given five corresponding poses of two characters (left),
our system creates new poses of the bottom character (right) from four poses of the top character.

Abstract

Transferring existing mesh deformation from one character to an-
other is a simple way to accelerate the laborious process of mesh
animation. In many cases, it is useful to preserve the semantic char-
acteristics of the motion instead of its literal deformation. For ex-
ample, when applying the walking motion of a human to a flamingo,
the knees should bend in the opposite direction. Semantic deforma-
tion transfer accomplishes this task with a shape space that enables
interpolation and projection with standard linear algebra. Given
several example mesh pairs, semantic deformation transfer infers
a correspondence between the shape spaces of the two characters.
This enables automatic transfer of new poses and animations.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Hierarchy and geometric transfor-
mations I.3.7 [Computer Graphics]: Three Dimensional Graphics
and Realism—Animation

Keywords: Deformation, rigging, animation

1 Introduction

Advancements in modeling, deformation, and rigging have made
the creation of a single character pose a relatively simple task, but
creating mesh animations is still time-consuming and laborious. At
the same time, recent progress in mesh-based performance capture
and deformation transfer has led to an increasing number of avail-
able animations. As a result, reusing mesh animation is emerging
as an important problem.

Deformation transfer [Sumner and Popović 2004] provides one pos-
sible solution. Given a correspondence between two meshes, it
copies the deformations of the triangles of the first mesh onto those
of the second. The key assumption is that the correspondence is
literal: matched parts of the meshes move in geometrically iden-
tical ways. Although deformation transfer works well for similar
characters and is able to transfer subtle motion details, semantic
correspondence is often desirable. The distinction between literal
and semantic correspondence can be illustrated with an example
of two mesh characters, Alex and Bob. If Alex is walking nor-
mally and Bob is walking on his hands, literal correspondence maps
Alex’s legs to Bob’s legs and Alex’s arms to Bob’s arms, while se-
mantic correspondence maps Alex’s legs to Bob’s arms and, possi-
bly, vice versa (see Figure 1). The ability to transfer motion with
semantic correspondence expands the range of potential applica-
tions, enabling transfer to drastically different characters that move
in unique ways.

Some existing methods could be adapted to transfer motion with
semantic correspondence, but with drawbacks. If it is possible to
find a geometrically corresponding set of end effectors, their mo-
tions can be retargeted [Gleicher 1998] and the rest of the mesh
could be inferred with MeshIK [Sumner et al. 2005]. Alterna-
tively, if the motions are primarily skeletal, the user can build a
skinning model for the target mesh and use a skeletal retargetting

Csrc

Ctgt

Weights: (0.7, 0.3)

Source shape space

Target shape space

Input pose

Output pose

Project

Interpolate

Ctgt

Csrc

−1

Target examples

Source examples

Figure 2: Semantic deformation transfer maps the input pose into
the source shape space, projects it onto the affine span of example
poses, uses the obtained weights to interpolate target example poses
in the target shape space, and reconstructs the target pose.

method [Dontcheva et al. 2003; Hsu et al. 2004]. Both solutions
complicate workflow and impose undesirable constraints on the
types of transfer that can take place and on the information that
the user has to provide. Properly retargetting end effectors requires
adjusting the entire time curve, while a skeletal model may not be
able to capture the full subtlety of the poses.

Semantic deformation transfer allows the user to specify semantic
correspondence (instead of a literal mesh correspondence) by pro-
viding examples of corresponding poses of Alex and Bob. To infer
the correspondence between two characters and map new poses of
one onto the other, semantic deformation transfer represents each
pose as a point in a high-dimensional Euclidean “shape space,” en-
abling the use of standard linear algebra tools. Using the example
poses, semantic deformation transfer constructs a linear map from
the source to the target shape space. Given a new source pose, se-
mantic deformation transfer encodes it into the source shape space,
maps it to the target shape space, and reconstructs the result to ob-
tain a corresponding target pose (see Figure 2).

For semantic deformation transfer to work, the shape space must
satisfy two requirements: linear interpolation between points in the
shape space must produce blended poses without artifacts, and pro-
jection of a pose onto a subspace of the shape space must produce
the most similar pose in the subspace to the original. We provide a
shape space that meets these requirements.

2 Shape Space

The proper choice of the shape space is critical for semantic de-
formation transfer. Several existing mesh representations [Sumner
et al. 2005; Lipman et al. 2005; Kircher and Garland 2008] come
close to satisfying this requirement and we combine them into a
hybrid representation that enables semantic deformation transfer.

2.1 Transfer

A shape space for a particular mesh connectivity is defined by an
encoding map C: R

3n → R
m that takes mesh vertex positions and

outputs a coordinate vector, and by a reconstruction map C−1 that

Figure 3: The rest pose from Figure 1 is corrupted by a small
amount of high frequency noise (left). Projecting it to the subspace
spanned by the five training poses in Figure 1 recovers the pose,
if the projection is done in the space of deformation gradient co-
ordinates, or our patch-based LRI coordinates, but not in linear
rotation-invariant coordinates. This projection error causes shak-
ing artifacts when transferring from an imperfect source motion us-
ing LRI coordinates.

returns vertex positions from a coordinate vector. The reconstruc-
tion of an encoding must return the original vertex positions (but we
do not require multiple encodings to have distinct reconstructions).

Semantic deformation transfer relies on two basic operations in the
shape space R

m:

1. Interpolation: Given p example poses x1, . . . ,xp and p
weights w1, . . . , wp such that

∑

i
wi = 1, compute

∑

i
wixi,

the affine combination of the poses.

2. Projection: Given p example poses x1, . . . ,xp and another
pose q, compute p weights w1, . . . , wp that minimize

∥

∥

∥

∥

∥

q −

p
∑

i=1

wixi

∥

∥

∥

∥

∥

subject to
∑

i

wi = 1.

Letting the cross denote the pseudoinverse, the solution is:

w2

...
wp

= [x2 − x1 x3 − x1 . . . xp − x1]

†[q− x1],

and w1 = 1 −
∑p

i=2 wi.

We focus on affine rather than linear interpolation and projection
because the origin of the shape space has no special meaning for
the transfer.

A shape space is suitable for interpolation if affine combinations of
several poses do not result in shrinking or other artifacts (at least
when the coefficients are not too negative). Suitability for pro-
jection means that the projection of a pose onto an affine span of
other poses must retain the characteristics of the unprojected pose
as much as possible. For example, random high-frequency noise
must be nearly orthogonal to meaningful pose changes (see Fig-
ure 3) and deformations in different parts of the mesh should be
nearly orthogonal to each other (see Figure 5).

A shape space that supports interpolation and projection enables
semantic deformation transfer with the following simple algorithm
(Figure 2):

1. Given p pairs of example poses, encode them into the source
and target shape spaces using Csrc and Ctgt. Precompute the
pseudoinverse (using singular value decomposition) for pro-
jection in the source space.

Figure 4: Interpolating halfway between two “poses” of this cone,
P1 and P2, fails with deformation gradient coordinates, but works
with patch-based LRI coordinates.

2. Given a new source pose, encode it into the source shape
space and use projection to express it as an affine combina-
tion of the source example poses with weights w1, . . . , wp.

3. Use these weights to interpolate the corresponding target ex-
ample poses in their shape space and use C−1

tgt to reconstruct
the resulting pose.

Together, the projection and interpolation comprise a linear map
from the source shape space to the target shape space.

The above method transfers the aspects of the pose spanned by the
example poses. However, global rotation and translation often de-
pend on the pose in a complicated way (e.g. through foot plants or
dynamics), and the above method does not take this into account.
We therefore ignore the reconstructed global orientation and use
heuristics for some of our animations: we apply the average rota-
tion from the source to the target directly and obtain the translation
by treating the lowest vertex of the output motion as a foot plant.

2.2 Existing Shape Representations

In choosing the shape space, an obvious possibility is to use the ver-
tex positions (C is the identity map). This is known to work poorly
for interpolation because linearly blending between rotated parts
of the mesh does not interpolate rotation and causes shrinking and
other artifacts. The inadequacy of vertex positions has led to the
development of many mesh representations [Botsch and Sorkine
2008]. Linear mesh representations (C is a linear map), such as
Laplacian coordinates, are also unsuitable for interpolation because
they produce the same artifacts as vertex positions: an affine combi-
nation in such a space is equivalent to the same affine combination
in the vertex position space.

An approach that produces excellent interpolation results is to de-
fine a Riemannian metric (instead of the Euclidean metric) on
the vertex position space that penalizes non-isometric deforma-
tion [Kilian et al. 2007]. However, computation in this space is
much more difficult and expensive than in a Euclidean space.

Deformation Gradients One approach to handling rotations is
to represent a mesh using deformation gradients to encode individ-
ual face transformations. Given two poses, the deformation gradi-
ent of a mesh face is the matrix that transforms the edge and normal
vectors of the face from the first pose to the second. Since transla-
tion does not affect the edge and normal vectors, translations are not
recorded in the deformation gradient. Let v1,v2,v3 be the three
vertices of a face and let n be its scaled normal, computed using

n = (v2 − v1) × (v3 − v1)/
√

‖(v2 − v1) × (v3 − v1)‖,

following Sumner and Popović [2004]. Let ṽ1, ṽ2, ṽ3, and ñ be
the corresponding vertices and scaled normal in the rest pose. The

Figure 5: The span of the poses P1 and P2 on the left defines the
configuration space of the character’s left knee. If we take a pose
(middle) and project it onto this subspace, we should recover the
knee configuration. The global rotation throws deformation gra-
dient coordinates off (right), while projecting in patch-based LRI
coordinates correctly recovers the bent knee.

deformation gradient is the following 3 × 3 matrix:

D = [v2 − v1 v3 − v1 n] [ṽ2 − ṽ1 ṽ3 − ṽ1 ñ]−1 .

A mesh can be represented by recording the deformation gradients
of all of the faces relative to a rest pose. For example, MeshIK uses
such a representation for projection [Sumner et al. 2005]. How-
ever, linearly interpolating deformation gradients does not preserve
rotations. Therefore, for interpolation, MeshIK performs a polar
decomposition of each deformation gradient QS = D and stores S
and log Q separately, allowing rotations to be interpolated in loga-
rithmic space.

This representation becomes problematic when the mesh undergoes
a large global rotation relative to the rest pose (imagine interpo-
lating the rest pose and a perturbed rest pose rotated 180 degrees:
each face rotation would choose a different interpolation path, de-
pending on its perturbation). Factoring out the average deformation
gradient rotation (found by using polar decomposition to project
∑

f∈faces Qf to a rotation matrix) and storing it separately avoids

this problem. We refer to this representation as deformation gradi-
ent coordinates.

Even with the global rotation factored out, this representation has
two more drawbacks. For interpolation, factoring out the average
rotation may not be enough and interpolating between two poses in
which some faces have rotated more than 180 degrees will result in
discontinuity artifacts (Figure 4). These types of artifacts can often
arise in deformations of tails, snakes, and tentacles, for example.
For projection, the deformation gradient coordinates are not locally
rotation invariant, resulting in dependency between degrees of free-
dom that should be independent. Figure 5 shows an experiment in
which we project a pose with a bent back and a bent knee onto the
subspace of poses spanning possible knee configurations. In defor-
mation gradient coordinates, the dependence between the bent back
and bent knee results in an incorrect projection.

Rotation-Invariant Coordinates Linear rotation-invariant
(LRI) coordinates [Lipman et al. 2005] define a coordinate frame
at each mesh vertex and encode that vertex’s one-neighborhood
in essentially cylindrical coordinates in that frame. Because the
coordinate frames themselves are not stored, this representation is
rotation-invariant. The mesh is efficiently reconstructed by first
finding connection maps that encode relationships between frames.
A connection map is a rotation matrix that represents a frame
in the coordinates of an adjacent frame. Using the connection
maps, the reconstruction algorithm solves a large least-squares

system to reconstruct the absolute frame orientations, and then
solves another least squares system to reconstruct vertex positions.
Kircher and Garland’s relative blending [2008] is similar, but
frames are non-orthonormal, defined on mesh faces instead of
vertices and the connection maps are stored explicitly, rather than
encoded in one-neighborhoods. Pyramid coordinates [Sheffer and
Kraevoy 2004] also store local geometry in a rotation-invariant
manner, but the reconstruction is nonlinear and thus more costly.
LRI coordinates work very well for interpolation (as they were
designed with that purpose in mind) and we use them as a starting
point to construct our shape space.

The sole reliance on local orientation relationships makes LRI co-
ordinates noise-sensitive for projection, as shown in Figure 3. For
semantic deformation transfer, this leads to noticeable shaking ar-
tifacts, exaggerating imperfections in the input motion (see the ac-
companying video). We address this problem by defining frames on
mesh patches larger than just one-neighborhoods of vertices. In ad-
dition to making LRI robust to noise, using larger patches speeds up
reconstruction because a much smaller system needs to be factored
for each pose.

2.3 Patch-Based LRI Coordinates

To define our patch-based LRI coordinates, we extend LRI by par-
titioning the mesh faces into several contiguous disjoint patches,
factoring out the average rotations of these patches, and using these
average rotations as frames. This extension requires some care:

• Extending cylindrical coordinates to larger patches directly
does not work because deformations of larger patches are
likely to have faces that rotate relative to the patch frame. As
with Cartesian coordinates, linearly interpolating between ro-
tated triangles in cylindrical coordinates does not (in general)
interpolate the rotation. We therefore encode the local ge-
ometry of the larger patches using polar decompositions of
deformation gradients.

• LRI reconstructs connection maps between frames from over-
lapping vertex neighborhoods. Using overlapping patches
would make reconstruction more expensive: to solve for the
patch frames, we would first need to reconstruct the individual
patches from local deformation gradients and then reconstruct
the entire model from deformation gradients again (so as not
to have seams). Instead, like Kircher and Garland [2008], we
store the connection maps explicitly, but unlike them, we use
orthonormal frames because this avoids global shear artifacts
in reconstruction that our experiments revealed (see video).

• We encode rotations with matrix logarithms. Compared to
the nonlinear quaternion interpolation, linearly blending ma-
trix logarithms is not rotation-invariant and introduces error.
Because this interpolation error is smallest when rotations are
small or coaxial, we use deformation gradients relative to a
rest pose. For the same reason, unlike LRI, we work with
patch frames relative to the rest pose. As a result, when we
encode the rest pose, all of our connection maps are the iden-
tity. Our experiments confirmed that the results are not sensi-
tive to the choice of the rest pose, as long as it is a reasonable
pose for the character.

Encoding Let Df be the deformation gradient of mesh face f
relative to the rest pose and let QfSf = Df be the polar decom-
position of this deformation gradient. Let Q̄ be the average of all
Qf ’s (computed by orthonormalizing

∑

f
Qf using polar decom-

position). Let P1, . . . , Pk be the patches and let p(f) be the index
of the patch to which face f belongs. Let G1, . . . ,Gk be the aver-
age rotations of the deformation gradients in each patch. We encode

P
at

ch
2

P
at

ch
1

Q1

Q2

Q3

Q4

mean

mean

mean

Vertex mean
D4

D3

D2

D1

decomposition

pose
Current

pose
Rest

Polar

fa
ce

ro
ta

ti
o

n
s

R
el

at
iv

e

G2

G−1

2
G1

S1

S2

S3

S4

v̄

Q̄

G1,2

G−1

1
Q1

G−1

1
Q2

G−1

2
Q3

G−1

2
Q4

G1

Figure 6: A mesh with four faces and two patches is encoded into
patch-based LRI coordinates. The rotation matrices are stored as
logarithms (i.e. as a vector whose direction is the axis of rotation
and whose magnitude is the angle.)

into patch-based LRI coordinates by storing the following in a co-
ordinate vector (Figure 6):

• the scale/shear components: Sf for each face,

• the mean vertex position v̄, and the mean face rotation log Q̄,

• connection maps between patches: log (Gi,j) for each pair
(i, j) of adjacent patches, where Gi,j = (Gj)

−1Gi,

• rotations within patches: log
(

(Gp(f))
−1Qf

)

for each face.

Reconstruction Given such a coordinate vector, we reconstruct
the vertex positions using the following algorithm:

1. We first reconstruct each patch’s average rotation. To have
rotation-invariance, we only store the relative rotations Gi,j

between patches, so reconstruction finds G1, . . . ,Gk that
minimize

∑

{(i,j)|Pi and Pj adjacent}

‖Gi − GjGi,j‖
2.

Because the Gj’s are 3-by-3 matrices, this can be converted
into a linear least squares system and solved using sparse
Cholesky factorization. To make the system well-posed, we
select an arbitrary Gi and constrain it to the identity matrix.
Although the system needs to be refactored for every pose, it
is small (its size depends only on the number of patches) and
this solve is not a bottleneck in the reconstruction. The re-
sulting matrices may not be orthonormal, so at the conclusion
of the least-squares solve we use the polar decomposition to
project each Gi to the nearest rotation matrix.

2. Next, we reconstruct the deformation gradient for each mesh
face: Df = QfSf . The matrix Sf is read directly from
the coordinate vector and Qf is computed by multiplying the
average patch rotation Gp(f) found in step 1 by the relative
rotation of the face within the patch.

3. The deformation gradients do not give us absolute vertex posi-
tions, but applying a deformation gradient to an edge vector of
the rest pose gives a desired edge vector for the current pose.
To reconstruct the vertex positions v′ (with arbitrary global

translation and rotation), we therefore perform a least squares
solve, similar to Kircher and Garland [2008]. For each face f
with corners i1, i2, i3, we find v′

1, . . . ,v
′
n that minimize

∑

f

3
∑

j=1

(v′
ij+1

− v
′
ij
− Df (ṽij+1

− ṽij
))2,

where ṽ are the rest pose vertex positions and j + 1 is taken
modulo 3. To make this system well-posed, we constrain an
arbitrary vertex to the origin. This system can be factored
once for a given mesh connectivity using a sparse Cholesky
solver and each new pose requires only a back-substitution.

4. We now have a set of vertex positions, but their global position
and orientation is arbitrary. We rigidly transform the vertices:

v = Q̄(Q̄′)−1(v′ − v̄
′) + v̄,

where v′ is the vertex reconstructed in step 3, v̄′ is the average
reconstructed vertex position, Q̄′ is the average reconstructed
face orientation, and v̄ and Q̄ are the desired global position
and orientation stored in the coordinate vector.

Weights Different elements of the coordinate vector have dif-
ferent scales and we therefore multiply the elements by different
weights when encoding (and divide during reconstruction). The
relative weights of individual coordinates do not affect interpola-
tion, but need to be chosen properly for the projection to work well.
The weight on the global motion is nearly zero because our trans-
fer model does not take global motion into account. The weight of
each face rotation within its patch is set to 1. The weight of the

relative rotation log Gi,j is 4
√

|Pi||Pj |, where |Pi| is the number of
faces in patch i (we use the fourth root because the l2 norm squares
the weights). We set a small weight, 0.1, on the scale components
because we primarily consider rotation to be a good descriptor of
pose. These weights help preserve large-scale shape changes in fa-
vor of smaller-scale ones. In principle, we could have individual
face weights depending on the face area, but our meshes are rela-
tively uniformly sampled and this has not been necessary.

Partition Two considerations apply when partitioning the mesh
into patches. Too many small patches tends to result in shaking ar-
tifacts, similar to LRI. On the other hand, a patch that is too large
can contain faces rotated by more than 180◦ relative to the patch
frame, leading to artifacts like those for deformation gradient co-
ordinates (see Figure 4). A conservative prediction of the range of
poses minimizes the risk of these artifacts, although they might still
occur. Segmenting a human into five to 50 patches works well in
our tests. To partition the mesh into patches, we apply the first stage
of the reduced deformable model construction algorithm by Wang
and colleagues [2007] to our example poses. It starts with each face
being a separate patch and merges patches in a bottom-up fashion,
while minimizing the error of assuming all faces of a patch deform
the same way. We set the error tolerance very high to obtain be-
tween five and fifteen patches for each model. Figure 7 shows a
partition of one of our test characters.

3 Specifying Semantic Correspondence

Combining Existing Poses We assume that the user has some
poses of the source and target characters, but not necessarily enough
corresponding pose pairs to properly define a semantic correpon-
dence. Our user interface provides a tool to generate new poses, to
be used as examples, by combining elements of existing ones. For
example, given a pose with a bent knee and a pose with a straight

Figure 7: For processing the gallop with patch-based LRI coordi-
nates, we split the horse mesh into ten patches.

leg, the user can select the knee region and apply the bent knee to
the straight leg pose. We accomplish this by transferring the rele-
vant LRI coordinates [Lipman et al. 2005]. The user can select a re-
gion of the mesh in one pose, which determines a subset of LRI co-
ordinates (associated with the selected vertices). The user can then
apply the shape of that region to another pose. The user can either
copy the selected region as-is, or use interpolation/extrapolation to
fine-tune its shape.

Extracting Source Poses The key to successful semantic de-
formation transfer is for the set of example poses of the source char-
acter to span the relevant aspects of the motion. We can provide
the user with such a set from the motion automatically by finding
frames that are farthest from each other. Let Vi be the vertex po-
sitions of the source mesh in i = 1 . . . p example poses. We start
with a rest pose V1. We set V2 to be the frame of the motion far-
thest from V1, and in general Vi to be the frame farthest from the
subspace spanned by V1 through Vi−1. All distances are measured
in the shape space of patch-based LRI coordinates. This leaves it to
the user to specify only the target’s corresponding poses.

Splitting Independent Parts In many cases, the user can re-
duce the amount of work to construct example poses by decompos-
ing a semantic correspondence into correspondences between inde-
pendent parts of the meshes. For example, for transfering Alex’s
normal walk to Bob’s walk on his hands, the mapping of Alex’s up-
per body to Bob’s lower body can be specified independently from
the mapping of Alex’s lower body to Bob’s upper body. When the
user specifies such a decomposition on Alex, our prototype UI ex-
tracts Alex’s upper body motion separately from his lower body
motion (using LRI coordinates from the rest pose to keep the re-
mainder of Alex fixed). It then uses the procedure in the previous
paragraph to extract representative poses from both the upper body
and the lower body motions. The result is that half of the poses
need only the upper body posed and half of the poses only need the
lower body posed.

4 Results

We applied our method to publicly available mesh animations from
performance capture [Vlasic et al. 2008] and deformation trans-
fer [Sumner and Popović 2004]. The motions we created (available
in the accompanying video) are listed in Table 1.

Although we did not spend much time optimizing our implemen-
tation, it is quite fast. The flamingo is the largest mesh we tested
at 52,895 triangles. Encoding a frame of the flamingo into patch-
based LRI coordinates takes 0.22 seconds and reconstruction takes
0.25 seconds on a 1.73 Ghz Core Duo laptop. Given the exam-
ple poses, applying semantic deformation transfer to the 175 frame
crane animation takes 136 seconds, including reading the data from

Source motion Target character Example poses

Crane Flamingo 7
Swing Hand 12

Alex March Handstand 5
Bob March Xavier 7

Gallop Alex and Bob 8 and 6
Squat Cone 2

Table 1: Generated results (the number of example poses includes
the rest pose).

disk, partitioning both meshes into patches, building the linear map,
applying it, and reconstructing.

5 Discussion and Conclusion

With semantic deformation transfer we obtained a variety of useful
results in an intuitive manner (Figure 8). The ability to treat a pose
as a point in Euclidean space enables the use of tools from linear
algebra and simplifies processing.

Our simple transfer model, while adequate for many motions, is in-
capable of representing nonlinear requirements (e.g. the target knee
should only bend when the source knee is bent more than 45 de-
grees). A more sophisticated model, such as radial basis functions,
could handle a wider range of transfers. Our shape space makes it
possible to explore these directions.

Although projection in our shape space produces intuitive results,
we do not know whether distance in the shape space is a good mea-
sure of pose dissimilarity, or, indeed how to measure pose dissimi-
larity at all. Formulating such a metric would enable a quantitative
comparison of different shape spaces and provide a principled way
of choosing weights for our coordinates.

Given the patch-based nature of our shape space representation, one
might expect to see seam artifacts between patches. A seam artifact
appears when the interpolated rotation of a face differs significantly
depending on the patch to which it is assigned. This difference re-
sults from the inconsistency between logarithmic blending of con-
nection maps and face rotations relative to the frame. This inconsis-
tency tends to be small and is masked somewhat by the least squares
vertex reconstruction step, so the effects are not visible in any of
our examples. We constructed synthetic deformations of a cone in
which faces rotate along different axes from the rest of the patch
and were able to get slight seam artifacts to appear when blending
with patch-based LRI coordinates . Should seam artifacts appear in
a real motion, they could be eliminated by making the partition into
patches ”soft.”

Determining the minimum amount of information necessary to
specify a transfer is an interesting conceptual and practical chal-
lenge: while a surface correspondence enables literal deformation
transfer and a few example poses enable semantic deformation
transfer, can we perform semantic motion transfer using example
motion clips? Different characters move with different rhythms in
a way that is difficult to capture with just a mapping between their
pose spaces. Building a model that takes time or even physics into
account could lead to much higher quality automatically generated
animations than what is currently possible.

6 Acknowledgments

We thank the anonymous reviewers for helpful comments that
greatly improved the exposition. Wojciech Matusik helped us set
the early course on exploring geometric representations for moving
meshes. Robert Wang and Yeuhi Abe provided valuable feedback
and editing. Thanks to Tom Buehler for help with the video and to

Figure 8: A dancer’s pose is mapped to a large hand and a man’s
pose to a flamingo.

Emily Whiting for narrating it. This work was supported in part
by the NSF (MSPA Award No. IIS-05-28402, CSR Award No.
CNS-06-14770, CAREER Award No. CCF-06-43268, grant No.
CCF-0541227). This work was also supported by grants from the
Singapore-MIT Gambit Game Lab, Adobe Systems, Pixar Anima-
tion Studios and by software donations from Autodesk and Adobe
Systems.

References

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. IEEE Transactions on Visualization
and Computer Graphics 14, 1, 213–230.

DONTCHEVA, M., YNGVE, G., AND POPOVIĆ, Z. 2003. Layered
acting for character animation. ACM Transactions on Graphics
22, 3 (July), 409–416.

GLEICHER, M. 1998. Retargetting motion to new characters.
In Proceedings of SIGGRAPH 98, Computer Graphics Proceed-
ings, Annual Conference Series, 33–42.

HSU, E., GENTRY, S., AND POPOVIĆ, J. 2004. Example-based
control of human motion. In 2004 ACM SIGGRAPH / Euro-
graphics Symposium on Computer Animation, 69–77.

KILIAN, M., MITRA, N. J., AND POTTMANN, H. 2007. Geomet-
ric modeling in shape space. ACM Transactions on Graphics 26,
3 (July), 64:1–64:8.

KIRCHER, S., AND GARLAND, M. 2008. Free-form motion pro-
cessing. ACM Transactions on Graphics 27, 2 (Apr.), 12:1–
12:13.

LIPMAN, Y., SORKINE, O., LEVIN, D., AND COHEN-OR, D.
2005. Linear rotation-invariant coordinates for meshes. ACM
Transactions on Graphics 24, 3 (Aug.), 479–487.

SHEFFER, A., AND KRAEVOY, V. 2004. Pyramid coordinates
for morphing and deformation. In Proceedings of the 3D Data
Processing, Visualization, and Transmission, 2nd International
Symposium on (3DPVT’04), 68–75.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer for
triangle meshes. ACM Transactions on Graphics 23, 3 (Aug.),
399–405.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ,
J. 2005. Mesh-based inverse kinematics. ACM Transactions on
Graphics 24, 3 (Aug.), 488–495.

VLASIC, D., BARAN, I., MATUSIK, W., AND POPOVIĆ, J. 2008.
Articulated mesh animation from multi-view silhouettes. ACM
Transactions on Graphics 27, 3 (Aug.), 97:1–97:9.

WANG, R. Y., PULLI, K., AND POPOVIĆ, J. 2007. Real-time
enveloping with rotational regression. ACM Transactions on
Graphics 26, 3 (July), 73:1–73:9.

