
JOURNAL OF
BIOMEDICAL SEMANTICS

Leroux and Lefort Journal of Biomedical Semantics  (2015) 6:16 

DOI 10.1186/s13326-015-0012-6

RESEARCH ARTICLE Open Access

Semantic enrichment of longitudinal clinical
study data using the CDISC standards and the
semantic statistics vocabularies
Hugo Leroux1*† and Laurent Lefort2†

Abstract

Background: There is an increasing recognition of the need for the data capture phase of clinical studies to be

improved and for more effective sharing of clinical data. The Health Care and Life Sciences community has embraced

semantic technologies to facilitate the integration of health data from electronic health records, clinical studies and

pharmaceutical research. This paper explores the integration of clinical study data exchange standards and semantic

statistic vocabularies to deliver clinical data as linked data in a format that is easier to enrich with links to

complementary data sources and consume by a broad user base.

Methods: We propose a Linked Clinical Data Cube (LCDC), which combines the strength of the RDF Data Cube and

DDI-RDF vocabulary to enrich clinical data based on the CDISC standards. The CDISC standards provide the

mechanisms for the data to be standardised, made more accessible and accountable whereas the RDF Data Cube and

DDI-RDF vocabularies provide novel approaches to managing large volumes of heterogeneous linked data resources.

Results: We validate our approach using a large-scale longitudinal clinical study into neurodegenerative diseases.

This dataset, comprising more than 1600 variables clustered in 25 different sub-domains, has been fully converted

into RDF forming one main data cube and one specialised cube for each sub-domain. One sub-domain, the

Medications specialised cube, has been linked to relevant external vocabularies, such as the Australian Medicines

Terminology and the ATC DDD taxonomy and DrugBank terminology. This provides new dimensions on which to

query the data that promote the exploration of drug-drug and drug-disease interactions.

Conclusions: This implementation highlights the effectiveness of the association of the semantic statistics

vocabularies for the publication of large heterogeneous data sets as linked data and the integration of the semantic

statistics vocabularies with the CDISC standards. In particular, it demonstrates the potential of the two vocabularies in

overcoming the monolithic nature of the underlying model and improving the navigation and querying of the data

from multiple angles to support richer data analysis of clinical study data. The forecasted benefits are more efficient

use of clinicians’ time and the potential to facilitate cross-study analysis.
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Background
In the last decade, the Health Care and Life Sciences com-

munity and pharmaceutical industry have wholeheartedly

adopted [1] clinical study data exchange technologies

based on XML to capture clinical study data. This is

largely due to the recent strategy [2] of the Food and

Drug Administration (FDA) in promoting the Clinical

Data Interchange Standards Consortium (CDISC) suite

of standards to facilitate data submission and exchange.

Furthermore, the move by EU and US regulating bod-

ies to open access to clinical data [3,4] will also foster

the adoption of tools supporting clinical data manage-

ment standards, especially those that can easily be linked

to methods and tools developed for Government Linked

Data and Linked Science Data.

CDISC has developed a set of platform-independent

data standards [5] for the collection and dissemination of

clinical trial data. The CDISC Operational Data Model

(ODM) is an XML format that facilitates the exchange

of clinical data captured during a clinical study. ODM-

based files contain the study data and the associated

descriptions of the data items, their groupings into Case

Report Forms (CRFs), which are electronic documents to

record the study data, and the associated questions and

code lists. Furthermore, the FDA has mandated the use

of other CDISC standards in clinical studies. In particu-

lar the CDISC Study Data Tabulation Model (SDTM) is

used to facilitate studymetadata submissions and improve

the accountability of the study data. The role of the

CDISC Clinical Data Acquisition Standards Harmoniza-

tion (CDASH) is to standardise the generation of CRFs for

clinical studies. The implementation of the ODM, STDM

and CDASH standards in Clinical Data Management

Systems (CDMS) has enabled larger and more diverse

longitudinal clinical research studies and increased the

capability of users to exchange and combine data [6].

Challenges relating to the cross-study analysis of clinical

study data

A number of limitations relating to the reporting of results

derived from current clinical trial endeavours were iden-

tified by van Valkenhoef et al. [7]. In particular, they

stress that: “current infrastructure is focused on text-based

reports of single studies, whereas efficient evidence-based

medicine requires the automated integration of multiple

clinical trials from different information resources” [7].

They specifically advocate for a comprehensive record of

clinical trials to be made available in a machine under-

standable format that would improve the efficiency of

evidence-based decision making but more importantly

that decisions could then finally be explicitly linked back

to the underlying data. Chief among their list of topics

for future research directions are: (i) the development of

a comprehensive data model for clinical trials and their

aggregate level results; and (ii) the development of a plat-

form to share structured systematic review data sets.

Our contribution: semantic enrichment

This research builds upon existing work [8] to semanti-

cally enrich longitudinal clinical study data, based on the

CDISC standards, using semantic statistic vocabularies,

namely the RDF Data Cube and DDI-RDF vocabularies.

We propose a Linked Clinical Data Cube, a set of mod-

ular data cubes that helps manage the multi-dimensional

and multi-disciplinary nature of the clinical data. The

RDF Data Cube vocabulary [9] is used to build multi-

dimensional data cubes and supports flexible access to the

data via thematic slices. The DDI-RDF Discovery vocab-

ulary [10] is effective at encoding the study-specific data

dictionary embedded in the CDISC ODM standard as

linked data and helps in managing the link between the

data cube variables and the data.

Our objective is to make the data captured within the

Australian, Imaging, Biomarker and Lifestyle study of

Ageing (AIBL) [11] seamlessly available to researchers

who wish to engage in cross-domain analysis of the data.

We achieve our goal by semantically enriching the data,

when possible, with external data sources. Our approach

is four-fold:

Phase 1: Integrating the CDISC ODM data model with

the semantic statistic vocabularies. We describe how the

clinical data available in CDISC ODM can be mapped to

the RDF Data Cube and DDI-RDF Discovery vocabulary

to form the Linked Clinical Data Cube.

Phase 2: Splitting the data into modularised cubes. We

outline the design principles of splitting the data intomore

modularised and manageable groupings to provide alter-

native mechanisms for accessing and querying the data.

The RDF Data Cube and DDI-RDF vocabularies are piv-

otal elements of our slicing strategy and of the URI scheme

defined for our implementation.

Phase 3: Enriching the LCDC with the CDISC standards.

We discuss how useful the benefits of clinical study data

to adhering to the CDISC CDASH and SDTM standards

then elaborate on guidelines to classify the data into the

broad categories.

Phase 4: Mapping the data to drug terminologies. We

demonstrate the utility of the LCDC bymapping the med-

ications data derived from the AIBL study to selected

online drug terminologies.

The AIBL study

AIBL is a prospective study of a large group (1112) of

individuals residing in two Australian cities, Perth and

Melbourne, aged over 60 years who are either clas-

sified as cognitively healthy, or meet clinical criteria

for mild cognitive impairment or Alzheimer’s Disease
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and who have agreed to reassessment every 18 months.

Assessment comprises extensive study of cognitive func-

tion, neuroimaging, blood biomarkers and lifestyle (diet

and exercise) characteristics [11]. By combining these

investigations in a prospective fashion, the AIBL study

contributes to understanding the development and pro-

gression of Alzheimer’s Disease through the prodromal,

preclinical and clinical stages of the disease [12]. It is vital

for the clinical data to be reported at regular intervals as

the study progresses. To facilitate this task, the study data

is manually entered into the OpenClinica Clinical Data

Management System (CDMS) by study staff [13]. Figure 1

describes the AIBL study with the fivemain categories and

sub-categories.

OpenClinica [14] is an open-source CDMS for collect-

ing and managing clinical data. The AIBL study data was

successfully migrated to this platform in 2011 [13] and has

been live since August 2011. OpenClinica supports the

creation of customisable studies and the design of user-

defined Case Report Forms (CRFs) using an Excel spread-

sheet and adheres to the CDISC ODM standard. The

data collected for the AIBL study covers multiple domains

as shown in Figure 1. This dataset comprises more than

1600 variables clustered into 25 different sub-domains.

The study has been split into five themes: Study, Clinical,

Cognitive, Imaging and Lifestyle. The Study theme com-

prises administrative information that, for the most part,

is not shared within the cube. Table 1 depicts the total

number of instances for the various LCDC classes organ-

ised by theme. The total number of variables, in the

table, is smaller than 1600 because the generation to RDF

suppresses duplicates.

Article outline

In the remainder of this article, we outline an approach

to semantically enrich clinical study data, in particu-

lar patient-reported medication usage, and facilitate their

delivery to clinical researchers. In particular, we outline

how the use of semantic statistics vocabularies is effective

at organising the data into a LCDC. We also elaborate on

the approach taken to categorise the AIBL data set into

CDISC CDASH and SDTM domains and the work car-

ried out to translate the CDISC standards into RDF. This

leads into the discussion on the design principles for the

LCDC and of the benefits of splitting the data into more

modularised groupings.

Methods
The LCDC [15] comprises one main cube and several

specialised cubes, one for each domain within the study,

that integrates the CDISC ODM data model with the RDF

Data Cube and DDI-RDF vocabularies. We elaborate fur-

ther on the rationale behind this integration below. The

LCDC is designed around a set of cubes, slices, obser-

vation groups and observations and these are discussed

further below. The ability to standardise the clinical data

in order to facilitate cross-domain and, possibly, cross-

study analysis of the data is one of the salient objectives

of the LCDC. To this end, we describe how the study

variables have been enriched by the CDISC CDASH and

SDTM standards. Aside from providing a standardised

representation to the study variables and grouping them

along the various CDISC categories, this enrichment pro-

cess allows for seamless substitution of variable names in

the navigation and querying of the clinical study. Finally,

Figure 1 The Australian imaging biomarker and lifestyle study of ageing. Illustrates the logical organisation of the AIBL study. The AIBL study

(depicted as a rectangle in light green with thick border) is split into the five domains (depicted as rectangles in light blue). Each domain is further

categorised into sub-domains depicted by rounded rectangles.
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Table 1 Number of instances for the LCDC classes organised by theme

Theme Total Obs. Obs. Subject Sub-theme Sub-theme Variable

group section series slice

Clinical 1030430 4495 25210 1416 25 6452 506

Cognitive 761650 4612 9826 1415 19 4069 367

Imaging 58601 866 2136 365 12 941 59

Lifestyle 710594 4026 11953 1415 19 7360 391

Study 235566 5384 6218 1414 13 3292 155

we outline how the coupling of the study data with exter-

nal resources - in this case drug terminologies - can be

achieved within the LCDC and we elaborate on our pro-

cess to implement a linked medications data set and how

the patient-reported medication intake from the AIBL

study has been mapped to this data set.

Phase 1: Integrating the CDISC ODM data model with the

semantic statistic vocabularies

Clinical study data is extracted in CDISC ODM for-

mat. The primary dimensions of the CDISC ODM

data model are the Subject and Study Event of interest

within the study. The additional dimensions, including

the Study, Form, ItemGroup and Item, depend on the

study domains and are specified by the data dictionary

that defines the study. The strength of the RDF Data

Cube is that the original structure of the CDISC ODM

data model (Study-Subject-StudyEvent-Form-ItemGroup-

Item) lends itself to be replicated in the generated cube

with relative ease. A further contribution of the RDF

Data Cube is that it can help overcome the monolithic

nature of the ODM data model by facilitating the con-

struction of multi-dimensional cubes that offer access

points to the data via thematic slices. The LCDC is

organised into one main cube and several specialised

cubes corresponding to the various domains in the

study.

The RDF Data Cube model facilitates the grouping

of subsets of observations, within the dataset, whereby

all but one (or a small subset) of the dimensions are

fixed. Furthermore, it supports alternative methods of

accessing the data where the data is aggregated along

other dimensions or along the same dimension in differ-

ent order. The DDI-RDF Discovery vocabulary is used

to consistently manage the study-specific data dictionary

exported in CDISC ODM format enriched with CDISC

metadata resources (CDASH and SDTM). These two

vocabularies are supplemented by the Vocabulary of Inter-

linked Dataset (VoID). These allow the LCDC ontology

to be defined with more generalised classes and proper-

ties, such as the disco:Universe, disco:Variable
and disco:VariableDefinition [15] as depicted in

Figure 2.

Phase 2: Splitting the data into modularised cubes

The design of the LCDC is achieved in three steps. The

first step involves splitting the dataset into smaller, more

manageable specialised cubes. The second step is to define

several slice hierarchies that offer multiple access options

to the individual data records. The third step is to define a

URI scheme that supports access to the cube at all levels of

the slice hierarchy. These three steps are discussed below.

The LCDC defines three categories of slices. The time-

series slices address the longitudinal nature of the study

and organise the data into time-intervals and dated

and non-dated time points. Cross-section slices adopt a

subject-centric approach to the abstraction of the data

along some important concepts such as gender, genotype

and neurological classifications. The Theme slices cate-

gorise the data into the study domains and sub-domains

(disco:Universe in DDI-RDF) and help link the main

and specialised cubes together. This process enhances the

navigation and querying of the data in the LCDC because

we provide three direct links to nodes containing the data

instead of one through the Phase series (at the level of

the Study Event data in ODM), the Subject section (at the

Subject level) and the sub-theme slice (at the Item Group

level).

The slice hierarchy is provided primarily through the

use of the classes and properties from the RDF Data

Cube. Figure 3 highlights the LCDC slices that sub-

sume qb:Slice. We use the void:subset property

to describe the link between the main and specialised

cubes. Links between slices and observations are specified

using the qb:observation property, while the ones

between slices and observation groups are represented by

qb:observationGroup. The specialisedSeries
and specialisedSection properties manage the

links between the slices in the main and specialised cubes.

The specialisedObservation property, which is a

sub-property of qb:observation, handles the links

between the observation groups from the main cube to

corresponding observations in the specialised cubes.

The URI scheme describing the LCDC follows the

convention from the Linked Data API [16], which uses

URIs ending with an identifier to provide access to a

single instance (Item endpoint) and URIs ending with
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Figure 2 Mapping the CDISC ODMmodel to the data cube and DDI vocabularies. Illustrates how the original CDISC ODMmodel (depicted by

rectangles in light gray) is overlaid with the RDF Data Cube (depicted by ellipses in green) and the DDI-RDF vocabularies (depicted by rounded

rectangles in blue). The Data section, depicted on the left of the model, comprises a hierarchical structure whereby each level is fully contained

within the preceding level. As the left side is more about structuring the clinical data, the Data section of the CDISC ODMmodel is more closely

related to qb. The Clinical Data node is mapped to qb:Dataset while qb:Slice is used to split the Subject, Study Event and

Form data nodes across the ODM hierarchy into slices, and the Item Data node is mapped to qb:Observation. The ODM node refers to the

entire data set and is mapped to disco:LogicalDataset. The right side comprises the metadata section, which contains one Study node,

which further comprises one MetaData node. The MetaData node contains a number of StudyEventDef, FormDef, ItemGroupDef and

ItemDef nodes, one corresponding to each of the Subject, Study Event, Form, Item Group and Item data nodes defined in the Data
section. The Metadata section shows how the variable definitions managed through discomatches ODM’s ItemDef while the grouping of

variables via disco:Universe is applied at the FormDef level. Finally, Item Data is logically mapped to disco:Variable.

a keyword to provide access to a list of instances (List

endpoint).

Phase 3: Enriching the LCDC with the CDISC standards

The CDISC CDASH and SDTM standards provide the

means to standardise the clinical data. Despite not being

designed around the CDISC standards, there is a good

overlap between the AIBL study and the CDISC CDASH

and SDTM standards for categories such as Vital Signs,

Blood (represented by Laboratory Test in CDASH) and

Medical History. For some categories within AIBL, the

study data is clustered across many classes that do not

necessarily fit to single CDASH or SDTM categories. We

have chosen to map our medication data to the Concomi-

tant Medications (CM) class within CDASH. Regarding

CM, the approach taken by CDISC is to provide a frame-

work and allow the users the ability to define the terminol-

ogy of their choice. The AIBL Demographics data can be

mapped to the CDISC Demographics and Subject Char-

acteristics categories. SDTM’s Trial Arms, Trial Summary,

Trial Visits and Subject Visits categories are appropriate

targets for mapping longitudinal aspects of the study. For

data items that are based on questionnaires, the method-

ology adopted by CDISC is to guide the user by providing

a Questionnaire Supplements (QS) template that the user

can mould to their needs. The SDTM standard provides

approximately 50 questionnaires within theQSmodel that

the user can use to model their study. The relatively low

number of publicly available questionnaires is due to the

fact that many of the questionnaires in clinical studies are

licensed.

We have coupled the AIBL-specific variables to existing

CDISC concepts, when possible, to allow a straightfor-

ward swap of variable names in a query. For exam-

ple, the AIBL property for systolic blood Pressure

(aiblvitalsigns:systolicBP) has been linked to

the CDISC Vital Sign concept (cdiscvs:systolicB-
loodPressure).

Phase 4: Mapping the data to drug terminologies

In addition to the direct coupling between AIBL and

CDISC definitions described above, we have mapped

the patient-reported medication intake of the AIBL par-

ticipants to three external terminologies: AMT, ATC

DDDa and DrugBank. Our goal is to provide multiple

links to hierarchical classifications of drugs. AMT pro-

vides unique codes and accurate standardised names to

unambiguously identify all commonly used medicines in

Australia with eight key top-level concepts [17]. We aug-

ment AMT’s capabilities with links to ARTGb and UNIIc.
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Figure 3 Linked clinical data cube architecture aligned with the RDF data cube. Depicts the architecture of the LCDC. The Main cube (depicted as

a red cube) is split into modular Specialised cubes (depicted as a blue cube) and linked using the void:subset property. The Main cube is

organised into time-series, cross-section and theme slices using the qb:slice property. The slices are then divided into

Observations using the qb:observation property. The qb:dataset property is used to link the observations back to the cube. The

Specialised cubes are organised similarly to the Main cube with the exception of the theme slices. The dotted lines show how the slices from

all cubes interlink to the study observations through the use of ObservationGroups and the qb:observationGroup property. The

mainObservation property manages the link between the ObservationGroups and the Observations while the
specialisedObservation property handles the link between the ObservationGroups in the main cube and the corresponding

Observations in the specialised cubes.

ARTG contains the most comprehensive list of brand

names (Trade Product) in Australia, while UNII provides

a non-proprietary, unambiguous and unique list of sub-

stances as maintained by the FDA. DrugBank provides

a rich taxonomy of drug information alongside compre-

hensive drug, gene and food interactions. The appeal for

our project is in the exploration of drug-drug interac-

tions that provide some insight into the potential risks and

contraindications associated with the intake of the medi-

cation. Furthermore, by exploiting the gene-drug interac-

tions of medication targets, we can extend our framework

to support the discovery of biomarkers. Finally, the avail-

ability of the food interactions will be useful when we

explore the association between the participant’s drug

intake and type and amount of food consumed. Both ATC

DDD and DrugBank provide a supplementary means to

query the data. The five-level ATC DDD taxonomy of

medications provides an additional mechanism for the

data to be categorised and offers the means to aggregate

the study data for statistical purposes. This is complemen-

tary to what is possible with the help of the vocabularies

provided by AMT.

Medication mapping is challenging due to the quality,

accuracy and completeness of the information. Previous

studies [8,18] have identified numerous inconsistencies

linked to the naming of the medications with a mix of

trade name, active ingredients and informal name used to

describe the prescribed medications.

The processing pipeline for mapping the medications

data to the selected medication terminologies is sum-

marised below. The medication records are extracted

from OpenClinica, at the start of the pipeline, as an XML

document in CDISC ODM format. A data cleaning pro-

cess is conducted to manually address the inconsistencies

described above. This is followed by four mapping phases.

In Phase 1, we attempt a map of the “cleaned” medica-

tion names to the Trade Productd (TP) concept in AMT.

We use the list of brand names compiled by ARTG to

assist us in this task. In Phase 2, we try to map the same

medications to the Medicinal Producte (MP) concept in

AMT.We use the DrugBank terms to boost the number of

mapped concepts. The third phase attempts a map to the

substances (active ingredients) either entered by the par-

ticipants or contained within the medications recorded.

To this end, we use the list provided by UNII or the

Medicinal Substancef (MS) defined in AMT. In Phase 4,

we map the medications to the ATC DDD classification

hierarchy by taking advantage of the existing mapping

between the various terminologies (e.g. DrugBank and

ATC DDD). We have thus compiled a linked medications
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data set that links AMT, DrugBank, ARTG, ATCDDD and

UNII with one another as depicted in Figure 4.

Results
The result of mapping the AIBL medications data to

the medication terminologies is illustrated in Table 2.

The first row discloses the total number of medications

extracted. The second row represents the mappings to

either a Medicinal Product, a Trade Product or a Sub-

stance in AMT. The third, fourth and fifth rows provide

the mapping count for these AMT concepts individually.

The Linked Clinical Data Cube has been evaluated using

the full AIBL data set to demonstrate its potential in

formulating queries across the broad spectrum of tests

and the categories within the clinical study. While simple

queries can be answered using a single data cube, more

complex queries need data from several cubes to be avail-

able. The clinical data is formalised into RDF prior to

being loaded in a Virtuoso triple-store.

SPARQL Queries

To demonstrate the utility of the LCDC, we have devised a

set of three questions that are typical of the questions that

the AIBL researchers are likely to ask of the study data.

We provide, below, a listing of the three queries. However,

due to privacy constraints, we have structured our queries

so that they only return aggregated counts because we are

unable to present the participants unique identifier as part

of the results of the queries.

Those SPARQL queries have been chosen in order to

demonstrate the breadth and depth of questions that may

be asked on the data set. They demonstrate how data from

Table 2 Medications mapping statistics

Mapped Count Percentage

Total 7942 100.00%

Medicinal product/trade product/substance 5536 69.71%

Trade product 5518 69.48%

Medicinal product 5266 66.31%

Substance 5382 67.77%

the AIBL study can be effortlessly combined with drug

information, for example, in order to facilitate queries that

answer questions based on drug classifications. Further-

more, we also demonstrate, through the integration of the

AIBL data set with terminologies from the CDISC stan-

dards, how the AIBL data set can be queried by using the

CDISC standardised terminology rather than the actual

test names used by the AIBL study. We believe that these

types of queries will drive the cross-study and cross-

domain benefits of the linked clinical data approaches

such as the LCDC.

Query 1: Using CDISC terms, find the number of participants

who have hypertension

Hypertension is defined as having systolic and diastolic

blood pressure readings above 140 and 90 respectively

(written as 140/90 mm Hg) [19], most of the time. This

query explores the use of the CDISC SDTM controlled

terminology to access the diastolic and systolic blood

pressure readings for participants in the AIBL study. It

allows the user to interchangeably use the variable name

from the AIBL study or from CDISC SDTM.

Figure 4 Linked Australian medications data set. Depicts the interlinking of the drug terminologies available, mostly, in Australia in order to

facilitate their navigation. For the sake of simplicity, all data item variables have been omitted from the Figure. The AMT concepts are depicted in

teal. The ATC DDD concepts are depicted in orange. UNII concepts are in light-blue while DrugBank concept is in light green and the ARTG
concept is in magenta. The Figure also introduces an xkos:ConceptAssociation predicate (depicted in yellow) to define many-to-many

relationships between amt:MedicinalProduct and artg:RegisteredMedicine concepts.



Leroux and Lefort Journal of Biomedical Semantics  (2015) 6:16 Page 8 of 14

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX lcdcobs: <http://purl.org/sstats/lcdc/def/obs#>
PREFIX cdiscvs: <http://purl.org/odm2rdf/sdtm/vs/def/cdiscvs#>
PREFIX lcdccore: <http://purl.org/sstats/lcdc/def/core#>

SELECT count(DISTINCT ?subject) as ?hypertension WHERE {
# find the AIBL variable corresponding to cdiscvs:systolicBP
?vs_sBP rdfs:subPropertyOf cdiscvs:systolicBloodPressure .
# find the AIBL variable corresponding to cdiscvs:diastolicBP
?vs_dBP rdfs:subPropertyOf cdiscvs:diastolicBloodPressure .
?observation rdf:type lcdcobs:Observation .
# get the observation for one AIBL subject
?observation lcdccore:subject ?subject .
# get the ?sysBP using cdisc vs alias
?observation ?vs_sBP ?sysBP .
?observation ?vs_dBP ?diasBP .

FILTER ((xsd:integer(?sysBP) > 140) && (xsd:integer(?diasBP) > 90) )

}

The query obtains the relevant test names from the ontology by performing a lookup of properties that are sub-

properties of the CDISC Vital Signs (prefix: vs) diastolic and systolic blood pressure variables. This is achieved by this

statement:

?vs_dBP rdfs:subPropertyOf cdiscvs:diastolicBloodPressure .

This query is possible because we have implemented a linked set that connects the variable name from the AIBL study

to the standardised terminology in CDISC SDTM vs domain as illustrated below.

aiblvitalsigns:diastolicBP
rdf:type owl:DatatypeProperty ;
rdfs:subPropertyOf cdiscvs:diastolicBloodPressure.

aiblvitalsigns:systolicBP
rdf:type owl:DatatypeProperty;

rdfs:subPropertyOf cdiscvs:systolicBloodPressure.

We believe that the use of linksets in this manner is important and useful because it adheres to the principles of

information hiding in that the user need not be aware of the exact wording of a variable. As long as the user knows the

corresponding standardised variable name, the user is able to successfully execute a query on the data set. We intend

to further develop this traceability mechanism with the help of the Provenance Ontology [20] to fully disclose how the

published data is derived from the originally captured data.

The result of Query 1 is displayed below:

hypertension

242

Query 2: Howmany participants are taking an anti-diabetic drug such asMetformin?

Some studies [21,22] have shown a possible link between type2 diabetes and early-stage AD. In this query, we retrieve

a list of anti-diabetic drugs to demonstrate the benefits of linking the patient-reported medications to standardised

external terminologies and the strength of the LCDC in using federated queries to facilitate cross-domain querying. The

first portion of this query obtains a list of anti-diabetic drugs from DrugBank (outlined in section A in the SPARQL).

The second part of the query utilises the mappings between the patient-reported medications and DrugBank entities to

link to the anti-diabetic drugs identified in section A.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX drugbank: <http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource

/drugbank/>
PREFIX aiblmed: <http://aehrc-ci.it.csiro.au/aibl/lcdc/clinical/medication/def

/aibl-medication#>
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PREFIX lcdcobs: <http://purl.org/sstats/lcdc/def/obs#>
PREFIX lcdccore: <http://purl.org/sstats/lcdc/def/core#>
PREFIX cm: <http://purl.org/sstats/lcdc/cm/def/cm#>
PREFIX amt: <http://nehta.gov/amt#>

SELECT count (distinct ?subject) as ?count ?mp_med
WHERE {

# Section A. find all instances of anti-diabetic drugs
SERVICE <http://wifo5-04.informatik.uni-mannheim.de/drugbank/sparql> {

# find the drug (?s) that has the name ’Metformin’
?s drugbank:genericName "Metformin" .
# find the category of the drug (?s)
?s drugbank:drugCategory ?category .
# find all other instances of ?drug that has the same ?category
?drug drugbank:drugCategory ?category .

}

# Section B. find the participants who take the ?drug from A.
{ SELECT distinct ?drug ?med ?subject ?mp_med WHERE {

GRAPH <http://localhost/dataset/aibl/lcdc/clinical> {
# specifies that ?obs is an observation
?obs a lcdcobs:Observation .
# get the medicinal product code for this med
?obs cm:medicinalProduct ?cm_mp .
# lookup the drugbank entity linked to this MP
?cm_mp skos:exactMatch ?drug .
# get this drug’s name
?cm_mp amt:synonym ?mp_med .
# find the participant associated with this observation
?obs lcdccore:subject ?subject .

}
} }

}

LIMIT 20

The linkset developed to map the AMT concepts to DrugBank has been inspired from the approach described in

[23,24] and uses the skos:exactMatch predicate.

<http://snomedtools.info/snomed/version/1/concept/rdfs/105271000036100>
rdf:type amt:MedicinalProduct ,

owl:NamedIndividual ;
skos:exactMatch

<http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugs/DB06655>.

The significance of this mapping is the provision of drug-drug, drug-gene and possibly drug-disease and gene-gene

information relating to the AIBL study to the researchers by fully utilising the links provided by DrugBank.

The result of Query 2 is displayed in Table 3:

Query 3: Are there participants whose classification has transitioned from healthy tomild cognitive impairment but whose

triglyceride’s level has remained normal?

Research has investigated the risk factors associated with low-density lipoproteins or triglycerides on the incidence and

progression of dementia and AD in later life [22]. With this in mind, we construct the query below to retrieve par-

ticipants’ records whose confirmed classification status have been updated from being healthy as subjective memory

complainer or non-memory complainer to having mild cognitive impairment but who have also maintained a normal

(< 1.7 mmol/L) level of triglycerides in their blood sample over the course of an 18-month period between the

baseline and 18-month time-points.

PREFIX qb: <http://purl.org/linked-data/cube#>
PREFIX lcdcsection: <http://purl.org/sstats/lcdc/def/cross-section#>
PREFIX lcdccore: <http://purl.org/sstats/lcdc/def/core#>
PREFIX aiblblood: <http://aehrc-ci.it.csiro.au/aibl/lcdc/clinical/blood/def

/aibl-blood#>
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PREFIX aiblneuropsych: <http://aehrc-ci.it.csiro.au/aibl/lcdc/cognitive/neuropsych
/def/aibl-neuropsych#>

PREFIX aiblphase: <http://aehrc-ci.it.csiro.au/dataset/aibl/lcdc/id/phase/>
PREFIX aiblsubtheme: <http://aehrc-ci.it.csiro.au/dataset/aibl/lcdc/id/subtheme/>

SELECT DISTINCT count(?subject) as ?subjectCount ?class1 ?class2
WHERE {

{ select distinct ?subject ?obs1a ?trig1 where {
# retrieve the objects from the SubTheme cross-section slice
?nodeSect a lcdcsection:SubThemeSection .
# only get observations for the participants from the Blood domain
?nodeSect lcdcsection:subtheme aiblsubtheme:blood .
# get the observations from the slice
?nodeSect qb:observation ?obs1a .
# once we get the observations, get the subject
?obs1a lcdccore:subject ?subject .
# only select observations for the baseline phase
?obs1a lcdccore:phase aiblphase:baseline .
# get the triglycerides measurements
?obs1a aiblblood:trig ?trig1 .

} }
{ select distinct ?subject ?class1 ?obs1b where {

?nodeSect a lcdcsection:SubThemeSection .
# only get observations for the participants from the Neuropsych domain
?nodeSect lcdcsection:subtheme aiblsubtheme:neuropsych .
?nodeSect qb:observation ?obs1b .
?obs1b lcdccore:subject ?subject .
?obs1b lcdccore:phase aiblphase:baseline .
# get the subject’s classifications
?obs1b aiblneuropsych:confirmedClassification ?class1 .
# only select healthy subjects
FILTER(?class1 =

aiblneuropsych:ConfirmClassification360-memoryComplainerHealthyControl
|| ?class1 =

aiblneuropsych:ConfirmClassification360-nonMemoryComplainerHealthyControl
)

} }
FILTER (xsd:float(?trig1) < 1.7)
{ select distinct ?subject ?obs2a ?trig2 where {

?nodeSect a lcdcsection:SubThemeSection .
?nodeSect lcdcsection:subtheme aiblsubtheme:blood .
?nodeSect qb:observation ?obs2a .
?obs2a lcdccore:subject ?subject .
# select observations for the 18-month phase
?obs2a lcdccore:phase aiblphase:18months .
?obs2a aiblblood:trig ?trig2 .

} }
{ select distinct ?subject ?class2 ?obs2b where {

?nodeSect a lcdcsection:SubThemeSection .
?nodeSect lcdcsection:subtheme aiblsubtheme:neuropsych .
?nodeSect qb:observation ?obs2b .
?obs2b lcdccore:subject ?subject .
?obs2b lcdccore:phase aiblphase:18months .
?obs2b aiblneuropsych:confirmedClassification ?class2 .
# ensure subject have transitioned to MCI
FILTER(?class2 = aiblneuropsych:ConfirmClassification360-mciPatient )

} }
# normal range for trig. is < 1.7 mmol/L
FILTER (xsd:float(?trig2) < 1.7)

}

The above query highlights the strength of the LCDC in facilitating cross-domain queries by fully exploiting the

potential of slices and observations within the specialised cubes. While the above query can be achieved without a data

cube, the use of slices and observations make the query more elegant and effective. It demonstrates the navigation of the

AIBL data set across two specialised cubes (Neuropsych and Blood) and four slices (two slices at each time points for

each cube). These are contained within the four observations (?obs1a, ?obs1b, ?obs2a, ?obs2b) within the above

query.
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Table 3 Participants taking anti-diabetic drugs

Count mp_med

1 Insulin glargine

3 Glimepiride

46 Metformin

4 Rosiglitazone

2 Glipizide

17 Gliclazide

4 Pioglitazone

1 Sitagliptin

The result of Query 3 is displayed in Table 4:

We provide an indication of the execution time of the

three queries in Table 5 below. These queries have been

executed on a Virtuoso 6.1 instance running on a vir-

tual machine with an AMDOpteron Processor 62xx CPU,

8GB of DDR3 RAM and running Ubuntu 13.04 LTS

(Raring Ringtail).

Discussion and related work
Our results demonstrate the effectiveness of integrating

semantic statistics vocabularies with the CDISC standards

in order to expedite the navigation and querying of

the data. Our contribution extends previous attempts

to semantically enrich biomedical research data using

ontologies [25] or linked data resources [26]. To the best

of our knowledge, no study has yet investigated the associ-

ation of semantic statistics vocabularies with clinical data

exchange standards. The design of the LCDCwas inspired

by the Translational Medicine Ontology [27] and our use

cases were motivated by similar objectives of providing

qualitative and pertinent clinical data to the researchers

and clinicians in the right format. This is what has driven

our resolve to split the data into onemain cube and several

specialised cubes corresponding to the various domains in

our study. The benefits of this approach are demonstrated

in the third query where data from two specialised cubes

are amalgamated to derive the results.

Observational clinical study data is patchy by nature,

mainly because of the various collection mechanisms

involved that often lead to information being inadver-

tently left out or inaccurately recorded. Furthermore, the

sheer volume of variables and the longitudinal nature of

the AIBL clinical study have given rise to an enormous vol-

ume of data that need to be analysed. This has led to the

second design decision that is to split the data into time-

series, cross-sections and themes in order to improve their

manageability during the generation process and facili-

tate their discovery and usability by end users. Moreover,

the addition of external standardised terminologies, such

as the CDISC standard terminologies and the various

drug vocabularies utilised, have contributed not only to

standardising the data and to removing ambiguities but

to enriching the data by providing links to relevant online

resources, such as genes and pathways definitions and

information about their interactions with the entities.

Challenges in the use of the CDISC standards as the

underlying model

While the CDISC models suit our immediate purpose,

they present a few shortcomings, mainly in relation to

the semantics associated with the clinical study data.

ODM’s constrained hierarchical structure largely pro-

motes single-study explorations of clinical study data.

Furthermore, the inability to store domain information

alongside the user-defined data items in the customisable

CRFs is, in our view, very restrictive, thus impeding their

use outside of the study context [28]. However, this stems

more from the various failings in the implementation of

the CDISC standards by the vendors. The ODM stan-

dard allows for CDASH terms to be inserted through the

use of annotations within the ODM XML model. How-

ever, several vendors, such as OpenClinica, choose not to

offer this feature natively within their tool. Abler et al. [28]

make a passionate claim for the definition of a language of

forms that can effectively record the logical relationships

between questions or sets of questions asked in the forms.

On a more technical aspect, ODM also suffers from

a lack of established complex data type standards, thus

allowing a study coordinator to provide an alternative def-

inition for, say, the Physical Quantity data type. Further-

more, despite the provision of detailed Implementation

Guides describing the correct way of encoding data items,

the definition of very coarsely granulated meta-data cat-

egories, such as Medical History in SDTM, opens up the

possibility, for the user, to capture semantically identical

data in multiple domains. While the lack of data stan-

dards is a problem, the lack of mechanisms to enforce

adherence to these data standards is a greater problem. As

such, despite CDISC providing mechanisms, through its

SDTM and CDASHmodels, to define common semantics,

in our experience, very few study coordinators choose to

use them.

Our choice of the CDISC standard as the underlying

model for our architecture is influenced by three factors:

(i) since the FDA and other regulatory bodies mandate the

use of CDISC as the de facto standards for representing

and reporting clinical study data, a vast majority of the

clinical study data that we encounter is already in CDISC

format; (ii) several extensions to the CDISC standards

(such as the Therapeutic Area standard for Alzheimer’s

Disease) are appealing to us; and (iii) we have not yet found

a consistent and complete set of ontologies that we could

use instead.

In our approach to semantically enrich the clinical study

data, we need to address the study-specific nature of
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Table 4 Participants’ classifications and triglycerides level

SubjectCount Class1 Class2

11 ConfirmClassification360- ConfirmClassification360-

memoryComplainerHealthyControl mciPatient

4 ConfirmClassification360- ConfirmClassification360-

nonMemoryComplainerHealthy mciPatient

Control

CDISC ODM datasets. We inherit many issues that have

been created in the previous steps of the data capture

chain, such as the use of user-defined questionnaires and

instruments that use their own language and the loss of

domain knowledge during the digitisation phase of the

data. Our solution is to reintroduce the loss of domain-

specific information by first trying to retrofit the study

variables to the SDTM and CDASH models, even though

they were not initially modelled that way. Concurrently,

we look to biomedical ontologies, such as the NCBO

Bioportal ontologies [29] and SNOMED CTg, to provide

alternative foundations for domain enrichment of the data

set. Several ontologies, in the context of clinical trials

[30-32], have been proposed recently and are partially

applicable to our needs. However, they do not adequately

cover the observational aspects that are required for our

data cubes. Furthermore, several of these ontologies have

a large number of dependencies to other ontologies that

do not meet our requirements. We overcome the limita-

tions related to the single-study nature of ODM by fitting

the study data to the RDF Data Cube. The introduction

of additional dimensions, through the integration to the

RDF Data Cube, opens up new access points to the data

through the use of the thematic slices.

Ultimately, our view is that regulatory bodies have a

pivotal role to play in encouraging the clinical study coor-

dinators to engage with data scientists at an earlier stage

in their clinical study to help with the design of their

study and associated artefacts. Too much emphasis is

placed on the data collection phase and not enough effort

is expended in clarifying what is needed to analyse the

data.

Related work

The Linked Open Drug Data (LODD) [33] and the Linked

Life Data (LLD) [34] projects provide additional resources

Table 5 Query performances

Query Execution time (msec)

1 22

2 36

3 270

that can be used to extend the Linked Clinical Data Cube.

Both projects aim to build a large scale knowledge cloud

that can be used for drug discovery. LODD federates the

efforts by participants of the W3C Semantic Web Health

Care and Life Sciences (HCLS) Interest group to con-

vert available resources into linked data. LLD provides

a semantic data integration platform for the biomedical

domain comprising many of the data sources belonging

to LODD. The resulting datasets contains more than 8

million triples representing the knowledge within over 2

millions links relating to medications, diseases, clinical

trials, gene information and pharmaceutical companies

among others. This was followed by efforts to convert

the ChEMBL database as linked open data [23]. This new

linked dataset combines the description of the biologi-

cal entities with links to Bio2RDF [35], ChemSpider [36],

OpenMoleculesRDF [37] and CrossRef [38] to allow deref-

erenceable access to a myriad of external datasets. We

have adopted a similar methodology in our approach to

map the medications specialised cube to AMT, DrugBank

and ATC DDD.

Among the various use cases reported via the W3C

HCLS Interest group are efforts to explore links to iden-

tify and verify genes linked to Alzheimer’s disease (AD).

Through the links between the drug, medications, dis-

ease and clinical trial repositories, we hope to leverage

on efforts by others to further explore the effects of pre-

scribed medications, for AD sufferers, on the various

genes comprising the pathways of interest. Other applica-

tions of LODD include the identification of potential side-

effects linked to the intake of drugs that have conflicting

stimuli on the disease pathways.

The SALUS project [39] is a former attempt to adapt

CDISC standards to build a Semantic Framework to

improve interoperability between clinical research and

clinical care domains. We adopt a similar approach to

them but their focus is on service mappings rather than

linked data sets. The Semantic Cockpit [40] project aims

to develop a data slicing framework comparable to what

we propose on the basis of the RDF Data Cube. The

goal of this project is to intelligently assist business

analysts by discriminating unimportant information and

using reasoning to only present useful information to the

analyst.
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The Linked Medical Data Access Control (LiMDAC)

project [41] has devised a framework to enable the inte-

gration of medical data without compromising its privacy,

security and integrity. It defines three linked data mod-

els that use the RDF Data Cube to build an access control

framework that restricts access to the aggregated data.

The Pharmaceutical Users Software Exchange [42] com-

munity, in concert with the FDA, has started work on RDF

representations of various CDISC models [43], includ-

ing the terminologies published by the National Cancer

Institute (NCI) Enterprise Vocabulary Services [44]. This

community has started to evaluate the RDF Data Cube

[45,46] for the publication of clinical study data. These

conversions of comma-separated-value files, however, do

not fully exploit the relationships between the data and

metadata structures embedded within the XML versions

of the CDISC standards and the patterns and concept

definitions included in the generated RDF content.

Conclusions
This paper has outlined the semantic enrichment of longi-

tudinal clinical study data based on the CDISC standards

with elements from the semantic statistics vocabularies,

namely the RDF Data Cube and the DDI-RDF Discov-

ery vocabularies. We have outlined how the Health Care

and Life Science community is likely to benefit from the

adoption of tools and techniques that will deliver clini-

cal data as linked data and advance its integration with

complementary data sources. In this regard, we have

proposed a Linked Clinical Data Cube, which integrates

one main and several specialised data cubes to provide

increased flexibility in the navigation of the clinical data

and allow the users to formulate the queries more effi-

ciently and effectively. The Linked Clinical Data Cube

combines the strength of the RDF Data Cube in defining

multi-dimensional data cubes and the DDI-RDF Discov-

ery vocabulary in encoding the CDISC metadata and

the study specific data dictionary as linked data. Our

approach was validated using data captured as part of

a longitudinal clinical study into neurodegenerative dis-

eases. This research has resulted in four contributions.

First, we have uncovered the complementarities of the

RDF Data Cube and DDI-RDF Discovery vocabularies for

the publication of large heterogeneous data sets as linked

data. Second, we have demonstrated the fit of the seman-

tic statistics vocabularies to enrich the CDISC ODM data

model for the publication of clinical study data as linked

data. Third, we have illustrated how the clinical study

data has been semantically enriched with links to external

resources and how they ultimately improve the navigation

and querying of the data. Fourth, we have built the foun-

dations of a framework supporting cross-domains and

cross-study analysis by adopting a more standardised data

structure. Our next step is to enrich the remaining study

data set with concepts from other domain ontologies,

such as Blood, Neuropsychological tests and Nutrition, to

name just three.

Endnotes
aAnatomical Therapeutic Chemical Defined Daily Dose.
bAustralian Register of Therapeutic Goods.
cUnique Ingredient Identifier.
d30560011000036108 | trade product |.
e30497011000036103 | medicinal

product|.
f30388011000036105 | medicinal

substance |.
gSystematized Nomenclature of Medicine Clinical

Terms.
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