
Semantic Fault Diagnosis:
Automatic Natural-Language Fault Descriptions

Nicholas DiGiuseppe
University of California, Irvine

Department of Informatics
nicholas.digiuseppe@uci.edu

James A. Jones
University of California, Irvine

Department of Informatics
jajones@ics.uci.edu

ABSTRACT
Before a fault can be fixed, it first must be understood.
However, understanding why a system fails is often a diffi-
cult and time consuming process. While current automated-
debugging techniques provide assistance in knowing where a
fault is, developers are left unaided in understanding what a
fault is, and why the system is failing. We present Semantic
Fault Diagnosis (SFD), a technique that leverages lexico-
graphic and dynamic information to automatically capture
natural-language fault descriptors. SFD utilizes class names,
method names, variable expressions, developer comments,
and keywords from the source code to describe a fault. SFD
can be used immediately after observing a failing execution
and requires no input from developers or bug reports. In
addition we present motivating examples and results from a
SFD prototype to serve as a proof of concept.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Diagnostics

Keywords
Program Comprehension, Testing, Maintenance

1. INTRODUCTION
Software maintenance continues to consume a large por-

tion of a project’s total resources. This is in part because
software has faults that can be expensive and time consum-
ing to find and fix. One factor influencing this expense is
expertise, or more simply put: before a fault can be fixed,
it first must be understood. This paper presents Seman-
tic Fault Diagnosis (SFD), a technique for generating auto-
mated natural-language fault descriptions.

One area of previous research has emphasized automati-
cally locating a fault (e.g., [8,9]). These techniques produce
a ranked series of locations that are likely to contain the
fault. Unfortunately, these techniques often assume that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

when developers see a fault they will immediately recognize
it, understand why the code is broken, and understand how
to fix it. Recent studies have suggested that this assumed
perfect understanding is unlikely [10].

Concurrently, program-comprehension research has inves-
tigated feature-extraction techniques (e.g., [4]). These tech-
niques provide understanding for modular levels of source
code (e.g., the method level). Feature extraction techniques
typically reduce a modular section of source code to a small
quantity of representational topics. Unfortunately, these
techniques often require user input (e.g., a user query to
locate a topic in the code), and often limit topic definitions
to contiguous, modular boundaries.

The technique presented in this paper — Semantic Fault
Diagnosis — merges the fundamental ideas of statistical
fault localization and feature extraction in a novel way. Our
objective is to facilitate debugging by presenting a developer
with a description of their fault derived from the natural
language of the source code. Our rationale is motivated in
part by two studies. The first, from Bettenburg et al. [1] of
over 150 software developers, concludes that a quality fault
description would greatly assist practitioners in finding and
fixing faults. The second, from Sayyad et al. [11], observes
that “software engineers really need. . . ‘key’ items of infor-
mation, not a large amount of detail,” to fix faults.

The fundamental idea behind using source code to gener-
ate fault descriptions is that source code is rich with concep-
tual information as to what the system is doing, and what
it should to be doing. Biggerstaff et al. [2] examined the
difference between the implementation reality and human
intention. The source code provides the current structure
and semantics of the program (i.e., what the software is),
and also includes syntax that describes semantic intent (i.e.,
what the software should be). The semantic intent is often
contained within source-code comments and variable and
method identifiers that provide expressive intent.

Biggerstaff et al. assert that, “both forms of the infor-
mation must be present for a human to manipulate pro-
grams. . . in any but the most trivial way.” They are not
alone in this assertion. Letha et al. [7] find that, “from the
computer code what task is being done can be determined,
but it is only from the comments that why that task is be-
ing done can be understood,” and, “it is more important to
understand the comments than to understand the computer
code,” when modifying a system. More simply, developers
require executable code and comments to gain sufficient un-
derstanding of what the code is doing and what it should
do when modifying a software system in any nontrivial way.

Therefore, we postulate that if a developer is given the ap-
propriate terms and comments from the source code, they
can understand and diagnose faults more quickly and simply.

The main contribution of this work is a technique for an
automatic fault-description generator — Semantic Fault Di-
agnosis (SFD). SFD leverages executable source code and
developer comments to produce a fault description immedi-
ately after execution failure. These descriptors are designed
to elucidate the debugging process.

2. NOVEL FAULT DESCRIPTIONS
In previous automated debugging research there has been

an emphasis on localizing a fault (e.g., slicing-based or sta-
tistical fault localization). These techniques provide a de-
veloper with a list of locations in the code where the fault
is likely to be. Unfortunately, data suggests that without
contextual understanding, a developer will not be able to
recognize the fault, nor find and fix it [10]. Other work has
focused on providing control sequences (as opposed to a sin-
gle location) to enable an understanding of a sequence of
events that led to failure.

The novelty of SFD derives from its emphasis on the why
of a failure by way of natural language as opposed to the
where of a failure with structural, control-flow sequences.
Our goal is to facilitate understanding regarding what the
code is doing wrong, not provide locational data. However,
we see SFD as complimentary to location-based techniques.
We expect a developer to gain an understanding of their fail-
ure through SFD, then leverage location-based techniques to
inform the fault’s position.

In addition to its mechanics, SFD enables a new level of
developer automation, which may positively influence the
software-development process. To produce a semantically
valuable fault description, SFD utilizes explanatory encod-
ing information from the source code. Explanatory encod-
ing ranges from programmer intentions that are encoded in
source-code comments [7] to contextual understanding con-
veyed by naming conventions. SFD scans source code, pro-
cesses the found terms, and correlates term use with failure.
This process allows words that describe the fault to be au-
tomatically extracted and presented to the developer.

3. SEMANTIC FAULT DIAGNOSIS
Semantic Fault Diagnosis (SFD) is the process of auto-

matically providing natural-language fault descriptions to
developers based upon source code and dynamic informa-
tion. We imagine SFD being employed in the software-
development process immediately after testing failures are
observed. This automated step can be configured to occur
upon testing failure because no user input, outside data, nor
bug reports are required. In such a scenario, the developer
will be presented with not only the testing pass/fail results,
but also a short list of words that can describe the topics
involved in the fault and its failures. This list can guide
the developer in knowing what to look for, thereby reducing
their expertise burden. Additionally, because the words are
all taken from the code, developers can search for their uses
to improve localization. Furthermore, because descriptors
are provided automatically and early, these words can be
used to assist in writing bug reports and in assigning the
debugging task to an appropriately skilled developer.

To create a semantic fault diagnosis, there are seven fully-
automated steps as shown in Figure 1. SFD requires ac-

cess to the source code, at least one passing and failing test
case, a coverage-based instrumenter and a statistical fault-
localization technique.

Step 1: Instrument Code. We instrument the program
for statement coverage. This lightweight instrumentation
can be achieved with existing tools like Cobertura1 or Gcov.2

Step 2: Run Test Suite. We execute the instrumented
source code over the selected test set, saving the pass/fail
data and the coverage information produced as a result of
the instrumentation. This test set can be of any size as long
as it contains at least one passing and one failing test case.

Step 3: Perform Fault Localization. We use the ex-
ecution coverage and the pass/fail data to perform fault-
localization (FL). Any FL technique will suffice for this step,
however techniques that utilize multiple failing runs and pro-
vide weighted scores for all executed lines are preferred.

Step 4: Parse Code. We parse the code to extract the
terms. The parsing can be performed at a variety of levels of
detail. For example, the method name getReducedCost(),
could be parsed as a single term, “getReducedCost(),” or
split into its constituent natural-language terms: “get,”“re-
duced,” and “cost.”

Step 5: Normalize Terms. We normalize the extracted
terms from Step 4. Again, this step presents options for
the degree to which the terms are processed: e.g., stemming
techniques can be employed to normalize verb tense, capital-
ization normalization can be performed, and synonym anal-
ysis can be performed to account for different terms that de-
scribe similar topics. For example, the term set {“waiting,”
“Waits,”“paused”} could be normalized to {“wait,”“pause”}
or {“stop”}, or left unaltered altogether.

Step 6: Correlate Terms. Utilizing the fault-localization
results to identify which locations in the source code are
likely to be faulty and to what degree, we compute the fault-
correlation for the individual terms that were extracted and
processed in Steps 4 and 5. We compute a“fault-correlation”
score for each term by computing the mean of the fault-
correlation score that was given by the fault-localization
technique for each of the locations that the term was found.
For example, if the normalized word “wait” appears in three
lines in the code and the FL technique gave those three lines
the following scores 85, 51, 62, then the word “wait” would
gain an overall score of 66 = (85 + 51 + 62)/3.

We also assign scores to developer comments and the terms
therein. However, because they are not executed, comments
need to be assigned suspicion scores based on the code they
relate to. This can be done with a topical analysis (e.g.,
attempting to discern which executed code the comments
relate to) or more simply by assessing the proximity of the
comments in the code with the executed code.

Step 7: Process Results. We present the top n terms
and their scores to the developer. This presentation can be
done in a variety of ways. For example, the scores can be
presented in terms of: (1) their origin in the codebase, e.g.,
method name, variable expression, or developer comment;
(2) their use, e.g., what lines they appear on; or (3) the top
n words after sorting by score.

1http://cobertura.sourceforge.net/
2http://gcc.gnu.org/

Instrumented
Source Code

Coverage,
Pass/Fail

Raw
Terms

Normalized
Terms

Suspiciousness

Suspicious
Terms

Fault
Diagnosis

Source
Code

Test Suite

Developer

Instrument
Code

1 Run Test
Suite

2

Parse
Code

4 Normalize
Terms

5

Correlate
Terms

6 Process
Results

7
Perform Fault
Localization

3

Figure 1: A process diagram depicting the seven steps for performing Semantic Fault Diagnosis.

4. DEMONSTRATION OF USE
In this section, we present two demonstrations of using

a semantic fault-diagnosis technique on two real programs.
The first example is from the classic game Tetris3 and the
second is from an XML parser NanoXML, which can be
downloaded from the Software-artifact Infrastructure Repos-
itory [6]. To provide these demonstrations, we implemented
a prototype SFD tool.

4.1 Tetris
In the game Tetris, the user guides falling blocks to

create complete rows. To accomplish this, users can move
falling blocks left and right. However, a fault exists in this
version that causes the falling blocks to incorrectly move
when the user presses the left arrow.

The following is the output of the top five terms produced
using our prototype semantic fault-diagnosis tool. As can be
seen, a quick reading of this diagnosis implies that the faulty
topic is moving the figure to the left, which is exactly the
nature of the fault and its failures.

Top Terms for Tetris

• KeyEvent.VK LEFT
• figure.moveLeft
• moveLeft()
• “Moves the figure one step to the left.”
• left

We also note that simply examining which test cases pass
and which fail would not have provided this diagnostic infor-
mation. For this fault, over 90% of the test cases for Tetris
failed — in fact, none of the test cases specifically tested the
“moving left” functionality. Nevertheless, over 90% of the
test cases exercised that functionality (and 10% did not),
which was enough to allow our prototype implementation
to identify that functionality as the determining factor that
correlated with failure.

4.2 NanoXML
The NanoXML program is a tool that is used to parse

XML data. The specification of NanoXML defines a flag
“CDATA” that instructs the parser to ignore all text inside
its block. Unfortunately, this version of NanoXML contains
a fault that causes it to interpret and process the code within
a “CDATA” block, rather than ignore it.

When we run our prototype semantic fault-diagnosis tool
on this program and its test suite, we get the following out-
put. As can be seen, the diagnosis indicates that the fault
and its failures concern topics that include “content” and
“PCData.” And, while these terms are not specifically the
term “CDATA” that would have been ideal, a developer of

3
http://www.percederberg.net/games/tetris/tetris-1.2-src.zip

NanoXML would be aware that “PCData” stands for “pro-
cessed CDATA,” which indeed is indicative of the faulty is-
sue. Moreover, the method setContent() is where inter-
preted and processed data is stored, and for this fault, the
processed CDATA is incorrectly being processed as content.

Top Terms for NanoXML

• elt.setContent(str
• setContent()
• addPCData()
• Indicates that a new #PCData element has been

encountered.
• PCDataAdded

Much like the Tetris demonstration, we also note that
simply examining which test cases passed and which failed
would not have provided this diagnostic information. For
this fault, over 60% of the test cases for NanoXML failed —
in fact, none of the test cases specifically tested the “ignore
CDATA” functionality.

5. RELATED WORK
This work is primarily related to two bodies of research:

statistical fault localization and feature extraction. Because
these fields are mostly disjoint, we separately discuss each,
along with how SFD relates to the authors’ previous work.

5.1 Statistical Fault Localization
Lukins et al. [9] used latent-Dirichlet allocation (LDA) on

source code to localize a fault. Their technique uses LDA
on developer comments, method names, and other textual
references to generate topics for modular locations of code
(e.g., methods). Next, their algorithm uses LDA on a bug
report to generate topics, then compares the two topic sets.
The locations representing a high degree of topical similarity
are presented to developers as the likely location of the fault.

Lukins’ work is related to semantic fault diagnosis in that
they both leverage lexical and semantic analysis of the source
code. However, they differ in their manipulation of lexical
elements and in purpose. SFD requires no developer input
and uses dynamic information to describe a fault while the
approach by Lukins et al. needs a developer’s description
(from a bug report), is static, and attempts to locate a fault.

5.2 Feature Extraction
Dit et al. [5] presented a survey of feature-extraction tech-

niques. Of relevance here, they provide three observations:
(1) feature-extraction techniques use three primary input
types (dynamic, static, and textual); (2) most feature-ex-
traction techniques define features for contiguous, discrete
modules (e.g., methods, classes, or packages); and (3) many

feature-extraction techniques use topic-modeling techniques
to represent features.

SFD demonstrates certain similarities to the feature-ex-
traction community. For example, both techniques strive
for increased developer comprehension by providing essen-
tial information through the use of abstraction. However,
the main difference between these techniques is that feature
extraction explains the system as a whole or discrete mod-
ules based upon code structure, whereas SFD targets a fault
irrespective of code structure. At a high level, SFD can be
considered a unique type of feature extraction that explains
fault-to-concept correlation as opposed to module explana-
tions through code-structure-based explanations.

5.3 Author’s Related Works
This work is an extension of the author’s previous work

on fault localization and comprehension. Jones et al. [8] pre-
sented Tarantula, which uses dynamic information to cor-
relate instructions with passing and failing events, thereby
estimating the likelihood that an instruction is faulty. More
recently, DiGiuseppe and Jones investigated faults’ ability
to alter software behavior [3] by investigating how faults in-
teract within an execution and the likelihood of those events.

SFD builds directly on these two ideas. As can be seen in
Section 3, SFD directly depends on statistical fault localiza-
tion to approximate the correlation of source-code concepts
and failure. Further, by not being constrained to providing
topics at the modular level, but instead allowing concepts
to be mined across modules, SFD can provide finer grained,
and thus likely more descriptive, fault concepts.

6. EXPECTED FEEDBACK
SFD provides descriptions of software faults. This descrip-

tion could be presented in a variety of ways and include or
exclude various software artifacts. For example, SFD results
can be presented: in terms of where words originated from
(e.g., method names, variable expressions, or developer com-
ments) including links to the source code, as a simple ranked
list in isolation, as a central theme (i.e., use latent seman-
tic analysis to deduce a topic from the words) matched to
test cases containing very similar topics, or some alternative
variation. We are interested in discussing how developers
should receive this information, the impact of those choices,
and potential trade-offs.

Additionally, when considering usefulness, we are inter-
ested in discussing evaluation strategies for SFD. While com-
parisons could be made from words generated by SFD to
descriptions given by actual developers (in bug reports, or
commit messages of a repository) that may fail to demon-
strate the words that contain meaningful value to develop-
ers. We are interested in discussing quantitative evaluations
that measure “value.”

We are also interested in discussing how the value of words
changes based upon their origin. For example, words se-
lected from comments, class names or variable expressions
might best describe faults. However, it could be that only
when supplementary artifacts are added (e.g., test-case de-
scriptions or documentation) that SFD’s word choices are
meaningful to developers. Discussing the ramifications of
identifying semantic value by source code “demographics”
could enlighten the community regarding design (what ar-
ticles are of increased value to maintenance) and naming
conventions (what naming styles make maintenance easier).

7. CONCLUSIONS
In this paper we present a technique for automatically

generating words that describe a fault — semantic fault di-
agnosis. We present demonstrations that use a functional
prototype, and we outline potential directions for future
work. SFD utilizes all source-code text (e.g., variables ex-
pressions, method names, and developer comments) and sta-
tistical fault localization to approximate the words that best
describe a fault.

SFD requires no input from developers and can be utilized
immediately after witnessing testing or execution failures.
This immediacy allows for a variety of uses in the software
lifecycle ranging from debugging assistance to assisted bug
report generation.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation, through Award CCF-1116943 and
through Graduate Research Fellowship under Grant No. DGE-
0808392.

9. REFERENCES
[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss,

R. Premraj, and T. Zimmermann. What makes a good
bug report? In International Symposium on
Foundations of Software Engineering, 2008.

[2] T. J. Biggerstaff, B. G. Mitbander, and D. Webster.
The concept assignment problem in program
understanding. In International Conference on
Software Engineering, 1993.

[3] N. DiGiuseppe and J. A. Jones. Fault interaction and
its repercussions. In International Conference on
Software Maintenance, 2011.

[4] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol.
Can better identifier splitting techniques help feature
location? In International Conference on Program
Comprehension, 2011.

[5] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature location in source code: a taxonomy and
survey. Journal of Software Maintenance and
Evolution: Research and Practice, 2011.

[6] H. Do, S. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Softw. Engg., 2005.

[7] L. H. Etzkorn, C. G. Davis, and L. L. Bowen. The
language of comments in computer software: A
sublanguage of english. Journal of Pragmatics, 2001.

[8] J. A. Jones, M. J. Harrold, and J. Stasko.
Visualization of test information to assist fault
localization. In International Conference on Software
Engineering, 2002.

[9] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug
localization using latent dirichlet allocation. Inf.
Softw. Technol., 2010.

[10] C. Parnin and A. Orso. Are automated debugging
techniques actually helping programmers? In
International Symposium on Software Testing and
Analysis, 2011.

[11] J. Sayyad-Shirabad, T. C. Lethbridge, and S. Lyon. A
little knowledge can go a long way towards program
understanding. In International Workshop on Program
Comprehension, 1997.

	Introduction
	Novel Fault Descriptions
	Semantic Fault Diagnosis
	Demonstration of Use
	Tetris
	NanoXML

	Related Work
	Statistical Fault Localization
	Feature Extraction
	Author's Related Works

	Expected Feedback
	Conclusions
	Acknowledgments
	References

