
Received November 16, 2020, accepted January 7, 2021, date of publication January 18, 2021, date of current version January 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051957

Semantic Feature Learning via Dual Sequences
for Defect Prediction

JUNHAO LIN 1 AND LU LU 1,2
1School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
2Modern Industrial Technology Research Institute, South China University of Technology, Meizhou 528400, China

Corresponding author: Lu Lu (lul@scut.edu.cn)

This work was supported in part by the National Nature Science Foundation of China under Grant 61370103, in part by the Meizhou
Produce and Research Fund under Grant 2019A0101019, and in part by the Guangzhou Produce and Research Fund under
Grant 201902020004.

ABSTRACT Software defect prediction (SDP) can help developers reasonably allocate limited resources
for locating bugs and prioritizing their testing efforts. Existing methods often serialize an Abstract Syntax
Tree (AST) obtained from the program source code into a token sequence, which is then inputted into
the deep learning model to learn the semantic features. However, there are different ASTs with the same
token sequence, and it is impossible to distinguish the tree structure of the ASTs only by a token sequence.
To solve this problem, this paper proposes a framework called Semantic Feature Learning viaDual Sequences
(SFLDS), which can capture the semantic and structural information in the AST for feature generation.
Specifically, based on the AST, we select the representative nodes in the AST and convert the program source
code into a simplified AST (S-AST). Our method introduces two sequences to represent the semantic and
structural information of the S-AST, one is the result of traversing the S-AST node in pre-order, and another
is composed of parent nodes. Then each token in the dual sequences is encoded as a numerical vector via
mapping and word embedding. Finally, we use a bi-directional long short-term memory (BiLSTM) based
neural network to automatically generate semantic features from the dual sequences for SDP. In addition,
to leverage the statistical characteristics contained in the handcrafted metrics, we also propose a framework
called Defect Prediction via SFLDS (DP-SFLDS) which combines the semantic features generated from
SFLDS with handcrafted metrics to perform SDP. In our empirical studies, eight open-source Java projects
from the PROMISE repository are chosen as our empirical subjects. Experimental results show that our
proposed approach can perform better than several state-of-the-art baseline SDP methods.

INDEX TERMS Software defect prediction, abstract syntax tree, deep learning, bi-directional long
short-term memory network.

I. INTRODUCTION

With the increasing scale and complexity of software, soft-
ware testing has become one of the most critical phases in the
software life cycle [1], [2]. Software defect prediction (SDP)
techniques have been proposed to detect defects and help the
software quality assurance team allocate resources more effi-
ciently. The idea behind SDP is to use the historical versions
of the software as a data set to train a machine learning model
and predict whether new instances of code regions (e.g., files,
changes, and functions) contain defects. It is a challenging

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Lyu.

task of how to extract suitable features from programs to
improve the learning performance.

Handcrafted software metrics such as lines of code, num-
ber of methods, and cyclomatic complexity play important
roles in the development of SDP. Many existing studies,
such as [3]–[6], use handcrafted software metrics to describe
the features of software and take them as input to train
various machine learning models. These handcrafted soft-
ware metrics are manually designed by researchers (e.g.,
McCabe metrics [7] based on dependencies, MOOD met-
rics [8] built on polymorphic factors and coupling factors,
Halstead metrics [9] based on operation and operand counts,
and CKmetrics [10] developed from function and inheritance
counts). However, manually designed metrics ignore the

13112 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021

https://orcid.org/0000-0001-9544-2968
https://orcid.org/0000-0001-6372-7088


J. Lin, L. Lu: SFLDS for Defect Prediction

FIGURE 1. Example java files.

programs’ semantic and structural information because they
mainly focus on the statistical characteristics of programs and
assume that these characteristics can be used to distinguish
between programs. Take File1.java and File2.java in Figure 1
as examples. Both contain a for statement, a push func-
tion, and a pop function. The only difference between the
two files is the order of push function and pop function.
InFile2.java, aNoSuchElementExceptionwill occur if
the pop function is called at the beginning when the stack is
empty. But both share the same handcrafted software metrics.
That is to say, handcrafted software metrics cannot tell the
difference between them.

The abstract syntax tree (AST) is a tree representation of
the abstract syntactic structure of source code written in a
programming language. Each node of the AST denotes a con-
struction occurring in the source code. The AST contains all
the semantic and structural information in the program source
code. To bridge the gap between the programs’ semantic
information and features used for defect prediction, the state-
of-the-art method [11] extracts token sequences from pro-
grams’ ASTs to learn semantic features by deep belief net-
work (DBN). Li et al. [12] leverages convolutional neural
network (CNN) to generate semantic features from ASTs for
defect prediction. Their experiments show that models based
on semantic features outperform those traditional handcrafted
metric-based approaches. However, the original tree structure
is destroyed after converting AST into a token sequence,
which loses a lot of tree structural information. For example,
File1.java and File3.java in Figure 1 share the same pre-order
token sequence (i.e., [for, push, if, foo, pop]).
The difference between these two files is the position of the
foo function. We cannot distinguish these two files by the
token sequence. Therefore, we argue that a token sequence
cannot fully capture the AST’s tree structural information.

To solve the problem, this paper proposes a frame-
work called Semantic Feature Learning via Dual Sequences
(SFLDS) to capture both the semantic and tree structural
information of ASTs for semantic feature generation. Specif-
ically, based on the AST, we select the representative nodes in
the AST and convert the program source code into a simpli-
fied AST (S-AST). Throwing away unneededAST nodes will
turn the AST into a forest and degrade the performance of the
defect prediction model. Thus, we splice the children of these

nodes onto their parents to build S-AST and maintain the tree
structure of the S-AST. Ourmethod introduces two sequences
to represent the semantic and tree structure information of
S-AST. One is the result of traversing the S-AST node in
pre-order, and another is composed of parent nodes. Second,
to input token sequences into the model, mapping and word
embedding are performed to convert the token sequences
into numerical vectors. Finally, the two numerical vectors are
input into a bi-directional long short-termmemory (BiLSTM)
based neural network to automatically generate semantic fea-
tures from the S-AST. In addition, to leverage the statistical
characteristics contained in the handcrafted metrics, we also
propose a framework called Defect Prediction via SFLDS
(DP-SFLDS) which combines the semantic features gener-
ated from SFLDS with handcrafted metrics to perform SDP.

In summary, this paper makes the following contributions:
• We propose S-AST to exclude AST nodes that do not

contribute to the entire project and maintain the tree
structure of AST.

• We propose to learn contextual semantic features from
the pre-order and parent token sequences extracted from
S-AST by a BiLSTM-based neural network.

• We combine the semantic features generated from
SFLDS with handcrafted software metrics for defect
prediction, taking advantage of nonlinear features and
statistical characteristics.

The rest of this paper is organized as follows. Section II
introduces the background of defect prediction, word embed-
ding, and BiLSTM network. Section III describes our
approach. Section IV shows the experimental setup and
results. Section V discusses why do our approach work and
threats to validity. Section VI presents related work. Last,
we summarize this paper and discuss plans for future work
in Section VII.

II. BACKGROUND

In this section, we briefly introduce defect prediction, word
embedding, and BiLSTM network.

A. DEFECT PREDICTION

Defect prediction techniques use software historical data to
build machine learning models and predict whether new
code regions contain defects, which can help developers

VOLUME 9, 2021 13113



J. Lin, L. Lu: SFLDS for Defect Prediction

FIGURE 2. Software defect prediction process. {f1, f2, . . . , fn} refers to
the software metrics of the instance. 0 and 1 indicate whether the
instance contains defect.

focus their attention on buggy code [5]. Figure 2 presents
the typical defect prediction procedure, widely used in
research [11]–[14]. As the process shows, the first step is
to label the instance (i.e., source code files) collected from
software archives as buggy or clean. This step is based
on the bug tracking system (BTS). One could collect the
post-release defect of each instance from the BTS by linking
bug reports to its bug-fixing changes. A instance is labeled
as buggy if it contains at least one bug-fixing change. Oth-
erwise, the instance is labeled as clean. The second step is
to collect the corresponding handcrafted software metrics
of each instance. In past studies, the most commonly used
handcrafted metrics could be categorized into code metrics
(e.g., MOOD metrics and CK metrics) and process metrics
(e.g., change histories). Instances with features and labels
are employed to train the machine learning models such as
naive bayesian (NB) [15], decision tree (DT) [16] and support
vector machine (SVM) [17]. Finally, the trainedmodel is used
to predict whether the new instance contains defects.
In this work, we focused on within-project defect pre-

diction, which means the training and test set are different
versions of the same project. Moreover, instances from older
versions of the project were used as a training set, and
instances from newer versions were used as a test set.

B. WORD EMBEDDING

Word embedding techniques are widely used in natural
language processing (NLP) [18]–[20]. In NLP, words in a
sentence are processed by a machine learning model for
sentiment analysis, text classification, etc. But machines can-
not directly understand human language. Word embedding is
proposed to map each word in a sentence to a fixed-length
numerical vector so that words can be input into the machine
learning model. Word mapping can be learned before or
during machine learning model training. Furthermore, a NLP
task can benefit from word embedding, which does not treat
individual words as unique symbols. After learning the word
mapping, all words in the data set have corresponding numer-
ical vector representation, and the semantic distance between
two words can be measured by various distance calculation
methods. This kind of distributed representation can improve
a model’s performance on NLP tasks.

Each node in the S-AST is similar to the words in NLP.
Specifically, we recorded the node name in the S-AST as
a token and map the token onto a positive integer. A fully
connected layer was used to perform word embedding to
determine the semantic distance between different tokens.

C. BI-DIRECTIONAL LONG SHORT TERM MEMORY

NETWORK

Long short term memory (LSTM) network is a variant of a
standard recurrent neural network (RNN), which consists of
an input layer, a hidden layer, and an output layer [21]. The
form of an input sequence is x = (x1, x2, x3, . . . , xt ). After
receiving input xt at time t , the hidden layer state of the RNN
is ht and the output value is ot . The calculation method is
shown in Equations (1) and (2):

ht = f (Uxt +Wht−1 + b) (1)

zt = σ (Vht ) (2)

where U is the weight matrix of the input x, W is the weight
matrix of the hidden layer state ht−1 at time t−1 as the input at
time t , b is the bias matrix, f (z) is the hidden layer activation
function, V is the weight of the output layer, and σ (z) is the
activation function of the output layer.
Because of the gradient dissipation and explosion prob-

lems [22], the traditional RNN model is inefficient for
long-sequencemodeling. Thus, LSTMnetworkwas proposed
to preserve long-term data dependencies by gate mechanism
(e.g., the forget gate, the input gate, and the output gate). The
typical LSTM cell is shown in Figure 3. The input of each
gate is determined by the input of the current time step xt and
the output of the last time step ht−1:

ft = σ (W f xt + U f ht−1 + bf ) (3)

it = σ (W ixt + U iht−1 + bi) (4)

ot = σ (W oxt + Uoht−1 + bo) (5)

where ft , it , and ot are the states of the forget gate, the input
gate, and the output gate, respectively; W and U are the
weight matrices of the gates, and b is the bias matrix. The cell
state is updated by the information transmitted by the forget
gate, the input gate, and a candidate value ĉt calculated by
Equations (6) and (7):

ĉt = tanh(W cxt + U cht−1 + bc) (6)

ct = it ⊙ ĉt + ft ⊙ ct−1 (7)

Finally, the output ht is calculated by the cell state and the
output gate:

ht = ot ⊙ tanh(ct ) (8)

In RNNs and LSTM networks, information can only be
propagated forward, the result being that the state of time
t only depends on the information before time t . To solve
that problem, BiLSTM network uses two independent LSTM
cells to process the sequence in two directions separately
and combine the two output vectors from both directions.

13114 VOLUME 9, 2021



J. Lin, L. Lu: SFLDS for Defect Prediction

FIGURE 3. An LSTM cell.

BiLSTM network has been empirically proven effec-
tive because it makes use of the context in both
directions [23], [24].

III. APPROACH

Figure 4 shows the overall framework of DP-SFLDS. Based
on the AST, the representative nodes are selected to form the
S-AST. Then two token sequences are extracted from S-AST.
One is the result of traversing the S-AST node in pre-order,
and another is composed of parent nodes.We build a mapping
between integers and tokens, and employ word embedding
to encode token sequences as numerical vectors which are
input to subsequent BiLSTM-based neural network called
dual sequences LSTM (DS-LSTM). DS-LSTMautomatically
generates semantic and structural features of S-AST from
the dual input vectors, which are then combined with several
handcrafted software metrics. Finally, the joint features are
fed into a Logistic Regression (LR) classifier. After building
our classifier model, we can produce a probability for each
source code file, indicating whether it is buggy or clean.
Our approach consisted of four major steps: 1) extracting

dual token sequences from S-AST, 2) encoding tokens into
numerical vectors and handling data imbalance, 3) employing
a BiLSTM-baesd neural network to generate semantic fea-
tures and combining handcrafted metrics, and 4) building a
Logistic Regression classifier to predict whether the source
code files are buggy or clean.

A. EXTRACTING DUAL TOKEN SEQUENCES FROM S-AST

We used the open-source Python project javalang1 to parse
the source code in the software repository into AST. Fol-
lowing the state-of-the-art method [11], we chose only
three types of nodes on the AST as tokens: 1) nodes of
function invocation and class instance creation, 2) decla-
ration nodes, and 3) control-flow nodes. The first type of
node was recorded as its function name or class name
(e.g., in Figure 1, functions myFunc and foo were
recorded as their function names). The second type of
node (e.g., method declaration, type declaration, and enu-
meration declaration) and the third type of node (e.g.,

1https://github.com/c2nes/javalang

TABLE 1. The selected AST nodes.

WhileStatement, IfStatement, ForStatement,
and ReturnStatement) were recorded as its node name.
For example, the ForStatement node is simply recorded
as for. In summary, we excluded AST nodes that do not fall
into these three categories, such as intrinsic type declaration,
because they are often based on specific function or class,
which may not apply to the entire project. The AST nodes
that we used to form S-AST are shown in Table 1.
Throwing away unneeded AST nodes will turn the AST

into a forest and destroy the original tree structure of the AST,
losing a lot of tree structural information. To preserve the tree
structure of AST, we propose the S-AST inwhich the children
of unwanted nodes are spliced to the parents of unwanted
nodes. Moreover, the largest difference between the S-AST
and the sentence in NLP is that the S-AST is a tree structure.
The context of a sentence can be constructed from a word
sequence, but the original tree structure cannot be recovered
from a token sequence. For example, in Figure 1, File1.java
and File3.java have the same pre-order token sequence (i.e.,
[for, push, if, foo, pop]). However, the context
of the two files is different. To fully capture the semantic
and structural information in the S-AST, we organized two
token sequences. One is the result of traversing the S-AST
node in pre-order, and another is composed of parent nodes.
With these two token sequences, we were able to restore the
original tree structure of the S-AST. For example, File1.java
can be represented as [for, push, if, foo, pop]

and [myFunc, for, for, if, for].

B. ENCODING TOKENS AND HANDLING IMBALANCE

In this work, we leveraged DS-LSTM to generate the seman-
tic features. Given that the neural network requires input as
numerical vectors, we needed to convert the tokens to numeri-
cal vectors. We first collected all the tokens that appear in the
S-AST and built a unified mapping dictionary between the

VOLUME 9, 2021 13115



J. Lin, L. Lu: SFLDS for Defect Prediction

FIGURE 4. The overall framework of DP-SFLDS.

integers and the tokens. According to the mapping dictionary,
tokens are mapped to integers ranging from 1 to the total
number of tokens. In addition, the LSTM layer requires that
the input sequences have a fixed length. However, the token
sequences generated from different S-ASTs varied in length.
To address this problem, we appended 0 to each sequence,
making its length equal to the longest sequence. Null was
mapped to 0 because 0 does not have any meaning. We also
employ word embedding in the encoding phase. However,
our word embedding is built and trained at the same time as
DS-LSTM. So we wrap word embedding as a part of our
model and discuss it in the following model building part.
Software defect data always comes with data imbalance

problem because the number of buggy instances is much
smaller than the number of clean instances. Imbalanced
data will affect the model’s tendency to predict instances as
clean and will degrade the performance of the model [25].
To address the imbalance problem, there are two feasible
approaches. One approach is to randomly duplicate instances
from minority class until a balance is reached. Another
approach is to remove instances from major class randomly.
Because the second method will eliminate some of the infor-
mation in the major class, we used the first approach to deal
with the imbalance problem in the training set.

C. BUILDING BiLSTM-BASED NEURAL NETWORK AND

COMBINING HANDCRAFTED METRICS

Our DS-LSTM network is illustrated in Figure 5. In par-
ticular, DS-LSTM consisted of an embedding layer (i.e.,
word embedding), two LSTM layers, a fully connected layer,
and finally a ReLU layer as activation layer. In this step,
the pre-order sequence and parent sequence are input into
the DS-LSTM network to learn semantic features that pre-
serves the semantic and tree structural information of the
S-AST. We chose LSTM as a feature generation neural net-
work because it is good at extracting semantic information
from sequence input. Considering that this work engaged

FIGURE 5. Our proposed DS-LSTM network. {x1, x2, . . . , xn} refers to the
pre-order sequence and {x ′

1
, x ′

2
, . . . , x ′

n} refers to the parent sequence.

LSTM only as an application to generate semantic features,
we adopted a standard architecture of LSTM rather than
a complex architecture. Our implementation was based on
PyTorch,2 an open-source deep learning framework that pro-
vides efficient tools for neural network construction and
flexible development. The sequences input into LSTM net-
work must have a fixed length, and so we appended 0 to
each sequence in Section III-B. However, padding too many
0 can degrade the performance of LSTM network. We solved
this problem by wrapping the input vector sequence into
PyTorch’s PackedSequence, which will ignore the padded
0 in the input sequence when training the LSTM network.

2https://pytorch.org/

13116 VOLUME 9, 2021



J. Lin, L. Lu: SFLDS for Defect Prediction

TABLE 2. Data set description.

Word embedding is defined as f : M → R
n, where f is

a function of mapping tokens to n-dimensional vectors and
M represents the set of tokens. The parameter of embed-
ding layer is initialized randomly and learned with other
parameters in the DS-LSTM network. Thereafter, the LSTM
layer gets a 2-D vector x ∈ R

l×n as input, where l and
n denote the length of input sequences and the embedding
dimension, respectively. As discussed in Section II-C, BiL-
STM network constructs the context of a sentence through
a forward sequence and a reverse sequence, which has been
proven effective. Inspired by the BiLSTM network, we con-
structed the context of an S-AST by a pre-order sequence
and a parent sequence. In this way, we could further mine
the semantic and tree structural information of the S-AST.
Then, the two output vectors from the two LSTM layers
were concatenated into a 2-D vector o ∈ R

l×2h, where h
was the hidden size of the LSTM layer. The concatenated
vector was input into a fully connected layer and a ReLU
layer to learn the semantic features. Moreover, to leverage the
statistical information of handcrafted metrics, the semantic
features were combined with handcrafted metrics to form the
joint features. Finally, the joint features were input into the
logistic regression classifier. To demonstrate the effectiveness
of combining handcrafted metrics, we design a framework
called SFLDS which directly feeds the semantic features to
final classifier without concatenation. In the experiments part,
we will compare this framework with DP-SFLDS, as well as
other state-of-the-art-methods.

D. PREDICTING DEFECTS

Logistic regression classifier is employed as the final clas-
sifier because it is widely used in studies [11], [12] and
we mainly focus on feature generation in this paper. Our
model is trained using the mini-batch stochastic gradient
descent (SGD) algorithm [26] with the Adam optimizer [27].
Further, we use the cross-entropy cost as the loss function
and set the number of training epochs to 100. We will discuss
the details of parameter tuning, such as embedding dimension
and hidden dimension, in Section IV. After we train our
model using the training files with their corresponding labels,
both the weights and the biases in our DS-LSTM network and
logistic regression classifier are fixed. Then each file in the
test set is fed into our defect prediction model and the final

classifier will predict the probability of the instance being
defective.

IV. EVALUATION

In this section, we compare the performance of DP-SFLDS
with the state-of-the-art methods to verify the validity of
DP-SFLDS. In particular, we focus on the following
questions:

• RQ1: Does our proposed SFLDS perform better than
the state-of-the-art methods only based on handcrafted
metrics or semantic features?

• RQ2: How is the performance of DP-SFLDS, which
combines handcrafted metrics?

• RQ3: How is the performance of SFLDS under different
parameter settings?

All our experiments were run on a Linux server with one
GTX-2070s GPU, one Intel E3 1230-v3 CPU, and 16GB
memory.

A. DATA SET

To evaluate the performance of DP-SFLDS, we selected
8 Java open-source projects from PROMISE Repository3 as
our evaluation data set, which has been widely used in SDP
studies [11]–[13]. Table 2 shows the details of these projects,
including project name, description, version for model train-
ing and testing, the average number of files, and the average
buggy rate. In this repository, we are provided with 20 hand-
crafted software metrics for each project file, which are listed
in Table 3, and a label indicating whether the file is defective
or not. With the project names and concrete version numbers,
we collected the source files of each project from Github.4

On average, the number of files in each project was 393, and
the buggy rate of each project was 45.9%.

B. PERFORMANCE MEASURES

Table 4 shows the confusion matrix, in which the values
stored are used to figure out widely used evaluation mea-
sures in binary classification tasks. For better validating the
performance of the proposed approach, and following the
recommendations in [25], Recall, F-measure, Area Under

3http://openscience.us/repo/defect/
4https://github.com/

VOLUME 9, 2021 13117



J. Lin, L. Lu: SFLDS for Defect Prediction

TABLE 3. Description of the 20 handcrafted software metric in PROMISE
data set.

TABLE 4. Confusion matrix.

Curve (AUC), and Matthews Correlation Coefficient (MCC)
are adopted as performance measures in our experiments.
We repeated each experiment ten times and took the average
of the performance measure as a result.
In SDP, developers pay more attention to finding all defect

instances than to predicting accuracy. Recall (R) refers to
the proportion of the number of instances correctly predicted
among all the results that are truly positive. Recall is calcu-
lated by Equation (9):

R =
TP

TP+ FN
(9)

F-measure is a composite measure of precision and recall,
ranging from 0 to 1. The higher the F-measure, the better
the prediction model’s performance. The F-measure can be
calculated by Equation (11):

P =
TP

TP+ FP
(10)

F-measure =
2PR

P+ R
(11)

AUC that can measure the discrimination power of con-
structed models is defined as the area under the receiver oper-
ating characteristic curve (ROC). ROC is a curve of the false
positive rate (FPR) against the true positive rate (TPR). The
FPR and TPR can be calculated by Equation (12) and (13):

FPR =
FP

FP+ TN
(12)

TPR =
TP

TP+ FN
(13)

MCC, a correlation coefficient between the actual clas-
sification and predicted classification, has comprehensive
consideration of various indicators. Its value ranges from
0 to 1, higher values mean better results. MCC is calculated
by Equation (14):

MCC =
TP ∗ TN − FP ∗ FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(14)

C. BASELINES

We compared DP-SFLDS with the following state-of-the-art
approaches:

• Methods only using handcrafted software metrics
in Table 3.

– LR: A traditional method for SDP.
– SVM: Support vector machine, a classification

method commonly used in machine learning.
– DT: Decision Tree, a popular method in machine

learning.
– RF: Random forest, an ensemble learning method

for classification.

• Methods using features generated from deep learning
models. We adopted the same parameter setting as
in [11], [12]. For fairness, we used a consistent LR
implementation as a final classification.

– DBN: The state-of-the-art method [11], which
employs a standard DBNmodel to extract semantic
features from AST.

– CNN: The state-of-the-art method [12], which cap-
tures semantic information through standard CNN
based on sequence convolution.

– LSTM: An SDP method that leverages standard
LSTM network to generate semantic features from
AST.

– DP-DBN: An enhanced DBN by combining gener-
ated features and handcrafted metrics.

13118 VOLUME 9, 2021



J. Lin, L. Lu: SFLDS for Defect Prediction

– DP-CNN: An variant of CNN that combines the
generated features and handcrafted metrics.

– DP-LSTM: An variant of LSTM.

D. PERFORMANCE OF SFLDS (RQ1)

We first compare the handcrafted metric-based method with
semantic feature-based methods which have not combined
with handcrafted metrics (i.e., DBN, CNN, LSTM, and
SFLDS). We conducted eight sets of experiments on those
projects listed in Table 2 for each method. To clearly
show the difference in performance between different meth-
ods, we used the Scott-Knott ESD test to compare the
performance of different SDP methods. The Scott-Knott
ESD test divides performance measure results into statisti-
cally different groups through hierarchical clustering anal-
ysis. A detailed introduction to the Scott-Knott ESD test is
available [28].

Figure 6 shows the corresponding Scott-Knott ESD test
results. The methods in the experiment could be generally
divided into two categories: deep learning methods (i.e.,
SFLDS, CNN, and LSTM) and the other methods. The
deep learning methods are superior to the other methods
in the average performance measures. Particularly, the aver-
age Recall of SFLDS is 0.65, which outperforms LSTM by
3.83%. The average F-measure of SFLDS is 0.593, which
outperforms CNN by 1.72%. The average AUC of SFLDS is
0.667, which outperforms CNN by 0.90%. The averageMCC
of SFLDS is 0.353, which outperforms CNN by 3.52%. The
following two points can be drawn from the above experiment
results:
1) Deep learningmethods could learn the semantic features

from the S-AST token sequence and improve the performance
of the SDP.
2) The SFLDS, which considers the semantic and tree

structural information of S-AST, could perform better than
the other SDP methods only based on semantic features or
handcrafted metrics.

E. PERFORMANCE OF DP-SFLDS (RQ2)

In this part, we combined the semantic features gener-
ated from SFLDS with handcrafted software metrics to
form the joint features. By taking advantage of nonlin-
ear features and statistical characteristics, we can expect to
achieve a better performance of SDP. For a fair comparison,
we also combined the semantic features generated fromDBN,
CNN, and LSTM with handcrafted metrics, called DP-DBN,
DP-CNN, and DP-LSTM. As before, we conducted eight sets
of experiments for each method.
Table 5, 6, 7, and 8 respectively presents the Recall,

F-measure, AUC, andMCC results for each method. By com-
prehensive observation, DP-SFLDS performed better than
other methods in most projects, except for the project log4j,
where DP-CNN outperforms DP-SFLDS in terms of the
four performance measures. The reason may be that the
training set of log4j was relatively small and the buggy
rate was fairly high, could make DP-SFLDS overfit and

FIGURE 6. The Scott-Knott ESD ranking of different SDP methods. The
blue diamond indicates the average performance measure of the
corresponding method.

degrade the performance. However, by introducing hand-
crafted metrics, DP-SFLDS can achieve better performance
than SFLDS. More specifically, on the average value, our
proposed DP-SFLDS achieves Recall as 0.679, F-measure as
0.612, AUC as 0.684, andMCC as 0.372 across eight projects
and obtains the best average value on the four performance
measures as compared to the other baseline methods. Com-
pared with the best performance measures among the base-
line methods, DP-SFLDS achieves improvements of, 2.87%,
2.00%, 1.03%, and 2.19% in terms of Recall, F-measure,
AUC, and MCC, respectively. In summary, by combining
handcrafted metrics with semantic features, we can achieve
better performance than by using only semantic features or
handcrafted metrics.

F. PARAMETER TUNING (RQ3)

Two hyper-parameters significantly affect the performance of
SFLDS: 1) the embedding dimension of tokens, and 2) the
hidden dimension of the LSTM layer. In this part, we dis-
cuss how to adjust these two parameters to achieve the best
SFLDS performance. Based on F-measure, we tuned these
two hyperparameters by conducting experiments on project
jedit, lucene, xalan, and velocity with seven values (i.e.,
10, 20, 30, 50, 70, 90, and 120). Given that other training
parameters do not directly affect the performance of SFLDS,
we set these parameters to a fixed value. More specifically,
the learning rate, the step size, the decay rate, the batch size,

VOLUME 9, 2021 13119



J. Lin, L. Lu: SFLDS for Defect Prediction

TABLE 5. Comparison results of different methods in terms of Recall. The best performance results are shown in bold and W/T/L represents the number
of wins, ties, and losses of DP-SFLDS compared with other methods.

TABLE 6. Comparison results of different methods in terms of F-measure. The best performance results are shown in bold and W/T/L represents the
number of wins, ties, and losses of DP-SFLDS compared with other methods.

TABLE 7. Comparison results of different methods in terms of AUC. The best performance results are shown in bold and W/T/L represents the number of
wins, ties, and losses of DP-SFLDS compared with other methods.

TABLE 8. Comparison results of different methods in terms of MCC. The best performance results are shown in bold and W/T/L represents the number of
wins, ties, and losses of DP-SFLDS compared with other methods.

13120 VOLUME 9, 2021



J. Lin, L. Lu: SFLDS for Defect Prediction

FIGURE 7. (a), (b) show the performance of SFLDS under different
hyperparameters settings.

and the training epoch were set as 0.01, 3, 0.5, 15, 100,
respectively.
Figure 7 shows the average F-measure of SFLDS under

different parameter settings. In Figure 7a, we set the embed-
ding dimension at a fixed value and took the average of
F-measures under different hidden dimensions as the final
result. Figure 7b was drawn similarly. Figure 7a shows that
most of the result curves were convex and reached their
maximum value when the embedding dimension was set to
50. From the results shown in Figure 7b, considering time
cost, we finally chose 30 as the hidden dimension in our
experiment for better prediction performance, although xalan
achieved the best performance in 120.

V. DISCUSSION

A. WHY SFLDS AND DP-SFLDS WORKS?

The experiment results show that our proposed approach
performs better than other approaches based on handcrafted
software metrics or semantic features. The probable reasons
are listed as following:

1) Traditional machine learning methods based on hand-
crafted softwaremetrics focus on statistical information of the
source code (e.g., LOC, the number of function calls), which
cannot capture the semantic information. Compared with
these approaches (i.e., LR, SVM, RF, DT), SFLDS directly
generates features from source code with more complex neu-
ral network connections. These neural network connections
enable the SFLDS to generate features with multiple levels of
abstraction and high-level semantics. Moreover, DP-SFLDS
combines the semantic features generated from SFLDS with
handcrafted software metrics, taking advantage of nonlinear
features and statistical characteristics, which could further
improve the performance of SDP.

2) Compared with the previous semantic feature-based
methods (i.e., DBN, CNN, LSTM, DP-DBN, DP-CNN, DP-
LSTM), SFLDS and DP-SFLDS simultaneously consider
semantic and tree structural information in the S-AST. Instead
of directly serializing an AST into a token sequence and
removing useless nodes from the token sequence, we con-
struct the S-AST to maintain the semantic and tree structural
information of AST. First, based on the AST, the represen-
tative nodes are selected to form the S-AST while the AST
nodes that do not contribute to the entire project are removed.
Second, we can get the S-AST by splicing the children of
removed nodes to its parent. The largest difference between
the S-AST and the sentence in NLP is that the S-AST is a tree
structure. Therefore, we organized two token sequences (i.e.,
pre-order sequence, parent sequence) where each pair of the
token is time-related to construct the context of the S-AST.
Last, we use BiLSTM-based network to generate semantic
features which simultaneously considers semantic and tree
structural information in the S-AST. Thus, we believe that
SFLDS-generated features can contribute to the performance
of SDP.

B. THREATS TO VALIDITY

We discuss threats to the validity of our study in this part.

• Implementation of ComparedMethods: In our exper-
iments, we compared our proposed approach with ten
referential methods. Because the original implementa-
tions of DBN, LSTM, and CNN have not yet been
publicly released, we implemented our version via
PyTorch. Although we strictly followed the procedures
and parameter settings of that approach, our implemen-
tation may not reflect all the details of the comparison
approach. To make a fair comparison, we performed the
same pre-processing process on the input of each model
and employed a logistic regression layer as the final
classifier.

• Data selection: Our approach is only validated
in open-source projects. It is difficult to evaluate
DP-SFLDS in closed-source project because the source
code of the project is needed to generate AST. However,
the structure of AST in open-source projects is the same
as in closed-source projects. We believe that the process

VOLUME 9, 2021 13121



J. Lin, L. Lu: SFLDS for Defect Prediction

of generating semantic features in open-source projects
can be generalized to closed-source projects. Moreover,
all the data in our experiment came from the PROMISE
repository, so they might not be representative of all
projects. In particular, the projects in the PROMISE
repository were written in Java. Therefore, our proposed
method might produce better or worse results in those
projects based on other programming languages (e.g.,
Python, C++).

VI. RELATED WORK

A. SOFTWARE DEFECT PREDICTION

Software defect prediction is an active research area in
Software Engineering [29]–[36]. In the literature, most
defect prediction techniques focus on manually designing
new discriminative features or new combined features from
labeled software repository, which are fed into machine
learning-based classifiers to identify code defects [29]. Com-
monly used metrics can be generally divided into three cat-
egories: static code metrics, network metrics, and process
metrics. Static codemetrics measure the complexity of source
code and assume that the more complex the source code is,
the more likely defects are to appear [37]. Network met-
rics [38], which are effective for SDP, are social network anal-
ysis (SNA)metrics calculated based on the dependency graph
of a software system and quantify the topological structure of
each node of the dependency graph in a certain sense. Process
metrics represent development changes on software projects,
such as the number of revisions, authors, past bug fixes, and
ages of files [39]. Based on the above metrics, SDP tasks can
be categorized into within-project defect prediction (WPDP)
and cross-project defect prediction (CPDP).
In WPDP, machine learning models are trained using the

old version of the program modules, after which they predict
whether the new version of the program module contains
defects. This problem has been well explored in the past. For
example, Turhan et al. [40] evaluated the feasibility of Naïve
Bayes (NB) classification in predicting software defects, and
they compared NB with the other three statistical learning
methods on eight NASA datasets. Tua et.al [31] improved
the performance of the software metric-based method by
adding the process of selecting features using ARM to the NB
method. Their experiment results indicated that NB-ARM
could perform better than the other three machine learning
methods on five PROMISE datasets. Wei et.al [32] intro-
duced the local tangent space alignment (LTSA) algorithm
to support vector machine (SVM) for defect prediction.
Compared with the single SVM and the LLE-SVM, Their
LTSA-SVM improved the F-measure by 1-4% in 13 NASA
datasets. To better cope with noise and imprecise infor-
mation, Marian et.al [33] proposed to employ the fuzzy
decision trees (FuzzyDT) algorithm in detecting defective
entities. Their evaluation on PROMISE repository showed
that their DT based approach can improve defect predic-
tion results compared to the other machine learning-based
classifiers.

Recently, to address the problem of insufficient training
data for new projects, more and more papers studied the
CPDP task, where the training data and test data come from
different projects. Zimmermann et al. [41] ran 622 pairs
of CPDP tasks on 12 software projects to verify whether
CPDP is feasible, and they found that only 3.4% of pre-
diction tasks could achieve acceptable performance, thus
concluding that CPDP task will fail in most cases unless
appropriate training data are selected. In order to find suit-
able source projects, Herbold et al. [42] proposed a training
data selection (TDS) by measuring the Euclidean distance
between the source and target projects. They evaluated TDS
in 44 versions of 14 different open source projects from the
PROMISE repository and the experiment results showed that
TDS improves the success rate of CPDP significantly, though
the quality of the results still cannot compete with WPDP.
Nam et al. [43] adopted a transfer learning technique called
transfer component analysis (TCA) which made feature dis-
tributions in source and target projects similar and further
improved TCA as TCA+ by adding customized normaliza-
tion rules to preprocess data. TCA and TCA+, however, only
took marginal distribution into account. To simultaneously
consider both the marginal distribution and conditional dis-
tribution, Qiu et al. [44] proposed joint distribution match-
ing (JDM) to construct new feature representation that is
effective and robust for substantial distribution difference
for CPDP. Different from JDM, balanced distribution adap-
tion (BDA) methods proposed by Xu et al. [45] not only
take the marginal distribution and conditional distribution
into account but also adaptively assign different weights to
them.

Our approach differs from the aforementioned SDP
approaches in that we utilize deep learning technique to auto-
matically generate discriminative features from the program
source code, rather than handcrafted software metrics, which
can capture the semantic and tree structural information of
S-AST and improve the performance of SDP.

B. DEEP LEARNING AND SOFTWARE ENGINEERING

With the rapid development of deep learning, more
and more researchers are committed to combining deep
learning and SDP. Yang et al. [46] proposed a deep
belief network (DBN) algorithm to build a set of expressive
features from a set of initial change features for just-in-time
defect prediction. Their experiment result showed that on
average across the 6 projects, their approach could discover
32.22% more bugs than the traditional approach. To mine
source-level semantic and syntactic features, Phan et al. [47]
proposed to leverage precise graphs representing program
execution flows, and convolutional neural networks (CNN)
for automatically learning defect features. In addition,
Wang et al. [11] proposed the state-of-the-art approach that
leveraged DBN to automatically learn the semantic features
of programs from abstract syntax trees (ASTs). Based on
Wang et al.’s approach, Li et al. [12] leveraged the token
sequence extracted from the AST and CNN to perform defect

13122 VOLUME 9, 2021



J. Lin, L. Lu: SFLDS for Defect Prediction

prediction. Li et al. [48] employed a BiLSTM model
to generate semantic features from programs’ ASTs and
perform defect prediction. The experiment results of the
aforementioned deep learning methods showed that deep
learning-based method could perform better than traditional
methods in defect prediction.

The differences between our work and previous work are
as follows. First, we construct S-AST to exclude AST nodes
that do not contribute to the entire project and maintain the
tree structure of AST rather than directly delete the unneeded
nodes from the token sequence. Second, we construct the
context of AST by pre-order and parent sequences extracted
from S-AST and a BiLSTM-based model, compared to learn
semantic features from a token sequence.

There are also other studies that leverage deep learning
techniques to solve other problems in software engineering.
White et al. [49] used deep learning to link the patterns mined
at the lexical level with patterns mined at the syntactic level
for code clone detection. Gu et al. [50] proposed an RNN
encoder-decoder model to generate API usage sequences for
a given natural language query. Gupta et al. [51] introduced
a multilayered sequence-to-sequence neural network model
with attention to predicting erroneous C program locations
along with the required correct statements.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel SDP approach to generate
semantic features that simultaneously considered semantic
and tree structural information in the AST.We also combined
the generated semantic features with handcrafted software
metrics to form the joint features, taking advantage of nonlin-
ear features and statistical characteristics. The experimental
results showed that our approach outperformed the referen-
tial methods on eight open-source projects from PROMISE
repository.
In the future, to make our approach more generalized,

we will continue to conduct experiments in a variety of
programming languages (e.g., Python, C++) and projects to
further improve our approach.

REFERENCES

[1] B. W. Boehm, J. R. Brown, and M. Lipow, ‘‘Quantitative evaluation of
software quality,’’ in Proc. 2nd Int. Conf. Softw. Eng., Piscataway, NJ,
USA: IEEE Computer Society Press, 1976, pp. 592–605.

[2] S. H. Kan,Metrics and Models in Software Quality Engineering. Reading,
MA, USA: Addison-Wesley, 2002.

[3] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, ‘‘Using the
support vector machine as a classification method for software defect
prediction with static code metrics,’’ in Proc. Int. Conf. Eng. Appl. Neural
Netw. Berlin, Germany: Springer, 2009, pp. 223–234. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-03969-0_21

[4] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, ‘‘Heterogeneous cross-company
defect prediction by unified metric representation and CCA-based transfer
learning,’’ in Proc. 10th Joint Meeting Found. Softw. Eng., Aug. 2015,
pp. 496–507.

[5] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
‘‘Defect prediction from static code features: Current results, limitations,
new approaches,’’ Automated Softw. Eng., vol. 17, no. 4, pp. 375–407,
Dec. 2010.

[6] J. Nam and S. Kim, ‘‘CLAMI: Defect prediction on unlabeled datasets
(T),’’ in Proc. 30th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Nov. 2015, pp. 452–463.

[7] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[8] R. Harrison, S. J. Counsell, and R. V. Nithi, ‘‘An evaluation of the MOOD
set of object-oriented software metrics,’’ IEEE Trans. Softw. Eng., vol. 24,
no. 6, pp. 491–496, Jun. 1998.

[9] M. Halsted, Elements of Software Science (Operating and Programming
Systems Series). New York, NY, USA: Elsevier, 1977. [Online]. Available:
https://dl.acm.org/doi/book/10.5555/540137

[10] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[11] S. Wang, T. Liu, J. Nam, and L. Tan, ‘‘Deep semantic feature learning
for software defect prediction,’’ IEEE Trans. Softw. Eng., vol. 46, no. 12,
pp. 1267–1293, Dec. 2020.

[12] J. Li, P. He, J. Zhu, and M. R. Lyu, ‘‘Software defect prediction via
convolutional neural network,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel.
Secur. (QRS), Jul. 2017, pp. 318–328.

[13] H. Khanh Dam, T. Pham, S. Wee Ng, T. Tran, J. Grundy, A. Ghose,
T. Kim, and C.-J. Kim, ‘‘A deep tree-based model for software defect
prediction,’’ 2018, arXiv:1802.00921. [Online]. Available: http://arxiv.org/
abs/1802.00921

[14] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, ‘‘Dictionary
learning based software defect prediction,’’ in Proc. 36th Int. Conf. Softw.
Eng., May 2014, pp. 414–423.

[15] S. Amasaki, Y. Takagi, O. Mizuno, and T. Kikuno, ‘‘A Bayesian belief
network for assessing the likelihood of fault content,’’ in Proc. 14th Int.
Symp. Softw. Rel. Eng., ISSRE, Nov. 2003, pp. 215–226.

[16] J. Wang, B. Shen, and Y. Chen, ‘‘Compressed C4.5 models for software
defect prediction,’’ in Proc. 12th Int. Conf. Qual. Softw., Aug. 2012,
pp. 13–16.

[17] K. O. Elish and M. O. Elish, ‘‘Predicting defect-prone software modules
using support vector machines,’’ J. Syst. Softw., vol. 81, no. 5, pp. 649–660,
May 2008.

[18] O. Levy and Y. Goldberg, ‘‘Linguistic regularities in sparse and explicit
word representations,’’ in Proc. 18th Conf. Comput. Natural Lang. Learn.,
2014, pp. 171–180.

[19] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, ‘‘Learning
sentiment-specific word embedding for Twitter sentiment classification,’’
in Proc. 52nd Annu. Meeting Assoc. Comput. Linguistics (Long Papers),
vol. 1, 2014, pp. 1555–1565.

[20] O. Levy and Y. Goldberg, ‘‘Neural word embedding as implicit matrix fac-
torization,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2177–2185.

[21] D. P. Mandic and J. Chambers, Recurrent Neural Networks for Prediction:
Learning Algorithms, Architectures and Stability. Hoboken, NJ, USA:
Wiley, 2001.

[22] Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,’’ IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994.

[23] A. Graves, A.-R.Mohamed, andG. Hinton, ‘‘Speech recognition with deep
recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2013, pp. 6645–6649.

[24] A. Graves and J. Schmidhuber, ‘‘Framewise phoneme classification with
bidirectional LSTMand other neural network architectures,’’Neural Netw.,
vol. 18, nos. 5–6, pp. 602–610, Jul. 2005.

[25] Q. Song, Y. Guo, and M. Shepperd, ‘‘A comprehensive investigation of the
role of imbalanced learning for software defect prediction,’’ IEEE Trans.
Softw. Eng., vol. 45, no. 12, pp. 1253–1269, Dec. 2019.

[26] L. Bottou, ‘‘Large-scale machine learning with stochastic gradient
descent,’’ in Proc. COMPSTAT. Heidelberg, Germany: Springer, 2010,
pp. 177–186. [Online]. Available: https://link.springer.com/chapter/
10.1007/978-3-7908-2604-3_16

[27] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/abs/1412.
6980

[28] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, ‘‘An
empirical comparison of model validation techniques for defect prediction
models,’’ IEEE Trans. Softw. Eng., vol. 43, no. 1, pp. 1–18, Jan. 2017.

[29] D. Bowes, T. Hall, and J. Petrić, ‘‘Software defect prediction: Do dif-
ferent classifiers find the same defects?’’ Softw. Qual. J., vol. 26, no. 2,
pp. 525–552, Jun. 2018.

[30] R. H. Chang, X. D. Mu, and L. Zhang, ‘‘Software defect prediction using
non-negativematrix factorization,’’ J. Softw., vol. 6, no. 11, pp. 2114–2120,
Nov. 2011.

[31] F. M. Tua andW. D. Sunindyo, ‘‘Software defect prediction using software
metrics with Naive Bayes and rule mining association methods,’’ in Proc.
5th Int. Conf. Sci. Technol. (ICST), vol. 1, Jul. 2019, pp. 1–5.

VOLUME 9, 2021 13123



J. Lin, L. Lu: SFLDS for Defect Prediction

[32] H. Wei, C. Hu, S. Chen, Y. Xue, and Q. Zhang, ‘‘Establishing a soft-
ware defect prediction model via effective dimension reduction,’’ Inf. Sci.,
vol. 477, pp. 399–409, Mar. 2019.

[33] Z. Marian, I.-G. Mircea, I.-G. Czibula, and G. Czibula, ‘‘A novel approach
for software defect prediction using fuzzy decision trees,’’ inProc. 18th Int.
Symp. Symbolic Numeric Algorithms Sci. Comput. (SYNASC), Sep. 2016,
pp. 240–247.

[34] R. Özakıncı and A. Tarhan, ‘‘Early software defect prediction: A system-
atic map and review,’’ J. Syst. Softw., vol. 144, pp. 216–239, Oct. 2018.

[35] Z. Li, X.-Y. Jing, and X. Zhu, ‘‘Progress on approaches to software defect
prediction,’’ IET Softw., vol. 12, no. 3, pp. 161–175, Jun. 2018.

[36] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and
A. De Lucia, ‘‘A developer centered bug prediction model,’’ IEEE Trans.
Softw. Eng., vol. 44, no. 1, pp. 5–24, Jan. 2018.

[37] Y. A. Alshehri, K. Goseva-Popstojanova, D. G. Dzielski, and T. Devine,
‘‘Applying machine learning to predict software fault proneness using
change metrics, static code metrics, and a combination of them,’’ in Proc.
SoutheastCon, Apr. 2018, pp. 1–7.

[38] T. Zimmermann and N. Nagappan, ‘‘Predicting defects using network
analysis on dependency graphs,’’ in Proc. 13th Int. Conf. Softw. Eng. ICSE,
2008, pp. 531–540.

[39] R. Moser, W. Pedrycz, and G. Succi, ‘‘A comparative analysis of the effi-
ciency of change metrics and static code attributes for defect prediction,’’
in Proc. 13th Int. Conf. Softw. Eng. - ICSE, 2008, pp. 181–190.

[40] B. Turhan and A. Bener, ‘‘Analysis of naive Byes’ assumptions on soft-
ware fault data: An empirical study,’’ Data Knowl. Eng., vol. 68, no. 2,
pp. 278–290, Feb. 2009.

[41] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, ‘‘Cross-
project defect prediction: A large scale experiment on data vs. Domain vs.
Process,’’ in Proc. 7th joint meeting Eur. Softw. Eng. Conf. ACM SIGSOFT

Symp. Found. Softw. Eng. Eur. Softw. Eng. Conf. Found. Softw. Eng. Symp.

- ESEC/FSE, 2009, pp. 91–100.
[42] S. Herbold, ‘‘Training data selection for cross-project defect prediction,’’

in Proc. 9th Int. Conf. Predictive Models Softw. Eng., Oct. 2013, pp. 1–10.
[43] J. Nam, S. J. Pan, and S. Kim, ‘‘Transfer defect learning,’’ in Proc. 35th

Int. Conf. Softw. Eng. (ICSE), May 2013, pp. 382–391.
[44] S. Qiu, L. Lu, and S. Jiang, ‘‘Joint distribution matching model for

distribution–adaptation-based cross-project defect prediction,’’ IET Softw.,
vol. 13, no. 5, pp. 393–402, 2019.

[45] Z. Xu, S. Pang, T. Zhang, X.-P. Luo, J. Liu, Y.-T. Tang, X. Yu, and L. Xue,
‘‘Cross project defect prediction via balanced distribution adaptation based
transfer learning,’’ J. Comput. Sci. Technol., vol. 34, no. 5, pp. 1039–1062,
Sep. 2019.

[46] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, ‘‘Deep learning for just-in-
time defect prediction,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur.,
Aug. 2015, pp. 17–26.

[47] A. Viet Phan, M. Le Nguyen, and L. Thu Bui, ‘‘Convolutional neural
networks over control flow graphs for software defect prediction,’’ in Proc.
IEEE 29th Int. Conf. Tools with Artif. Intell. (ICTAI), Nov. 2017, pp. 45–52.

[48] H. Li, X. Li, X. Chen, X. Xie, Y. Mu, and Z. Feng, ‘‘Cross-project defect
prediction via ASTToken2 Vec and BLSTM-based neural network,’’ in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019, pp. 1–8.

[49] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, ‘‘Deep learning
code fragments for code clone detection,’’ in Proc. 31st IEEE/ACM Int.

Conf. Automated Softw. Eng., Aug. 2016, pp. 87–98.
[50] X. Gu, H. Zhang, D. Zhang, and S. Kim, ‘‘Deep API learning,’’ in

Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2016,
pp. 631–642.

[51] R. Gupta, S. Pal, A. Kanade, and S. Shevade, ‘‘Deepfix: Fixing common
c language errors by deep learning,’’ in Proc. 31st AAAI Conf. Artif. Intell.,
2017, pp. 1345–1351.

JUNHAO LIN is currently pursuing the master’s
degree with the School of Computer Science and
Engineering, South China University of Technol-
ogy. His research interests include software defect
prediction and transfer learning.

LU LU received the Ph.D. degree from Xi’an
Jiaotong University, in 1999. He is currently a
Professor with the School of Computer Science
and Engineering, South China University of Tech-
nology, China. His main research interests include
software engineering, software testing, and soft-
ware architecture design.

13124 VOLUME 9, 2021


