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In many of the most influential theories of word mean-
ing and of concepts and categorization, semantic features 
have been used as their representational currency. For ex-
ample, classical, prototype, and exemplar theories of cat-
egorization and conceptual representation all make use of 
features (Medin & Schaffer, 1978; Minda & Smith, 2002; 
Smith & Medin, 1981), as do network models of seman-
tic memory and language processing (Collins & Loftus, 
1975). Numerous vector models of memory also are based 
on featural representations (Hintzman, 1986; Murdock, 
1982), as are connectionist models of object recognition 
(Plaut, 2002), word recognition (Harm & Seidenberg, 
2004), and semantic memory (Hinton & Shallice, 1991; 
Plaut & Shallice, 1993).

The major purpose of collecting semantic feature pro-
duction norms is to construct empirically derived concep-
tual representations that can be used to test theories of 
semantic representation and computation. Typically, par-
ticipants are presented with a set of concept names and 
are asked to produce the features they think are important 
for each concept. The representations of moose and knife 
are presented in Appendix A as examples of the types of 
representations derived from such norms, which typically 
include a list of features for a concept, together with pro-
duction frequency, the number of participants who listed 
each feature for the concept. This basic information can 
then be extended with various statistical analyses, supple-
mented with additional measures, and used to test pre-
dictions with both human experiments and computational 
modeling. The goal of the present article is to describe a 
large set of semantic feature production norms that have 
been collected for 541 living and nonliving thing con-
cepts, easily the largest such set in existence, and to make 
these norms publicly accessible. In the remainder of this 
article, we briefly describe the uses of semantic feature 
norms, discuss their strengths and weaknesses, and then 
describe our norms and the accompanying measures and 
statistics we have made available.

Utility of Feature Norms
Given the importance of semantic features in shaping 

theories, researchers have recognized the value of collect-
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ing empirically based semantic feature production norms 
for testing hypotheses, constructing experimental stimuli, 
and generating representations for implemented models. 
To the best of our knowledge, although several norma-
tive databases currently exist, only one set is publicly ac-
cessible (Garrard, Lambon Ralph, Hodges, & Patterson, 
2001; 64 living and nonliving things).

Other sets of norms have been collected and used for 
various purposes, although the norms themselves have not 
been published. For example, Rosch and Mervis (1975) 
collected norms for 20 basic-level concepts from each 
of six superordinate categories and used them to explore 
typicality gradients. Ashcraft (1978b) collected norms 
for 140 living and nonliving things to use primarily for 
constructing feature verification experiments. Hampton 
(1979) collected features for eight superordinate catego-
ries and used them to test Smith, Shoben, and Rips’s (1974) 
model of category verification and to predict verification 
latencies. Wu and Barsalou (2004) used feature norms to 
compare predictions derived from theories based on per-
ceptual symbol systems versus amodal semantics. Devlin, 
Gonnerman, Andersen, and Seidenberg (1998; 60 living 
and nonliving things) and Moss, Tyler, and Devlin (2002; 
93 living and nonliving things), like Garrard et al. (2001), 
used their norms to investigate accounts of category-
specific semantic deficits. Vinson and Vigliocco (2002) 
collected norms for 230 nouns and 216 action verbs and 
used them to compare computations underlying nouns 
versus verbs in a number of experimental paradigms. In 
addition to using their norms for analyzing the structure 
of conceptual representations and designing behavioral 
experiments, Devlin et al., Moss et al., and Vinson and 
Vigliocco used them to derive representations for imple-
mented computational models.

In addition, feature norms and featural representations 
derived from them have served as the basis of accounts 
of numerous empirical phenomena, such as semantic 
similarity priming (Cree, McRae, & McNorgan, 1999; 
McRae, de Sa, & Seidenberg, 1997; Vigliocco, Vinson, 
Lewis, & Garrett, 2004), feature verification (Ashcraft, 
1978a; McRae, Cree, Westmacott, & de Sa, 1999; Solo-
mon & Barsalou, 2001), categorization (Hampton, 1979; 
Smith et al., 1974), and conceptual combination (Hamp-
ton, 1997; Smith, Osherson, Rips, & Keane, 1988), and 
have been used to provide support for modality-specific 
aspects of representation (Pecher, Zeelenberg, & Barsa-
lou, 2003; Solomon & Barsalou, 2001).

Although the vast majority of feature-based studies 
have investigated the representations of concrete nouns, 
feature norms have also been used successfully to pro-
vide insight into the nature of verb representation. For 
example, Vigliocco et al. (2004) have used both noun and 
verb representations based on feature norms to predict the 
likelihood that a noun or a verb will be substituted for a 
semantically related concept, using a picture-naming task 
to induce substitution errors, and to predict the amount of 
interference of a distractor word in a picture–word inter-
ference task. In a somewhat different application, McRae, 

Ferretti, and Amyote (1997) used feature norms to gain 
insight into the types of conceptual information people 
possess for thematic roles of verbs (agents and patients, 
in this case). In summary, featural representations have 
been used to provide insight into a number of phenomena 
involving semantic memory and categorization.

Distributional Statistics Derived From
Feature Norms

Numerous measures and distributional statistics can 
be calculated from the norms, such as estimates of fea-
ture saliency (production frequency, cue validity) and 
measures of how features of various types are distrib-
uted across concepts (number of color or taste features). 
Several measures can also be used to augment the in-
formation obtained from the norms themselves, such as 
concept familiarity ratings, word frequency counts, and 
orthographic and phonological variables associated with 
a concept’s name. These and other variables, which are 
described more fully below, can be used both to manip-
ulate a variable between stimulus groups and to equate 
stimuli on nuisance variables with increased confidence. 
For example, because of the norms, McRae et al. (1999) 
were able to study the influence of feature correlations on 
the computation of word meaning while equating for nine 
potentially confounding variables, a level of control that 
would have been impossible without the norms.

Distributional statistics, such as statistical regularities 
among features, have proven particularly insightful with 
regard to understanding semantic computation. For exam-
ple, McRae, de Sa, and Seidenberg (1997; McRae et al., 
1999) used the norms to illustrate the role of feature cor-
relations in semantic computations. Pexman, Holyk, and 
Monfils (2003) and Pexman, Lupker, and Hino (2002) 
used our norms to show that the number of features listed 
for each concept predicts aspects of semantic processing, 
including reading time when the concept name is pre-
sented in a moderately congruent sentence context.

Cree and McRae (2003) have presented the most detailed 
distributional analyses of feature norms to date, including 
the salience of information types carried by various fea-
tures according to a knowledge type taxonomy that was 
designed to be linked to neural processing substrates, as 
well as numerous distributional statistics that have been im-
plicated as important aspects of semantic representations 
and computations. These analyses provide insight into the 
behavioral phenomena underlying category-specific se-
mantic deficits, and the statistics upon which they were 
based are included in the downloadable norms.

Featural representations derived from production norms 
are also useful for computational modeling that requires 
vector representations, because such representations can 
be derived easily from norms. Cree et al. (1999) argued 
that a major advantage of basing models on empirically 
derived representations, rather than on either algorithmi-
cally generated pseudorandom representations or repre-
sentations based on experimenters’ intuitions, is that they 
substantially reduce degrees of freedom in modeling. That 
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is, the representations are determined by the participants 
in the norming task, rather than by the modeler. Perhaps 
even more critical for learning models such as connec-
tionist networks, having reasonably valid distributional 
statistics of the patterns to be learned can have important 
and beneficial consequences. That is, accurately simulat-
ing human behavior on relevant tasks requires training 
a model on representations that closely approximate the 
actual statistics in the world. This is difficult to guarantee 
in models that are based on pseudorepresentations that 
may capture only broad generalities of the underlying dis-
tributional statistics. This point was made clearly in the 
past tense verb modeling of Daugherty and Seidenberg 
(1992), in which simulations were successful only when 
the model was trained on patterns that exemplified the 
proper distributional information.

Scope and Limits of Feature Norms
Feature norms are assumed to provide valid informa-

tion not because they yield a literal record of semantic 
representations (i.e., they do not provide a verbatim read-
out), but rather because such representations are used 
systematically by participants when generating features 
(Barsalou, 2003). As we have stated previously, we do 
not believe that semantic knowledge is represented in the 
brain literally as a list of verbalizable features. Rather, 
when participants produce features in a norming task, 
they directly exploit representations that have developed 
through repeated multisensory exposure to, and interac-
tions with, exemplars of the target category. Barsalou 
used a perceptual symbol systems framework to describe 
processes underlying feature production. He stated that 
when participants generate features, they construct a 
holistic simulation of the target category, then interpret 
this simulation by using featural and relation simulators. 
Rather than being a measure of a category’s underlying 
static memory abstraction (which we agree does not exist), 
a participant’s list of features represents a temporary ab-
straction that is constructed online for the purpose of pro-
ducing feature names. Therefore, the dynamic nature of 
feature listing results in substantial variability both across 
and within participants. To deal with this variability, we had 
numerous participants list features for each concept (30 per 
concept in our norms) and then pooled responses to derive 
a single, averaged representation. Thus, feature listing pro-
vides a window into important aspects of word meaning, 
without necessarily being definitive (Medin, 1989).

One limitation of feature norms is that they are lin-
guistically based. Because people convey their concep-
tual knowledge through a linguistic filter, some types 
of information are transmitted more clearly than others. 
For example, information types such as parts (�has a 
handle�), color (�is red�), statements about what an 
object typically is used for (�used for cutting�), who 
typically uses it (�used by children�), where an object 
or entity typically is located (�found in kitchens�), and 
characteristic behaviors of animals (�barks�) appear to 

be relatively easily verbalizable. However, some types of 
knowledge that almost certainly play an important role in 
capturing various behavioral phenomena are omitted to 
a large extent in verbal feature norms, particularly when 
participants must produce features as short written de-
scriptors. For example, for many visually based tasks, 
information about the spatial relations and size relations 
among parts is integral to recognizing objects and enti-
ties. Because these types of knowledge are quite difficult 
to verbalize, they simply are missing from the norms (see 
Cree & McRae, 2003, for further discussion). Another ex-
ample pertains to recognition of animals as they naturally 
move about. Knowledge of how, for example, cats, dogs, 
rabbits, and squirrels move helps people recognize them, 
particularly from a distance, but this type of information 
is difficult to verbalize and so is not well-represented in 
the norms (although information concerning animals that 
have a relatively distinguishing type of movement that 
can be verbalized, such as �hops�, �swims�, or �runs 
fast�, are found in the norms). Of course, if valid repre-
sentations of these types of information become available, 
they could be used to augment the norms.

Any task such as feature listing carries with it certain 
demand characteristics for participants. One fact that be-
comes obvious when feature norms are analyzed is that 
participants’ responses are somewhat biased toward in-
formation that distinguishes among concepts—that is, the 
pieces of information that enable people to distinguish 
a concept from other, similar concepts. Participants ap-
pear to either interpret this as a primary component of 
their task when listing features, or alternatively, this is 
the type of information that is highly salient to people. 
Of course, distinguishing information is important to 
determining category membership and similarity among 
concepts (Tversky, 1977). In addition, it may be the case 
that this type of information has a privileged status in con-
ceptual representations (Cree & McRae, 2003; McRae, 
Cree, Cho, & McNorgan, 2003). As a consequence of this 
tendency to list distinguishing features, participants in se-
mantic feature production tasks tend to list few features 
that are true of large numbers of entities or objects, such 
as �has a heart�, particularly those that are internal and 
not particularly salient (although they do tend to list in-
ternal properties of fruits, vegetables, and foods, presum-
ably because they are salient, given that we open them 
up and eat them; see Cree & McRae, 2003). Although 
occasionally interpreted as a weakness of such norms, it 
may actually be a strength, because it appears that these 
general features play only a small role in object identifica-
tion, language comprehension, and language production 
precisely because they are not salient and are true of large 
numbers of concepts.

One other aspect of verbally produced features is that 
they vary widely in the complexity of the knowledge for 
which they stand as placeholders. For example, color fea-
tures, such as �is green� for apple, or parts, such as 
�has four wheels� for car, appear to be relatively simple 
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and straightforward. In contrast, many functional fea-
tures, such as �used for carpentry� for hammer, likely 
are stand-ins for a more complex array of situational/
functional knowledge regarding the conditions under which 
a hammer is used (Barsalou, Sloman, & Chaigneau, 2005).

Research with human participants has revealed that 
representations based on feature norms are probably 
best suited to capturing performance on certain types 
of tasks—namely, online recognition or semantic deci-
sion tasks, many of which use words as stimuli (Jones & 
Smith, 1993; McRae, de Sa, & Seidenberg, 1997). There 
are, however, different levels at which conceptual repre-
sentation can be studied. For example, knowledge-based 
theories of concepts stress somewhat different types of 
knowledge and tasks. Paradigms in which participants 
are required to reason deeply about concepts—such as 
deciding, for example, whether a cat that has an operation 
to make it look like a skunk is still a cat or not—require 
knowledge that is most likely outside the scope of feature 
norms (Keil, 1989). Much of the research conducted under 
the guise of knowledge-based theories has focused on ex-
plicit knowledge of relations among features, particularly 
causal or dependency relations (Medin & Shoben, 1988). 
Feature norms do not include this type of knowledge. They 
do provide the basic features, however, and implicit sta-
tistical knowledge regarding how features are correlated 
can be computed from them. Therefore, the norms may 
provide insight into phenomena regarding features rela-
tions (vs. correlations). For example, McNorgan, Kotack, 
Meehan, and McRae (in press) found that the magnitude 
of the correlation between two features predicts people’s 
explicit ratings of the degree to which features are related. 
In addition, Rogers and McClelland (2004) have outlined 
feature-based explanations for a number of phenomena 
that have been cited as evidence for  knowledge-based 
theories. In summary, although knowledge-based theories 
stress what might be termed higher order knowledge, they 
do include featural representations, and people’s theories 
presumably interact with (or arise in part from) distribu-
tional statistics that can be estimated from norms (McRae, 
2004).

In defending the need for knowledge-based theories, it 
has been argued that feature-based theories are limited in 
their utility because they are too unconstrained (Medin, 
1989). A major argument has been that there are an in-
finite number of features that could potentially be listed 
for any particular concept. For example, a dog can be de-
scribed as being �larger than a pencil�, �slower than a 
jet�, �rarely found in office buildings�, and so forth. 
We believe, however, that the use of empirically grounded 
feature norms deals with the concerns that the number 
of possible features is virtually unlimited and that fea-
tures are unconstrained. For example, features such as �is 
larger than a tulip� or �moves faster than an infant�, 
although logically possible, do not occur in norms. The 
computations described above that are assumed to un-
derlie performance in a feature production task do not 
lead to the production of these sorts of features. Although 

people are capable of verifying that a dog �is larger than 
a pencil� and could probably even produce such features, 
given sufficient explicit guidance to do so, these sorts of 
statements are not generated as a result of running a per-
ceptual simulation (Barsalou, 1999) or accessing core 
information underlying a concept (Hampton, 1979). No 
such features were produced by any of the approximately 
725 participants who listed features in our norming task.

In summary, although the emergence of knowledge-
based theories resulted in a period of disenchantment 
with feature norms and feature-based theories for some 
researchers, interest in semantic features has increased re-
cently because of a large body of behavioral and modeling 
studies in which such features play an explanatory role 
in providing insight into semantic computations. Simply 
put, measures based on feature norms have been used to 
account for a great deal of behavioral phenomena.

THE NORMS

Stimuli
Each of the 541 normed concepts corresponds to a single 

English noun. They were chosen to cover those used in vari-
ous experiments regarding semantic memory tasks in in-
vestigations of both normal adults and neuropsychological 
patients. An initial set of 190 concepts, reported in McRae, 
de Sa, and Seidenberg (1997), was chosen from Battig and 
Montague (1969) and Rosch and Mervis (1975). The re-
maining concepts were chosen by combing the literature for 
relevant articles in which items were reported. This set was 
compiled with the assistance of Matt Lambon Ralph, James 
McClelland, Karalyn Patterson, and Tim Rogers. Thus, the 
541 concepts cover a broad range of living and nonliving 
things used in previous studies. They also were chosen to 
span a wide range of familiarity, although of course, par-
ticipants must be reasonably familiar with both the concept 
and its name to be able to produce useful information.

We attempted to avoid ambiguous concept names, al-
though this is impossible given the fact that such a large 
proportion of English words are ambiguous. Noun–verb 
ambiguities were dealt with by instructing the participants 
to provide features for the noun meaning of the word (e.g., 
hammer as an object, rather than the verb meaning of 
hammer), and responses showed that this was successful. 
In terms of noun–noun ambiguities, for the vast majority 
of cases in which we identified the ambiguity a priori, a 
cue was provided to disambiguate the noun. For exam-
ple, some participants listed features for bat (baseball), 
whereas others listed features for bat (animal ). In our 
experience, if an ambiguity exists, at least some partici-
pants will make reference to it. For example, when provid-
ing features for anchor, a few participants listed �reads 
the news on television�. However, very few participants 
listed features for a meaning of the word that was either 
quite low in familiarity or colloquial; for example, the 
participants did not list features regarding messy, slovenly 
people for pig. We are currently entering norms that have 
been collected for approximately 200 additional concepts, 
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thus further increasing both the breadth and the depth of 
coverage. These will be added to the database when they 
are completed.

Collection
The norms have been collected in three main phases 

since 1990. In the first phase, norms for 190 basic-level 
concepts were collected (10 superordinate concepts were 
also included in these norms, although they are not dis-
cussed further herein). Initially, 500 forms were distrib-
uted in McGill University psychology classes, and 167 
were returned (33%). In the second round, 200 forms were 
distributed, and 80 were returned (40%). The remainder 
of the forms were collected in the laboratory. Each par-
ticipant in the first phase listed features for 20 concepts. 
Second, norms for 76 concepts were collected at the Uni-
versity of Southern California. Participants listed features 
for 24 concepts, and these were collected in class. The 
remaining norms (288 concepts) were collected over a 
period of 3 years at the University of Western Ontario. 
This phase was conducted either in groups or individually 
in the laboratory, using forms that were identical to those 
used in the second phase. Note that a few concepts have 
been discarded either because of the participants’ lack of 
familiarity with the target category (e.g., heron) or be-
cause responses were split between alternative meanings 
of a word (e.g., file: nail file vs. wood file vs. collection 
of papers; this was part of the initial set of 190 concepts, 
in which disambiguating cues were not used).

For all of the norms, the participants were provided with 
10 blank lines to list features. The participants were asked 
to list features of the things to which the words referred. 
They were asked to list different types of features, such 
as physical (perceptual) properties (how it looks, sounds, 
smells, feels, and tastes), functional properties (what it is 
used for and where and when it is used), and other facts 
about it, such as the category it belongs in or other ency-
clopedic facts (such as where it is from). Three examples 
were provided. Sample instructions are presented in Ap-
pendix B. In all cases, 30 participants listed features for 
each concept. The participants were given as much time 
as needed; they took approximately 40–50 min.

In all phases, care was taken to avoid having the partici-
pants produce features for multiple semantically similar 
concepts, to avoid explicit comparisons among similar 
concepts. Each participant produced features for, at most, 
two concepts that we intuitively considered to be similar, 
and the corresponding concept names appeared on sepa-
rate pages of a norming form.

Recording
For each concept, each feature was recorded with its 

production frequency, which is the number of participants 
who listed that feature for that concept (ranging from 1 
to 30). A major issue in recording the features was to en-
sure that synonymous features were recorded identically, 
both within and among concepts. For example, “used for 
transportation,” “used for transport,” “is used for trans-

portation,” “people use it for transportation,” and “trans-
portation” were coded as �used for transportation�. It 
was equally critical to ensure that features that differed 
in meaning were given distinct labels. Responses were 
interpreted conservatively, and the validity of all but the 
most obvious interpretations was verified by multiple col-
leagues. Note that we did not alter feature names to avoid 
potential ambiguity. We chose not to, because it was un-
clear where to draw the line. For example, it does seem 
safe to assume that �has a trunk� has different mean-
ings for elephant than for car. Furthermore, �has legs� 
seems to refer to different things for table than for dog and 
perhaps should be differentiated. However, it is less clear 
whether �has legs� should be differentiated for dog ver-
sus canary or grasshopper. Are they sufficiently different 
types of legs? On what criteria would these decisions be 
based? In addition, a brick is a different color of red than 
is a raspberry. Should �is red� be differentiated for these 
concepts? Finally, a feature such as �is large� perhaps 
means something different for ostrich than for yacht and, 
thus, could also be differentiated. Because we wanted to 
be as conservative as possible, and because these differ-
ences in feature meanings form a continuum, so that it is 
unclear where to draw a line regarding when to form two 
or more features versus when to leave them alone, we did 
not change any of them. Of course, users of the norms 
could sort the concepts file on feature name and make 
their own judgments, but we have not done so.

The following method was used for interpreting and 
organizing the feature set. In all cases, quantifiers such as 
“generally,” “usually,” and “can be” were dropped from 
the participants’ responses. We assumed that the informa-
tion provided by these quantifiers would be carried by 
production frequency; that is, the number of participants 
including a feature should vary according to how often the 
instances have the feature or the salience of that feature for 
the average person. If a participant listed an adjective–noun 
feature (�has four wheels�), it was divided (into �has 
wheels� and �has four wheels�), under the assumption 
that the participant had provided two bits of information. 
Disjunctive features (e.g., �is green or red�) were also 
divided (�is green� and �is red�).

A number of key words and phrases were used to orga-
nize and code the features. Examples of these are displayed 
in italics, with an example completion in normal font: 
�a vegetable� (superordinate category), �eg–jeans�, 
�beh–swims� (beh is an abbreviation for behavior), 
�inbeh–ticks� (inbeh is an abbreviation for something 
an inanimate object does seemingly on its own), �bought/
sold in hardware stores�, �causes gas�, �found in 
kitchens�, �grows underground�, �has paws�, �is 
brown�, �lives in forests�, �made of metal�, �part 
of a table setting�, � requires a driver�, �runs on gaso-
line�, �eaten for dessert�, �used for carpentry�, and 
�worn by women�. The intuitive purpose of using these 
key words and phrases was to signal feature type. That 
is, they were used as a means of classifying features into 
basic types. A number of years after the original norms 
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were collected, Wu and Barsalou (2004) developed a tax-
onomy for classifying features into basic knowledge types 
in a detailed and sophisticated manner. We revised their 
taxonomy somewhat for our purposes, and this is described 
below. Recently, Cree and McRae (2003) developed a brain 
region taxonomy that incorporated insights from neuro-
science and neuropsychology to determine a set of types 
of knowledge that plausibly may be computed in at least 
somewhat distinct brain areas. This taxonomy is also de-
scribed below. All the features in the available norms files 
are categorized according to these taxonomies.

Measures and Statistics
In this section, we describe the measures we have col-

lected for the norms and the statistics that we have cal-
culated from them. The following sections describe the 
Excel files that can be downloaded from the Web site. 
There are four main files: one containing information re-
garding individual concepts, one with information regard-
ing the features in general, one with information regard-
ing the features for each concept, and one containing all 
pairwise similarities among the concepts.

Concepts. The concept-level measures for the 541 
concepts are presented in CONCS_brm.xls. The column 
names from that file and a short explanation of them is 
presented in Appendix C. The first four columns are the 
name of each concept, its pronunciation according to 
the Neighborhood Watch program (Davis, 2005) word 
frequency from Kučera and Francis (1967), where each 
concept’s name frequency was summed over its singu-
lar and plural uses, and the natural logarithm of this fre-
quency. Next is word frequency from the British National 
Corpus (Burnard, 2000), again summed over its singular 
and plural uses, and the natural logarithm of it. Familiar-
ity ratings for each concept follow, where 20 participants 
rated the degree to which they were “familiar with the 
thing to which the word refers” on a scale of 1 to 9, with 
1 corresponding to not at all familiar and 9 to extremely 
familiar. Next are physical characteristics of the concept 
names: number of letters, number of phonemes, number 
of syllables, mean position-specific bigram and trigram 
frequencies, as well as Coltheart’s N (the number of words 
that can be created by changing one letter in the concept 
name). The latter three measures were computed using 
Davis’s Neighborhood Watch program.

From the norms, we calculated a number of measures 
to describe the distribution of features for each concept. 
The first is the total number of features listed for the con-
cept by at least 5 of the 30 norming participants, the cutoff 
we have used to include features. We have also included 
the same variable, but excluding all taxonomic features. 
Note that the following variables were also calculated 
with taxonomic features excluded because we consider 
statements regarding the superordinate category (or cat-
egories) to which a concept belongs as being somewhat 
different from information regarding other types of fea-
tures (parts, function, etc.). The taxonomics also include 
some subordinates and coordinates but are dominated by 
superordinates.

The next four variables are measures of feature infor-
mativeness with regard to specific concepts. Distinguish-
ing features are considered to be critical for discrimi-
nating among similar concepts. For example, �moos� 
distinguishes cows from other, similar animals (and in this 
case, from all other things), whereas �eats� does not, be-
cause many things eat. Distinguishing features have been 
a part of accounts of a number of empirical phenomena 
regarding normal participants’ performance in typical-
ity judgments (Rosch & Mervis, 1975), similarity judg-
ments (Tversky, 1977), feature verification (McRae et al., 
2003), and category verification (Smith et al., 1974) and 
also have been important for understanding data regarding 
category-specific deficits (Cree & McRae, 2003; Garrard 
et al., 2001). The number of distinguishing features per 
concept was calculated as the number of a concept’s fea-
tures that occur in only one or two concepts in the norms. 
We also calculated the percentage of a concept’s features 
that were identified as distinguishing under this definition 
(number of distinguishing features divided by the number 
of features). Distinctiveness (also known as informative-
ness) is a related measure that reflects the continuum from 
truly distinguishing to highly shared (Devlin et al., 1998; 
Garrard et al., 2001). It was calculated for each feature as 
the inverse of the number of concepts in which the feature 
appears in the norms, and then mean distinctiveness of 
each concept’s features was calculated and presented. In 
concert with Devlin et al., but in contrast to Garrard et al., 
we calculated distinctiveness across all the concepts in the 
norms, rather than only across concepts within a category. 
The major reason for this decision is that numerous con-
cepts are in multiple categories, whereas some basic-level 
concepts do not appear to belong to any psychologically 
real superordinate category. The final measure of informa-
tiveness is cue validity (Bourne & Restle, 1959; Rosch & 
Mervis, 1975). Cue validity is the conditional probability 
of a concept, given a feature, P(Cj | Fi), which is measured 
by the probability that a feature will appear in a concept 
P(Fi | Cj), divided by the probability that that feature will 
appear in all relevant concepts, as in Equation 1:
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In Equation 1, Fi � feature i, Cj � concept j, and Ck � kth 
concept in the set. Thus, cue validity was calculated as the 
production frequency of a feature for that particular con-
cept, divided by the sum of the production frequencies of 
that feature for all concepts in which it occurs in the norms. 
In the extreme case, if a feature is truly distinguishing, as 
�moos� is for cow, it will have the maximum score for 
distinctiveness and cue validity, which is 1.0. In contrast, 
if a feature is shared by many concepts, its distinctiveness 
and cue validity are extremely low (e.g., �eats� for any 
concept in which it occurs). The concepts file contains the 
mean cue validity of each concept’s features.

Because our interest in a number of projects has been 
the distributional structure of semantic space (i.e., sta-
tistical regularities among features, feature correlations), 
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we calculated three variables on the basis of the correla-
tional structure of the feature representations. To do so, 
we constructed a matrix of the concept representations. 
The full matrix has 541 rows, 1 for each concept, and 
2,526 columns, 1 for each feature. Each matrix element 
corresponds to the production frequency of a feature for 
a concept. However, to avoid spurious correlations when 
the feature correlations were computed, only features 
that appeared in three or more concepts were included in 
the correlational analyses. Therefore, to compute feature 
correlations, we calculated the Pearson product moment 
correlation between each pairwise combination of the re-
sulting 484 feature vectors. A feature pair was counted 
as significantly correlated if the features shared at least 
6.5% of their variance. From these data, we calculated 
three variables that provide an indication of the degree to 
which a concept’s features are intercorrelated. The first 
is intercorrelational density, which is the sum of the per-
centage of shared variance across all of a concept’s sig-
nificantly correlated feature pairs (because it is a sum, 
it is no longer truly a percentage). The next two are the 
number and percentage of significantly correlated feature 
pairs per concept. The latter was calculated as the number 
of significantly correlated feature pairs, divided by the 
number of pairs of features that occurred in three or more 
concepts. Note that both criteria, three or more concepts 
per feature and 6.5% of the variance, are somewhat arbi-
trary (although the resulting statistics have proven to have 
predictive power).

The final set of columns provides estimates of the 
salience of each brain region knowledge type for each 
concept (Cree & McRae, 2003). All the features were 
classified into one of nine knowledge types: three cor-
responding to visual information (visual–color, visual–
parts and surface properties, and visual–motion), four 
corresponding to other primary sensory processing chan-
nels (smell, sound, tactile, and taste), one corresponding 
to functional/motor information regarding the ways in 
which people interact with objects ( function), and one 
(encyclopedic) corresponding to all other knowledge 
types. Although these nine knowledge types are presum-
ably not the only ones that may be processed in relatively 
distinct neural regions, they are the ones that Cree and 
McRae felt comfortable positing, given the current state 
of knowledge. In addition, other types of information may 
also be important (such as emotional reactions to objects 
that might be processed in the limbic system), but due to 
insufficient numbers of these, Cree and McRae excluded 
this knowledge type from their analyses, classifying them 
as encyclopedic features instead. Each of the final set of 
columns in the concepts file contains the number of fea-
tures of each of these knowledge types for each concept.

Features. The features file, FEATS_brm.xls, contains a 
row for each of the 2,526 features in the norms. The name 
and a short description of each column is presented in Ap-
pendix D. The first column is the feature name, which is a 
phrase that captures the meaning of the feature. The second is 
the number of concepts in the norms in which that feature oc-

curs. The third column designates the binary distinguishing/
nondistinguishing variable described earlier, and the next 
is the feature’s distinctiveness. The number of characters 
in the feature name follows, with each space counted as a 
character. Finally, the type of each feature according to the 
brain region taxonomy is included.

Conceptual representations. The CONCS_FEATS_
concstats_brm.xls file contains the featural representa-
tion of each concept and associated information about the 
concepts, features, and the features with respect to each 
concept. The column names and short descriptions are 
presented in Appendix E. The concept name is first, then 
the feature name. Following that is the type of each fea-
ture according to the slightly modified Wu and Barsalou 
(2004) feature type taxonomy that is described in Appen-
dix F. In this taxonomy, features are classified into one of 
four major types and then into subtypes; there is a column 
designating major and minor feature type. The next col-
umn is the feature type according to Cree and McRae’s 
(2003) brain region taxonomy. Following that is the pro-
duction frequency for each feature for each concept—the 
number of participants out of 30 who listed that feature 
for that concept. We also calculated the ranked production 
frequency—that is, the rank of each feature with respect 
to the other features in a particular concept in terms of 
production frequency. The number of concepts in which 
each feature occurred in the norms, along with its inverse 
(distinctiveness), follows. Cue validity of each feature 
for each concept is next. In terms of feature correlation 
statistics, we have included intercorrelational strength of 
a feature for a concept, calculated both including taxo-
nomic features and excluding them (McRae et al., 1999; 
McRae, de Sa, and Seidenberg, 1997). It is defined as the 
strength with which a feature such as �is nutritious� is 
correlated with the other features of a concept—for exam-
ple, grapefruit. This variable is calculated by summing the 
proportion of shared variance between �is nutritious� 
and each of the other features of grapefruit with which it 
is significantly correlated. Note that the resulting number 
is no longer a percentage as such, because it is greater 
than 100 for some of the concept–feature combinations. 
The remaining columns are duplicates of many of the 
variables that are included in the previous two files.

Concept similarities. The cos_matrix_brm_IFR.xls 
file is a 541 � 541 matrix of cosines between concept 
pairs. To compute this matrix, we took the 541 concepts � 
2,526 features matrix and calculated the cosine between 
each pair of concepts (on the basis of production frequen-
cies). The cosine is calculated as the dot product between 
two concept vectors, divided by the product of their 
lengths. The file contains the full matrix, with the main 
diagonal equal to 1.0 in all cases (the cosine between a 
concept and itself ). Cosine ranges from �1 (opposite 
vectors) to 1 (identical vectors), with 0 indicating inde-
pendent vectors. Because Excel files are limited to 256 
columns, the matrix is split into three worksheets, with 
each of the first two including 200 columns and the third 
including the remaining 141 columns. All three Excel 
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worksheets contain all 541 rows, so the similarity of any 
concept with each of the other concepts is represented in 
the column labeled by the concept in question.

SUMMARY

Semantic feature production norms have played and 
continue to play an important role in the constructing of 
theories and models of semantic memory and of concepts 
and categorization, as well as in empirically testing them. 
This article has described a large set of norms and nu-
merous statistics calculated from them, as well as further 
descriptive statistics collected from participants’ ratings 
and language corpora. These norms have proven invalu-
able for a number of projects that we and others have pre-
viously conducted, and we hope that they will do so for 
those who use them in the future.
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ARCHIVED MATERIALS

The following materials and links can be accessed through the 
Psychonomic Society’s Norms, Stimuli, and Data archive, http://www
.psychonomic.org/archive/.

To access these files or links, search the archive for this article 
using the journal (Behavior Research Methods), the first author’s name 
(McRae), and the publication year (2005).

File: McRae-BRM-2005.zip.

Description: The compressed archive file expands into a directory 
called McRae-BRM-2005, which includes nine data files, plus two in-
struction files.

README.txt provides instructions on how to reconstruct the original 
4 files in Excel. The files were constructed originally in Excel, and each 
consisted of at least two worksheets. The files are:

CONCS_brm.txt, a 64K file that contains information on individual 
concepts.

CONCS_brm_variable_explanations.txt, a 4K file that defines each 
column in CONCS_brm.txt.

CONCS_FEATS_concstats_brm.txt, a 1.3-MB file that contains in-
formation on all features in all concepts.

CONCS_FEATS_concstats_brm_variable_explanations.txt, a 4K 
file that defines each column in CONCS_FEATS_concstats_brm.txt.

FEATS_brm.txt, a 156K file that contains information on individual 
features.

FEATS_brm_variable_explanations.txt, a 4K file that defines each 
column in FEATS_brm.txt.

cos_matrix_brm_IFR_1-200.txt, a 640K file that contains similari-
ties measured via cosine between each of the 541 concepts (rows in 
matrix) and the first 200 concepts (columns).

cos_matrix_brm_IFR_201-400.txt, a 640K file that contains simi-
larities measured via cosine between each of the 541 concepts (rows in 
matrix) and the second 200 concepts (columns).

cos_matrix_brm_IFR_401-541.txt, a 456K file that contains the 
similarity in terms of cosine between each of the 541 concepts (rows in 
matrix) and the last 141 concepts (columns).

Author’s e-mail address: mcrae@uwo.ca

Author’s Web site: http://www.ssc.uwo.ca/psychology/faculty/
mcrae_res.htm.

APPENDIX A
Featural Representations for Moose and Knife

Concept
Name  Feature  

Production
Frequency  

Brain Region
Classification

Moose is large 27 visual–form and surface
has antlers 23 visual–form and surface
has legs 14 visual–form and surface
has four legs 12 visual–form and surface
has fur 17 visual–form and surface
has hair 15 visual–form and surface
has hooves 15 visual–form and surface
is brown 10 visual–color
hunted by people 17 function
eaten as meat 15 function
lives in woods 14 encyclopedic
lives in wilderness 8 encyclopedic
an animal 17 taxonomic
a mammal 19 taxonomic
an herbivore 18 taxonomic

Knife has a handle 14 visual–form and surface
has a blade 11 visual–form and surface
made of steel 18 visual–form and surface
made of metal 17 visual–form and surface
made of stainless steel 15 visual–form and surface
is shiny 15 visual–form and surface
used for cutting 25 function
used for killing 17 function
used by butchers 15 function
is sharp 29 tactile
is serrated 18 tactile
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APPENDIX A (Continued)
Concept
Name  Feature  

Production
Frequency  

Brain Region
Classification

Knife is dangerous 14 encyclopedic
found in kitchens 18 encyclopedic
used with forks 16 encyclopedic
a weapon 11 taxonomic
a utensil 19 taxonomic

  a cutlery  15  taxonomic

APPENDIX B
Instructions for Feature Production Norms

This experiment is part of an investigation into how people read words for meaning. To help us conduct this 
work, we need information on what people know about different things in the world. On the following pages, 
there are words that each denote a concept, with each being followed by 14 blank lines. Please fill in as many 
of these lines as you can with properties of the concept to which the word refers. Examples of different types of 
properties would be: physical properties, such as internal and external parts, and how it looks, sounds, smells, 
feels, or tastes; functional properties, such as what it is used for; where, when and by whom it is used; things 
that the concept is related to, such as the category that it belongs in; and other facts, such as how it behaves, or 
where it comes from. Please note that even though many of the words can be thought of as something other than 
a noun (e.g., “camp” can refer to the place where your tent is pitched, or the action of camping), all words on the 
following pages are meant to be considered as nouns only (e.g., “camp,” the place). Below, we have provided 3 
examples to give you an idea of what might be considered a property description of a concept.

duck cucumber stove

is a bird is a vegetable is an appliance
is an animal has green skin produces heat
waddles has a white inside has elements
flies has seeds inside has an oven
migrates is cylindrical made of metal
lays eggs is long is hot
quacks grows in gardens is electrical
swims grows on vines runs on wood
has wings is edible runs on gas
has a beak is crunchy found in kitchens
has webbed feet used for making pickles used for baking
has feathers eaten in salads used for cooking food
lives in ponds
lives in water
hunted by people

 is edible

You may be able to think of more and/or different types of properties for these concepts, but these examples 
should give you an idea of what is requested of you. Please do not languish an extraordinary amount of time on 
each word, but also please take a bit of time to consider the relevant properties of each entity or object. In other 
words, complete this questionnaire reasonably quickly, but keep the relevant types of properties in mind. Thank 
you very much for completing this questionnaire.

APPENDIX C
Explanations of Variables Included in the Concepts File

Variable  Explanation

Concept concept name
Pronunciation pronunciation according to Neighborhood Watch program
Phon_1st initial phoneme of concept name
KF Kučera and Francis (1967) frequency: sum of singular and plural
ln(KF) natural logarithm of Kučera and Francis (1967) frequency: sum of singular 

and plural
BNC British National Corpus frequency: sum of singular and plural
ln(BNC) natural logarithm of: British National Corpus frequency: sum of singular and 

plural
Familiarity mean rated concept familiarity by 20 participants: 1–9 scale, 9 � extremely 

familiar
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APPENDIX C (Continued)

Variable  Explanation

Length_Letters number of letters in concept name
Length_Phonemes number of phonemes in concept name
Length_Syllables number of syllables in concept name
Bigram mean position-specific bigram frequency according to Neighborhood Watch 

program
Trigram mean position-specific trigram frequency according to Neighborhood Watch 

program
ColtheartN Coltheart’s N according to Neighborhood Watch program
Num_Feats_Tax number of features, including taxonomic features
Num_Feats_No_Tax number of features, excluding taxonomic features
Num_Disting_Feats_No_Tax number of distinguishing features (those in �3 concepts in norms), excluding 

taxonomic features
Disting_Feats_%_No_Tax percentage of features that are distinguishing features (those in �3 concepts in 

norms), excluding taxonomic features
Mean_Distinct_No_Tax mean distinctiveness of the concept’s features (1/number of concepts in which 

feature occurs), excluding taxonomics
Mean_CV_No_Tax mean cue validity of the concept’s features, excluding taxonomics
Density_No_Tax intercorrelational density: sum of r2 for the concept’s significantly correlated 

feature pairs
Num_Corred_Pairs_No_Tax number of significantly correlated feature pairs, excluding taxonomics
%_Corred_Pairs_No_Tax percentage of possible feature pairs that are correlated, excluding taxonomics

The remaining are based on Cree and McRae’s (2003) brain region taxonomy.

Num_Func number of functional features in concept
Num_Vis_Mot number of visual–motor features in concept
Num_Vis_F&S number of visual form and surface features in concept
Num_Vis_Col number of visual color features in concept
Num_Sound number of sound features in concept
Num_Taste number of taste features in concept
Num_Smell number of smell features in concept
Num_Tact number of tactile features in concept
Num_Ency number of encyclopedic features in concept
Num_Tax  number of taxonomic features in concept

APPENDIX D
Explanations of Variables Included in the Features File

Variable  Explanation

Feature feature name
CPF number of concepts for which the feature was listed by at least 5 of 30 subjects
Disting D � distinguishing (listed for 1 or 2 concepts in norms), ND � nondistin-

guishing (�2 concepts)
Distinct distinctiveness � 1/cpf: the inverse of the number of concepts in which that 

feature occurs
Feat_Length_Including_Spaces number of characters in feature name, including the spaces as characters
BR_Label  feature type based on Cree and McRae’s (2003) brain region taxonomy

APPENDIX E
Explanations of Variables Included in the Concepts–Features File

Variable  Explanation

Concept concept name
Feature feature name
WB_Label feature type according to the taxonomy of Wu and Barsalou (2004)
WB_Maj feature type major classification according to the taxonomy of Wu and Bar-

salou (2004)
WB_Min feature type minor classification according to the taxonomy of Wu and Bar-

salou (2004)
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APPENDIX E (Continued)

Variable  Explanation

BR_Label feature type based on Cree and McRae’s (2003) brain region taxonomy
Prod_Freq production frequency: the number of participants out of a possible 30 who 

listed that feature for that concept in the norms
Rank_PF the feature’s rank within the concept on the basis of production frequency
Sum_PF_No_Tax sum of the production frequencies for that feature across all concepts in which 

it occurs, excluding taxonomic features
CPF the number of concepts in which that feature occurs
Disting D � distinguishing feature, ND � nondistinguishing feature, where distin-

guishing is defined as occurring in one or two concepts in the norms
Distinct distinctiveness � 1/cpf: the inverse of the number of concepts in which that 

feature occurs
CV_No_Tax cue validity of the feature for that concept, excluding all taxonomic features; 

CV � (Prod_Freq)/Sum_PF_No_Tax
Intercorr_Str_Tax intercorrelational strength of the feature for that concept, includes taxonomic 

features
Intercorr_Str_No_Tax intercorrelational strength of feature for that concept, excludes taxonomic 

features
Feat_Length_Including_Spaces number of characters in feature name, including the spaces as characters
Phon_1st initial phoneme of concept name
KF Kučera and Francis (1967) frequency of concept name: sum of singular and 

plural
ln(KF) natural logarithm of Kučera and Francis (1967) frequency: sum of singular 

and plural
BNC British National Corpus frequency of concept name: sum of singular and plural
ln(BNC) natural logarithm of British National Corpus frequency of concept name: sum 

of singular and plural
Familiarity mean rated concept familiarity by 20 participants: 1–9 scale, 9 � extremely 

familiar
Length_Letters number of letters in concept name
Length_Phonemes number of phonemes in concept name
Length_Syllables number of syllables in concept name
Bigram mean position-specific bigram frequency of concept name according to 

Neighborhood Watch program
Trigram mean position-specific trigram frequency of concept name according to 

Neighborhood Watch program
ColtheartN Coltheart’s N of concept name according to Neighborhood Watch program
Num_Feats_Tax number of features in concept, including taxonomic features
Num_Feats_No_Tax number of features in concept, excluding taxonomic features
Num_Disting_Feats_No_Tax number of distinguishing features in concept (those in �3 concepts in norms), 

excluding taxonomic features
Disting_Feats_%_No_Tax percentage of features in concept that are distinguishing features (those in �3 

concepts in norms), excluding taxonomic features
Mean_Distinct_No_Tax mean distinctiveness of the concept’s features (1/number of concepts in which 

feature occurs), excluding taxonomics
Mean_CV_No_Tax mean cue validity of the concept’s features, excluding taxonomics
Density_No_Tax intercorrelational density of the concept: sum of r2 for the concept’s signifi-

cantly correlated feature pairs
Num_Corred_Pairs_No_Tax number of significantly correlated feature pairs in concept, excluding taxo-

nomics
%_Corred_Pairs_No_Tax percentage of possible feature pairs in concept that are correlated, excluding 

taxonomics
Num_Func number of functional features in concept
Num_Vis_Mot number of visual–motor features in concept
Num_VisF&S number of visual form and surface features in concept
Num_Vis_Col number of visual color features in concept
Num_Sound number of sound features in concept
Num_Taste number of taste features in concept
Num_Smell number of smell features in concept
Num_Tact number of tactile features in concept
Num_Ency number of encyclopedic features in concept
Num_Tax  number of taxonomic features in concept
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APPENDIX F 
Example of Each Wu and Barsalou (2004) Feature Type Listed for the 541 Concepts

Class  Feature Type  n  Example

Entity Associated abstract entity 19 harp �associated with angels�
Entity behavior 525 clock �ticks�
External component 1,084 tricycle �has pedals�
External surface property 1,179 apple �is red�
Internal component 192 cherry �has a pit�
Internal surface property 178 fridge �is cold�
Larger whole 15 ant �lives in a colony�
Made-of 476 sink �made of enamel�
Quantity 14 slippers �come in pairs�
Systemic feature 298 dolphin �is intelligent�

Situation Action/manner 186 screws �used by turning�
Associated entity 158 saucer �used with tea cups�
Function 1,145 tomato �eaten�
Location 466 cupboard �found in kitchens�
Origin 64 walnut �grows on trees�
Participant 187 wand �used by magicians�
Time 85 turkey �eaten at Thanksgiving�

Taxonomic Coordinate 52 coyote �dog�
Individual 3 deer �Bambi�
Subordinate 45 lettuce �romaine�
Superordinate 601 deer �a mammal�
Synonym 29 calf �baby cow�

Introspective Affect emotion 11 wasp �is annoying�
Cognitive operation 30 magazine �like a book�
Contingency 93 garlic �causes bad breath�
Evaluation 105 gown �is fancy�
Negation 19 ostrich �cannot fly�

 Total    7,259  

(Manuscript received October 7, 2003;
revision accepted for publication September 10, 2004.)


