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Abstract—Model driven telemetry (MDT) enables the real-time
collection of hundreds of thousands of counters on large-scale
networks, with contextual information to each counter provided
in the telemetry data structure definition. Explaining network
events in such datasets implies substantial analysis by a domain
expert. This paper presents an semantic feature selection method,
to find the most important counters which describe a given event
in a telemetry dataset, and facilitate the explanation process.
This paper proposes a metric for estimating the importance of
features in a dataset with descriptive feature names, to find those
that are most meaningful to a human. With this estimation,
this paper presents a cross-entropy based metric describing the
quality of a selection of counters, which is combined with the
data behavior to define an optimization goal. The computation
of optimal selections distills intelligible and precise selections of
counters with adjustable verbosity, and describes events with a
few selected counters outlining the root cause of network events.

Index Terms—Network management, Decision support, Selec-
tion process

I. INTRODUCTION

Understanding the state of a router commonly involves a

domain expert who interprets a selected set of operational data

retrieved through SNMP or CLI. The emergence of model

driven telemetry (MDT) further allows the automated and

frequent retrieval of all the available operational counters on a

router, in a semantically consistent way through a collection of

YANG modules [1]. Routers in large-scale networks generate

hundreds of thousands of individual operational counters, each

describing a particular aspect of device behaviour. In network

telemetry datasets of such dimensionality, distilling the in-

formation which best describes an event can be challenging.

Events refer to any network or hardware-related events which

cause the global state of the router or network to change, e.g.,

network loops, black holes, interface failures, memory leaks.

Because of the dependencies between the different operational

counters, the majority of counters are highly impacted in value

when events occur in the network. For example, as shown

in Figure 1, the dataset [2] used in this paper contains 6622

individual counters, four thousand of which change in value

when an interface failure occurs. Among all the thousands of

counters changing in value, only a few describe the cause of
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Figure 1. Number of selected features with α = 1 compared to the original
number of features and the number of changing features (logarithmic scale)
around given events in the dataset [2]. ”Changed” describes the number of
features which change in value around the event, and ”Changed>95%” are
the ones which see a change of more than 95% of their absolute value.

the event. The majority of counters are either (i) frequently

changing in value independently of the event, or (ii) only

describing the consequences of the actual event. An interface

failure will cause packet losses, route re-convergence, TCP

connection changes, traffic changes, etc. which constitute the

majority of changing counters, while the counters describing

the actual root cause, e.g., interface counts, will only be a few

instances among the several thousands. An approach that takes

all available counters into account and distills those which are

most descriptive of an event in an automated data-driven way

is still missing.

This paper proposes a method to find an intelligible se-

lection of operational counters, i.e., that can be understood

and analyzed by a human, which best describes an event in978-1-7281-4973-8/20/$31.00 c© 2020 IEEE



network telemetry datasets. Labelling the data in this context

implies the annotation of all the counters in the dataset by a

domain expert. Not only would this process imply annotating

thousands of counters for every possible event, it would also

be too subjective. Every domain expert will look for different

counters in their diagnosis, which implies that counters don’t

have an absolute importance value, i.e., the ground truth can’t

be defined in this problem space.

The problem is formulated as a feature selection problem

[3], i.e., the extraction of the most important features in a

dataset. The objectives of feature selection are further revised

to fit this problem space. While the literature focuses on

preserving the overall information contained in the original

dataset, this method generates selections which are (i) descrip-

tive of an event, i.e., contain counters which see a significant

change in value, and (ii) intelligible to a network engineer.

While the reaction of a counter to an event can be quantified

from data behaviour, the intelligibility of a counter in a dataset,

i.e., how useful it is in helping a human explain the event, is

strictly defined by domain knowledge. To compare the two

notions, this paper presents a metric to quantify the abstract

notion of how intelligible a counter is in the dataset, based on

the counter’s rareness in the feature set. This metric is extended

into a cross-entropy based metric to describe the overall

intelligibility of a selection of counters. The method then

combines this estimation of intelligibility (domain knowledge)

with a score for how strongly the features react to a change

(data behaviour) to define an optimization score. This score

allows the computation of optimal selections to help operators

explain network events.

The remainder of this paper is organized as follows: Section

II presents the related work on feature selection methods.

Section III describes a method for estimating the relative

importance of counters in the data based on the feature names

only, and a measure of cross-entropy. Section IV presents the

selection score and the intuition behind its definition. Finally,

Section V describes the experiment setup and results for this

score on a network telemetry dataset.

II. RELATED WORK

A feature describes a measurable property of the object

described in a dataset. The features are the columns of the

dataset, e.g., the counters in MDT data.

In the literature, explanation refers to the identification of

the input features which contribute most to a model’s decision

[4], [5]. Although this paper presents a method with the same

objective, it does not consider any model, but rather isolated

events at a given moment in a multivariate time-series. In

this study, the process is entirely data-driven, and is rather

considered as a features selection problem.

Feature selection is the process of selecting the most im-

portant features in a dataset, in order to remove the irrelevant

or redundant features [3]. Unsupervised feature selection per-

forms this selection without the use of labels.

Unsupervised feature selection methods can be categorized

in three groups [3], [6]: wrapper, filter, and hybrid methods.

Wrapper methods [7] select the subset of features which

optimizes the result of a specific clustering algorithm, and have

shown to be computationally expensive for high dimensional-

ity problems [3]. Filter methods rely only on properties of the

data to assign a relevance score and rank each feature in the

dataset. The score of each feature can either be computed in

isolation (univariate filter method), or in conjunction with the

other features in the dataset (multivariate filter methods).

The first filter method relying on information theory is

sequential backward selection for unsupervised data [8], and

is based on a measure of entropy with regard to the distances

between features. SVD-Entropy [9] also uses the contribution

of every feature to the entropy of the dataset (CE) to rank the

features and find the subset with highest entropy. Similarly,

[10] uses the concept of Representation Entropy to capture

the amount of information contained in a selection. The idea

behind [8]–[10] is that a high entropy translates to a balanced

cluster structure, which implies that the features best represent

the data. Multivariate methods such as Feature Selection using

Feature Similarity (FSFS) [11] use statistical dependencies to

further remove redundancy from a selection.

What the methods discussed above have in common is

their principal objective: finding the most relevant features,

i.e., features which contribute most to preserving the manifold

structure of the original data, or features with highest or lowest

correlation with the other features in the dataset [3]. The

problem space of event description introduces a new constraint

on the selected subsets, since they must (i) describe an event,

and (ii) be intelligible enough for a human to interpret. In this

problem space, relevant features are not only those relevant

with respect to the information contained, but also those most

affected by the change, and those with most significance to

a network engineer. The objectives in this study differ from

those of unsupervised feature selection, and are modified to

include the two notions mentioned above.

In order to offer a complementary analysis to what is

contained in the raw data, the assumption is taken that, like

in most telemetry datasets, features are labelled with a feature

name which gives some information on the feature and/or the

group they belong to. Raw feature names can be used as an

indication of what functionality or what subgroup the feature

refers to, i.e., its semantic meaning. This study also differs

from the literature in the sense that it uses feature names to

help selection, in addition to the data behavior.

In that respect, methods from information retrieval in text

provide tools to exploit the feature names, e.g., TF-IDF [12],

which estimates the importance of words in a document with

respect to a corpus of documents, based on the compared

occurrences of the words.

III. DERIVING INFORMATION FROM FEATURE NAMES

As described in Section II, the notion of relevance in the

literature is most often linked to a measure of information

contained in the resulting selection of features. In this paper,

the main objective is that a selection be as intelligible as

possible for understanding an event. The ideal selection in



this problem space is one that distills the counters that are

both impacted by the event, and meaningful to an operator.

Since this notion of intelligibility is abstract and strictly

depends on domain knowledge, this paper proposes an ap-

proximation, inspired by the computation of TF-IDF [12]. This

estimation is based on the observed correlation between the

occurrence of features in a dataset and their meaningfulness

to a network engineer. Rare features in a dataset, i.e., in cases

where few features describe a given property, are observed

to be more meaningful when selected than the most frequent

ones. For example, BFD session counts (2 occurrences out of

6622 in the dataset [2]) are more meaningful to an operator

than one of the many bytes sent counters on the router’s

interfaces (570 occurrences). Rareness is defined as how many

of the same types of features exist in the entire dataset. This

approximation allows the method to leverage the contextual

information derived from the feature names, and offers a

complementary analysis to what can be extracted from the

data behavior.

To quantify rareness, frequencies are defined on a space

describing the whole set of feature names, where a rare feature

name has a low frequency value, and a highly occurring feature

name has a higher frequency value.

A. Example distribution over the feature names

The definition of frequencies in this section must describe

the rareness of feature names in a dataset, i.e., frequently oc-

curring feature names must have a higher frequency value than

lower occurring ones. Any method for generating frequencies

with such properties is valid – this paper will use the method

described below.

A simple method for using descriptive feature names to

quantify the rareness of a feature is to simply consider their

occurrences in the dataset.

In the case of MDT, the feature names are the sensor paths

[13]. With YANG, the feature names are part of a 3-layered

hierarchical name space, and a specific name is a branch in

that tree.

tcp node statistics
︸ ︷︷ ︸

token type 1

: interface 1
︸ ︷︷ ︸

token type 2

: bytes-sent
︸ ︷︷ ︸

token type 3

Sensor paths can be parsed to extract three components: a

module name, a key value array and a leaf name, as described

in [1], and the rareness of a feature name is defined as

the frequency of these individual components. These three

components are labelled as tokens, each token being an

instance within a token type. In the example above, sensor

paths consist of three token types, and can be parsed into three

tokens: ”tcp node statistics” is a token within the token type

of module names, ”interface 1” is a token within the token

type of key value arrays, and ”bytes-sent” is a token within

the token type of leaf names.

More generally, feature names can be parsed when their

format is consistent, in order to make token types correspond

to precise attributes. This distinction between module name,

key value array, and leaf name, can be generalized to the

distinction of K token types as the different attributes parsed

in a feature name (in this case, K = 3). Within each type, the

rareness of a feature name is defined as the frequencies of its

tokens within their type in the set (giving K frequency values

for a single feature name).

For a token type 0 < k ≤ K, Tk is the total number of

unique tokens found among token type k in the entire set

of feature names. For 0 < i ≤ Tk, tk,i the i-th individual

token among the tokens of type k, and nk,i is the number

of times token tk,i appears as the k-th token type in a feature

name. In other words, this value is counting the occurrences of

every unique token among the tokens of the same type. Finally,

for 0 < k ≤ K the frequencies {pk,i}0<i≤Tk

are defined as

pk,i = nk,i/N , where N is the total number of features in the

set.

For example, the frequency associated with the module

name tcp_node_statistics (token type 1), the key

value array interface_1 (token type 2), or the leaf name

bytes-sent (token type 3), will be the number of times the

token appears divided by the total number of features in the

dataset, giving one probability distribution pk for each token

type (3 in this case).

For each token type k, pk,i is a measure for how rare token

tk,i is, within the token type k, and estimates how meaningful

tk,i is to a network engineer (low values of pk,i translate to

the token tk,i being most meaningful).

IV. METHOD

This section presents the feature selection method. For

0 < k ≤ K, qk = {qk,i}1≤i≤Tk

refers to the distributions

of tokens defined on the full set of feature names, and

pk = {pk,i}0<i≤Tk

refers to the distribution of tokens in the

subset selected by the feature selection method.

A. Quantifying the selection quality

Measuring the quality of a feature selection implies defining

a goal metric for a selection. In the problem space described

in Section I, the objective is to produce selections that are both

intelligible and impacted by the event. The use of entropy as

a goal metric in the literature translates to a balanced cluster

structure in the data [3]. In this paper, an ideal selection

is one that is specific, i.e., an unbalanced cluster structure.

The more specific to a given functionality, or to a given

element of hardware, the more information a selection will

provide to an operator, and the lower the entropy value. On the

contrary, if the selection is very diverse and contains features

describing many different functionalities, the entropy will be

high. In other words, if the entropy is low, the selection will

be more intelligible, because it will be focused on a specific

functionality. Optimal selections in this problem space are of

low entropy.

Entropy doesn’t capture the difference pointed out in Sec-

tion III, i.e., if the selected counters are focused on a func-

tionality which is rare in the original set, it will have the same

score as if it was focused on a more frequent functionality.



The score for this feature selection method should be greater

if the selection focuses on the rarest features in the dataset.

In that respect, cross-entropy, i.e., the relative entropy of

a distribution compared to a reference, quantifies how fo-

cused/specific a selection is, along with how much it dif-

fers from the reference dataset. Cross-entropy captures how

specific the information is in the selection, with the original

distribution as reference distribution. For a given token type

0 < k ≤ K, cross-entropy is expressed as follows:

H (pk, qk) = −
∑

i∈P

pk,i log qk,i (1)

If pk = qk, the cross-entropy value will simply be the

entropy of the original distribution qk. This means that random

selections will have a cross-entropy value of H(qk), while the

scores of selections which focus on a specific functionality

will be H(pk, qk) > H(qk). Additionally, the cross-entropy

value will be greater if the focus is on a rare functionality,

since the metric captures the difference in entropy between

the two distributions.

Cross-entropy is very close to a divergence metric between

two distributions. Compared to e.g., the Kullback-Leibler (KL)

divergence [14], cross-entropy also indicates the specificity of

the selection. When the difference between cross-entropy and

the entropy of the original distribution is computed (to remove

the constant component H(qk)), it can be expressed as the sum

of the KL-divergence and the difference in entropy between

the two distributions, i.e., the information gain IG(qk|S).

H (pk, qk)−H (qk) = DKL (pk||qk) +H (pk)−H (qk)

= DKL (pk||qk)− IG(qk|S)
(2)

Not only does this score describe the distance from the

original distribution (divergence), it also provides an indication

on how concentrated the information is in the selection,

compared to the original dataset (specificity).

B. Optimization problem definition

Considering a multivariate time-series of dimension N > 0,

the frequencies describing the rareness of features {qk}0<k≤K

and {pk}0<k≤K are defined as in Section III. At a given

time, each feature i, i.e., each uni-variate time-series, has an

associated score σi that quantifies the amount of change. A

simple example of this score is the normalized difference in

mean value, on a small window before and after the time of

the event (measuring the amplitude of baseline changes at the

time of the event). This paper presents a method to find the

subset of features S which describes best what is changing at

a given time.

This can be expressed as an optimization problem, which

aims at selecting features with a high change score, forming a

subset of high cross-entropy, by maximizing the product of the

two metrics (change score σi and cross-entropy H(pk, qk)).
The idea behind this optimization process is that optimal

selections will both picture the change around a given time,

with the change score, and diverge from the original feature

set with high specificity, with the cross-entropy.

The optimization objective to maximize is the simple prod-

uct between the cross-entropy of the selection with regards to

its original dataset, and the average change score (averaged in

order to be independent of the size of the dataset). The simple

product is taken as optimization score, in order to maximize

the two metrics jointly. For 0 < k ≤ K the optimization score

L′
k is defined as follows:

L′
k(S, pk, qk) = H (pk, qk)

1

|S|

|S|
∑

i=1

σi (3)

where S is the selected subset in the original dataset.

This process results in a fixed size selection. In order to

relax the constraint and have the method offer configurable

amounts of features which describe the event, a regularization

term is added to the score to penalize very small selections

and arrive at the final definition of Lk:

Lk(S, pk, qk) =
(

1− e−
|S|
α

)

H (pk, qk)
1

|S|

|S|
∑

i=1

σi (4)

where α defines how much smaller subsets are penalized. A

higher α leads to selections with higher cardinality.

The resulting scores can be aggregated by summing the

values of cross-entropy, in order to take all token types into

account, giving the final optimization goal L, with p =
{pk}0<k≤K , and q = {qk}0<k≤K ,

L(S, p, q) =
(

1− e−
|S|
α

) K∑

k=1

H (pk, qk)
1

|S|

|S|
∑

i=1

σi (5)

C. Optimization process

The following algorithm is applied for the optimization

process. The process is initialized by selecting a random set

of features. At every iteration of the optimization process, the

impact of the addition/removal of each feature in the selected

set is computed. Only those additions/removals that improve

the optimisation score (L) are maintained/removed from the

set. This process is repeated until no further additions/removals

improve the score.

At the end of the optimization process, the selected features

are ordered by their contribution to the score (computed by

leave-one-out), in order to have the most important features

first.

V. EXPERIMENTS

The method proposed in this paper helps the explanation of

events in a multivariate time-series and, explicitly, does not

detect events. The times at which noticeable events happen

are supposedly known at this point, and can result from any

multivariate time-series change point detection algorithm [15].



A. Setup

The experiment was run on MDT datasets where the feature

names follow the nomenclature of an associated YANG model

[1]. The data was extracted from a router through MDT

collections in a lab environment, where typical network events

were inserted, such as interface failures, routing loops, traffic

black holes, etc.

The results showcased below result from running the pro-

posed algorithm on the dataset from [2], created by retrieving

several MDT collections with a cadence of 10s over a period

of 5 hours and 28 minutes in a lab environment. The resulting

set consists of 6622 features describing the router’s state, with

triggered enables/disables on interface 10, and enables/disables

of a bidirectional forwarding detection (BFD) session. The

timestamps at which the events occur are known, and the

change score (σi) for each uni-variate time series was com-

puted as the normalized difference in a baseline on windows

of 10 points before and after the time of the event.

B. Results

From among the 6622 counters, the selection process returns

the following subsets for α = 1. The sensor paths in the rest of

the paper were abbreviated for the sake of readability, but the

detailed features names can be found in the publicly available

dataset [2].

Admin Interface 10 Shutdown: (4007 counters changing)

• bfd_summary::session-state_down-count

• bfd_summary::session-state_up-count

• interface-summary::

admin-down-interface-count

• interface-summary::up-interface-count

• bfd_counters:HundredGigE0/0/0/10:

hello-transmit-count

• bfd_session:HundredGigE0/0/0/10:

negotiated-local-transmit-interval

• bfd_session:HundredGigE0/0/0/10:

negotiated-remote-transmit-interval

Breaking BFD Session: (3819 counters changing)

• bfd_summary::session-state_up-count

• bfd_summary::session-state_down-count

• bfd_counters:HundredGigE0/0/0/16:

hello-receive-count

• bfd_counters:HundredGigE0/0/0/16:

hello-transmit-count

• bfd_session:HundredGigE0/0/0/16:

negotiated-remote-transmit-interval

• bfd_session:HundredGigE0/0/0/16:

negotiated-local-transmit-interval

C. Discussion

The resulting selections for α = 1 are both intelligible and

descriptive of the corresponding events. In the case of the

interface 10 shutdown, 4007 features changed in value, and

3819 did in the case of the broken BFD session. In both cases,

the selection process has allowed the selection of less than 10

of these features, which can be categorized as meaningful to

an operator (BFD sessions counts and interface counts). With

the removal of the many counters that can obscure a user’s

analysis, it will be easier for an operator with this condensed

view to infer an explanation of the event.

Figure 1 shows the size of the selections compared to the

original number of features for the different types of events

contained in the dataset. Figure 1 also displays the number of

changed features around the time of the event, and the number

of features whose values have changed by more than 95% in

absolute value.

As a comparison, the simple method of extracting the top

10 features with highest value of σi (normalized difference

in mean value on windows of 10 points before and after the

timestamp) for the interface 10 shutdown would return:

Interface 10 Shutdown (Basic method for comparison)

• fib-statistics:0/0/CPU0:incomplete-

adjacency-packets

• bgp:ipv4:performance-statistics_vrf_

update-generation-prefixes-count

• bgp_default-vrf_afs-process-info:ipv6:

global_label-version

• bgp_default-vrf_afs-process-info:ipv6:

global_last-rib-version

• bgp_default-vrf_afs-process-info:ipv6:

local-paths-freed-num

• bgp_default-vrf_afs-process-info:ipv6:

local-paths-malloced-num

• bgp_default-vrf_afs-process-info:ipv6:

paths-freed-num

• bgp_default-vrf_afs-process-info:ipv6:

paths-malloced-num

• bgp_default-vrf_afs-process-info:ipv6:

rib-acked-table-version

• bgp_default-vrf_afs-process-info:ipv6:

rib-bgp-version

Although these features are actually caused by the event

(re-routing caused by the interface shutting down), they are

unrelated to the nature of the event itself. This specific dataset

contains 514 (8%) VRF related sensor paths. As discussed in

Section III, because of their high occurrence in the dataset,

they are estimated to carry less meaning to the network

engineers. As an indication, in the selection made by this

paper’s method with α = 1, the change scores (σi) of the

selected features ranged from 51th to 109th highest change

score. This implies that the contribution of cross-entropy to

the optimization score resulted in the selection of the features

which carry most information (e.g., interface counts) and the

removal of those that did not, among the features changing

most in value. This observation confirms the contribution of

both components of the optimization score (L): while the

change score (σi) allows the method to select the counters

that see a change in value around the event, the cross-entropy

selects those which are most meaningful to a network engineer

(i.e., rare in the dataset).



The α parameter further allows the tuning of the verbosity

of the selection. For example, with lower α parameters, the

selection for the interface 10 shutdown becomes:

Admin Interface 10 Shutdown: (α = 0.47)

• bfd_summary::session-state_down-count

• bfd_summary::session-state_up-count

• interface-summary::

admin-down-interface-count

• interface-summary::up-interface-count

Admin Interface 10 Shutdown: (α = 0.1)

• bfd_summary::session-state_down-count

• bfd_summary::session-state_up-count

A higher value of α can allow for a more detailed view

(which can hint at the details of the events, e.g., locality)

whereas lower values can result in scarce selections.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a general method for event description

in multivariate time-series using both data behavior, through

the change score, and contextual information, through infor-

mation retrieval on the feature names only. The proposed

estimation of the intelligibility of a selection, through the

rareness of its components, allows the identification of seman-

tically important counters and the definition of an optimization

goal. The method produces intelligible selections, which can

ease the interpretation of events by a network operator, while

allowing the exploitation of all the available counters in the

dataset. This prevents operators from having to tediously hand

pick which features to monitor, in cases where the data is

of high dimension. The proposed method is equipped with a

single value parameter, allowing the adjustment of the desired

output verbosity. This allows to find the selection size which

best fits a given use case, by distilling the right amount of

information. This method has shown to generate selections of

less than ten highly meaningful features out of more than six

thousand in the dataset in [2], for events with different root

causes.

Although a mean difference for the change score, and prob-

abilities defined as above, may produce intelligible results for

network telemetry datasets, they need to be further evaluated,

in cases where (i) the changes in the data are more complex,

or (ii) the relative rareness of a feature isn’t the best indicator

of its relevance. These assumptions were taken based on the

general observation that it is usually the case in network

telemetry datasets. These two metrics are nevertheless defined

independently from the general method to compute optimal

selections, and they can be adapted to any other problem

space.
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