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Abstract

Human drivers are capable of recognizing places from a previous journey even when viewing them from the opposite

direction during the return trip under radically different environmental conditions, without needing to look back or employ

a 360 degree camera or LIDAR sensor. Such navigation capabilities are attributed in large part to the robust semantic

scene understanding capabilities of humans. However, for an autonomous robot or vehicle, achieving such human-like

visual place recognition (VPR) capability presents three major challenges: 1) dealing with a limited amount of commonly

observable visual content when viewing the same place from the opposite direction, 2) dealing with significant lateral

viewpoint changes caused by opposing directions of travel taking place on opposite sides of the road, and 3) dealing

with a radically changed scene appearance due to environmental conditions like time of day, season and weather.

Current state-of-the-art place recognition systems have only addressed these three challenges in isolation or in pairs,

typically relying on appearance-based, deep-learnt place representations. In this paper we present a novel, semantics-

based system that for the first time solves all three challenges simultaneously. We propose a hybrid image descriptor

that semantically aggregates salient visual information, complemented by appearance-based description, and augment

a conventional coarse-to-fine recognition pipeline with keypoint correspondences extracted from within the convolutional

feature maps of a pre-trained network. Finally, we introduce descriptor normalization and local score enhancement

strategies for improving the robustness of the system. Using both existing benchmark datasets and extensive new

datasets that for the first time combine the three challenges of opposing viewpoints, lateral viewpoint shifts and extreme

appearance change, we show that our system can achieve practical place recognition performance where existing

state-of-the-art methods fail.

1 Introduction

Visual Place Recognition (VPR) is a key component of

a visual SLAM system (Cadena et al. 2016) and one

of the key capabilities of a mobile robot or autonomous

vehicle. The major challenges of the problem revolve

around reliably recognizing places under both a wide

variety of environmental conditions that non-uniformly

affect the appearance of the scene and a wide range of

viewpoints. Because of both improving camera technology

and its relevance to many mobile autonomy applications,

VPR has been an area of growing research attention

over the past decade (Lowry et al. 2016). A large

number of methods have been proposed to deal with

different aspects of the problem like large-scale localization,

appearance variations due to changing environmental

conditions, and viewpoint variations, using approaches

incorporating temporal information or learning robust place

representations.

Appearance-based methods like FAB-MAP (Cummins

and Newman 2011) involve a large-scale localization

framework utilizing a Bag of Visual Words (BoVW) (Sivic

and Zisserman 2003) approach, forming an integral part of

visual SLAM methods like ORB-SLAM (Mur-Artal et al.

2015) and LSD-SLAM (Engel et al. 2014). However, the

original BoVW approaches were often based on hand-crafted

keypoint features like SIFT (Lowe 2004), SURF (Bay et al.

2008) and ORB (Rublee et al. 2011), and as a consequence

inherited the underlying feature type’s limited robustness to

changing environmental appearance.

While the earlier attempts at learning-based local keypoint

description (Philbin et al. 2010; Brown et al. 2011;

Simonyan et al. 2014) helped improve the BoVW pipeline,

more promising description methods for appearance-

invariance were initially based on whole-image descriptors.

Such methods, for example, patch-normalized images in

SeqSLAM (Milford and Wyeth 2012) and HoG (Dalal and

Triggs 2005) within Network-Flow (Naseer et al. 2014),

have leveraged temporal information inherent within mobile

robotic applications. This general approach has resulted

in a large body of research focusing on robust methods

for utilizing sequential information (Hansen and Browning

2014; Pepperell et al. 2016; Lynen et al. 2017). These

approaches have generally exhibited a different weakness to
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feature-based techniques: viewpoint-dependence, as well as

being of limited utility in wide-baseline stereo matching.

The recent advent of deep-learning based convolutional

neural networks (CNNs) (Krizhevsky et al. 2012) have

paved the way for developing robust image representations

that offer the potential for both viewpoint- and appearance

invariance (Sunderhauf et al. 2015), with performance

found to depend on the choice of network layer (Garg

et al. 2018a). The end-to-end training of VLAD (Jégou

et al. 2010) in NetVLAD (Arandjelovic et al. 2016)

for visual place recognition developed deep-learnt whole-

image representation with both viewpoint- and appearance-

invariance and is a good representation of the current state-

of-the-art.

In this paper, we improve the versatility of visual place

recognition beyond the current state-of-the-art by taking

on the additional challenge of place recognition from

opposing viewpoints whilst simultaneously dealing with

lateral viewpoint change and extreme appearance change.

The new additional challenge of opposing viewpoints is

illustrated in Figure 1: while alone it might be addressable

using a robust feature representation, current state-of-the-

art techniques are insufficient to address it whilst also

addressing drastic appearance and lateral viewpoint change

as well. Instead, current methods performing bi-directional

visual place recognition predominantly rely on a panoramic

camera (Arroyo et al. 2014) or LIDAR (Wolcott and Eustice

2017) sensing setup. Whilst this is an acceptable engineering

solution in some application domains, the fact that humans

are able to do it without these full field of view sensors

renders it a scientifically interesting challenge (Ackermann

1996; Hegarty and Waller 2004; Kozhevnikov et al. 2006).

In addition, as the initial wave of self-driving car technology

development starts to mature, it is becoming clear that

there are still significant discrepancies between how highly

engineered autonomous driving car systems navigate and

how humans navigate. Further improving the capabilities

of semantic-based navigation also has potential applications

outside of the road-based domain to all mobile robots

operating in and interacting with real-world environments

and the humans that reside within those environments.

To address these challenges of viewpoint and appearance

variations, our approach introduces a number of new

techniques based on visual semantics. We exploit advances

in the field of semantic scene understanding based on

dense semantic image segmentation (Long et al. 2015; Lin

et al. 2017) to provide salient cues for both representing

and matching the places. Furthermore, we develop an

approach using the visual semantic information captured

by higher-order layers of the deep network for temporally

segmenting the environment into meaningful chunks. Such a

segmentation of the environment is useful when appearance

variations may occur both within the environment and across

multiple traverses of the same environment, and can be

thought of as an updated, semantically-informed version of

the simple chunking used in SeqSLAM (Milford and Wyeth

2012). The semantic information is used to inform and adapt

the sequence-based place recognition methods to deal with

such variations. We also improve upon the limitations of

current deep-learning-based place recognition techniques,

which typically provide a whole-image description which

Figure 1. Recognizing places from opposite viewpoints under

varying environmental conditions is a very difficult problem due

to the additional challenge of limited visual overlap available for

image matching, on top of the normal problems of appearance

change and lateral viewpoint change.

cannot be employed for estimating the scene-structure

similarity between the matching pair of images. The spatial

arrangement of visual landmarks in the image is a vital piece

of information that can help reduce false positives (Oliva and

Torralba 2001; Gálvez-López and Tardos 2012; Noh et al.

2017). We propose CNN-based keypoint matching that uses

semantic filtering and dense descriptor weighing as a part

of fine place search procedure to improve candidate match

selection.

This paper builds upon earlier work (Garg et al. 2017,

2018a,b) but adds a large number of new contributions

in terms of approach, experimental evaluation and the

capability of the system. The key contributions include:

• a robust visual place recognition pipeline that

leverages visual semantic information simultaneously

at three different levels: semantic segmentation

at database level, semantically-salient description

at image level, and semantically-consistent image

matching at pixel-level,

• a hybrid whole-image place descriptor that comple-

ments the strength of an end-to-end learnt represen-

tation with a viewpoint-invariant and explicit aggrega-

tion of visual semantics-based description,

• an implicit keypoint correspondence method for

spatial layout verification that does not require cross-

matching between the keypoint descriptors of a given

pair of images,

• demonstration of the limitations of state-of-the-art

image representations to recognize places when there

are transitions in the environment such that the

appearance variations occur both within and across the

traversals, even with similar viewpoints,

• a transition-aware semantic environment segmenta-

tion method for local enhancement of place matching
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scores to deal with perceptual aliasing caused by tran-

sitions in environmental conditions, such as different

lighting conditions,

• performance benchmarks on new datasets achieving

significantly higher precision-recall performance than

existing state-of-the-art systems, including the most

challenging VPR datasets to date which combine:

– opposite-viewpoints with very limited visual

overlap between the images captured at the same

place,

– significant lateral viewpoint change due to

different lanes of travel during forward and

reverse traverses, and

– large appearance variation due to changing

environmental conditions caused by factors such

as day-night cycles.

• a collection of new custom datasets for research and

development spanning over 800 km of forward-reverse

journeys along urban, rural and forested roadways

under a range of environmental conditions including

rain and day-night cycles.

In particular, we extend our previous work in the following

ways. We improve the system’s overall robustness by

introducing a new hybrid whole-image descriptor based on

semantic aggregation (Garg et al. 2018b) and appearance-

based end-to-end training (Arandjelovic et al. 2016). The

original semantic environment segmentation proposed in

(Garg et al. 2017) is modified to make use of fc6 layer

activations and transition-aware segmentation in order to

account for false matches during the transition. We conduct

a new investigation into the mutual influence of whole-

image descriptor normalization (Garg et al. 2018a) and local

score enhancement (Garg et al. 2017) on system performance

using state-of-the-art image description techniques. We

also establish the backward-compatibility of our proposed

approach as applied to traditional front-view only VPR and

showing significant performance gains for day-night image

matching. Finally, for the first time in the literature, we

demonstrate practical visual place recognition performance

on datasets that combine the three challenges of opposing

viewpoints, lateral viewpoint shifts, and extreme appearance

change, using only a limited field-of-view monocular

camera.

The paper proceeds as follows: Section 2 discusses the

relevant literature with respect to the components of our

proposed approach, Section 3 describes all the modules of

the proposed VPR pipeline, Section 4 describes the datasets

used, ground truth, and evaluation methods, Section 5 shows

performance evaluation of our system against the state-

of-the-art methods, Section 6 discusses some key insights

related to ground truth of front-rear image matching and PCA

(Principal Component Analysis) visualization of normalized

image descriptors, and finally Section 7 concludes the paper

outlining the scope for future work.

2 Related Work

In this section, we review the existing body of work

related to specific components of our proposed approach

and the kind of VPR challenges addressed in literature.

This mainly includes robust representation of images, use

of semantics for VPR, methods dealing with CNN-based

keypoint correspondences, and the extent of appearance- and

viewpoint-invariance addressed by state-of-the-art methods.

2.1 Image Representations

The early methods based on deep-learnt image representa-

tions leveraged activations of different layers of pre-trained

CNNs as off-the-shelf image descriptors for image retrieval

(Razavian et al. 2014) as well as place recognition (Chen

et al. 2014). Further to that, a variety of pooling meth-

ods have since been developed for improving these image

representations, for example, sum pooling (Babenko and

Lempitsky 2015), cross-convolutional pooling (Liu et al.

2015), VLAD pooling (Yue-Hei Ng et al. 2015), integral

max-pooling (Tolias et al. 2016), and multi-scale orderless

pooling (Gong et al. 2014). End-to-end training for visual

place recognition based on deconvolutions (Mukherjee et al.

2017), multi-scale encoding (Chen et al. 2017a), and gen-

eralized VLAD (Arandjelovic et al. 2016) has helped in

developing even more robust place representations.

Furthermore, recent work has demonstrated that higher-

order contextual information and all-in-one monolithic

CNNs can lead to even more robust and efficient

representations. Kim et al. (2017a) use semi-global context

to learn weights for spatial activations. Sarlin et al. (2018b)

use a teacher-student network to efficiently localize using

a hierarchical framework and further extend their work by

learning local keypoints and descriptors using a monolithic

CNN for accurate 6-DoF localization (Sarlin et al. 2018a).

The SAANE method proposed by Seymour et al. (2018)

learns to fuse appearance and higher-order layers of CNN

to learn novel embeddings for matching places under a wide

variety of environmental conditions. The aforementioned

techniques, however, indirectly learn to embed higher-

order contextual information and can be used as a drop-

in replacement for the end-to-end learnt representation

(NetVLAD) used in this paper; we demonstrate that such

a learnt representation can be complemented with explicit

semantic information-based description.

2.2 Visual Semantics for Retrieval

Visual semantic information has often been used for improv-

ing image retrieval and visual place recognition. Semantic

masking of images for appearance-invariance (Naseer et al.

2017) and semantic graph matching for multi-view localiza-

tion (Gawel et al. 2018) have been proposed for improving

the robustness of visual place recognition and localization.

However, environment-specific training and the requirement

of accurate semantic labels tend to limit the potential use of

these methods respectively. The Semantic Segment Layout

Descriptor (SSLD) is proposed by Castaldo et al. (2015)

for the challenging problem of cross-view matching, for

example, from an aerial top-view to the ground vehicle front-

view. However, the system has only been demonstrated to

work for different sensor modalities and even then only

with images captured under ideal environmental conditions.

Mousavian and Kosecka (2016) combine visual semantics

with plane estimation to infer unique building facades in the

scene in order to localize under wide viewpoint variations.
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Figure 2. Proposed Visual Place Recognition Pipeline

While the use of buildings-based semantics for localiza-

tion leads to robustness against extreme variations in scene

appearance, other semantic classes can also aid in improving

the robustness of a semantics-based system (Naseer et al.

2017; Gawel et al. 2018; Garg et al. 2018b).

Furthermore, many of the existing image retrieval methods

based on visual semantics (Johnson et al. 2015; Schuster

et al. 2015; Lu et al. 2017; Huang et al. 2018) have not

been demonstrated to work for changing environmental

appearance due to day-night or seasonal cycles.

2.2.1 Semantics Within Descriptors: Singh and Košecká

(2016) and Toft et al. (2017) propose a grid-based

image descriptor constructed by concatenating a semantic

histogram defined per grid cell. However, this concatenation

leads to a viewpoint-dependent description of images and

cannot be employed for matching images from opposing

viewpoints. Yu et al. (2018) propose a semantic edges-based

VLAD description that encodes the probability of observing

a semantic edge at a pixel location, unlike our proposed

LoST descriptor that uses the probability of belonging to a

semantic class in order to weight the dense convolutional

descriptors at those pixel locations. Further, we use keypoint

locations in a subsequent step to verify the spatial layout

between the pairs of images, whereas Yu et al. (2018) use

these 2D keypoint locations as a part of their descriptor

which might lead to viewpoint-dependence.

2.2.2 Object Semantics and Depth for Localization:

Another existing body of work that uses visual semantic

information for improving localization is based on object-

level semantics. Ardeshir et al. (2014) combine GIS data and

object semantics to improve object detection and geospatial

localization Atanasov et al. (2016) use windows and cars

as objects for localization, however, the utility of cars for

long-term localization has not been discussed. Furthermore,

depth information along with object semantics (Atanasov

et al. 2016; Salas-Moreno et al. 2013; Schreiber et al.

2013) has commonly been used to improve localization

where Salas-Moreno et al. (2013) demonstrate an object-

based SLAM system for indoor environments and Schreiber

et al. (2013) demonstrate the use of lane markings for precise

localization. Although depth as an additional information

signal often leads to an improved place recognition and

localization system (Garg et al. 2019) , object-semantics

based systems can lack the ability to model semantic entities

that do not have a precise bounding box, for example, roads,

vegetation, walls, fences, and building facades that may span

across multiple images in urban regions. This is also the

motivation for our proposed approach for using dense pixel-

level semantic segmentation to guide the image description.

Towards this end, (Schönberger et al. 2018) propose a

3D descriptor that combines depth and semantics to achieve

robustness against both appearance and viewpoint variations,

whereas our proposed system does so by using only

monocular imagery. Moreover, our benchmark datasets test

the proposed system for extreme appearance and viewpoint

variations simultaneously and not in isolation.

2.3 CNN-based Keypoint Correspondences

The use of keypoint correspondences based on deep-

learnt CNNs has received significant attention. In the

field of object/human parts recognition, a number of

methods exist for keypoint localization/prediction (Long

et al. 2014; Hariharan et al. 2015; Zhang et al. 2015).

Some of the recent methods include spatial feature pyramid

based correspondences (Ufer and Ommer 2017), local self-

similarity learning (Kim et al. 2017b), and geometric-

matching based training (Rocco et al. 2017; Han et al. 2017).

However, most of these methods have been developed for

object-centric images, unlike place-centric (Zhou et al. 2017)

scenes where there is no particular object in focus. Moreover,

visual place recognition additionally requires dealing with

dynamic objects in the scene for which we demonstrate

the use of semantic label verification and dense descriptor

weighing as useful techniques for filtering correspondences.

Although Rocco et al. (2017) demonstrate generalization

of their approach by learning the geometric warping from

street-view imagery, the experiments are conducted on

datasets with limited variations in the camera viewpoint.
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2.3.1 Keypoint Detection and Description: The use of

CNNs for generating keypoint correspondences for the task

of image retrieval and place recognition includes learning

of keypoint detectors (Mishkin et al. 2018; Savinov et al.

2017) as well as robust local descriptors (Yi et al. 2016;

Mishchuk et al. 2017; Zamir et al. 2016; Tolias et al. 2016).

Brown et al. (2011) use a variety of pooling methods to

learn discriminative local descriptors and Noh et al. (2017)

learn both keypoints and descriptors using a novel attention

mechanism but do not incorporate any form of semantic or

global context for appearance-invariance. Taira et al. (2018)

use CNN-based keypoint descriptors extracted densely from

the feature maps of different layers of the network, but like

the aforementioned methods, they require cross-matching of

these descriptors to obtain correspondences. (Tolias et al.

2016) use regions within the CNN response maps to match

and localize a query bounding box object within the database

images. While their approach forgoes the cross-matching of

regions/patches (Razavian et al. 2014) , a search procedure is

still required to find a matching region for their query object.

This is not the case with our approach as we assume that

these correspondences are implicitly encoded by individual

feature maps of the higher-order CNN layers; keypoint

localization can simply be performed by an argmax
operation on corresponding feature maps. Radenović et al.

(2018) employ a similar strategy to visualize keypoint

correspondences after filtering them based on their distance

measure, however, they do not use this correspondence

information for any form of spatial verification. Furthermore,

they only consider the extraction of correspondences for

pairs of images, whereas our technique extracts keypoints

and descriptors independently for a single image based on

maximally-activated locations within the feature maps and

the correspondences are later established at the matching

stage.

2.3.2 Semantics for Keypoint Matching: Apart from the

previously described bodies of research on robust semantics-

based description and keypoint correspondences, there

exist some methods that combine the strengths of both

by matching the semantic information at keypoint level.

Arandjelović and Zisserman (2014) propose SemanticSIFT

descriptor using a semantic vocabulary that seeks to match

both appearance and semantics simultaneously, however, in

our approach, we first filter the semantically-inconsistent

keypoints and then use their appearance descriptors to bias

the geometric matching. Mousavian et al. improve the

BoW-based retrieval by filtering keypoints in a similar

manner as ours, however, they only consider man-made

structures for this task (Mousavian et al. 2015; Mousavian

and Košecka 2015). Kobyshev et al. (2014) compute

binarized semantic histograms for each of the keypoints to

reduce the search space for keypoint matching, however,

the implicit correspondences used in our approach do not

require such search procedures. Toft et al. (2018) propose

a method to compute semantic consistency scores (SCS)

in order to guide the sampling procedure of RANSAC,

however, their approach requires 3D database models to do

so. Moreover, in their comparisons with a baseline similar

to our filtering strategy, the latter will be at a disadvantage

because RANSAC like methods are affected by the inlier to

outlier ratio and therefore false negatives (missed inliers) can

significantly affect performance. In our case, this problem is

handled to some extent by the use of appearance descriptors

to bias the geometric matching.

2.4 Extent of Appearance-Invariance

Appearance-invariant visual place recognition techniques

have mainly focused on either robust place representations

(Sünderhauf et al. 2015; Naseer et al. 2017; Chen et al.

2017b) or image-sequence matching (Milford and Wyeth

2012; Vysotska and Stachniss 2016). However, the extent of

variations in appearance has only been limited to matching

multiple traverses of the environment with changing

appearance across these traverses, for example, matching

day vs night traverse or winter vs autumn traverse. The

challenging scenario of matching places when appearance

variations occur both within and across the traverses has not

been addressed in the literature. The major difficulty posed

in this case is the affinity of images captured under similar

environmental conditions (say night time) to match with

themselves (another night-time image) than matching with

their counterparts captured under different environmental

conditions (day time). This situation generally occurs

when there are transitions in the environment from, say,

outdoor to indoor areas with changes in lighting conditions

both within a traverse and across multiple traverses of

the same environment. We demonstrate that the existing

state-of-the-art place representations (Arandjelovic et al.

2016), even with sequence-based matching, cannot achieve

high performance and that the use of proposed descriptor

normalization and local score enhancement is useful for

enhancing the performance.

2.5 Extent of Viewpoint-Invariance

The currently prevalent visual place recognition meth-

ods have developed solutions for both appearance- and

viewpoint-invariance. However, the extent of viewpoint vari-

ations has only been limited to changes in lateral displace-

ment, orientation, and scale relative to the reference 6-

DoF camera pose in the real world. Variations as extreme

as opposite-viewpoint matching under changing appearance

of the environment is a challenging problem due to lim-

ited visual overlap between a given pair of images taken

at the same place from opposite directions. The research

areas exploring the use of disjoint field-of-view cameras

include camera calibration (Heng et al. 2015), motion esti-

mation (Kawasaki et al. 2015), and mapping (Tribou et al.

2015). However, for VPR, the existing methods capable

of opposite-viewpoint matching use panoramic cameras

(Murillo et al. 2013; Arroyo et al. 2014) or LIDARs (Wol-

cott and Eustice 2017); developing a human-like viewpoint-

invariance capability (Ackermann 1996) using a limited

field-of-view monocular camera is currently an unsolved

challenge.

2.6 Datasets

The research efforts in the direction of appearance-invariant

visual place recognition have led to a number of new

benchmark datasets, but there are limitations in the extent of

variety they offer. The Alderley Day-Night dataset (Milford
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and Wyeth 2012) and Aachen Day-Night dataset (Sattler

et al. 2018) , though useful for evaluation under extreme

appearance variations, lack variety in varying environmental

conditions and only use a single limited field-of-view

camera. On the other hand, the Oxford Robotcar Dataset

(Maddern et al. 2017) is comprised of repeated traversals

of urban regions of Oxford under a variety of environmental

conditions such as different times of the day, season, and

weather. Further, the multiple-camera setup provides front,

sideways, and rear-view imagery and is therefore suitable for

evaluating place recognition performance for simultaneous

variations in viewpoint and appearance. Similarly, the

University of Michigan North Campus Long-Term Vision

(NCLT) dataset (Carlevaris-Bianco et al. 2016) provides

imagery captured using an omnidirectional camera with

varying scene appearance both indoors and outdoors but

lacks night time traversals. However, in both the Oxford

Robotcar and NCLT datasets, there is no lateral viewpoint

shift as the traverses are often repeated in the same direction

and hence in the same lane. Our proposed datasets comprise

forward as well as reverse journeys along urban, rural, and

forested roadways under varying environmental conditions

due to different weather conditions or times of day.

3 Proposed Approach

3.1 Overview of the VPR pipeline

An overview of the proposed visual place recognition

pipeline is presented in Figure 2. We use the conventional

coarse-to-fine matching process, often employed in literature

(Cummins and Newman 2011; Mur-Artal and Tardós

2017), for high-precision loop closure detection. The coarse

place recognition is mainly comprised of robust whole-

image description, descriptor normalization, and a cosine

distance-based global place search. These place matching

scores are locally-enhanced based on semantic environment

segmentation with the top N matching candidates being

selected. These top candidates are used to perform fine

place matching based on keypoint correspondences extracted

from the pre-trained CNN. These correspondences are finally

used to perform a weighted keypoint matching to validate

spatial-layout consistency and select the best match. The

visual semantic information, as shown in Figure 2, is

employed within different components of the system, namely

image description, local score enhancement, and keypoint

correspondence filtering.

All the modules of our proposed pipeline are described

in details in subsequent sections, covering in order: Robust

Whole-Image Description, Local Score Enhancement,

Keypoint Extraction and Correspondence, and Spatially-

Consistent Weighted Keypoint Matching.

3.2 Robust Whole-Image Descriptor

The use of deep-learnt whole-image descriptors for visual

place recognition (Naseer et al. 2017) and image retrieval

(Arandjelovic et al. 2016) has gained popularity because

of their robustness towards both viewpoint and appearance

variations, as compared to the representations (Torii et al.

2015) based on hand-crafted features (Lowe 2004). However,

the choice of these deep-learnt descriptors has been based

on the desired amount of invariance towards changes in

appearance and viewpoint of the scene (Sünderhauf et al.

2015).

The whole-image descriptor LoST (Local Semantic

Tensor) proposed in (Garg et al. 2018b) describes a place

explicitly with respect to different semantic classes (roads,

buildings, and vegetation). For this, state-of-the-art semantic

segmentation network RefineNet (Lin et al. 2017), trained on

the Cityscapes dataset (Cordts et al. 2016), is used to provide

dense pixel-wise semantic labels. Further, the convolutional

feature maps are extracted from the conv5 layer of the

network. The feature maps extracted from a CNN form a

tensor of size W ×H ×D, where W , H , and D are the

width, height and depth (or count) of the feature maps. The

ResNet101 (He et al. 2016) based architecture in RefineNet

leads Wc5 and Hc5 to be 1/32th of the input image with

Dc5 as 2048 feature maps for the conv5 layer. Similarly, the

semantic label scores so obtained have WS and HS as 1/4th

of the input image∗ and DS is 20 which corresponds to the

number of semantic categories in the Cityscapes dataset.

In order to deal with the noise associated with

dense semantic labels and inspired from the success of

image description methods like VLAD (Vector of Locally

Aggregated Descriptors) (Jégou et al. 2010), the Local

Semantic Tensor L (LoST) is defined for an image using the

convolutional feature maps and semantic label probability:

Ls =

N
∑

i=1

mis|µs − xi| (1)

µs =

∑

xs∈Xs

Xs

card(Xs)
(2)

Xs = {xi | li = s ∀ i ∈ [1, N ]} (3)

li = argmax
s

mis (4)

where li is the semantic label of a Dc5-dimensional

descriptor xi at location i within the feature map as shown

in Figure 3. µs is the mean descriptor computed for a

semantic class s by considering only those pixel locations

that have their semantic label same as s. While the mean

is computed using the most likely labels for the pixels, the

image descriptor Ls is computed using the probability mis

of a pixel location i to belong to a semantic class s. The mis

is computed by L1-normalization of the label scores’ tensor

across its depth DS .

Each semantic descriptor Ls forms an aggregation of

the residual description from that particular semantic class

s and the noisy contributions from the remaining classes,

weighted by their semantic label probability. The final

image descriptor L is a concatenation of L2-normalized Ls

using only three semantic classes, that is, road, building

and vegetation. For the reference database, as available

beforehand, we modify the Equation 2 to replace the mean

computed from a single image by the mean computed over a

sliding window of 15 frames centered at the given reference

image.

∗The semantic score tensor is resized to conv5’s resolution when used in

conjunction with its feature maps.
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One of the limitations of state-of-the-art semantic

segmentation networks is that they are generally trained on

image data captured under ideal environmental conditions.

This particularly leads to inaccurate labeling of night time

imagery. This limitation can be overcome by using a

hybrid descriptor that exploits the benefits of end-to-end

VPR training as well as the semantic saliency of LoST.

Therefore, we concatenate the state-of-the-art appearance-

based descriptor NetVLAD (Arandjelovic et al. 2016) with

LoST and refer to it as L′ having dimension D′.

3.3 Descriptor Normalization

For boosting the appearance-invariance of the image

descriptors described above, we perform a descriptor

normalization (Garg et al. 2018a) as below:

L′′
j =

(L′
j − µdb)

σdb

∀ j ∈ [1, Ndb] (5)

where µdb is the mean descriptor of dimension D′ and

similarly, σdb is the D′-dimensional standard deviation of the

image descriptors, both computed using the entire database

of Ndb image descriptors. The reference database, available

beforehand, is normalized using all the images within the

database. The query database is, however, processed in an

online manner as the images become available during the

traverse, which means µdb and σdb for the query database

are updated with every new query image. The normalization

parameters of the reference database are not used for

normalizing the query descriptors because these parameters

often correspond to different environmental conditions,

for example, a day-time reference traverse compared to

a night-time query traverse. However, the intra-descriptor

distributions can be expected to be similar after independent

normalization of both the databases.

3.3.1 Global Place Search: The normalized descriptors

are used to compute the cosine distance of the query image

from all the reference images:

djk = 1−
L′′
j · L′′

k

‖L′′
j ‖2‖L

′′
k‖2

∀ j ∈ [1, Ndb] (6)

where djk are the distance values for a query image k, L′′
j and

L′′
k are the normalized descriptors of the reference and query

images, j and k respectively, and Ndb is the total number

of images in the reference database. The distance values djk
then undergo neighborhood normalization, as explained in

the next section, in order to find the best match based on

a locally-enhanced global minimum as opposed to directly

obtaining a global minimum.

3.4 Locally-Enhanced Global Minima

Visual place recognition (Naseer et al. 2014; Neubert and

Protzel 2016; Sünderhauf et al. 2015) as well as image

retrieval (Babenko and Lempitsky 2015; Arandjelovic et al.

2016) methods, in general, search for a best matching

candidate by directly obtaining a global minimum of the

distance values. However, for visual place recognition

methods, the use of local enhancement was emphasized

in SeqSLAM (Milford and Wyeth 2012) that employed a

sequence-based matching of patch-normalized images. Their

Figure 3. Local Semantic Tensor (LoST): The dense descriptors

from conv5 layer are extracted with respect to the semantic

labels of the image. The dense descriptors are then aggregated

with respect to three semantic classes (road, vegetation, and

buildings, represented by blue, red, and cyan respectively) and

concatenated to form the LoST descriptor.

proposed local minima-based match selection primarily

helped in dealing with perceptual aliasing caused due to the

affinity of an image to match with another image obtained

under similar environmental conditions than to its true match

from different environmental settings. For example, a night-

time image may tend to closely match with another night-

time image than with its day-time counterpart under a naive

matching scheme.

In this work, we first demonstrate that most of the existing

image description techniques find it challenging to deal with

this perceptual aliasing and that locally-enhanced global

minima-based search can aid in appearance-invariant place

recognition, especially when sequence-based methods are

employed. However, the definition of local in SeqSLAM was

based on an arbitrarily-defined neighborhood zone across

a given reference image and required parameter-tuning for

reaching peak performance. We propose an environment

segmentation approach based on visual semantic information

captured by higher-order layers of the CNN. The segments

of the environment so obtained are therefore considered to

be the ideal neighborhood for the reference images and the

distance values within these neighborhood zones are then

locally-enhanced by performing a normalization operation

similar to that defined in SeqSLAM.

3.4.1 Semantic Environment Segmentation: The envi-

ronment segmentation is performed on the reference

database using the fc6 layer from the Places-365 CNN†

trained on Places data (Zhou et al. 2014). The different

layers of any convolutional neural network capture semantic

information as we move towards the higher-order layers,

for example, from conv3 to fc6 and then to the final layer

(Zhou et al. 2017; Zeiler and Fergus 2014). The use of fc6
layer provides a good compromise between capturing the

visual semantics and discriminating between different places

(Garg et al. 2018a) as compared to the conv3 or final layer.

Therefore, the fc6 layer activation scores can be used to

segment the reference database into meaningful semantic

neighborhood zones. As the images in the reference traverse

follow a temporal order, these activation scores for the entire

database form a continuous sequence, where each activation

score vector is represented as cj and is of size 4096 (that is,

the number of units in fc6 layer).

†https://github.com/metalbubble/places365
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In order to temporally segment the environment, we use

a Hidden Markov Model (HMM) to estimate the sequence

of internal hidden states that generated the sequence of

observed variables cj . Given that we are interested only

in estimating a transition within the environment which is

binary by default, we set the number of hidden states to be 2.

The implementation of HMM used in this work is available

here‡. The sequence of hidden states so obtained is used

to find the transition points and therefore different semantic

neighborhood zones within the reference database.

R =

NJ−1
⋃

jt

{(max(0, jt − δ),min(jt+1 + δ,Ndb))} (7)

where J = {0, jt1 , . . . , jtNJ−1
, Ndb} is the set of transition

indexes within the reference traverse where the hidden state

changes its value and Nj represents the cardinality of set

J . These transition indexes with respect to the reference

database are shown in Figure 4 with red hyphens across

the vertical axis of the distance matrix. R is the set of

index pairs to keep a record of the neighborhood zone in

which a given reference image j lies. The parameter δ allows

flexible borders for the semantic segments and is equal to

the number of frames processed during the transition, that

is, during the movement from one type of environment

to the other, therefore adding transition awareness to the

segmentation system. This is shown with green round braces

in Figure 4 along with the images corresponding to the

transition points and the transition window. As it is not trivial

to classify the images near the transition point into one of the

semantic segments, δ accounts for any such misclassification

which would otherwise create false positive zones in a non-

matching segment for a given query image. This parameter

can be easily determined from the camera speed and frame

processing rate.

3.4.2 Neighborhood Normalization: The semantic neigh-

borhood zones segment the environment in such a way that

images with similar environmental conditions are chunked

together in a single temporal segment. For example, in one of

the datasets used in our experiments (Residence Indoor Out-

door), the camera moves from the outdoor daylight to unlit

indoor areas of the house as shown in Figure 4. Therefore,

the first and second part of the traverse are automatically

divided into two different segments as a result of semantic

environment segmentation.

The distance values obtained from Equation 6 are

modified with respect to the neighborhood zones obtained

in Equation 7 according to the following normalization:

d′jk =
djk − µRj

σRj

∀ j ∈ [1, Ndb] (8)

where µRj
and σRj

are the mean and standard deviation of

the distance values within the neighborhood zone defined

by the corresponding region Rj in the set R. and d′jk is

the locally-enhanced distance for a query image k with

respect to the reference image j. Figure 4 shows raw and

locally-enhanced scores (bottom left graphs) for a query

image (#25) along with their global minima. The raw

scores generate a false global minimum (cross) whereas local

Figure 4. Local Enhancement of Scores: The semantic

environment segmentation divides the reference imagery

(vertical axis) into two regions as shown by the red hyphens

(top). The green hyphens surrounding the transition point form

a transition window (δ); the corresponding images are shown

with red and green boundaries. The neighborhood normalization

is performed according to the transition points and δ value.

The effects of the local enhancement can be observed from

the corresponding scores shown at the bottom-left for query

image 25. The actual match (large circle) gets overshadowed

due to perceptual aliasing for the raw scores whereas local

enhancement leads to a correct global minimum.

enhancement leads to a correct match (circle). These locally-

enhanced distance values are finally used to find the top-N

matching candidates in the reference database.

3.5 Keypoint Extraction

The global place search procedure based on whole-image

descriptors, though suitable for matching large databases

by either using hashing (Vysotska and Stachniss 2017;

Sünderhauf et al. 2015), aggregation (Lowry and Andreasson

2018) or random projection (Naseer et al. 2017) techniques,

is not immune to false positives. Therefore, we use a second

stage of matching the top-N candidates from the global place

search to find the final best match. This is achieved by

considering the dense convolutional descriptors derived from

the feature maps of one of the convolutional layers of the

network.

The dense convolutional descriptors have often been

employed in the literature by flattening and concatenating

all the feature maps of the convolutional layer (Chen et al.

2014; Sünderhauf et al. 2015; Vysotska and Stachniss

‡http://hmmlearn.readthedocs.io/en/latest/index.html
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Figure 5. Correspondences inherent in Convolutional Feature

Maps: For a matching pair of images (left) captured from

opposite viewpoints, feature maps from the conv5 layer of the

network are shown in the right. The activation patterns tend

to be similar for a given feature map when a similar image is

encountered, for example, the top and the bottom feature maps

capture buildings and sidewalks information in a similar manner

for the two given images.

2016). However, these representations obscure the spatial

information about the image which could otherwise be used

for matching the scene-structure. We propose to extract

salient keypoints from these convolutional feature maps

based on their activation locations in the feature maps.

Figure 5 shows some feature maps of conv5 layer for a

pair of images. For each feature map in the conv5 layer of

the network, we find the location within the feature map

where maximum activation occurs. Therefore, for the conv5
layer of size Wc5 ×Hc5 ×Dc5, we obtain a total of Dc5

keypoints. Given that the number of keypoints (Dc5) is quite

high as compared to the resolution of the feature maps

(Wc5 ×Hc5), some of the keypoint locations frequently

exhibit maximum-activation within different feature maps as

shown in Figure 6.

3.6 Keypoint Correspondences

Convolutional neural networks tend to learn semantically

meaningful concepts as we go deeper in the network

architecture (say from conv3 to conv5) as established

in (Zeiler and Fergus 2014; Zhou et al. 2017). As each

convolutional filter within a layer learns a specific concept, it

can generally be assumed that the activation patterns within

the feature maps would be similar for a matching pair of

images. Hence, the keypoints so obtained in the previous

section for a given query image can be directly associated

with those obtained for a reference image based on the

index of the underlying feature map as shown in Figure 5.

Therefore, we obtain Dc5 keypoint correspondences directly

from the Dc5 keypoints. It may be noted that it is not

necessary for these correspondences to occur at similar

locations within the two feature maps. For example, a traffic-

light detected in the left side of one image can correspond

to a traffic-light detected in the right of another image.

These correspondences can be observed in Figure 5 where

the building- and vegetation-based activations occur within

different regions of the feature maps for a pair of images

having an opposite viewpoint for the same place.

However, these keypoint correspondences cannot be

directly used in a spatial-consistency check because they

contain a number of false correspondences. The false

correspondences arise due to the following reasons: 1)

dynamic objects causing activations at different locations

within the image, 2) multiple instances of a similar semantic

Figure 6. Keypoint Locations: The pair of images shows an

activation frequency map overlaid on the two sample images

shown in Figure 5. Each of the feature maps of conv5 provides a

2D location within the feature map where the maximum activation

occurred. The activation frequency shows here the total number

of instances when a 2D location attained maximum activation. It

can be observed that road and sky categories do not have as

many keypoints as buildings, vegetation, and sidewalk.

concept, say a pole, leading to cross-correspondence, and

3) misfiring within a feature map that is trained to detect

a semantic concept not currently available in the scene,

for example, a traffic-light sensitive feature map tested on

an indoor image. Therefore, it is essential to filter these

correspondences.

3.6.1 Semantic Label Verification: In order to filter the

correspondences, we perform semantic label verification

for all the correspondences. The semantic labels tensor is

resized to conv5’s resolution to generate a semantic label

for each of the keypoint locations. For a given pair of

images, only those correspondences are retained that have

the same semantic label. This step filters out a large number

of undesired correspondences, especially those related to

random activations caused by convolutional filters that detect

concepts/features not available in a particular scene.

3.7 Spatially-Consistent Matching

The filtered correspondences are finally matched using

their keypoint locations, weighted by the dense descriptor

matching value for each of these correspondences. The Dc5-

dimensional conv5 descriptor xi is extracted for a given

keypoint i. For all the Dc5 keypoint correspondences, we

then calculate the cosine similarity as below:

ai =
xi · x

′
i

‖xi‖2‖x′
i‖2

∀ i ∈ [1, Dc5] (9)

where xi and x′
i are the Dc5-dimensional descriptors for the

ith correspondence and ai is the cosine similarity between

these descriptors. These descriptor similarity values are used

to perform a weighted keypoint matching as below:

rc =

√

√

√

√

Dc5
∑

i

ai(pi − p′i)
2

‖a‖2
∀ c ∈ [1, N ] (10)

where pi and p′i are the x-coordinates (flipped from left to

right for rear-view images) of the keypoint locations and

rc is the matching score for a candidate c from the top N
candidates retrieved by global place search. The candidate

with the lowest score is considered the final best match.
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4 Experimental Setup

4.1 Datasets

We used 4 different datasets to evaluate performance

of the proposed VPR pipeline: Oxford Robotcar, Multi-

Lane Forward-Reverse, Parking Lot, and Residence Indoor

Outdoor. The first two datasets are used for opposite-

viewpoint VPR experiments; the last two are used to

investigate the efficacy of state-of-the-art image description

techniques when appearance variations occur both within

and across the traverses. All datasets are provided here§.

The Oxford Robotcar dataset is comprised of a number

of traverses of an urban environment under different

environmental conditions due to varying time of day, weather

and seasons. Further, all the traverses have been captured

with front- as well rear-view cameras. Therefore, it is

a prominent choice for testing the appearance-invariance

of a VPR system, especially with opposite viewpoints.

The Multi-Lane Forward-Reverse dataset was collected

for testing for the first time even harder scenario of

opposite-viewpoint matching under changing appearance,

that additionally exhibits lateral viewpoint change due to

different lanes of travel during the forward and reverse

traverses of a route. All the datasets are described in details

in subsequent sections.

4.1.1 Oxford Robotcar: The Oxford Robotcar dataset

used here is a subset of the publicly available 1000 km

data (Maddern et al. 2017). We use front- and rear-

view imagery from four traverses exhibiting different

environmental conditions, referred to as Overcast Autumn,

Overcast Summer, Night Autumn, and Overcast Winter¶.

These traverses correspond to the initial 2 km of the full

traverse; the aerial view of the trajectory is shown in Figure 7.

GPS data is used to sample the images at a constant distance

of approximately 2 meters that leads to around 600-900

image frames in all the traverses.

4.1.2 Multi-Lane Forward-Reverse: The Multi-Lane

Forward-Reverse (MLFD) dataset is comprised of three

traverses captured at different times of day, that is, day,

dusk, and night. The day and night traverses were captured

during a forward journey and the dusk traverse was captured

while moving in reverse direction. The aerial view of the

trajectory is shown in Figure 7. We extract two segments

from the trajectory (shown with green and red terminal

markers) referred to as MLFR-DN and MLFR-DD for

Dusk-Night and Dusk-Day respectively. The MLFR-DN and

the MLFR-DD are approximately 1 km and 1.5 km in length

respectively. Unlike the Oxford Robotcar dataset where

front-rear matching does not exhibit any lateral viewpoint

variation, the MLFR dataset is more challenging due to

lateral shift in opposite viewpoints due to different lanes of

travel during the forward and reverse journeys.

4.1.3 Parking Lot: The Parking Lot dataset is a pair of 2.5
km traverses of a parking area spread across outdoor and

indoor regions of residential apartments. The two traverses,

captured during different time of day (morning and night),

also exhibit different lighting conditions within the traverses.

While the daytime traverse transits between well-lit outdoor

areas and partially-lit indoor regions, the night-time traverse

transits between unlit outdoor areas and artificially-lit indoor

Figure 7. Aerial view of ground truth trajectories for Oxford

Robotcar (left) and Multi-Lane Forward-Reverse (right) datasets.

We use two pairs of trajectories from the latter as shown with

different terminal markers (green and red). Source: Google Maps

and Open Street Maps

regions. The videos were captured using a hand-held mobile

device while driving a motor-bike and only every 20th

video frame was used in the dataset. The aerial view of the

trajectory is shown in Figure 8 with indoor and outdoor areas

marked in different colors along with sample images.

4.1.4 Residence Indoor Outdoor: The Residence Indoor-

Outdoor dataset is a 0.5 km dataset, comprising two traverses

of a residential area, captured on foot once during daytime

and then at night using a hand-held camera. Similar to the

Parking Lot dataset, this dataset also exhibits appearance

variations both within and across the traverses as camera

transits between variably-lit outdoor and indoor regions of

the house. The videos were captured using a hand-held

camera and only every 10th video frame was used in the

dataset. The aerial view of the trajectory is shown in Figure 8

with indoor and outdoor areas marked in different colors

along with sample images.

4.2 Ground Truth

The visual place recognition ground truth for Oxford

Robotcar dataset was generated using the GPS data.

However, the front- and rear-view images from the same

GPS location do not form a correct ground truth match as the

visual overlap between them becomes maximum only when

they are some physical distance apart from each other. We

refer to this distance as visual offset and present an evaluation

of it for one of the traverses of the Oxford Robotcar dataset

in Section 6. The ground truth for the other three datasets

was manually generated for regular keyframes and then

interpolated for the entire traverse. The results shown for the

opposite viewpoint matching in subsequent sections do not

account for visual offset in their localization radius which

means that localization accuracy of 40− 50 meters for front-

rear matching is equivalent to 10 meters of localization if it

were to be the front-front VPR‖.

§http://michaelmilford.com/car-datasets/
¶Originally 2014-12-09-13-21-02, 2014-12-10-18-10-50, 2015-05-19-14-

06-38, 2015-02-03-08-45-10 respectively (Maddern et al. 2017)
‖For more details, refer to Section 6 and Figure 18.
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4.3 Evaluation

As per standard reporting in this research field, we use

maximum F1 scores and Precision Recall curves for

evaluating the performance of the system. A threshold on

the distance scores calculated in Equation 10 is varied to

generate the Precision-Recall values and max-F1 scores.

For P-R curves, a match is considered to be correct if it

lies within a range of 20 frames of its ground truth match.

This value corresponds to 40, 50, 30, and 10 meters for the

Oxford Robotcar, MLFR, Parking Lot, and Residence Indoor

Outdoor datasets.

4.4 Comparative Study

We compare our approach with different state-of-the-

art visual place recognition methods including NetVLAD

(Arandjelovic et al. 2016) (their best performing VGG-16

+ NetVLAD + whitening, Pittsburgh∗∗), which has been

demonstrated to work better than off-the-shelf convolutional

descriptors (Sünderhauf et al. 2015), max-pooling (Tolias

et al. 2016), and DenseVLAD (Torii et al. 2015).

The results for the proposed system are presented in

three modes: 1) LoST+NetVLAD+KC (where KC stands

for Keypoint Correspondences based fine place search)

represents complete pipeline, 2) LoST+NetVLAD represents

the hybrid descriptor based global coarse place search only,

and 3) LoST represents the semantic descriptor based global

coarse search only. As the LoST descriptor is based on

ResNet101 (He et al. 2016) architecture, we include the

max-pooled descriptor, similar to the MAC descriptor (Tolias

et al. 2016) from the conv5 layer, referred to as MaxPool,

in order to observe any performance gains solely attributed

to the ResNet architecture. We also include and propose

semantic max-pooling (referred to as SemanticPool) using

RefineNet in order to differentiate between a naive use of

visual semantics for image description and our proposed

aggregated descriptor LoST (Equation 1). The SemanticPool

descriptor is constructed in a similar way as the MaxPool

but with the max-pooling operation done separately for each

semantic class based on the dense semantic labels of neurons

in the feature maps. Finally, we include DenseVLAD using

the authors’ provided source code, off-the-shelf conv3 layer

descriptors from pre-trained Places365 CNN (Zhou et al.

2014) and Sum of Absolute Difference (SAD) of patch-

normalized (PN) images (Milford and Wyeth 2012) in

order to observe variations in the performance trends when

viewpoint changes from 0◦ to 180◦.

5 Results

We first present results for the proposed visual place

recognition system for the opposite viewpoints-based

Oxford Robotcar and Multi-Lane Forward-Reverse datasets.

Then, we evaluate the Parking Lot and Residence Indoor

Outdoor datasets for the efficacy of locally-enhanced global

minima selection, along with the influence of descriptor

normalization and sequence-based matching.

5.1 VPR with Single Frame Matching

5.1.1 Oxford Robotcar Figure 9 shows the results for

front- and rear-view matching of different traverses under

Figure 8. Aerial View of ground truth trajectories for Parking

Lot (top) and Residence Indoor Outdoor (bottom) datasets. The

indoor and outdoor areas in both the views are marked with light

and dark blue color respectively. Further, the sample images

from different locations from within one of the traverses of each

dataset show the appearance variations occurring within the

traverse. Source - Google Maps

varying environmental conditions. It can be observed that

LoST-based descriptors consistently improve performance

in terms of both Max-F1 scores and Precision-Recall

curves. Further, the proposed system, including keypoint

correspondences (KC), performs the best in most of the

scenarios with one of the exceptions being the cross-

season comparison with the Winter traverse where better

performance is achieved only in the high-recall regime

(see Figure 9 (c) right). It is worth noting that the use

of keypoint correspondences helps in attaining a useful

recall rate, though small, at 100% precision, where global

place search, based on whole-image descriptors only,

does not even reach 100% precision. Furthermore, in

terms of overall performance across multiple traverses, the

performance drops as the environmental conditions become

more challenging from similar conditions, seasonal changes

to change in time of day as shown in Figure 9 (a), (b)-(c), and

(d) respectively.

It can also be noted that three of the methods:

DenseVLAD, conv3, and patch-normalized image descriptor

∗∗http://www.di.ens.fr/willow/research/netvlad/

Prepared using sagej.cls



12 Journal Title XX(X)

(a) Overcast Autumn Only (Front vs Rear)

(b) Overcast Summer vs Overcast Autumn (Front vs Rear)

(c) Overcast Winter vs Overcast Autumn (Front vs Rear)

(d) Night Autumn vs Overcast Autumn (Front vs Rear)

Figure 9. Oxford Robotcar dataset results with opposite viewpoints under changing environmental conditions: The performance

curves show high performance using the LoST-based proposed descriptors, especially with the use of Keypoint Correspondences

(KC). It is worth noting that the fine place matching using keypoint correspondences helps in attaining a useful recall rate at 100%

precision, where a simple global place search never even reaches 100% precision.
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Overcast Summer vs Overcast Autumn (Front vs Front)

Overcast Winter vs Overcast Autumn (Front vs Front)

Night Autumn vs Overcast Autumn (Front vs Front)

Figure 10. Oxford Robotcar dataset with similar viewpoints under changing environmental conditions: The performance trends for

the traditional similar-viewpoint VPR are similar to those observed for the opposite-viewpoint scenario in Figure 9. The proposed use

of Keypoint Correspondences (KC) improves performance, especially leading to higher recall at 100% precision along with higher

Max-F1 scores for Day-Night matching (bottom row).

(PN-SAD), though known to perform quite well for similar-

viewpoint place recognition, almost entirely fail at the

task of matching images from opposing viewpoints. The

off-the-shelf conv3 and the hand-crafted PN-SAD are by

design viewpoint-dependent as they encode and match

appearance depending on the pixel location which cannot

be assumed for wide-baseline image matching including

the opposite viewpoints. However, the VLAD architecture

encodes appearance information independent of the pixel

locations and has been successfully employed in methods

like NetVLAD and LoST. Therefore, the performance drop

for DenseVLAD in this case can be attributed to the

simultaneous effect of at least these two factors: first, the

underlying keypoint descriptor SIFT which is not flip-

invariant (Ma et al. 2010; Zhao and Ngo 2013) and second,

the density of keypoints considered in the image which can

be a disadvantage when the visual overlap between two

images is very low, for example, when viewed from opposing

viewpoints. The performance trend for DenseVLAD is

also consistent with the recent work of Schönberger et al.

(2018) for 180◦ viewpoint-shift experiments on KITTI

dataset (Geiger et al. 2012).

Figure 10 shows performance curves for visual place

recognition based on similar-viewpoints under changing

environmental conditions. Although, the overall perfor-

mance is higher for all the comparisons as compared to
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Overcast Autumn Night Autumn Overcast Winter Overcast Summer

Figure 11. Matched place examples from the Oxford Robotcar Dataset with opposite viewpoints under different environmental

conditions. The square markers show locations of keypoints correspondences, represented by the same color for a matching image

pair in a given column. The top row shows a sample query image from the rear-view camera of the Overcast Autumn with a different

set of keypoints matched each time. The bottom row shows front-view images matched from different reference traverses of the

dataset. It can be observed that some of the salient keypoint locations repeatedly help in matching places.

the opposite-viewpoint scenario, the performance trends are

quite different for different methods. Due to very simi-

lar viewpoints between the repeated traverses, viewpoint-

dependent methods perform quite well here with conv3
setting the state-of-the-art for the day-night comparison

followed by DenseVLAD and our proposed approach. This

also shows that our proposed approach performs the best

among the viewpoint-invariant description techniques that

consistently outperformed the viewpoint-dependent methods

for the opposing-viewpoint scenario. While NetVLAD and

LoST+NetVLAD perform at par with each other, it can

be observed that Keypoint Correspondences (KC) signifi-

cantly improve performance in all the scenarios, especially

for the day vs night comparison where a maximum recall

of up to 20% is achieved at 100% precision whereas the

other viewpoint-invariant methods never even reach 100%
precision. The corresponding curves also emphasize the

backward-compatibility of the proposed system.

Figure 11 shows some example image matches for a given

query image from the rear-view camera of the Overcast

Autumn traverse matched to front-view images from

different reference traverses. The top 15 correspondences,

based on their weighted matching value (extracted from

Equation 10), are shown with the same color square markers

for each column. It can be observed that some of the salient

locations within the image repeatedly help in matching the

places, despite changes in appearance or viewpoint.

5.1.2 Multi-Lane Forward-Reverse Figure 12 shows per-

formance comparisons for the Multi-Lane Forward-Reverse

dataset. This dataset exhibits a more challenging scenario

as compared to the Oxford Robotcar dataset in terms of

opposite viewpoints, as the vehicle travels in different lanes

in the forward and reverse traverses, adding lateral viewpoint

change. The performance trends show that all of the methods

find it challenging to match images between the night and

the dusk traverses. It can also be observed that for the

Day-Dusk comparison, keypoint correspondences lead to a

higher recall at 100% precision but do not offer a consis-

tent improvement as was observed in the Oxford Robotcar

dataset. The overall performance in terms of max-F1 scores

is lower as compared to the Oxford Robotcar dataset due

to lateral viewpoint change attributed to different lanes of

travel, limiting the visual overlap on top of the challenges of

opposite viewpoints and changing environmental conditions.

Figure 13 shows some example matches using the proposed

approach for Day-Dusk and Night-Dusk comparisons.

5.2 VPR with Sequence-based Matching

The single-frame-based matching for opposite viewpoints

under extreme appearance variations is a challenging

problem, especially when viewpoint also varies laterally due

to different lanes of travel during the forward and reverse

journeys. The use of sequence-based methods has been

proven to significantly improve single-frame based VPR

(Cummins and Newman 2011; Hansen and Browning 2014;

Naseer et al. 2018) and is feasible in some application

domains. Hence, we also evaluated the proposed approach

in conjunction with image sequence matching; however the

use of sequential matching is not a claimed contribution

of this work but rather a standard practice enhancement.

We used OpenSeqSLAM (Milford and Wyeth 2012) for our

experiments. However, in general, any other sequence-based

method can be used (Pepperell et al. 2014; Vysotska and

Stachniss 2016).

Figure 14 shows the Precision-Recall curves calculated

with a sequence length of 20 frames and a localization

radius of 30 frames†† for the opposite-viewpoints scenario

using the proposed approach and NetVLAD (referred to as

Ours+Seq and NetVLAD+Seq respectively). In Figure 14

(a)-(d), it can be observed that for the opposite-viewpoints

from the same lane, as in Oxford Robotcar dataset, the

proposed approach is able to recall a significantly higher

number of matches within the high-precision zone as

compared to the state-of-the-art for all the comparisons under

different environmental conditions. For relatively easier

††These values correspond to 40 and 50 meters of sequence length and

60 and 75 meters of localization radius (without accounting for visual

offset) for the Oxford Robotcar and Multi-Lane Forward-Reverse datasets

respectively.
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(a) Night Forward vs Dusk Reverse

(b) Day Forward vs Dusk Reverse

Figure 12. The most challenging scenario: Multi-Lane Forward-Reverse dataset with opposite viewpoints along with different lanes

of travel: The performance improvement is consistent using LoST-based descriptors, though the overall performance is lower in both

(a) and (b) as the dataset offers the most challenging scenarios due to different lanes of travel. The keypoint correspondences (KC)

improve the max-F1 score more for (a) than (b), however, the P-R curves show consistent gains in performance.

Day Forward vs Dusk Reverse Night Forward vs Dusk Reverse

Figure 13. Matched place examples from the Multi-Lane Forward-Reverse dataset for Day-Dusk and Night-Dusk comparisons.

Each column shows a matched pair of images. The lateral viewpoint change due to use of different lanes while traveling in opposite

directions further reduces the visual overlap caused due to opposite viewpoints.

cases of limited appearance variations as shown in Figure 14

(a) and (d), the proposed approach achieves a maximum

recall of 40% and 20% respectively at 100% precision as

compared to an approximate 10% of maximum recall using

NetVLAD. For a more challenging scenario of day-night

place recognition as shown in Figure 14 (b), a maximum

recall of 30% at 85% precision is achieved where the state-

of-the-art method struggles to achieve even half of that

precision at any recall level.

In Figure 14 (e)-(f), results are presented for the

first time on the even more difficult scenario using the

most challenging datasets to date that exhibit lateral

viewpoint change along with opposite-viewpoints and

changing environmental conditions. The proposed approach

outperforms the state-of-the-art with significant marginsfor

day and dusk matching (Figure 14 (f)), where a maximum

recall of 8% is achieved at 100% precision while the

state-of-the-art method never reaches the 100% mark

for any recall value. For the more challenging Night-

Dusk comparison, both the methods fail to achieve 100%

precision. It can further be observed that the proposed

approach ceases to perform better in the high-recall regime.
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(a) Overcast Autumn Rear vs Overcast Autumn Front (b) Overcast Autumn Rear vs Night Autumn Front

(c) Overcast Autumn Rear vs Overcast Winter Front (d) Overcast Autumn Rear vs Overcast Summer Front

(e) Night Forward vs Dusk Reverse (f) Day Forward vs Dusk Reverse

Figure 14. Sequence-based matching for opposite-viewpoints under varying appearance of the environment. It can be observed

that for the opposite-viewpoints from the same lane (a)-(d), the recall rate of the proposed approach within high-precision zones

is significantly better than that achieved using the state-of-the-art method, especially for the day-night scenario (b). Further in (e)-

(f), for the most challenging scenario of lateral viewpoint shift on top of opposite viewpoints and changing conditions, performance

improvements are significant, especially for day-dusk (f) where the proposed approach attains a maximum recall of 8% at 100%

precision whereas state-of-the-art never reaches the 100% mark.

Hence, across all implementations, whether single-frame-

based or sequence-based, our proposed methods significantly

improve performance.

5.3 Effects of Local Score Enhancement

The Parking Lot and Residence Indoor Outdoor datasets

were used for evaluating the efficacy of locally-enhanced

scores (Equation 7) based global minima selection against

a direct selection of global minima. The use of locally-

enhanced scores was emphasized in SeqSLAM (Milford

and Wyeth 2012) for sequence-based matching of patch-

normalized images belonging to different environmental

conditions (for example, day vs night). In order to

characterize the inter-influence of whole-image descriptor

normalization (Equation 5), neighborhood normalization

based local enhancement of scores (Equation 7), and the

use of sequential-information for VPR, we evaluated the

performance of different image description methods on the

aforementioned datasets. These datasets exhibit variations

in lighting conditions, natural (day vs night) and artificial

(indoor), both within and across the traverses, as also

shown in Figure 8. Figure 4 (top-right) shows a distance

matrix computed using off-the-shelf conv3 descriptors and

demonstrates the difficulty to differentiate between a correct

(circle) and a false (cross) match without the proposed local

score enhancement.

We used 5 different image description methods for per-

formance comparisons: NetVLAD, LoST, LoST+NetVLAD,

conv3 (pre-trained on Places365), PN-SAD (as used in

SeqSLAM). The first three description methods do not
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(a) Residence Indoor Outdoor (b) Parking Lot

Figure 15. Max-F1 scores with respect to varying sequence length showing effects of Local enhancement (LE) for raw (top) and

normalized (bottom) descriptors: the performance improves consistently with the use of locally-enhanced scores for most of the

descriptors for both the datasets, irrespective of the use of descriptor normalization.

explicitly retain the spatial layout information of the image.

conv3 layer descriptor is 65K in size and is understood

to perform very well for appearance variations, especially

when there is no significant change in viewpoint (Sünderhauf

et al. 2015), which is also the case with both these datasets.

The Sum of Absolute Difference of Patch-normalized images

(PN-SAD), which are hand-crafted image representations,

has been demonstrated to be useful for appearance-invariant

place recognition using SeqSLAM (Milford and Wyeth

2012). We excluded comparisons with MaxPool and Seman-

ticPool here for legibility as the other description techniques

have already been shown to outperform these in previous

sections. For all the different image description techniques

used here, OpenSeqSLAM (Milford and Wyeth 2012) was

used to match image sequences.

Figure 15 shows max-F1 scores for both the datasets for

a varying sequence-length, with and without the descriptor

normalization and local score enhancement. It can be

observed that for most of the descriptors local enhancement

helps improve the performance, irrespective of the descriptor

normalization. However, the performance gains are more

significant when descriptors are not normalized as descriptor

normalization tends to improve the baseline performance,

therefore, leaving less scope for local enhancement for

any further improvement. Furthermore, the LoST-based

descriptors, though attaining higher performance for locally-

enhanced raw descriptors (Figure 15 top row), perform at par

with the usage of raw scores when normalized descriptors

are used (Figure 15 bottom row). The use of road-based

semantics for describing LoST, applied to indoor images

of these datasets, leads to performance loss for LoST-based

descriptors and the aforementioned different behavior. In an

ideal scenario, a different semantic segmentation network for

indoor and outdoor imagery would be more useful and is an

area of future work. However, the purpose of the analysis

in Figure 15 is to evaluate the use of local enhancement

for state-of-the-art image description techniques, and show

improvements in performance for most cases.

5.4 Fine Place Search

The proposed VPR pipeline is comprised of a coarse-to-

fine place search procedure as outlined in Figure 2. Here,

we demonstrate that fine place searching is in general

applicable to different whole-image description techniques

and different components of fine searching incrementally

improve performance and are therefore crucial to the

proposed approach. We used two traverses from the Oxford

Robotcar dataset with varying appearance (day-night) and

opposite viewpoints (front-rear) for this purpose.

5.4.1 General Applicability: Figure 16 shows max-F1

scores for different whole-image descriptors as used in

previous sections along with Keypoint Correspondences

(KC) based fine place search applied to each of them. It

can be observed that for all three sets of comparisons for

varying appearance and viewpoints, significant performance

improvements can be achieved on different coarse-search

baselines. Further, the gain in performance tends to be larger

if the baseline is weaker.
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Overcast Front vs Night Rear Overcast Front vs Overcast Rear Overcast Front vs Night Front

Figure 16. General applicability of the proposed fine place search approach with coarse place search performed using different

whole-image descriptors. It shows that significant performance improvements can be achieved on different coarse-search baselines;

further, the gain in performance tends to be larger if the baseline is weaker.

Overcast Front vs Night Rear Overcast Front vs Overcast Rear Overcast Front vs Night Front

Figure 17. Performance contribution of different components of the proposed fine place search procedure. The consistent gain in

performance using the proposed components of the fine-search procedure emphasizes their individual utility.

5.4.2 Components’ Contribution: Figure 17 shows the

max-F1 scores corresponding to the contribution of different

components of the fine-search procedure towards system

performance. The effects of different components are

observed using the following:

• Coarse Search (CS), that is, without using any

component of fine-search,

• CS + Keypoint Matching (KM), that is, performing

keypoint matching (Equation 10) for spatial layout

verification without using any semantic label verifi-

cation (SLV as in Section 3.6.1) or dense descriptor

weighing (Equation 9),

• CS + KM + Semantic Label Verification (SLV), that is,

the proposed fine-search but without dense descriptor

weighing,

• CS + KM + SLV + Dense Descriptor Weighing, that

is, the complete pipeline.

In Figure 17, performance curves for different sets of

appearance and viewpoint variations show a consistent gain

in performance using the proposed components of the fine-

search procedure. This demonstrates that each of these

components is crucial and adds value in terms of system

performance.

6 Discussion

6.1 Visual Offset for Opposite Viewpoints

Techniques addressing the visual place recognition problem

for front-view only image matching generally only need

to deal with limited variations in viewpoint such that the

(a)

(b)

Figure 18. (a) Average distance matrix computed by matching

images (front vs rear) captured between locations that are 60

meters apart. (b) Average cosine distance between different

pairs of front- and rear-view images plotted against the average

physical distance between them. This curve shows that on

an average there is approximately 40 meters of visual offset

between a matching pair of front- and rear-view images for this

dataset.
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(a) Raw Descriptors

(b) Normalized Descriptors

Figure 19. PCA Visualization: The 2-D PCA projection of final layer descriptors from Overcast Autumn Traverse of Oxford Dataset

in Raw (top) and Normalized (bottom) form. The raw descriptors tend to cluster according to their semantic labels, irrespective of

the image index in the video, whereas, the normalized descriptors tend to form spatio-temporal clusters, despite the absence of any

explicit temporal signal during PCA training. The 3D plot on the right uses image index on vertical axis and shows that the places

which are close in time are also close in space after normalization, which is not the case with the raw descriptors.

amount of visual overlap can be directly related to the

changes in viewpoint (Lucas and Kanade 1981). However,

this is not the case when two images of the same place

are captured from opposite viewing directions. For such

pairs of images, the physical distance between the cameras

that is necessary to provide maximum visual overlap may

not always be the same. For example, consider a building

spanning 20 meters in length on the left side of the road, two

cameras with opposing viewpoints (facing each other) will

need to be placed at the end points of the building (that is 20
meters apart) in order to maximize the visual overlap. This

distance, referred to as visual offset, depends on different

factors, for example, the type, size, and position of the visual

landmarks in the scene and the camera’s field-of-view.

Figure 18 (a) illustrates the visual overlap (in terms

of cosine distance between image descriptors) for image

sequences captured by two cameras that traveled from

position A to B. This setup dictates that images captured

by the front-view camera near position B will not match

with any of the images captured by the rear-view camera

while moving from A to B. This can be observed through

the bottom rows of the cosine distance matrix. A similar

behavior can be observed for images captured by rear-view

camera near position A through the left columns of the

distance matrix. As the cameras move from A to B, rear-

view images begin to match after a certain distance is covered

and front-view images cease to match after that particular

distance is traversed; this distance is equivalent to the visual

offset. The distance matrix shown in Figure 18 (a) is an

average calculation over different pairs of A and B that are

60 meters apart in the Overcast Autumn traverse.

Figure 18 (a) highlights the average image matching

trend between front- and rear-view images; Figure 18 (b)

shows the average physical distance that would provide

maximum visual overlap and therefore minimum cosine

distance between the matching pair of images. The latter

curve was generated by matching a randomly picked image

with its neighboring images within a range of 100 meters.

Now for the front-view only image matching, the minimum

cosine distance should ideally correspond to the minimum

physical distance (assuming the camera orientation is almost

fixed). However for the front-rear matching, as can be seen

from the graph, the physical distance of approximately

40 meters on average is necessary for maximum visual

overlap. This shows that 50 meters of localization accuracy

(based on GPS) in our results is actually equivalent to

10 meters after accounting for the visual offset. The 40
meters estimate might be inflated for two reasons: 1) any

image matching algorithm would not perfectly capture the

variation in cosine distance as visual overlap varies between

the images, especially when there are dynamic objects in

the scene, 2) the average is performed on randomly picked

images including the front- and rear-view images captured

near the turns which cannot be always associated because of

completely unobserved visual content by one of the cameras

during the turn. By visually observing a handful of front-rear

image samples along with their GPS coordinates, we found

the visual offset to be approximately 30 meters.

6.2 PCA of Descriptor Normalization

The descriptor normalization performed in Equation 5

modifies the image descriptors such that the query image

can better discriminate among the reference descriptors,
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therefore leading to improved performance. Figure 19 shows

two principal components of the raw (top) and normalized

(bottom) descriptors in 2D (in left) and 3D (in right with

time as vertical axis). Here, we used the final layer of

a pre-trained visual place categorization network (Zhou

et al. 2017) to represent the images from Overcast Autumn

traverse. Different layers of a CNN learn semantically more

meaningful concepts as we go higher in their order, that is,

from conv3, conv5, fc6 to final (Zhou et al. 2017; Zeiler

and Fergus 2014). The descriptor normalization has similar

effects on the descriptors derived from higher-order layers

(like NetVLAD, LoST, MaxPool from conv5), however it

is more intuitive to understand this effect through the final
layer.

Figure 19 (top-left) shows that the raw descriptors, derived

from a network trained for place categorization, tend to form

clusters according to their semantic categories. However,

the normalized descriptors, as shown in Figure 19 (bottom-

right), tend to cluster in such a way that places that are close

in time are also close in space, which facilitates visual place

recognition process.

7 Conclusion and Future Work

Recognizing places from opposite viewpoints under varying

appearance, especially while traveling in different lanes

during the forward and reverse traverses is an extremely

challenging problem that had only previously been addressed

with panoramic sensing arrangements. Our proposed

approach employs appearance- and semantics-based robust

place representations and semantically-filtered keypoint

correspondences to achieve visual place recognition under

these challenging conditions whilst only using a limited field

of view forward facing camera. On publicly-available and

new contributed datasets, we demonstrated that our system

attains a maximum recall of 8% and 30% at 100% and 85%
precision respectively under situations where the state-of-

the-art method struggles to attain even 40% precision at any

recall level. In particular the opposite-viewpoint, multi-lane,

and varied appearance scenario has not been addressed in

previous VPR literature; the maximum recall of 8% at 100%
(Figure 14 (f)) precision under such challenging settings,

though low, is significantly better than what is achievable

using the current state of the art. Further, we showed

that our contributions around descriptor normalization and

local score enhancement boost VPR performance for the

majority of the state-of-the-art image descriptors, which

would otherwise struggle to deal with the perceptual aliasing

caused by appearance variations within and across the

traverses. Our analysis showed a number of interesting

insights into performance under these conditions, including

a characterization of the average 30− 40 meters of visual

offset (in terms of physical distance) that exists between

matching image pairs from opposing viewpoints for these

types of datasets.

In future, we plan to extend the current work with

metric relative pose estimation for recognized places

using the keypoint correspondences already generated by

our approach. Such a capability will enable integration

with current state-of-the-art 6-DoF visual SLAM and

Structure-from-Motion (SfM) systems, especially for metric

appearance-invariant localization (Sattler et al. 2018). The

broader use of visual semantic information for visual place

recognition and visual SLAM is a promising avenue (Cadena

et al. 2016); we also intend to develop a deep-learning

framework that can leverage the semantic aggregation

and appearance-based cues proposed by our current

system to further improve viewpoint- and appearance-

invariant localization performance. Finally, as human-robot

interaction research progresses in the domain of autonomous

vehicles, we will investigate how the higher similarity

in place recognition methodology between our semantics-

based system and humans (compared to highly engineered,

often predominantly geometric, panoramic sensor-based

approaches) could facilitate more effective human-robot or

human-autonomous vehicle interaction. Overall, we hope

that this body of work serves as a contribution that further

progresses the field of semantic-based perception, navigation

and localization.
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local descriptors into a compact image representation. In:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on. IEEE, pp. 3304–3311.

Johnson J, Krishna R, Stark M, Li LJ, Shamma D, Bernstein M

and Fei-Fei L (2015) Image retrieval using scene graphs. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition. pp. 3668–3678.

Kawasaki A, Saito H and Hara K (2015) Motion estimation for

non-overlapping cameras by improvement of feature points

matching based on urban 3d structure. In: Image Processing

(ICIP), 2015 IEEE International Conference on. IEEE, pp.

1230–1234.

Kim HJ, Dunn E and Frahm JM (2017a) Learned contextual feature

reweighting for image geo-localization. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition.

pp. 2136–2145.

Kim S, Min D, Ham B, Jeon S, Lin S and Sohn K (2017b)

Fcss: Fully convolutional self-similarity for dense semantic

correspondence. In: Proc. IEEE Conf. Comp. Vision Patt.

Recog, volume 1. p. 8.

Kobyshev N, Riemenschneider H and Van Gool L (2014) Matching

features correctly through semantic understanding. In: 3D

Vision (3DV), 2014 2nd International Conference on, volume 1.

IEEE, pp. 472–479.

Kozhevnikov M, Motes MA, Rasch B and Blajenkova O (2006)

Perspective-taking vs. mental rotation transformations and how

they predict spatial navigation performance. Applied cognitive

psychology 20(3): 397–417.

Krizhevsky A, Sutskever I and Hinton GE (2012) Imagenet

classification with deep convolutional neural networks. In:

Advances in neural information processing systems. pp. 1097–

1105.

Prepared using sagej.cls



22 Journal Title XX(X)

Lin G, Milan A, Shen C and Reid I (2017) Refinenet:

Multi-path refinement networks for high-resolution semantic

segmentation. In: IEEE conference on computer vision and

pattern recognition (CVPR), volume 1. p. 3.

Liu L, Shen C and van den Hengel A (2015) The treasure beneath

convolutional layers: Cross-convolutional-layer pooling for

image classification. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. pp. 4749–4757.

Long J, Shelhamer E and Darrell T (2015) Fully convolutional

networks for semantic segmentation. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition.

pp. 3431–3440.

Long JL, Zhang N and Darrell T (2014) Do convnets learn

correspondence? In: Advances in Neural Information

Processing Systems. pp. 1601–1609.

Lowe DG (2004) Distinctive image features from scale-invariant

keypoints. International journal of computer vision 60(2): 91–

110.

Lowry S and Andreasson H (2018) Lightweight, viewpoint-

invariant visual place recognition in changing environments.

IEEE Robotics and Automation Letters 3(2): 957–964.

Lowry S, Sünderhauf N, Newman P, Leonard JJ, Cox D, Corke

P and Milford MJ (2016) Visual place recognition: A survey.

IEEE Transactions on Robotics 32(1): 1–19.

Lu X, Zheng X and Li X (2017) Latent semantic minimal hashing

for image retrieval. IEEE Transactions on Image Processing

26(1): 355–368.

Lucas BD and Kanade T (1981) An iterative image registration

technique with an application to stereo vision .

Lynen S, Bosse M and Siegwart R (2017) Trajectory-based place-

recognition for efficient large scale localization. International

Journal of Computer Vision 124(1): 49–64.

Ma R, Chen J and Su Z (2010) MI-SIFT: mirror and inversion

invariant generalization for SIFT descriptor. In: Proceedings

of the ACM International Conference on Image and Video

Retrieval. ACM, pp. 228–235.

Maddern W, Pascoe G, Linegar C and Newman P (2017) 1 year,

1000 km: The oxford robotcar dataset. IJ Robotics Res. 36(1):

3–15.

Milford MJ and Wyeth GF (2012) Seqslam: Visual route-based

navigation for sunny summer days and stormy winter nights.

In: Robotics and Automation (ICRA), 2012 IEEE International

Conference on. IEEE, pp. 1643–1649.

Mishchuk A, Mishkin D, Radenovic F and Matas J (2017) Working

hard to know your neighbor’s margins: Local descriptor

learning loss. In: Advances in Neural Information Processing

Systems. pp. 4826–4837.

Mishkin D, Radenovic F and Matas J (2018) Repeatability is

not enough: Learning affine regions via discriminability. In:

Proceedings of the European Conference on Computer Vision

(ECCV). pp. 284–300.
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