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Abstract

Zero-shot learning extends the conventional object classification to the unseen class
recognition by introducing semantic representations of classes. Existing approaches
predominantly focus on learning the proper mapping function for visual-semantic
embedding, while neglecting the effect of learning discriminative visual features. In
this paper, we study the significance of the discriminative region localization. We
propose a semantic-guided multi-attention localization model, which automatically
discovers the most discriminative parts of objects for zero-shot learning without any
human annotations. Our model jointly learns cooperative global and local features
from the whole object as well as the detected parts to categorize objects based on
semantic descriptions. Moreover, with the joint supervision of embedding softmax
loss and class-center triplet loss, the model is encouraged to learn features with
high inter-class dispersion and intra-class compactness. Through comprehensive
experiments on three widely used zero-shot learning benchmarks, we show the
efficacy of the multi-attention localization and our proposed approach improves
the state-of-the-art results by a considerable margin.

1 Introduction

Deep convolutional neural networks have achieved significant advances in object recognition. The
main shortcoming of deep learning methods is the inevitable requirement of large-scale labeled
training data that needs to be collected and annotated by costly human labor [1, 2, 3, 4]. In spite that
images of ordinary objects can be readily found, there remains a tremendous number of objects with
insufficient and scarce visual data [5]. This attracts many researchers’ interest in how to recognize
objects with few or even no training samples, which are known as few-shot learning [6, 7] and
zero-shot learning [8, 9, 5, 10, 11, 12], respectively.

Zero-shot learning mimics the human ability to recognize objects only from a description in terms of
concepts in some semantic vocabulary [13]. The underlying key is to learn the association between
visual representations and semantic concepts and use it to extend the possibility to unseen object
recognition. In a general sense, the typical scheme of the state-of-the-art approaches of zero-shot
learning is (1) to extract the feature representation of visual data from CNN models pretrained on
the large-scale dataset(e.g., ImageNet), (2) to learn mapping functions to project the visual features
and semantic representations to shared space. The mapping functions are optimized by either ridge
regression loss [14, 15] or ranking loss on compatibility scores of two mapped features [8, 9]. Taking
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advantage of the success of generative models (e.g., GAN [16], VAE [17], generator network [18]) in
data generation, several recent methods [5, 10, 11] resort to hallucinating visual features of unseen
classes, converting zero-shot learning to conventional object recognition problems.

All aforementioned methods neglect the significance of discriminative visual feature learning. Since
the CNN models are pretrained on a traditional object recognition task, the extracted features may
not be representative enough for zero-shot learning task. Especially in the fine-grained scenarios, the
features learned from the coarse object recognition can hardly capture the subtle difference between
classes. Although several recent works [13, 19] solve the problem in an end-to-end manner that is
capable of discovering more distinctive visual information suitable for zero-shot recognition, they
still simply extract the global visual feature of the whole image, without considering the effect of
discriminative part regions in the images. We argue that there are multiple discriminative part areas
that are key points to recognize objects, especially fine-grained objects. For instance, the head and
tail are crucial to distinguish bird species. To capture such discriminating regions, we propose a
semantic-guided attention localization model to pinpoint, where the most significant parts are. The
compactness and diversity loss on multi-attention maps are proposed to encourage attention maps to
be compact in the most crucial region in each map while divergent across different attention maps.

We combine the whole image and multiple discovered regions to provide a richer visual expression
and learn global and local visual features (i.e., image features and region features) for the visual-
semantic embedding model, which is trained in an end-to-end fashion. In the zero-shot learning
scenario, embedding softmax loss [13, 19] is used by embedding the class semantic representations
into a multi-class classification framework. However, softmax loss only encourages the inter-class
separability of features. The resulting features are not sufficient for recognition tasks [20]. To
encourage high intra-class compactness, class-center triplet loss [21] assigns an adaptive “center" for
each class and forces the learned features to be closer to the “center" of the corresponding class than
other classes. In this paper, we involve both embedding softmax loss and class-center triplet loss as
the supervision of feature learning. We argue that these cooperative losses can efficiently enhance the
discriminative power of the learned features.

To the best of our knowledge, this is the first work to jointly optimize multi-attention localization
with global and local feature learning for zero-shot learning tasks in an end-to-end fashion. Our main
contributions are summarized as follows:

• We present a weakly-supervised multi-attention localization model for zero-shot recognition,
which jointly discovers the crucial regions and learns feature representation under the
guidance of semantic descriptions.

• We propose a multi-attention loss to encourage compact and diverse attention distribution
by applying geometric constraints over attention maps.

• We jointly learn global and local features under the supervision of embedding softmax
loss and class-center triplet loss to provide an enhanced visual representation for zero-shot
recognition.

• We conduct extensive experiments and analysis on three zero-shot learning datasets and
demonstrate the excellent performance of our proposed method on both part detection and
zero-shot learning.

2 Related Work

Zero-Shot Learning Methods While several early works of zero-shot learning [22] make use of
the attribute as the intermediate information to infer the labels of images, the current majority of
zero-shot learning approaches treat the problem as a visual-semantic embedding one. A bilinear
compatibility function between the image space and the attribute space is learned using the ranking
loss in ALE [8] or the ridge regression loss in ESZSL [23]. Some other zero-shot learning approaches
learn non-linear multi-model embeddings; for example, LatEm [9] learns a piecewise linear model by
the selection of learned multiple linear mappings. DEM [14] presents a deep zero-shot learning model
with non-linear activation ReLU. More related to our work, several end-to-end learning methods
are proposed to address the pitfall that discriminative feature learning is neglected. SCoRe [13]
combines two semantic constraints to supervise attribute prediction and visual-semantic embedding,
respectively. LDF [19] takes one step further and integrates a zoom network in the model to discover
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Figure 1: The Framework of the proposed Semantic-Guided Multi-Attention localization model (SGMA). The
model takes as input the original image and produces n part attention maps (here n = 2). Multi-Attention loss
LMA keeps the attention areas compact in each map and divergent across different maps. The part images from
the cropping subnet and the original images are fed into different CNNs in the joint feature learning subnet for
semantic description-guided object recognition.

significant regions automatically, and learn discriminative visual feature representation. However, the
zoom mechanism can only discover the whole object by cropping out the background with a square
shape, still being restricted to the global features. In contrast, our multi-attention localization network
can help find multiple finer part regions (e.g., head, tail) that are discriminative for zero-shot learning.

Multi-Attention Localization Several previous methods are proposed to leverage the extra anno-
tations of part bounding boxes to localize significant regions for fine-grained zero-shot recogni-
tion [24, 25, 5]. [24] straightforwardly extracts the part features by feeding annotated part regions
into a CNN pretrained on ImageNet dataset. [25, 5, 26] train a multiple-part detector with groundtruth
annotations to produce the bounding boxes of parts and learn the part features with conventional
recognition tasks. However, the heavy involvement of human labor for part annotations makes tasks
costly in the real large-scale problems. Therefore, learning part attentions in a weakly supervised way
is desirable in the zero-shot recognition scenario. Recently, several attention localization models are
presented in the fine-grained classification scenario. [27, 28] learn a set of part detectors by analyzing
filters that consistently respond to specific patterns. Spatial transformer [29] proposes a learnable
module that explicitly allows the spatial manipulation of data within the network. In [30, 28, 31],
candidate part models are learned from convolutional channel responses. Our work is different in
three aspects: (1) we learn part attention models from convolutional channel responses; (2) instead of
using the supervision of the classification loss, our model discovers the parts with semantic guidance,
making the located part more discriminative for zero-shot learning; (3) zero-shot recognition model
and attention localization model are trained jointly to ensure the parts localization are optimized for
the zero-shot object recognition.

3 Method

We start by introducing some notations and the problem definition. Assume there are N labeled
instances from Cs seen classes Ds = {(xs

i , y
s
i , s

s
i )}

N
i=1 as training data, where xs

i ∈ X denotes the
image, ysi ∈ Ys is the corresponding class label , ssi = φ(ysi ) ∈ S is the semantic representation of
the corresponding class. Given an image xu

i from an unseen class and a set of semantic representations

of unseen classes {sui = φ(yui )}
Cu

i=1, where Cu denotes the number of unseen classes, the task of
zero-shot learning is to predict the class label yu ∈ Yu of the image, where Ys and Yu are disjoint.

The framework of our approach is demonstrated in Figure 1. It consists of three modules: the multi-
attention subnet, the region cropping subnet, the joint feature embedding subnet. The multi-attention
subnet generates multiple attention maps corresponding to distinct parts of the object. The region
cropping subset crops the discriminitive parts with differentiable operations. The joint feature learning
subnet takes as input the cropped parts and the original image, and learns the global and local visual
feature for the final zero-shot recognition.
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3.1 Multi-Attention Subnet

LDF [19] presents a cascaded zooming mechanism to localize the object-centric region gradually
while cropping out background noise. Different from LDF, our method considers multiple finer
discriminative areas, which can provide various richer cues for object recognition. Our approach
starts with the multi-attention subnet to produce attention maps.

As shown in Figure 1, the input images first pass through the convolutional network backbone to
become feature representations of size H ×W × C. The attention weight vectors ai over channels
are obtained for each attended part based on the extracted feature maps. The attention maps are finally
produced by the weighted sum of feature maps over channels with the previously obtained attention
weight vectors ai. To encourage different attention maps to discover different discriminating regions,
we design compactness and diversity loss. Details will be shown later.

To be specific, the channel descriptor p, encoding the global spatial information, is first obtained by
using global average pooling on the extracted feature maps. Formally, the features are shrunk through
its spatial dimension H ×W . The cth element of p is calculated by:

pc =
1

H ×W

H∑

i=1

W∑

j=1

bc(i, j), (1)

where bc is the feature in cth channel. To make use of the information of the channel descriptor p,
we follow it by the stacked fully connected layers to fully capture channel-wise dependencies of
each part. A sigmoid activation σ(·) is then employed to serve as a gating mechanism. Formally, the
channel-wise attention weight ai is obtained by

ai = σ(W2f(W1p)), (2)

where f(·) refers to the ReLU activation function and ai can be considered as the soft-attention

weight of channels associated with the ith part. As discovered in [32, 33], each channel of features
focuses on a certain pattern or a certain part of the object. Ideally, our model aims to assign high
weights (i.e., aci ) to channels associated with a certain part i, while giving low weights to channels
irrelevant to that part.

The attention map for ith part is then generated by the weighted sum of all channels followed by the
sigmoid activation:

Mi(x) = σ(
C∑

c=1

acifConv(x)
c), (3)

where the superscript c means cth channel, and C is the number of channels. For brevity, we omit
(x) in the rest of the paper. With the sigmoid activation, the attention map plays the role of gating
mechanism as in the soft-attention scheme, which will force the network to focus on the discriminative
parts.

Multi-Attention Loss

To enable our model to discover diverse regions over attention maps, we design the multi-attention
loss by applying the geometric constraints. The proposed loss consists of two components:

LMA =

Na∑

i

[LCPT (Mi) + λLDIV (Mi)], (4)

where LCPT (Mi) and LDIV (Mi) are compactness and diversity losses respectively, λ is a balance
factor, and Na is the of attention maps. Ideally, we want the attention map to concentrate around the
peak position rather than disperse. The ideal concentrated attention map for the part i is created as a
Gaussian blob with the Gaussian peak at the peak activation of the ith attention map. Let z be the
position of the attention map, and Z be the set of all positions. The compactness loss is defined as
follows:

LCPT (Mi) =
1

|Z|

∑

z∈Z

||mz
i − m̃z

i ||
2
2, (5)

where mz
i and m̃z

i denote the generated attention map and the ideal concentrated attention map at

location z for ith part respectively, and |Z| denotes the size of attention maps. The L2 heatmap
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regression loss has been widely used in human pose estimation scenarios to localize the keypoints [34,
35], but here we use it for a different purpose.

Intuitively, we also expect the attention maps to attend different discriminative parts. For example,
one map attends the head while another map attends the tail. To fulfill this goal, we design a diversity
loss LDIV to encourage the divergent attention distribution across different attention maps. Formally,
it is formulated by:

LDIV (Mi) =
∑

z∈Z

mz
i max{0, m̂z −mrg}, (6)

where m̂z = maxk 6=i m
z
k represents the maximum of other attention maps at location z and mrg

denotes a margin. The maximum-margin design here is to make the loss less sensitive to noises and
improve the robustness. The motivation of the diversity loss is that when the activation of a particular
position in one attention map is high, the loss prefers lower activations of other attention maps in the
same position. From another perspective, LDIV can be roughly considered as the inner product of
two flattened matrices, which measures the similarity of two attention maps.

3.2 Region Cropping Subnet

With the attention maps in hand, the region can be directly cropped with a square centered at the peak
value of each attention map. However, it’s hard to optimize such a non-continuous cropping operation
with backward propagation. Similar to [36, 19] , we design a cropping network to approximate region
cropping. Specifically, with an assumption of a square shape of the part region for computational
efficiency, our cropping network takes as input the attention maps from the multi-attention subnet,
and outputs three parameters:

[tx, ty, ts] = fCNet(Mi), (7)

where fCNet(·) denotes the cropping network and consists of two FC layers, tx, ty represent the
x-axis and y-axis coordinates of the square center respectively, ts is the side length of the square. We
produce a two-dim continuous boxcar mask V (x, y) = Vx · Vy:

Vx = f(x− tx + 0.5ts)− f(x− tx − 0.5ts),

Vy = f(y − ty + 0.5ts)− f(y − ty − 0.5ts),
(8)

where f(x) = 1/(1+exp(−kx)). The cropped region is obtained by the element-wise multiplication

between the original image and the continuous mask, xpart
i = x⊙ Vi, where i is the index of parts.

We further utilize the bilinear interpolation to resize the cropped region xpart
i to the same size of the

original images. Interested readers are referred to reference [36] for details.

3.3 Joint Feature Learning Subnet

To provide enhanced visual representations of images for zero-shot learning, we jointly learn the
global and local visual features given the original image and part images produced by the region
cropping subnet. As shown in Figure 1, the original image and part patches are resized to 224× 224
and fed into separate CNN backbone networks (with the identical VGG19 architecture). The
convolution layers are followed by the global average pooling to get the visual feature vector θ(x).

To learn the discriminative features for the zero-shot learning task, we employ two cooperative losses:
the embedding softmax loss LCLS and the class-center triplet loss LCCT . The former encourages a
higher inter-class distinction, while the latter forces the learned feature of each class to be concentrated
with a lower intra-class divergence.

Embedding Softmax Loss

Let φ(y) denote the semantic feature. The compatibility score of multi-model features is defined
as s = θ(x)TWφ(y), where W is a trainable transform matrix. If the compatibility scores are
considered as logits in softmax, the embedding softmax loss can be given by:

LCLS = −
1

N
log

exp(sj)∑
Ys

exp(sj)
, (9)

where sj = θ(x)TWφ(yj), yj ∈ Ys, and N is the number of training samples. In order to combine
the global and local features without increasing the complexity of the model, we adopt the late fusion
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strategy. The overall compatibility scores are obtained by summing up the compatibility scores from
each CNN and used to compute the softmax loss. Note that the strategy can significantly reduce the
number of parameters of the network by discarding the additional dimension reduction layer (i.e., FC
layer) after the feature concatenation used in [19]. Formally, we substitute sj in Eq. 9 with

∑
i(s

i
j),

where sij = θi(x)
TWiφ(yj) and i is the index of part images and the original image.

Class-Center Triplet Loss

The class-center triplet loss [21] is originally designed to minimize the intra-class distances of deep
visual features in face recognition tasks. In our case, we jointly train the network with the class-center
triplet loss to encourage the intra-class compactness of features. Let i, k be the class indices, the loss
is formulated as:

LCCT = max{0,mrg + ||φ̂i − Ĉi||
2
2 − ||φ̂i − Ĉk||

2
2}i 6=k, (10)

where mrg is the margin, φi is the mapped visual feature in semantic feature space (i.e., φi =
θ(x)TWi), Ci denotes the “center" of each class that are trainable parameters, ·̂ means L2 normaliza-
tion operation. The normalization operation is involved to make feature points located on the surface
of a unit hypersphere, leading to the ease of setting the proper margin. Moreover, class-center triplet
loss exempts the necessity of triple sampling in the naive triplet loss.

Overall, the proposed SGMA model is trained in an end-to-end manner with the objective:

LSGMA = LMA + α1LCLS + α2LCCT , (11)

where the balance factor α1 and α2 are consistently set to 1 in all experiments.

3.4 Inference from SGMA Model

We provide two ways to infer the labels of unseen class images from the SGMA model. The first one
is straightforwardly to choose the class label with the maximal overall compatibility score, as the
green path in Figure 1. An alternative way is utilizing the features φcct(x) learned in the class-center
branch, as the purple path in Figure 1. The class label can be inferred based on the similarities
between the feature of the test image φcct(x) and the prototypes of unseen classes Φu

cct, which can
be obtained by the following steps. We assume the semantic descriptions of unseen classes can be
represented by a linear combination of those of seen classes. Let W be the weight matrix of such a
combination, and W can be obtained by solving the ridge regression:

W = argmin
W

||Φu −WΦs||22 + λ||W ||22, (12)

where Φu and Φs are the semantic matrices of unseen and seen classes with each row being the
semantic vector of each class. Equipped with the learned W describing the relationship of the
semantic vectors of seen and unseen classes, we can obtain the prototypes for unseen classes by
applying the same W , Φu

cct = WΦs
cct, where Φs

cct is the prototypes of seen classes obtained by
averaging the features of all images of each class.

To combine the global and local descriptions of images, we concatenate the visual features generated
by different CNNs. Moreover, to combine the inference of two ways, the compatibility scores from
the embedding softmax branch and the similarity scores from the class-agent triplet branch are added
as the final prediction scores of the test image w.r.t. unseen classes:

y = arg min
y∈YU

(sy + β〈φcct(x), [Φ
u
cct]y〉), (13)

where sy = θ(x)TWφ(y), 〈·〉 denotes inner product, [·]y denotes the row of the matrix corresponding
to the class y, and β a balancing factor to control the contribution of the class-center branch.

4 Experiment

To evaluate the empirical performance of our proposed approach, we conduct experiments on three
standard zero-shot learning datasets and compare our method with the state-of-the-art ones. We then
show the performance of multi-attention localization. In our experiment, we only use two attention
maps as we find that more maps will cause severe overlap among attended regions and hardly improve
the zero-shot learning performance.
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Figure 2: Part detection results on three benchmarks. Each row displays three examples of results. Each result
consists of three images, where the detected parts are marked with blue and red bounding boxes in the first
image, and the rest two images are the corresponding generated attention maps.

4.1 Implementation Details and Model Initialization

We implement our approach on the Pytorch Framework. For the multi-attention subnet, we take the
images of size 448 × 448 as input in order to achieve high-resolution attention maps. For the joint
feature embedding subnet, we resize all the input images to the size of 224 × 224. We consistently
adopt VGG19 as the backbone and train the model with a batch size of 32 on two GPUs (TitanX).
We use the SGD optimizer with the learning rate of 0.05, the momentum of 0.9, and weight decay of
5 ∗ 10−4 to optimize the objective functions. The learning rate is decay by 0.1 on the plateau, and the
minimum one is set to be 5 ∗ 10−4. Hyper-parameters in our models are obtained by grid search on
the validation set. mrgs in Eq. 7 and Eq. 10 are set to be 0.2 and 0.8, respectively. k in Eq. 8 is set to
be 10. The number of parts is set to be 2 since we find that increasing the number of parts will result
in little improvement on the zero-shot learning performance and lead to attention redundancy, i.e.,
maps attend to the same region.

For multi-attention subnet, we apply unsupervised k-means clustering to group channels based on
the peak activation positions and initialize ai with the pseudo labels generated by the clustering.
Interested readers are referred to reference [36] for details. The attention maps from the initialized
multi-attention subnet are leveraged to pretrain the region cropping subnet. Specifically, we obtain
the attended region in attention maps by a discriminative square centered at the peak response of the
attention map ([px, py]). The side length of the squares ts is assumed to be the quarter of the image
size. The coordinates of the attended region ([px, py, ts]) are considered as pseudo ground truths to
pretrain the cropping subnet with MSE loss, and the attended regions are utilized as the cropped parts
to pretrain the joint feature learning subnet.

4.2 Datasets and Experiment Settings

We use three widely used zero-shot learning datasets: Caltech-UCSD-Birds 200-2011 (CUB) [37],
Oxford Flowers (FLO) [38], Animals with Attributes (AwA) [22]. CUB is a fine-grained dataset
of bird species, containing 11,788 images from 200 different species and 312 attributes. FLO is a
fine-grained dataset, consisting of 8,189 images from 102 different types of flowers without attribute
annotations. However, the visual descriptions are available and collected by [39]. Finally, AwA is a
coarse-grained dataset with 30,475 images, 50 classes of animals, and 85 attributes.

To fairly compare with baselines, we use the attributes or sentence features provided by [40, 10]
as semantic features for all methods. For non-end-to-end methods, we consistently use 2,048-
dimensional features extracted from a pretrained 101-layer ResNet provided by [40], and for end-to-
end methods, we adopt VGG19 as the backbone network. Besides, [40] points out that several test
classes in the standard splitting (marked as SS) of zero-shot learning setting are utilized for training
the feature extraction network, which violates the spirit of zero-shot that test classes should never be
seen before. Therefore, we also evaluate methods on the splitting proposed by [10] (marked as PS).
We measure the quantitative performance of the methods in terms of Mean Class Accuracy (MCA).

4.3 Part Detection Results

To evaluate the efficacy of weakly supervised part detection, we compare our detection results on
CUB with SPDA-CNN [41], a state-of-the-art work on part detectors trained with ground truth
part annotations. We observe our model consistently attend the head or tail on two attention maps
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respectively. Therefore, we compare the detected parts with head or tail ground truth annotations.
Part detection is considered correct if it has at least 0.5 overlap with ground truth (i.e., IoU > 0.5).

Table 1: Part detection results measured by average
precision(%).

Method Head Tail Average

SPDA-CNN 90.9 67.2 79.1
Ours 74.9 48.1 61.5
Ours w/o MA 65.7 29.4 47.6
Random 25.6 26.0 25.8

As shown in Table 1, the SPDA-CNN can be con-
sidered the upper bound since it leverages part an-
notation to train detectors. We also provide the
results of random crops that serve as a lower bound.
Compared with the random crops, our method has
achieved an improvement of 35.7% on average. Al-
though there is still a small gap between the perfor-
mances of ours and SPDA-CNN (61.5%v.s.79.1%)
due to the lack of precise part annotations, the re-
sults are promising since our model is more prac-
tical in the large-scale real-world tasks where costly annotations are not available. Besides, if we
remove the proposed multi-attention loss (marked as “ours w/o MA”), the performance suffers a
significant drop (47.6% v.s. 61.5%), confirming the effect of the multi-attention loss.

We also show the qualitative results of part localization in Figure 2. The detected parts are well-
aligned with semantic parts of objects. In CUB, two parts are associated with the head and the legs
of birds, while the parts are the head and rear body of the animals in AwA. In FLO, the stamen and
pistil are roughly detected in the red box, while the petal is localized as another crucial part.

Table 2: Zero-shot learning results on CUB, AWA, FLO benchmarks. The best scores and second best ones are
marked bold and underline respectively.

CUB AWA FLO
Method SS PS SS PS

LATEM (2016) 49.4 49.3 74.8 55.1 40.4
ALE (2015) 53.2 54.9 78.6 59.9 48.5
SJE (2015) 55.3 53.9 76.7 65.6 53.4
ESZSL (2015) 55.1 53.9 74.7 58.2 51.0
SYNC (2016) 54.1 55.6 72.2 54.0 -
SAE (2017) 33.4 33.3 80.6 53.0 45.6
DEM (2017) 51.8 51.7 80.3 65.7 41.6
GAZSL (2018) 57.5 55.8 77.1 63.7 60.5
SCoRe (2017) 59.5 62.7 82.8 61.6 60.9
LDF (2018) 67.1 67.5 83.4 65.5 -

Ours 70.5 71.0 83.5 68.8 65.9

4.4 Zero-Shot Classification Results

We compare our method with two groups of state-of-the-art methods: non-end-to-end methods that
use visual features extracted from pretrained CNN, and end-to-end methods that jointly train CNN
and visual-sementic embedding network. The former group includes LATEM [9], ALE [8], SJE [42],
ESZSL [23], SYNC [43], SAE [15], DEM [14], GAZSL [5], and the latter one includes SCoRe [13],
LDF [19]. The evaluation results are shown in Table 2. Different groups of approaches are separated
by a horizontal line. The scores of baselines (DAP-SAE) are obtained from [40, 10]. As the codes of
DEM, GAZSL, SCoRe are available online, we obtain the results by running the codes on different
settings if they are not published. We get all the results of LDF from the authors.

In general, we observe that the end-to-end methods outperform the non-end-to-end methods. That
confirms that the joint training of the CNN model and the embedding model eliminates the discrepancy
between features for conventional object recognition and those for zero-shot one that exists in non-
end-to-end methods.

It’s worth noting that LDF learns object localization by integrating an additional zoom network to
the whole model, while our approach further involves part-level patches to provide local features of
objects. It is clear that our proposed model consistently outperforms previous approaches, achieving
impressive gains over the state-of-the-arts on fine-grained datasets: 3.4%, 3.5% on CUB SS/PS
settings, and 5.0% on FLO. We find that the complexity of our model can be reduced by using the same
CNN with shared weights for both image and part patches, but the zero-shot learning performance is
slightly degraded, e.g., the score for CUB-PS and AWA-PS decreases by 3.6%, 2.7%, respectively.
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Table 3: Generalized zero-shot learning results (%).

CUB AwA
Method AU AS H AU AS H

DEM [14] 19.6 57.9 29.2 32.8 84.7 47.3
GAZSL [5] 31.7 61.3 41.8 29.6 84.2 43.8
LDF [19] 26.4 81.6 39.9 9.8 87.4 17.6
Ours 36.7 71.3 48.5 37.6 87.1 52.5

We also evaluate our method on the general-
ized zero-shot learning setting, where the test
images come from all classes including both
seen and unseen categories. We report the
performances of classifying test images from
unseen classes and seen classes into the joint
label space, denoted as AU and AS respec-

tively, and the harmonic mean H = 2·AS ·AU

AS+AU
.

As shown in Table 3, our model outperforms previous state-of-the-art methods with respect to H
score. Especially in the CUB dataset where discriminative parts are crucial to capture the subtle
difference among fine-grained classes, our method improves the H score by 6.7% (48.5% v.s. 41.8%).

4.5 Ablation Study

In this section, we study the effectiveness of the detected object regions and finer part patches, as
well as the joint supervision of embedding softmax and class-center triplet loss. We set our baseline
to be the model without localizing parts and with only embedding softmax loss as the objective.

Effect of discriminative regions. The upper part of Table 4 shows the performance of our method
with different image inputs. Our model with only part regions performs worst because part regions
only provide local features of an object, such as the features of head or leg. Although these local
features are discriminative in the part level, it misses lots of information contained in other regions,
and thus cannot recognize the whole object well alone. When we combine the original image and the
localized parts, the performance has a significant improvement from the baseline by 5.4% (65.2% v.s.
59.8%).

To further demonstrate the effectiveness of the localized parts and objects, we combine the object
with randomly cropped parts of the same part size. From the results, we observe, in most cases,
adding random parts will hurt the performance. We believe it’s due to the lack of alignment of random
cropped parts. For instance, one random part in an image is roughly the head of the object, while it
may focus on the leg in another image. In contrast, our localized parts have better semantic alignment,
as shown in Figure 2.

Table 4: The performance of variants on zero-shot learning with PS setting. The best scores are marked bold.

Method CUB AWA FLO Avg

Baseline 60.2 61.5 57.7 59.8
Parts 55.4 51.2 49.8 52.1
Baseline+Parts 67.4 64.3 63.9 65.2
Baseline+Random Parts 56.3 59.8 56.4 57.5
Embedding Softmax 60.9 62.4 57.2 60.2
Class-Center Triplet 62.1 64.6 61.1 62.6
Combined 63.5 65.7 61.8 63.7

Effect of joint loss. The bottom part of Table 4 shows the results on different ways of inferences
when our model is trained with the joint loss as the objective and only the original image as input.
Compared with the baseline, the results inferred from the embedding softmax branch get improved a
little as class-center triplet loss can be considered a regularizer to enhance the discriminative features.
The results inferred from the class-center triplet branch are better, and we get the best results when
combining the inferences of these two branches, which improves the baseline results by 3.9%.

5 Conclusion

In the paper, we show the significance of discriminative parts for zero-shot object recognition. It
motivates us to design a semantic-guided attention localization model to detect such discriminative
parts of objects guided by semantic representations. The multi-attention loss is proposed to favor
compact and diverse attentions. Our model jointly learns global and local features from the original
image and the discovered parts with embedding softmax loss and class-center triplet loss in an end-to-
end fashion. Extensive experiments show that the proposed method outperforms the state-of-the-art
methods.
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