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ABSTRACT 
Today, search engine is the most commonly used tool for Web 
information retrieval, however, its current status is still far from 
satisfaction. This paper focuses on clustering Web search results 
in order to help users find relevant Web information more easily 
and quickly. The main contributions of this paper include the 
following. (1) The benefits of using key phrases as natural 
language information features are discussed. An effective and 
efficient algorithm based on suffix array for key phrase discovery 
is presented. The efficiency of this method is very high no matter 
how large the language's alphabet is. (2) The concept of orthogonal 
clustering is proposed for general clustering problems. The reason 
why matrix SVD (Singular Value Decomposition) can provide 
solution to orthogonal clustering is strictly proved. The orthogonal 
clustering algorithm has a solid mathematics foundation and many 
advantages over traditional heuristic clustering algorithms. (3) The 
WICE system is designed and implemented to automatically 
organize multilingual Web search results through a semantic, 
hierarchical, online clustering approach named SHOC.  
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1. INTRODUCTION 
With information explosion on the Web as well as popularity of 
Internet, the Web has already become the biggest data source for 
various applications. However, how to obtain high-quality 
information from the Web effectively and efficiently according to 
user's query request has created big challenges for many computer 
science disciplines, such as information retrieval and data mining, 
because of the features of the Web (huge volume, heterogeneous, 
dynamic, semi-structured, etc.). 

Web search engine is the most commonly used tool for 
information retrieval on the web; however, its current status is far 
from satisfaction for several possible reasons [10]: 

l Very limited coverage of the Web; 
l Outdated pages and broken hyperlinks; 
l Many useful or relevant pages are not returned 
l Many returned pages are useless or irrelevant; 
l Users may be just interested in “more qualified” information 

or small part of information returned while thousands of 
pages are returned from search engine; 

l Different users have different requirements and expectations 
for search results; 

l Sometimes search requests can not be expressed clearly just 
in several keywords; 

l The phenomena of synonymy (several words may 
correspond to same concept) and polysemy (one word may 
have several different meanings) make things more 
complicated; 

l ...... 
While efforts to improve Web crawling, searching and ranking may 
alleviate the first five problems, further studies are needed for the 
others. We think that clustering of Web search results could help a 
lot. If Web search results are presented in groups, users will be 
able to have an overview of the whole topic or just select 
interested groups to browse.  

We propose to automatically group Web search results through a 
semantic, hierarchical, online clustering approach named SHOC, 
which is an extension of O. Zamir and O. Etzioni's work [12]. By 
combining the power of two novel techniques, key phrase 
discovery and orthogonal clustering, SHOC can generate both 
reasonable and readable clusters. Moreover, SHOC can work for 
multiple languages: not only English but also oriental languages 
like Chinese.  

This paper is organized as follows. In section 2, we briefly review 
related work. In section 3, we present the proposed approach 
SHOC. In section 4, we describe the prototype system WICE. In 
section 5, we make conclusions. 



2. RELATED WORK 
D. Cutting et al. have created the Scatter/Gather system to cluster 
Web search results [3]. However, their system has some 
limitations due to the shortcomings of the traditional heuristic 
clustering algorithms (e.g. k-means) they used. 

Y. Wang et al. have proposed an interesting method to cluster Web 
search results based on hyperlinks [10]. But their method needs to 
download and parse the original Web pages, so it is not able to 
provide clustering results quickly.  

Our approach to cluster Web search results is an extension of O. 
Zamir and O. Etzioni's work [12]. They proposed in [12] an 
algorithm named Suffix Tree Clustering (STC) to automatically 
group Web search results. STC first constructs a suffix tree where 
each internal node corresponds to a phrase, then form base 
clusters by grouping the Web search results that contain same 
“key” phrase, finally merge base clusters that have large overlap. 

STC has made substantial progress on clustering of Web search 
results, but still has several drawbacks: 
l its key phrase discovery algorithm based on suffix tree is 

inappropriate for oriental languages like Chinese; 
l documents containing no key phrase become inaccessible 

since they are not included in any cluster; 
l taking the hierarchy of the constructed suffix tree directly as 

the hierarchy of the generated clusters is not reasonable,  
l the phenomena of synonymy and polysemy are neglected. 
Our work attempts to overcome these shortcomings of STC. 

3. SHOC APPROACH 
A practical clustering approach for Web search results should 
meet the following requirements. 
l Semantic. The clustering algorithm should group search 

results based on their semantic topic. Since a search result 
may have multiple topics, it is instructive not to confine one 
search result in only one cluster. The clustering algorithm 
should also provide each cluster a label that describes the 
cluster topic, so that users can determine at a glance whether 
a cluster is of his/her interest.  

l Hierarchical. The clustering algorithm should automatically 
organize the generated clusters into a tree structure to 
facilitate user browsing.  

l Online. The clustering algorithm should be able to provide 
fresh clustering results “just-in-time”, because for the 
impatient users each second counts.  

These requirements will be emphasized throughout this paper. 

We propose to automatically group Web search results through a 
Semantic, Hierarchical, Online Clustering (SHOC) approach, 
which is composed of three major steps: (1) data collection and 
cleaning; (2) feature extraction; (3) identifying and organizing 
clusters. 

3.1 Data Collection and Cleaning  
The data collection task here is actually meta-search. Given a 
query, we just forward it to several search engines and then collect 
their search results (lists of pointers to Web pages). Usually the 
search results returned by a search engine are partitioned into 
several result-pages to facilitate user browsing. To get high 
efficiency for meta-search, we use a two-level parallelization 
mechanism: (1) search engines are called in parallel through multi-
threads; (2) a search engine’s all result-pages are fetched in parallel 
through multi-threads. Then we synthesize all the lists of search 
results from different search engines into a uniform ranked list of 
search results. For duplicate search results, only the one with 
highest rank will be reserved. 

A search result usually includes the URL, title and snippet of its 
corresponding Web page. Figure 1 illustrates a search result 
returned by Google (http://www.google.com/) for a Chinese query 
“数据挖掘” (data mining). Note the “online” requirement” implies 
that we do not have time to download the original complete Web 
pages that the search results point to. In reality, most users are 
unwilling to wait for the clustering system to download the 
original Web pages. Therefore we take a Web page’s title and 
snippet in the search results as a good summary of its content, and 
use it as a “document” to be fed to the clustering algorithm. 

 

Figure 1, a search result returned by Google for a Chinese 
query “数据挖掘” (data mining). 

Each document is parsed and split into sentences according to 
punctuations (period, comma, semicolon, question mark etc.) and 
HTML tags (<p>, <br>, <li>, <td> etc.). The non-word tokens 
are stripped and redundant spaces are compressed. The English 
words are stemmed using a stemming algorithm. For instance, the 
search result shown in Figure 1 is transformed into the document 
shown in Figure 2. 

 

Figure 2, the document corresponding to the sample search 
result shown in Figure 1. 

产品 
IBM推出新型数据挖掘技术 
IBM近日发布了一项新型的基于标准的数据挖掘技术 
IBM DB2智能挖掘器积分服务 
IBM DB2 Intelligent Miner Scoring Service 
它可以帮助企业轻松地为自己的客户和供应商开发出个
性化的解决方案 



3.2 Feature Extraction 
Most clustering algorithms treat a document as a “bag-of-words”, 
totally ignoring word order and proximity which may provide 
important information for clustering. In contrast, we decide to use 
key phrases extracted of the document collection as document 
features. The benefit is two-fold: (1) it can improve the quality of 
the clusters through leveraging more information present in the 
documents; (2) it is helpful to construct concise and accurate 
labels for the generated clusters [12]. The key phrase discovery 
algorithm for the document collection is the same as that for single 
document, because a document collection can be treated as a 
pseudo-document. 

In our scenario, a document is essentially a string of characters, 
and a key phrase is defined as a meaningful substring within a 
sentence which is both specific and significant. The reason every 
phrase is restricted to be within a sentence is because sentence 
boundaries usually indicate some topical shift. This also reduces 
the cost of our key phrase discovery algorithm.  

Given a document T of length N, we check if a substring S of T can 
be a key phrase through the three measures: completeness, 
stability, and significance. 

DEFINITION  Suppose S occurs in k distinct positions p1, p2, … , 
pk in T, S is “complete” if and only if the (pi-1)th token in T is 
different with the (pj-1)th token for at least one (i, j) pair, 1≤i<j
≤k (called “left-complete”), and the (pi+|S|)th token is different 
with the (pj+|S|)th token for at least one (i, j) pair, 1≤i<j≤k 
(called “right-complete”).  [14] 

DEFINITION  Suppose S =” 1 2 Pc c cL ”, the stability (mutual 

information) of S  is 
( )

( )
( ) ( ) ( )

L R

f S
MI S

f S f S f S
=

+ −
, where 

LS =” 1 1Pc c −L ”, RS =” 2 Pc cL ”, and ( ), ( ), ( )L Rf S f S f S  are 

frequencies of , ,L RS S S .  

DEFINITION  The significance of S  can be estimated as 

( ) ( ) ( )se S f S g S= × , where ( )f S  is the frequency of S , 

S  is the length of S , ( )g x  is a heuristic utility function the 

string length, (1) 0g = , 2( ) logg x x=  when 2 8x≤ ≤ and 

( ) 3g x =  when 8x > . 

The task of key phrase discovery in English could be 
accomplished efficiently using the suffix tree data structure [6], as 
described in [12]. However, the performance (time and space 
complexity) of suffix tree is related to the alphabet size of 
language [9]. As we all know, oriental languages have much larger 
alphabet that English, e.g., Chinese has more than 6,000 characters, 
hereby using suffix tree is not efficient for key phrase discovery in 
oriental language texts. 

Besides, oriental languages like Chinese do not have explicit word 
separators (such as blanks in English) [2]. Therefore 
straightforwardly applying English key phrase discovery 
algorithms to Chinese may extract many meaningless partial 
phrases, e.g., “数据挖” (part of the real phrase “数据挖掘”). 

Here we present a novel key phrase discovery algorithm based on 
suffix array, which is both scalable over alphabet size and able to 
avoid extracting meaningless partial phrases.  

The suffix array data structure was introduced as a text indexing 
technique [9]. Using a suffix array, online string searches of the 
type, “Is S a substring of T?” can be answered in O(P+logN) time, 
where P is the length of S and N is the length of T. Such efficiency 
is competitive with (and in some cases slightly better than) that of 
using a suffix tree. A suffix array can be constructed with O(N) 
expected time complexity, regardless of the alphabet size. The 
major advantage of using suffix array over using suffix tree is in 
space. A suffix tree needs O(N |S|) space that grows with alphabet 
size |S|. Manber and Myers [9] reported that suffix arrays are an 
order of magnitude more efficient in space than suffix trees even in 
the case of relatively small alphabet size (|S| = 96). The advantage 
of using suffix array over using suffix trees is significant for large 
alphabet languages like Chinese. 

The suffix array s of a document T, is an array of all N suffixes of 
T, sorted alphabetically. A suffix (also known as semi-infinite 
string) s[i], is a string that starts at position i in the text and 
continues to the end of the text. In practice, a suffix s[i] is 
typically denoted by a 4-byte integer, i, which one might have 
thought would require O(N) space. Manber and Myers' algorithm 
[9] uses a LCP array to accelerate searching operation. A LCP 
array lcp stores N+1 integer elements, where lcp[i] (1 1)i N≤ ≤ −  

indicates the length of the longest common prefix between s[i-1] 
and s[i], lcp[0]=lcp[N]=0. The LCP array can also be constructed 
with O(N) expected time complexity. For example, consider a 
simple document “to_be_or_not_to_be”, its suffix array s and 
LCP array lcp is shown in Figure 3. 



Figure 3 (adopted from 11), the suffix array s and its LCP 
array lcp of “to_be_or_not_to_be”. 

Given a document T of length N, a set of key phrases can be 
efficiently extracted, taking advantage of its suffix array s and its 
LCP array lcp. 

THEOREM  A substring S of T is right-complete if and only if 
there is a w (1≤w<N) and S is the LCP of s[w-1] and s[w]. 

PROOF  Omitted due to space limit. 

It turns out that every right-complete substring (including 
complete substring) of T, can be identified by the position of a 
pair of adjacent suffixes in the suffix array s. 

DEFINITION Assume RCS is a right-complete substring of T, the 
identification code of RCS is  

{ }( ) min    1  , the LCP of [ 1] and [ ] is  I D R C S w w N s w s w RCS= ≤ < −   

There are at most N-1 right-complete substrings, even though 
there are N(N+1)/2 substrings of T.  

Based on the above theorem, we propose a linear time complexity 
algorithm discover_rcs (shown in Figure 4), to extract all right-
complete substrings of T and meanwhile count their frequencies. 
The discover_rcs algorithm leverages a stack to store the right-
complete substrings under counting. Figure 5 depicts three cases 
that may be encountered while scanning lcp, where RCS* 
represents the current right-complete substring on the stack top. It 
is obvious that the time complexity of the discover_rcs algorithm 
is O(N). 

 
Figure 4, the discover_rcs algorithm. 



 

Figure 5, the 3 cases may be encountered while scanning lcp. 

The output of the discover_rcs algorithm for the sample 
document is showed in Figure 6. 

 
Figure 6, the output of the discover_rcs algorithm for the 

sample document. 

A complete substring should be both right-complete and left-
complete. To discover all the left-complete substrings, we just 
apply the discover_rcs algorithm to ~T, the inverse document T. 
If S is a right-complete substring of ~T, then ~S must be a left-
complete substring of T. The inverse sample document and its 
suffixes are showed in Figure 7.  

 

Figure 7, the inverse sample document and its suffixes. 

Suppose rcs is the array of right-complete substrings, and lcs is 
the array of left-complete substrings. The array rcs is already 
alphabetically ordered. We also sort the array lcs to make it 
alphabetically ordered. Then we use the intersect_lcs_rcs  
algorithm (shown in Figure 8) to find the intersection of lcs and 
rcs. The output of this algorithm is the alphabetically ordered 
array of the complete substrings of T with their frequencies  
Suppose the size of lcs and rcs are L and R respectively, the time 
complexity of the intersect_lcs_rcs  algorithm is O(L+R). 

 
Figure 8, the intersect_lcs_rcs algorithm. 

The output of the interect_lcs_rcs  algorithm for the sample 
document is showed in Figure 9. 

 



Figure 9, the output of the intersect_lcs_rcs algorithm for the 
sample document. 

After obtaining the alphabetically ordered array of the complete 
substrings of T with their frequencies, we can get the frequency of 
any complete substring using binary search algorithm. Thereafter, 
the stability (mutual information) and significance estimation of 
each complete string could be computed easily.  

To discover key phrases from the set of phrases (complete 
substrings), we only need to examine every complete substring to 
see whether or not it is stable and significant. The complete, stable, 
significant substrings are just the key phrases we need.  

M. Yamamoto and K. W. Church have developed an algorithm 
using suffix array to compute term frequency and document 
frequency for all substrings in a document of size N, in O(NlogN) 
time [11]. Their algorithm seems to be more complex than ours, as 
we only consider “complete” substrings. L.F. Chien has proposed 
more strict conditions of string “completeness” [13], LCD (Left 
Context Dependency) and RCD (Right Context Dependency), 
which is computationally more expensive.  

3.3 Identifying and Organizing Clusters  
The STC algorithm simply groups documents sharing a common 
phrase into one cluster [12]. However, such lexical methods can be 
inaccurate and incomplete. Since there are usually many ways to 
express a given concept, the literal terms may not match those of a 
relevant document. In addition, most words have multiple 
meanings, so the terms will literally match terms in irrelevant 
documents. A better clustering approach should run on semantic 
level, i.e., group documents sharing a common conceptual topic 
together.  

It is natural to assume that a document belongs to a cluster in 
some degree. So we adopt a continuous cluster definition here. 

DEFINITION  A cluster of m objects 1 2, , , mt t tL  , 
g

C , can be 

identified by a m-dimensional vector 
g

x , 1g =x  and ( )
g

ix  

represents the degree in which it  belongs to 
g

C . 
g

x  is denoted 

as the cluster vector of 
g

C , and it can be used interchangeably 

with 
g

C . 

After the previous steps, we can get m key phrases of n 
documents. Taking key phrases as terms, the search results can be 
described as a m×n term-document matrix A , whose row vectors 
represent the terms and column vectors represent the documents. 
The element ( , ) 1i j =A  if the i-th term Ti occurs in the j-th 

document Dj, or ( , ) 0i j =A .  

Following the idea of idea of Latent Semantic Indexing (LSI) [1][4], 
we attempt to discover the latent semantic of documents through 
analyzing the associations between terms and documents. The 
term-document matrix A  could be visualized as a bipartite graph, 

as shown in Figure 10. The bipartite graph reveals the dual 
reinforcing relationship between terms and documents, i.e., the 
terms linked with the same document should be close in semantic 
space, and the documents linked with the same terms should be 
close in semantic space. That is to say, densely-linked terms or 
documents are close to each other in semantic space, so they 
should be grouped together to form a cluster. 

 
Figure 10, the associations between terms and documents. 

The degree of associations among objects in a cluster can be 
measured by the following notation. 

DEFINITION  Suppose 
g

x (
g

y ) is a cluster of the row (column) 

vectors of A , then the cluster density of 
g

x  (
g

y ) is 
T

gx A  

( gAy ) . [15] 

We want to find the clusters with high densities since they capture 

main topics of the documents. Suppose 1x  is the cluster with 

maximum density, and 2x  is another cluster. It is known from 

basic linear algebra that 2x  can be written as 

2

2 1
( 1 )η η= + −x x z , where η  is a constant scalar 

( 0 1η≤ ≤ ), 1⊥z x  and 1=z . Then the cluster density of 

2x is ( )2 22 2

2 1 1T T Tη η= + −x A x A z A . The larger the 

value of η , the higher the cluster density of 2x . If there is no 

constraint on 2x , it will be arbitrary close to 1x . To get a new 

meaningful cluster 
g

x , we should restrict 
g

x  orthogonal to the 

already discovered cluster vectors [15]. This leads to the following 
definition.  

DEFINITION  The orthogonal clustering of row (column) vectors 

of A  is discovering a set of cluster vectors  1 2, , , kx x xL , 

g
x (1 )g k≤ ≤  is the cluster with maximum density subject to 

being orthogonal to 
1 1
, ,

g−
x xL . 

To find out the solution for the orthogonal clustering problem, we 
introduce the following definition and theorem. 

DEFINITION  Suppose M  is a real a m×m symmetrical matrix,  

the Rayleigh Quotient of M  w.r.t mR∈x is  



( )
T

T
R =

x Mx
x

x x
 .  

THEOREM  Suppose M  is a real a m×m symmetrical matrix, its 

eigenvalues are 1 2 mλ λ λ≥ ≥ ≥L  corresponding to orthonormal 

eigenvectors 1 2, , , mp p pL ,  

if mR∈x , then  

1 1
max ( ) ( )R R λ

≠
= =

x 0
x p , min ( ) ( )m mR R λ

≠
= =

x 0
x p ; 

if 
1

( , , , )
g g h

L
+

∈x p p pL , 1 g h m≤ ≤ ≤ , then  

max ( ) ( )
g g

R R λ
≠

= =
x 0

x p , min ( ) ( )h hR R λ
≠

= =
x 0

x p . 

DEFINITION  Suppose a m×n matrix A  with ( )rank r=A , 

1 2 0rλ λ λ≥ ≥ ≥ >L are r non-zero eigenvalues of TAA  

( TA A ),  1 2, , , mx x xL  ( 1 2, , , ny y yL ) are the corresponding 

orthonormal eigenvectors, then the SVD (Singular Value 

Decomposition) of A is defined as T
∑

=
 
 
 

O
A U V

O O
, where 

1( , , )rdiag σ σ∑ = …… ,  
g g

σ λ=  ( 1,2 , , )g k= L  are 

called the singular values of A , and [ ]1 2, , , mU = x x xL , 

[ ]1 2, , , nV = y y yL , 1 2, , , mx x xL  ( 1 2, , , ny y yL ) are called 

the left (right) singular vectors of A . [5] 

It turns out that the SVD of the matrix A  can provide solution to 
the orthogonal clustering of the row or column vectors of A . 

THEOREM  The left (right) singular vectors of  A  are the cluster 
vectors discovered through orthogonal clustering of row (column) 
vectors of A . 

PROOF  Since TAA  is a m×m symmetrical matrix, we can 

compute Rayleigh Quotient of TAA  w.r.t mR∈x : 

( ) ( ) ( ) ( )( )
( )

TT T T T T T

T T T
R = = =

x AA x x A A x x A x A
x

x x x x x x
           

( )
( )

2

2

,

,

T T T

= =
x A x A x A

x x x
. 

If 
g

c  represent a cluster of row vectors of A , then 1g =c , 

2

2

2
( )

T

g T

g g

g

R = =
c A

c c A
c

. So ( )T

g g
R=c A c , i.e., the 

cluster density of 
g

c  is actually the square root of the Rayleigh 

Quotient of of TAA  w.r.t 
g

c . According to the definition of 

orthogonal clustering, 
g

c should has maximum density subject to 

being orthogonal to 
1 1
, ,

g−
c cL . From the above theorem about 

Rayleigh Quotient, and noting 1 1( , , ) ( , , )g g mL L⊥

+=p p p pL L , 

it is clear that 
g

c  must be the g-th eigenvector 
g

p  of TAA , or 

the g-th left singular vector 
g

x of A .  The proof for the 

clustering of A ’s column vectors is similar. 

Since there may be some negative elements in the cluster vectors, 

we add a constraint for each cluster 
g

x that 
1

( ) 0
m

g
i

i
=

≥∑ x , or we 

use 
g

−x  instead. 

Then we address the problem of how to determine the appropriate 
cluster numbers.  

DEFINITION  In the previous problem setting, the cluster matrix 

of 
g

x is ( )T

g g g=X x x A , similarly the cluster matrix of 
g

y is 

( ) T

g g g=Y Ay y . 

The cluster matrix actually represents its corresponding part in the 
original data matrix A . 

THEOREM  ( )
1

r
T

k k k
k

σ
=

= ∑A x y . 

THEOREM  
T

g g g g g gσ= = =X Y C x y . 

PROOF     ( ) ( )
1

r
T T T

g g g g g k k k
k

σ
=

= =   
  
  

∑X x x A x x x y    

( )
1

r
T T

g k g k k
k

σ
=

=  
 
 
∑x x x y . Because 1 2, , , mx x xL  are 

orthonormal eigenvectors, 
0, if 

1, if 
T

g k

g k

g k

≠
=

=





x x ,  

( )
1

r
T T T T T

g k k k g g g g g g
k

σ σ σ
=

= =∑ x x y x x y y , so 

T T

g g g g g g gσ σ= =X x y x y . 

Similarly ( ) T T

g g g g g gσ= =Y Ay y x y .  

From this theorem, we can find out that the clusters described 

respectively by 
g

x  and 
g

y  in fact are describing the same topic.  



Let ( )
1 1

k k
T

k g g g g
g g

σ
= =

= =∑ ∑A C x y , the quality of orthogonal 

clustering 1 ,..., kx x ( 1,..., ky y ) can be reflected by the ratio of   

kA  over A .  

DEFINITION  In the previous problem setting, the k-step 
orthogonal clustering quality of A  is  

( )

( )

2

1

2

1

( , )

k

g
gk F

r
F

g
g

q k

σ

σ

=

=

= =
∑

∑

A
A

A
， (1 )k r≤ ≤ . 

Given a cluster-quality threshold *q (e.g. 80%), the ideal cluster 

number *k is the minimum number k  satisfying ( , ) *q k q≥A . 

SHOC applies orthogonal clustering to the term-document matrix 
of Web search results. Given a cluster-strength threshold t , the g-

th document cluster 
g

V  is composed of the documents whose 

value in vector 
g

y  greater than t . The term (key phrase) with 

largest value in 
g

x  can be taken as the label of 
g

V .   

For example, Figure 11 contains the titles of some papers from 
ACM SIGIR2001 conference (http://www.sigir2001.org/), Figure 
12 shows the generated term-document matrix A . Assuming the 
cluster-quality threshold * 80%q = , the appropriate cluster 

number is 2, because 
2 2

2 3.21 2.61
( ,2)

26
F

F

q
+

= =
A

A
A

 

0.81= ,. The SVD of A gives the following results: 

1
(0.76, 0.33, 0.32, 0.26, 0.33, 0.11, 0.15)T=x , 

2
(-0.25, 0.17, 0.04, -0.09, -0.10, 0.61, 0.72)T=x ; 

1 (0.34, 0.34, 0.52, 0.34, 0.08, 0.18, 0.32, 0.24, =y

 0.20, 0.08, 0.15, 0.34)T , 

2 (-0.03, -0.08, -0.10, -0.13, 0.51, 0.57, -0.13, =y  

            -0.10, -0.02, 0.51, 0.29, -0.08)T . 

Assuming the cluster-strength threshold 0.15t = , then the two 
document clusters are as follows. 

{ }1  D1, D2, D3, D4, D6, D7, D8, D9, D11, D12 =V  with 

the term “Summarizatio” as its label. 

{ }2  D5, D6, D10, D11, D12 =V , 

with the term “Language Model” as its label. 

 

Figure 11, the titles of some papers from the ACM 
SIGIR2001 conference.  

 

Figure 12, the term-document matrix of the document 
collections in Fighre 11.  

There are some efficient algorithms which can do SVD for large 
sparse matrix very quickly [15]. To save time further, we can run 
SVD on the top-n items in the search results returned by search 
engines, then “fold-in” the rest documents incrementally [1]. 
Because search engines usually place high quality documents at 
the top of the result list, this approximation would not seriously 
hurt the clustering quality. 

P. Drineas et al. introduced the initial “orthogonal clustering”  
concept [15]. This paper gives strict mathematical proof on why 
SVD provides solution to orthogonal clustering. J. Kleinberg 
pointed out that SVD on the hyperlink structure matrix can be 
used for ranking and clustering Web pages [16].   

Paper Session 1A: Summarization 1 

D1: Applying Summarization Techniques for Term 
Selection in Relevance Feedback 

D2: Temporal Summaries  of News Topics 

D3: Generic Text Summarization Using Relevance Measure 
and Latent Semantic Analysis 

D4: A New Approach to Unsupervised Text Summarization 

Paper Session 3 : Language Models 1 

D5: Document Language Models, Query Models, and Risk 
Minimization for Information Retrieval 

D6: Relevance-based Language Models 

Paper Session 5A: Summarization 2 

D7: Generic Summaries  for Indexing in Information 
Retrieval 

D8: Automatic Generation of Concise Summaries  of Spoken 
Dialogues in Unrestricted Domains 

D9: Enhanced Topic Distillation using Text, Markup Tags, 
and Hyperlinks 

Paper Session 8A : Language Models 2 

D10: A Study of Smoothing Methods for Language Models 
Applied to ad hoc Information Retrieval 

D11: Topic Segmentation with an Aspect Hidden Markov 
Model 

D12: Finding Topic Words for Hierarchical Summarization 



Furthermore, SHOC organizes the clusters of Web search results 
into a tree structure to facilitate browsing. This is done by 
checking each pair of clusters, X and Y, to see if then can be 
merged into one cluster or be treated as a parent-child relationship, 
as shown in Figure 13. 

Figure 13, the procedure to combine two clusters. 
When two base clusters, X and Y are merged into one cluster, their 
phrase labels label_x and label_y should also be merged into one 
phrase label_xy, as the following procedure in Figure 14. 

Figure 14, the procedure to merge the labels of two clusters. 

We iteratively check every pair of base clusters and organize them. 
A hierarchy of cluster appears at last. 

One superiority of SHOC is that users are able to adjust the 
meaningful clustering parameters to fulfill their own needs. 

4. PROTOTYPE SYSTEM 
Based on the SHOC approach, we have created a prototype 
system named WICE (Web Information Clustering Engine). It can 
automatically organize multilingual Web search results in a 
semantic, hierarchical, and online way. Currently it only clusters 
search results from Google (http://www.google.com/).  

WICE has demonstrated the effectiveness of our SHOC approach. 
Figure 15 shows the output of WICE for the query “面向对象” 
(object oriented), including clusters labeled “面向对象程序设
计 ”(object oriented programming), “面向对象分析”(object 
oriented analysis), etc. 

 

Figure 15, the output of WICE for the query "面向对象" 
(object oriented). 

5. CONCLUSION 
 The main contributions of this paper include the following. (1) 
The benefits of using key phrases as natural language information 
features are discussed. An effective and efficient algorithm based 
on suffix array for key phrase discovery is presented. The 
efficiency of this method is very high no matter how large the 
language's alphabet is. (2) The concept of orthogonal clustering is 
proposed for general clustering problems. The reason why matrix 
SVD (Singular Value Decomposition) can provide solution to 
orthogonal clustering is strictly proved. The orthogonal clustering 
algorithm has a solid mathematics foundation and many 
advantages over traditional heuristic clustering algorithms. (3) The 
WICE system is designed and implemented to automatically 
organize multilingual Web search results through a semantic, 
hierarchical, online clustering approach named SHOC. 

Our prototype system suggests that clustering of Web search 
results can really help users find relevant Web information more 
easily and quickly. Extensive experiments are needed to evaluate 
the performance of the proposed SHOC approach. 
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