
Semantic, Hierarchical, Online Clustering of Web Search
Results

Dell Zhang1,2
1 Department of Computer Science

School of Computing
S15-05-24, 3 Science Drive 2

National University of Singapore
Singapore 117543

2 Singapore-MIT Alliance
E4-04-10, 4 Engineering Drive 3

Singapore 117576
+65-68744251

dell.z@ieee.org

Yisheng Dong
Department of Computer Science & Engineering

Southeast University
Nanjing, 210096, P.R.China

+86-25-3319900

ysdong@seu.edu.cn

ABSTRACT
Today, search engine is the most commonly used tool for Web
information retrieval, however, its current status is still far from
satisfaction. This paper focuses on clustering Web search results
in order to help users find relevant Web information more easily
and quickly. The main contributions of this paper include the
following. (1) The benefits of using key phrases as natural
language information features are discussed. An effective and
efficient algorithm based on suffix array for key phrase discovery
is presented. The efficiency of this method is very high no matter
how large the language's alphabet is. (2) The concept of orthogonal
clustering is proposed for general clustering problems. The reason
why matrix SVD (Singular Value Decomposition) can provide
solution to orthogonal clustering is strictly proved. The orthogonal
clustering algorithm has a solid mathematics foundation and many
advantages over traditional heuristic clustering algorithms. (3) The
WICE system is designed and implemented to automatically
organize multilingual Web search results through a semantic,
hierarchical, online clustering approach named SHOC.

Keywords
Web information retrieval, clustering.

1. INTRODUCTION
With information explosion on the Web as well as popularity of
Internet, the Web has already become the biggest data source for
various applications. However, how to obtain high-quality
information from the Web effectively and efficiently according to
user's query request has created big challenges for many computer
science disciplines, such as information retrieval and data mining,
because of the features of the Web (huge volume, heterogeneous,
dynamic, semi-structured, etc.).

Web search engine is the most commonly used tool for
information retrieval on the web; however, its current status is far
from satisfaction for several possible reasons [10]:

l Very limited coverage of the Web;
l Outdated pages and broken hyperlinks;
l Many useful or relevant pages are not returned
l Many returned pages are useless or irrelevant;
l Users may be just interested in “more qualified” information

or small part of information returned while thousands of
pages are returned from search engine;

l Different users have different requirements and expectations
for search results;

l Sometimes search requests can not be expressed clearly just
in several keywords;

l The phenomena of synonymy (several words may
correspond to same concept) and polysemy (one word may
have several different meanings) make things more
complicated;

l
While efforts to improve Web crawling, searching and ranking may
alleviate the first five problems, further studies are needed for the
others. We think that clustering of Web search results could help a
lot. If Web search results are presented in groups, users will be
able to have an overview of the whole topic or just select
interested groups to browse.

We propose to automatically group Web search results through a
semantic, hierarchical, online clustering approach named SHOC,
which is an extension of O. Zamir and O. Etzioni's work [12]. By
combining the power of two novel techniques, key phrase
discovery and orthogonal clustering, SHOC can generate both
reasonable and readable clusters. Moreover, SHOC can work for
multiple languages: not only English but also oriental languages
like Chinese.

This paper is organized as follows. In section 2, we briefly review
related work. In section 3, we present the proposed approach
SHOC. In section 4, we describe the prototype system WICE. In
section 5, we make conclusions.

2. RELATED WORK
D. Cutting et al. have created the Scatter/Gather system to cluster
Web search results [3]. However, their system has some
limitations due to the shortcomings of the traditional heuristic
clustering algorithms (e.g. k-means) they used.

Y. Wang et al. have proposed an interesting method to cluster Web
search results based on hyperlinks [10]. But their method needs to
download and parse the original Web pages, so it is not able to
provide clustering results quickly.

Our approach to cluster Web search results is an extension of O.
Zamir and O. Etzioni's work [12]. They proposed in [12] an
algorithm named Suffix Tree Clustering (STC) to automatically
group Web search results. STC first constructs a suffix tree where
each internal node corresponds to a phrase, then form base
clusters by grouping the Web search results that contain same
“key” phrase, finally merge base clusters that have large overlap.

STC has made substantial progress on clustering of Web search
results, but still has several drawbacks:
l its key phrase discovery algorithm based on suffix tree is

inappropriate for oriental languages like Chinese;
l documents containing no key phrase become inaccessible

since they are not included in any cluster;
l taking the hierarchy of the constructed suffix tree directly as

the hierarchy of the generated clusters is not reasonable,
l the phenomena of synonymy and polysemy are neglected.
Our work attempts to overcome these shortcomings of STC.

3. SHOC APPROACH
A practical clustering approach for Web search results should
meet the following requirements.
l Semantic. The clustering algorithm should group search

results based on their semantic topic. Since a search result
may have multiple topics, it is instructive not to confine one
search result in only one cluster. The clustering algorithm
should also provide each cluster a label that describes the
cluster topic, so that users can determine at a glance whether
a cluster is of his/her interest.

l Hierarchical. The clustering algorithm should automatically
organize the generated clusters into a tree structure to
facilitate user browsing.

l Online. The clustering algorithm should be able to provide
fresh clustering results “just-in-time”, because for the
impatient users each second counts.

These requirements will be emphasized throughout this paper.

We propose to automatically group Web search results through a
Semantic, Hierarchical, Online Clustering (SHOC) approach,
which is composed of three major steps: (1) data collection and
cleaning; (2) feature extraction; (3) identifying and organizing
clusters.

3.1 Data Collection and Cleaning
The data collection task here is actually meta-search. Given a
query, we just forward it to several search engines and then collect
their search results (lists of pointers to Web pages). Usually the
search results returned by a search engine are partitioned into
several result-pages to facilitate user browsing. To get high
efficiency for meta-search, we use a two-level parallelization
mechanism: (1) search engines are called in parallel through multi-
threads; (2) a search engine’s all result-pages are fetched in parallel
through multi-threads. Then we synthesize all the lists of search
results from different search engines into a uniform ranked list of
search results. For duplicate search results, only the one with
highest rank will be reserved.

A search result usually includes the URL, title and snippet of its
corresponding Web page. Figure 1 illustrates a search result
returned by Google (http://www.google.com/) for a Chinese query
“数据挖掘” (data mining). Note the “online” requirement” implies
that we do not have time to download the original complete Web
pages that the search results point to. In reality, most users are
unwilling to wait for the clustering system to download the
original Web pages. Therefore we take a Web page’s title and
snippet in the search results as a good summary of its content, and
use it as a “document” to be fed to the clustering algorithm.

Figure 1, a search result returned by Google for a Chinese
query “数据挖掘” (data mining).

Each document is parsed and split into sentences according to
punctuations (period, comma, semicolon, question mark etc.) and
HTML tags (<p>,
, , <td> etc.). The non-word tokens
are stripped and redundant spaces are compressed. The English
words are stemmed using a stemming algorithm. For instance, the
search result shown in Figure 1 is transformed into the document
shown in Figure 2.

Figure 2, the document corresponding to the sample search
result shown in Figure 1.

产品
IBM推出新型数据挖掘技术
IBM近日发布了一项新型的基于标准的数据挖掘技术
IBM DB2智能挖掘器积分服务
IBM DB2 Intelligent Miner Scoring Service
它可以帮助企业轻松地为自己的客户和供应商开发出个
性化的解决方案

3.2 Feature Extraction
Most clustering algorithms treat a document as a “bag-of-words”,
totally ignoring word order and proximity which may provide
important information for clustering. In contrast, we decide to use
key phrases extracted of the document collection as document
features. The benefit is two-fold: (1) it can improve the quality of
the clusters through leveraging more information present in the
documents; (2) it is helpful to construct concise and accurate
labels for the generated clusters [12]. The key phrase discovery
algorithm for the document collection is the same as that for single
document, because a document collection can be treated as a
pseudo-document.

In our scenario, a document is essentially a string of characters,
and a key phrase is defined as a meaningful substring within a
sentence which is both specific and significant. The reason every
phrase is restricted to be within a sentence is because sentence
boundaries usually indicate some topical shift. This also reduces
the cost of our key phrase discovery algorithm.

Given a document T of length N, we check if a substring S of T can
be a key phrase through the three measures: completeness,
stability, and significance.

DEFINITION Suppose S occurs in k distinct positions p1, p2, … ,
pk in T, S is “complete” if and only if the (pi-1)th token in T is
different with the (pj-1)th token for at least one (i, j) pair, 1≤i<j
≤k (called “left-complete”), and the (pi+|S|)th token is different
with the (pj+|S|)th token for at least one (i, j) pair, 1≤i<j≤k
(called “right-complete”). [14]

DEFINITION Suppose S =” 1 2 Pc c cL ”, the stability (mutual

information) of S is
()

()
() () ()

L R

f S
MI S

f S f S f S
=

+ −
, where

LS =” 1 1Pc c −L ”, RS =” 2 Pc cL ”, and (), (), ()L Rf S f S f S are

frequencies of , ,L RS S S .

DEFINITION The significance of S can be estimated as

() () ()se S f S g S= × , where ()f S is the frequency of S ,

S is the length of S , ()g x is a heuristic utility function the

string length, (1) 0g = , 2() logg x x= when 2 8x≤ ≤ and

() 3g x = when 8x > .

The task of key phrase discovery in English could be
accomplished efficiently using the suffix tree data structure [6], as
described in [12]. However, the performance (time and space
complexity) of suffix tree is related to the alphabet size of
language [9]. As we all know, oriental languages have much larger
alphabet that English, e.g., Chinese has more than 6,000 characters,
hereby using suffix tree is not efficient for key phrase discovery in
oriental language texts.

Besides, oriental languages like Chinese do not have explicit word
separators (such as blanks in English) [2]. Therefore
straightforwardly applying English key phrase discovery
algorithms to Chinese may extract many meaningless partial
phrases, e.g., “数据挖” (part of the real phrase “数据挖掘”).

Here we present a novel key phrase discovery algorithm based on
suffix array, which is both scalable over alphabet size and able to
avoid extracting meaningless partial phrases.

The suffix array data structure was introduced as a text indexing
technique [9]. Using a suffix array, online string searches of the
type, “Is S a substring of T?” can be answered in O(P+logN) time,
where P is the length of S and N is the length of T. Such efficiency
is competitive with (and in some cases slightly better than) that of
using a suffix tree. A suffix array can be constructed with O(N)
expected time complexity, regardless of the alphabet size. The
major advantage of using suffix array over using suffix tree is in
space. A suffix tree needs O(N |S|) space that grows with alphabet
size |S|. Manber and Myers [9] reported that suffix arrays are an
order of magnitude more efficient in space than suffix trees even in
the case of relatively small alphabet size (|S| = 96). The advantage
of using suffix array over using suffix trees is significant for large
alphabet languages like Chinese.

The suffix array s of a document T, is an array of all N suffixes of
T, sorted alphabetically. A suffix (also known as semi-infinite
string) s[i], is a string that starts at position i in the text and
continues to the end of the text. In practice, a suffix s[i] is
typically denoted by a 4-byte integer, i, which one might have
thought would require O(N) space. Manber and Myers' algorithm
[9] uses a LCP array to accelerate searching operation. A LCP
array lcp stores N+1 integer elements, where lcp[i] (1 1)i N≤ ≤ −

indicates the length of the longest common prefix between s[i-1]
and s[i], lcp[0]=lcp[N]=0. The LCP array can also be constructed
with O(N) expected time complexity. For example, consider a
simple document “to_be_or_not_to_be”, its suffix array s and
LCP array lcp is shown in Figure 3.

Figure 3 (adopted from 11), the suffix array s and its LCP
array lcp of “to_be_or_not_to_be”.

Given a document T of length N, a set of key phrases can be
efficiently extracted, taking advantage of its suffix array s and its
LCP array lcp.

THEOREM A substring S of T is right-complete if and only if
there is a w (1≤w<N) and S is the LCP of s[w-1] and s[w].

PROOF Omitted due to space limit.

It turns out that every right-complete substring (including
complete substring) of T, can be identified by the position of a
pair of adjacent suffixes in the suffix array s.

DEFINITION Assume RCS is a right-complete substring of T, the
identification code of RCS is

{ }() min 1 , the LCP of [1] and [] is I D R C S w w N s w s w RCS= ≤ < −

There are at most N-1 right-complete substrings, even though
there are N(N+1)/2 substrings of T.

Based on the above theorem, we propose a linear time complexity
algorithm discover_rcs (shown in Figure 4), to extract all right-
complete substrings of T and meanwhile count their frequencies.
The discover_rcs algorithm leverages a stack to store the right-
complete substrings under counting. Figure 5 depicts three cases
that may be encountered while scanning lcp, where RCS*
represents the current right-complete substring on the stack top. It
is obvious that the time complexity of the discover_rcs algorithm
is O(N).

Figure 4, the discover_rcs algorithm.

Figure 5, the 3 cases may be encountered while scanning lcp.

The output of the discover_rcs algorithm for the sample
document is showed in Figure 6.

Figure 6, the output of the discover_rcs algorithm for the

sample document.

A complete substring should be both right-complete and left-
complete. To discover all the left-complete substrings, we just
apply the discover_rcs algorithm to ~T, the inverse document T.
If S is a right-complete substring of ~T, then ~S must be a left-
complete substring of T. The inverse sample document and its
suffixes are showed in Figure 7.

Figure 7, the inverse sample document and its suffixes.

Suppose rcs is the array of right-complete substrings, and lcs is
the array of left-complete substrings. The array rcs is already
alphabetically ordered. We also sort the array lcs to make it
alphabetically ordered. Then we use the intersect_lcs_rcs
algorithm (shown in Figure 8) to find the intersection of lcs and
rcs. The output of this algorithm is the alphabetically ordered
array of the complete substrings of T with their frequencies
Suppose the size of lcs and rcs are L and R respectively, the time
complexity of the intersect_lcs_rcs algorithm is O(L+R).

Figure 8, the intersect_lcs_rcs algorithm.

The output of the interect_lcs_rcs algorithm for the sample
document is showed in Figure 9.

Figure 9, the output of the intersect_lcs_rcs algorithm for the
sample document.

After obtaining the alphabetically ordered array of the complete
substrings of T with their frequencies, we can get the frequency of
any complete substring using binary search algorithm. Thereafter,
the stability (mutual information) and significance estimation of
each complete string could be computed easily.

To discover key phrases from the set of phrases (complete
substrings), we only need to examine every complete substring to
see whether or not it is stable and significant. The complete, stable,
significant substrings are just the key phrases we need.

M. Yamamoto and K. W. Church have developed an algorithm
using suffix array to compute term frequency and document
frequency for all substrings in a document of size N, in O(NlogN)
time [11]. Their algorithm seems to be more complex than ours, as
we only consider “complete” substrings. L.F. Chien has proposed
more strict conditions of string “completeness” [13], LCD (Left
Context Dependency) and RCD (Right Context Dependency),
which is computationally more expensive.

3.3 Identifying and Organizing Clusters
The STC algorithm simply groups documents sharing a common
phrase into one cluster [12]. However, such lexical methods can be
inaccurate and incomplete. Since there are usually many ways to
express a given concept, the literal terms may not match those of a
relevant document. In addition, most words have multiple
meanings, so the terms will literally match terms in irrelevant
documents. A better clustering approach should run on semantic
level, i.e., group documents sharing a common conceptual topic
together.

It is natural to assume that a document belongs to a cluster in
some degree. So we adopt a continuous cluster definition here.

DEFINITION A cluster of m objects 1 2, , , mt t tL ,
g

C , can be

identified by a m-dimensional vector
g

x , 1g =x and ()
g

ix

represents the degree in which it belongs to
g

C .
g

x is denoted

as the cluster vector of
g

C , and it can be used interchangeably

with
g

C .

After the previous steps, we can get m key phrases of n
documents. Taking key phrases as terms, the search results can be
described as a m×n term-document matrix A , whose row vectors
represent the terms and column vectors represent the documents.
The element (,) 1i j =A if the i-th term Ti occurs in the j-th

document Dj, or (,) 0i j =A .

Following the idea of idea of Latent Semantic Indexing (LSI) [1][4],
we attempt to discover the latent semantic of documents through
analyzing the associations between terms and documents. The
term-document matrix A could be visualized as a bipartite graph,

as shown in Figure 10. The bipartite graph reveals the dual
reinforcing relationship between terms and documents, i.e., the
terms linked with the same document should be close in semantic
space, and the documents linked with the same terms should be
close in semantic space. That is to say, densely-linked terms or
documents are close to each other in semantic space, so they
should be grouped together to form a cluster.

Figure 10, the associations between terms and documents.

The degree of associations among objects in a cluster can be
measured by the following notation.

DEFINITION Suppose
g

x (
g

y) is a cluster of the row (column)

vectors of A , then the cluster density of
g

x (
g

y) is
T

gx A

(gAy) . [15]

We want to find the clusters with high densities since they capture

main topics of the documents. Suppose 1x is the cluster with

maximum density, and 2x is another cluster. It is known from

basic linear algebra that 2x can be written as

2

2 1
(1)η η= + −x x z , where η is a constant scalar

(0 1η≤ ≤), 1⊥z x and 1=z . Then the cluster density of

2x is ()2 22 2

2 1 1T T Tη η= + −x A x A z A . The larger the

value of η , the higher the cluster density of 2x . If there is no

constraint on 2x , it will be arbitrary close to 1x . To get a new

meaningful cluster
g

x , we should restrict
g

x orthogonal to the

already discovered cluster vectors [15]. This leads to the following
definition.

DEFINITION The orthogonal clustering of row (column) vectors

of A is discovering a set of cluster vectors 1 2, , , kx x xL ,

g
x (1)g k≤ ≤ is the cluster with maximum density subject to

being orthogonal to
1 1
, ,

g−
x xL .

To find out the solution for the orthogonal clustering problem, we
introduce the following definition and theorem.

DEFINITION Suppose M is a real a m×m symmetrical matrix,

the Rayleigh Quotient of M w.r.t mR∈x is

()
T

T
R =

x Mx
x

x x
 .

THEOREM Suppose M is a real a m×m symmetrical matrix, its

eigenvalues are 1 2 mλ λ λ≥ ≥ ≥L corresponding to orthonormal

eigenvectors 1 2, , , mp p pL ,

if mR∈x , then

1 1
max () ()R R λ

≠
= =

x 0
x p , min () ()m mR R λ

≠
= =

x 0
x p ;

if
1

(, , ,)
g g h

L
+

∈x p p pL , 1 g h m≤ ≤ ≤ , then

max () ()
g g

R R λ
≠

= =
x 0

x p , min () ()h hR R λ
≠

= =
x 0

x p .

DEFINITION Suppose a m×n matrix A with ()rank r=A ,

1 2 0rλ λ λ≥ ≥ ≥ >L are r non-zero eigenvalues of TAA

(TA A), 1 2, , , mx x xL (1 2, , , ny y yL) are the corresponding

orthonormal eigenvectors, then the SVD (Singular Value

Decomposition) of A is defined as T
∑

=
 
 
 

O
A U V

O O
, where

1(, ,)rdiag σ σ∑ = …… ,
g g

σ λ= (1,2 , ,)g k= L are

called the singular values of A , and []1 2, , , mU = x x xL ,

[]1 2, , , nV = y y yL , 1 2, , , mx x xL (1 2, , , ny y yL) are called

the left (right) singular vectors of A . [5]

It turns out that the SVD of the matrix A can provide solution to
the orthogonal clustering of the row or column vectors of A .

THEOREM The left (right) singular vectors of A are the cluster
vectors discovered through orthogonal clustering of row (column)
vectors of A .

PROOF Since TAA is a m×m symmetrical matrix, we can

compute Rayleigh Quotient of TAA w.r.t mR∈x :

() () () ()()
()

TT T T T T T

T T T
R = = =

x AA x x A A x x A x A
x

x x x x x x

()
()

2

2

,

,

T T T

= =
x A x A x A

x x x
.

If
g

c represent a cluster of row vectors of A , then 1g =c ,

2

2

2
()

T

g T

g g

g

R = =
c A

c c A
c

. So ()T

g g
R=c A c , i.e., the

cluster density of
g

c is actually the square root of the Rayleigh

Quotient of of TAA w.r.t
g

c . According to the definition of

orthogonal clustering,
g

c should has maximum density subject to

being orthogonal to
1 1
, ,

g−
c cL . From the above theorem about

Rayleigh Quotient, and noting 1 1(, ,) (, ,)g g mL L⊥

+=p p p pL L ,

it is clear that
g

c must be the g-th eigenvector
g

p of TAA , or

the g-th left singular vector
g

x of A . The proof for the

clustering of A ’s column vectors is similar.

Since there may be some negative elements in the cluster vectors,

we add a constraint for each cluster
g

x that
1

() 0
m

g
i

i
=

≥∑ x , or we

use
g

−x instead.

Then we address the problem of how to determine the appropriate
cluster numbers.

DEFINITION In the previous problem setting, the cluster matrix

of
g

x is ()T

g g g=X x x A , similarly the cluster matrix of
g

y is

() T

g g g=Y Ay y .

The cluster matrix actually represents its corresponding part in the
original data matrix A .

THEOREM ()
1

r
T

k k k
k

σ
=

= ∑A x y .

THEOREM
T

g g g g g gσ= = =X Y C x y .

PROOF () ()
1

r
T T T

g g g g g k k k
k

σ
=

= =   
  
  

∑X x x A x x x y

()
1

r
T T

g k g k k
k

σ
=

=  
 
 
∑x x x y . Because 1 2, , , mx x xL are

orthonormal eigenvectors,
0, if

1, if
T

g k

g k

g k

≠
=

=





x x ,

()
1

r
T T T T T

g k k k g g g g g g
k

σ σ σ
=

= =∑ x x y x x y y , so

T T

g g g g g g gσ σ= =X x y x y .

Similarly () T T

g g g g g gσ= =Y Ay y x y .

From this theorem, we can find out that the clusters described

respectively by
g

x and
g

y in fact are describing the same topic.

Let ()
1 1

k k
T

k g g g g
g g

σ
= =

= =∑ ∑A C x y , the quality of orthogonal

clustering 1 ,..., kx x (1,..., ky y) can be reflected by the ratio of

kA over A .

DEFINITION In the previous problem setting, the k-step
orthogonal clustering quality of A is

()

()

2

1

2

1

(,)

k

g
gk F

r
F

g
g

q k

σ

σ

=

=

= =
∑

∑

A
A

A
， (1)k r≤ ≤ .

Given a cluster-quality threshold *q (e.g. 80%), the ideal cluster

number *k is the minimum number k satisfying (,) *q k q≥A .

SHOC applies orthogonal clustering to the term-document matrix
of Web search results. Given a cluster-strength threshold t , the g-

th document cluster
g

V is composed of the documents whose

value in vector
g

y greater than t . The term (key phrase) with

largest value in
g

x can be taken as the label of
g

V .

For example, Figure 11 contains the titles of some papers from
ACM SIGIR2001 conference (http://www.sigir2001.org/), Figure
12 shows the generated term-document matrix A . Assuming the
cluster-quality threshold * 80%q = , the appropriate cluster

number is 2, because
2 2

2 3.21 2.61
(,2)

26
F

F

q
+

= =
A

A
A

0.81= ,. The SVD of A gives the following results:

1
(0.76, 0.33, 0.32, 0.26, 0.33, 0.11, 0.15)T=x ,

2
(-0.25, 0.17, 0.04, -0.09, -0.10, 0.61, 0.72)T=x ;

1 (0.34, 0.34, 0.52, 0.34, 0.08, 0.18, 0.32, 0.24, =y

 0.20, 0.08, 0.15, 0.34)T ,

2 (-0.03, -0.08, -0.10, -0.13, 0.51, 0.57, -0.13, =y

 -0.10, -0.02, 0.51, 0.29, -0.08)T .

Assuming the cluster-strength threshold 0.15t = , then the two
document clusters are as follows.

{ }1 D1, D2, D3, D4, D6, D7, D8, D9, D11, D12 =V with

the term “Summarizatio” as its label.

{ }2 D5, D6, D10, D11, D12 =V ,

with the term “Language Model” as its label.

Figure 11, the titles of some papers from the ACM
SIGIR2001 conference.

Figure 12, the term-document matrix of the document
collections in Fighre 11.

There are some efficient algorithms which can do SVD for large
sparse matrix very quickly [15]. To save time further, we can run
SVD on the top-n items in the search results returned by search
engines, then “fold-in” the rest documents incrementally [1].
Because search engines usually place high quality documents at
the top of the result list, this approximation would not seriously
hurt the clustering quality.

P. Drineas et al. introduced the initial “orthogonal clustering”
concept [15]. This paper gives strict mathematical proof on why
SVD provides solution to orthogonal clustering. J. Kleinberg
pointed out that SVD on the hyperlink structure matrix can be
used for ranking and clustering Web pages [16].

Paper Session 1A: Summarization 1

D1: Applying Summarization Techniques for Term
Selection in Relevance Feedback

D2: Temporal Summaries of News Topics

D3: Generic Text Summarization Using Relevance Measure
and Latent Semantic Analysis

D4: A New Approach to Unsupervised Text Summarization

Paper Session 3 : Language Models 1

D5: Document Language Models, Query Models, and Risk
Minimization for Information Retrieval

D6: Relevance-based Language Models

Paper Session 5A: Summarization 2

D7: Generic Summaries for Indexing in Information
Retrieval

D8: Automatic Generation of Concise Summaries of Spoken
Dialogues in Unrestricted Domains

D9: Enhanced Topic Distillation using Text, Markup Tags,
and Hyperlinks

Paper Session 8A : Language Models 2

D10: A Study of Smoothing Methods for Language Models
Applied to ad hoc Information Retrieval

D11: Topic Segmentation with an Aspect Hidden Markov
Model

D12: Finding Topic Words for Hierarchical Summarization

Furthermore, SHOC organizes the clusters of Web search results
into a tree structure to facilitate browsing. This is done by
checking each pair of clusters, X and Y, to see if then can be
merged into one cluster or be treated as a parent-child relationship,
as shown in Figure 13.

Figure 13, the procedure to combine two clusters.
When two base clusters, X and Y are merged into one cluster, their
phrase labels label_x and label_y should also be merged into one
phrase label_xy, as the following procedure in Figure 14.

Figure 14, the procedure to merge the labels of two clusters.

We iteratively check every pair of base clusters and organize them.
A hierarchy of cluster appears at last.

One superiority of SHOC is that users are able to adjust the
meaningful clustering parameters to fulfill their own needs.

4. PROTOTYPE SYSTEM
Based on the SHOC approach, we have created a prototype
system named WICE (Web Information Clustering Engine). It can
automatically organize multilingual Web search results in a
semantic, hierarchical, and online way. Currently it only clusters
search results from Google (http://www.google.com/).

WICE has demonstrated the effectiveness of our SHOC approach.
Figure 15 shows the output of WICE for the query “面向对象”
(object oriented), including clusters labeled “面向对象程序设
计 ”(object oriented programming), “面向对象分析”(object
oriented analysis), etc.

Figure 15, the output of WICE for the query "面向对象"
(object oriented).

5. CONCLUSION
 The main contributions of this paper include the following. (1)
The benefits of using key phrases as natural language information
features are discussed. An effective and efficient algorithm based
on suffix array for key phrase discovery is presented. The
efficiency of this method is very high no matter how large the
language's alphabet is. (2) The concept of orthogonal clustering is
proposed for general clustering problems. The reason why matrix
SVD (Singular Value Decomposition) can provide solution to
orthogonal clustering is strictly proved. The orthogonal clustering
algorithm has a solid mathematics foundation and many
advantages over traditional heuristic clustering algorithms. (3) The
WICE system is designed and implemented to automatically
organize multilingual Web search results through a semantic,
hierarchical, online clustering approach named SHOC.

Our prototype system suggests that clustering of Web search
results can really help users find relevant Web information more
easily and quickly. Extensive experiments are needed to evaluate
the performance of the proposed SHOC approach.

REFERENCES
[1] M. W. Berry, S. T. Dumais, and G. W. O'Brien. Using linear

algebra for intelligent information retrieval. SIAM Review 37
(4), 573-595, 1995.

[2] L. F. Chien, PAT-Tree-Based Keyword Extraction for
Chinese Information Retrieval, In Proceedings of the
20th ACM SIGIR International Conference on
Information Retrieval, 1997.

[3] D. Cutting, D. Karger, J. Pedersen, J. W. Tukey.
Scatter/Gather: A Cluster-based Approach to Browsing Large

if (label_x is a substring of label_y) {

label_xy = label_y;

}

else if (label_y is a substring of label_x) {

label_xy = label_x ;

}

else {

 label_xy = “ label_x + label_y ”;

}

if (|Xn Y| / |X Y| > t1) {∪

X and Y are merged into one cluster;

}

else {

if (|X| > |Y|) {

if (|XnY| / |Y| > t2) {

 let Y become X’s child;

 }

}

else {

 if (|XnY| / |X| > t2) {

 let X become Y’s child;

 }

}

}

Document Collections. In Proceedings of the 15th Annual
International ACM/SIGIR Conference, Copenhagen, 1992.

[4] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R.
Harshman, Indexing by latent semantic analysis, Journal of
the American Society for Information Science, 41, pp. 391-
407, 1990.

[5] G. Golub and C. V. Loan, Matrix Computations, second
edition, Johns-Hopkins, Baltimore, 1989.

[6] D. Gusfield. Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology, Cambridge
University Press, 1997.

[7] C. Kwok, O. Etzioni, and D. S. Weld. Scaling Question
Answering to the Web. In Proceedings of the Tenth
International World Wide Web Conference, Hong Kong ,
May 2001.

[8] R. Kannan, S. Vempala and A. Vetta. On clusterings: good,
bad and spectral. In Proc. 41st Symposium on the
Foundations of Computer Science, 2000.

[9] U. Manber and E. Myers. Suffix arrays: A new method for
on-line string searches. In Proceedings of the first Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
319-327, 1990.

[10] Y. Wang, M. Kitsuregawa. Link-based Clustering of Web
Search Results. In Proceedings of The Second International
Conference on Web-Age Information Management

(WAIM2001), Xi'An, P.R.China, Springer-Verlag LNCS,
July, 2001.

[11] M. Yamamoto and K. W. Church. Using Suffix Arrays to
compute Term Frequency and Document Frequency for All
Substrings in a Corpus. Computational Linguistics, vol 27:1,
pp.1-30, MIT Press, 2001.

[12] O. Zamir and O. Etzioni. Web Document Clustering: A
Feasibility Demonstration. In Proceedings of the 21st
International ACM SIGIR Conference on Research and
Development in Information Retrieval, Melbourne, Australia,
1998.

[13] L. F. Chien. PAT-tree-based adaptive keyphrase extraction
for intelligent Chinese information retrieval. Information
Processing and Management, 35(4), pp.501-521, 1999.

[14] C. H. Chang. and S. C. Lui. IEPAD: Information Extraction
based on Pattern Discovery. In Proceedings of the tenth
International Conference on World Wide Web, Hong Kong,
May 2-6, 2001.

[15] P. Drineas, A. Frieze, R. Kannan, S. Vempala and V.
Vinay. Clustering in large graphs and matrices. In
Proceedings of ACM-SIAM Symposium on Discrete
Algorithms, 1999.

[16] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, (46), 1999.

