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Abstract—In this paper, we present a framework for simulta-
neous image segmentation and object labeling leading to automatic
image annotation. Focusing on semantic analysis of images, it con-
tributes to knowledge-assisted multimedia analysis and bridging
the gap between semantics and low level visual features. The
proposed framework operates at semantic level using possible
semantic labels, formally represented as fuzzy sets, to make
decisions on handling image regions instead of visual features
used traditionally. In order to stress its independence of a specific
image segmentation approach we have modified two well known
region growing algorithms, i.e., watershed and recursive shortest
spanning tree, and compared them to their traditional counter-
parts. Additionally, a visual context representation and analysis
approach is presented, blending global knowledge in interpreting
each object locally. Contextual information is based on a novel
semantic processing methodology, employing fuzzy algebra and
ontological taxonomic knowledge representation. In this process,
utilization of contextual knowledge re-adjusts labeling results of
semantic region growing, by means of fine-tuning membership
degrees of detected concepts. The performance of the overall
methodology is evaluated on a real-life still image dataset from
two popular domains.

Index Terms—Fuzzy region labeling, semantic region growing,
semantic segmentation, visual context.

I. INTRODUCTION

A
UTOMATIC segmentation of images is a very challenging

task in computer vision and one of the most crucial steps

toward image understanding. A variety of applications, such as

object recognition, image annotation, image coding and image

indexing, utilize at some point a segmentation algorithm and

their performance depends highly on the quality of the latter. It

was acknowledged that ages-long research has produced algo-

rithms for automatic image and video segmentation [19], [12],

[36], as well as structuring of multimedia content [16], [8]. Soon

it was realized that image and video segmentation cannot over-

come problems like (partial) occlusion, nonrigid motion, over-

segmentation, among many others and reach the necessary level

of efficiency, precision and robustness for the aforementioned

application scenarios.

Research has been focused on the combination of global

image features with local visual features to resolve regional

ambiguities. In [24], a Bayesian network for integrating
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knowledge from low-level and midlevel features was used for

indoor/outdoor classification of images. A multilabel classi-

fication is proposed in [14], similar to a fuzzy logic based

approach, to describe natural scenes that usually belong to

multiple semantic classes. Fuzzy classification was employed

in [38] for region-based image classification. Learning of a

Bayesian Network with classifiers as nodes, in [34], maps low

level video representation to high level semantics for video

indexing, filtering and retrieval. Knowledge on relative spatial

positions between regions of the image is used in [28] as

additional constrains, improving individual region recognition.

The notion of scene context is introduced in [32] as an extra

source for both object detection and scene classification. An ex-

tension of the work presented in [24] was the additional use of

temporal context, as given by the dependence between images

captured within a short period of time [13]. Given the results

of image analysis and segmentation, annotation can be either

semi-automatic, like in [26], where a visual concept ontology

guides the expert through the annotation process, or fully au-

tomatic, like the keyword assignment to regions in [23]. Re-

cently, formal knowledge representation languages, like ontolo-

gies [39], [36] and description logics (DLs) [35] were used for

construction of domain knowledge and reasoning for high level

scene interpretation.

Comparatively to this effort, still, human vision perception

outperforms state-of-the-art computer’s segmentation algo-

rithms. The main reason for this is that human vision is based

also in high level prior knowledge about the semantic meaning

of the objects that compose the image. Moreover, erroneous

image segmentation leads to poor results in recognition of

materials and objects, while at the same time, imperfections of

global image classification are responsible for deficient seg-

mentation. It is rather obvious that limitations of one prohibit

the efficient operation of the other.

In this paper, we propose an algorithm that involves simulta-

neous segmentation and detection of simple objects, imitating

partly the way that human vision works. An initial region la-

beling is performed based on matching a region’s low-level de-

scriptors with concepts stored in an ontological knowledge base;

in this way, each region is associated to a fuzzy set of candi-

date labels. A merging process is performed based on new sim-

ilarity measures and merging criteria that are defined at the se-

mantic level with the use of fuzzy sets operations. Our approach

can be applied to every region growing segmentation algorithm

[1], [21], [10], [30] with the necessary modifications. Region

growing algorithms start from an initial partition of the image

and then an iteration of region merging begins, based on sim-

ilarity criteria until the predefined termination criteria are met.

We adjust appropriately these merging processes as well as the

termination criteria.
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We also propose a context representation approach to use on

top of semantic region growing. We introduce a methodology

to improve the results of image segmentation, based on contex-

tual information. A novel ontological representation for context

is introduced, combining fuzzy theory and fuzzy algebra [22]

with characteristics derived from the Semantic Web, like reifi-

cation [42]. In this process, the membership degrees of labels

assigned to regions derived by the semantic segmentation are

re-estimated appropriately, according to a context-based mem-

bership degree readjustment algorithm. This algorithm utilizes

ontological knowledge, in order to provide optimized member-

ship degrees for the detected concepts of each region in the

scene.

Our experiments employ contextual knowledge derived from

two popular domains, i.e., beach and motorsports. It is worth

noting, that the contextualization part, together with the initial

region labeling step are domain-specific and require the domain

of the images to be provided as input. The rest of the approach

is domain-independent; however, because of the two previously

identified parts, the overall result is that the domain of images

needs to be specified a priori, in order to apply the proposed

methodology.

The structure of this paper is as follows. Section II deals with

the representation of knowledge used. More specifically, in Sec-

tion II-A an ontology-based knowledge representation is de-

scribed, used for visual context analysis, while in Section II-B

a graph-based representation is introduced for the purpose of

image analysis. Section III describes the process of extraction

and matching of visual descriptors for initial region labeling.

Continuing in Section IV, two approaches of semantic segmen-

tation are presented, based on the output of Section III and the

knowledge described in Section II-B. In Section V, we propose

a visual context methodology used on top of semantic segmen-

tation that improves the results of object labeling. Finally, in

Section VI, experimental setup is discussed and both descriptive

and overall results are presented, while Section VII concludes

the paper.

II. KNOWLEDGE REPRESENTATION

A. Ontology-Based Contextual Knowledge Representation

Among all possible knowledge representation formalisms,

ontologies [20], [25], [40] present a number of advantages. In

the context of this work, ontologies are suitable for expressing

multimedia content semantics in a formal machine-processable

representation that allows manual or automatic analysis and fur-

ther processing of the extracted semantic descriptions. As an on-

tology is a formal specification of a shared understanding of a

domain, this formal specification is usually carried out using a

subclass hierarchy with relationships among the classes, where

one can define complex class descriptions (e.g., in DL [6] or

OWL [43]). Among all possible ways to describe ontologies one

can be formalized as follows:

where (1)

In (1), is an ontology, is the set of concepts described by

the ontology, and are two concepts and, is the

semantic relation amongst these concepts. The proposed knowl-

edge model is based on a set of concepts and relations between

them, which form the basic elements towards semantic interpre-

tation of the present research effort. In general, semantic rela-

tions describe specific kinds of links or relationships between

any two concepts. In the crisp case, a semantic relation either

relates or does not relate a pair of con-

cepts with each other. Although almost any type of rela-

tion may be included to construct such knowledge representa-

tion, the two categories commonly used are taxonomic (i.e., or-

dering) and compatibility (i.e., symmetric) relations. However,

as extensively discussed in [3], compatibility relations fail to as-

sist in the determination of the context and the use of ordering

relations is necessary for such tasks. Thus, a first main chal-

lenge is the meaningful utilization of information contained in

taxonomic relations for the task of context exploitation within

semantic image segmentation and object labeling.

In addition, for a knowledge model to be highly descriptive,

it must contain a large number of distinct and diverse relations

among concepts. A major side effect of this approach is the fact

that available information will then be scattered among them,

making each one of them inadequate to describe a context in a

meaningful way. Consequently, relations need to be combined

to provide a view of the knowledge that suffices for context def-

inition and estimation. In this work we utilize three types of re-

lations, whose semantics are defined in the MPEG-7 standard

[31], [7], namely the specialization relation , the part of re-

lation and the property relation .

A last point to consider when designing such a knowledge

model is the fact that real-life data often differ from research

data. Real-life information is in principal governed by uncer-

tainty and fuzziness, thus its modeling is based on fuzzy rela-

tions. For the problem at hand, the above commonly encoun-

tered crisp relations can be modeled as fuzzy ordering relations

and can be combined for the generation of a meaningful fuzzy

taxonomic relation. Consequently, to tackle such complex types

of relations we propose a “fuzzification” of the previous on-

tology definition, as follows:

where

(2)

In (2) defines a “fuzzified” ontology, is again the set of all

possible concepts it describes and denotes a fuzzy relation

amongst two concepts . In the fuzzy case, a fuzzy se-

mantic relation relates a pair of concepts with each other to a

given degree of membership, i.e., the value of lies within the

[0, 1] interval. More specifically, given a universe a crisp set

is described by a membership function (as

already observed in the crisp case for ), whereas according

to [22], a fuzzy set on is described by a membership func-

tion . We may describe the fuzzy set using

the widely applied sum notation [29]:

where is the cardinality of set and concept .

The membership degree describes the membership func-

tion , i.e., , or for the sake of simplicity,
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. As in [22], a fuzzy relation on is a function

and its inverse relation is defined as

. Based on the relations and, for the purpose of

image analysis, we construct the following relation with use

of the above set of fuzzy taxonomic relations: and

(3)

In the aforementioned relations, fuzziness has the following

meaning. High values of imply that the meaning of

approaches the meaning of , in the sense that when an image

is semantically related to , then it is most probably related to

as well. On the other hand, as decreases, the meaning

of becomes “narrower” than the meaning of , in the sense

that an image’s relation to will not imply a relation to as

well with a high probability, or to a high degree. Likewise, the

degrees of the other two relations can also be interpreted as con-

ditional probabilities or degrees of implied relevance. MPEG-7

MDS [31] contains all types of semantic relations, defined to-

gether with their inverses. Sometimes, the semantic interpreta-

tion of a relation is not meaningful whereas the inverse is. In

our case, the relation part is defined as: part if and

only if is part of . For example, let be New York and

Manhattan. It is obvious that the inverse relation part of is

semantically meaningful, since Manhattan is part of New York.

Similarly for the property relation , its inverse is selected.

On the other hand, following the definition of the specialization

relation , is specialization of if and only if is a

specialization in meaning of . For example, let be a mammal

and a dog; means that dog is a specialization of a

mammal, which is exactly the semantic interpretation we wish

to use (and not its inverse). Based on these roles and semantic

interpretations of and , it is easy to see that (3) com-

bines them in a straightforward and meaningful way, utilizing

inverse functionality where it is semantically appropriate, i.e.,

where the meaning of one relation is semantically contradictory

to the meaning of the rest on the same set of concepts. Finally,

the transitive closure is required in order for to be tax-

onomic, as the union of transitive relations is not necessarily

transitive, as discussed in [4].

Representation of our concept-centric contextual knowledge

model follows the Resource Description Framework (RDF)

standard [41] proposed in the context of the Semantic Web.

RDF is the framework in which Semantic Web metadata state-

ments are expressed and usually represented as graphs. The

RDF model is based upon the idea of making statements about

resources in the form of a subject-predicate-object expression.

Predicates are traits or aspects about a resource and express a

relationship between the subject and the object. Relation can

be visualized as a graph, in which every node represents a con-

cept and each edge between two nodes constitutes a contextual

relation between the respective concepts. Additionally each

edge has an associated membership degree, which represents

the fuzziness within the context model. Representing the graph

in RDF is a straight forward task, since the RDF structure itself

is based on a similar graph model.

The reification technique [42] was used in order to achieve

the desired expressiveness and obtain the enhanced function-

Fig. 1. Fuzzy relation representation: RDF reification.

ality introduced by fuzziness. Representing the membership de-

gree associated with each relation is carried out by making a

statement about the statement, which contains the degree in-

formation. Representing fuzziness with reified statements is a

novel but acceptable way, since the reified statement should not

be asserted automatically. For instance, having a statement such

as “Sky PartOf BeachScene” and a membership degree of 0.75

for this statement, does obviously not entail, that sky is always

a part of a beach scene.

A small clarifying example is provided in Fig. 1 for an

instance of the specialization relation . As already discussed,

means that the meaning of “includes” the

meaning of ; the most common forms of specialization are

subclassing, i.e., is a generalization of , and thematic cate-

gorization, i.e., is the thematic category of . In the example,

the RDF subject wrc (World Rally Championship) has special-

izationOf as an RDF predicate and rally forms the RDF object.

Additionally, the proposed reification process introduces a

statement about the former statement on the specializationOf

resource, by stating that 0.90 is the membership degree to this

relation.

The ontology-based contextual knowledge model represen-

tation described in this section was used to construct the con-

textual knowledge for the series of experiments presented in

Section VI. Two domain ontologies were developed for repre-

senting the knowledge components that need to be explicitly de-

fined under the proposed approach. This contains the semantic

concepts that are of interest in the examined domain (i.e., in the

beach domain: sea, sand, sky, person, plant, cliff and in the mo-

torsports domain: car, asphalt, gravel, grass, vegetation, sky),

as well as their interconnecting semantic relations, in terms of

the membership degrees that correspond to each one of the three

fuzzy semantic relations utilized, i.e., and . As op-

posed to concepts themselves, which are manually defined by

domain experts, the degrees of membership for each pair of

concepts of interest, which are required for the construction of

the relations during the ontology building process, are extracted

using a “training set” of 120 images and probabilistic statistical

information derived from it. The two application domains, i.e.,

beach and motorsports, were selected based on their popularity

and the amount of multimedia content available.

B. Graph Representation of an Image

An image can be described as a structured set of individual

objects, allowing thus a straightforward mapping to a graph

structure. In this fashion, many image analysis problems can be

considered as graph theory problems, inheriting the solid the-

oretical grounds of the latter. Attributed relation graph (ARG)
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Fig. 2. Initial region labeling based on ARG and visual descriptor matching.

[9] is a type of graph often used in computer vision and image

analysis for the representation of structured objects.

Formally, an ARG is defined by spatial entities represented

as a set of vertices and binary spatial relationships repre-

sented as a set of edges . Letting be

the set of all connected, nonoverlapping regions/segments of an

image, then a region of the image is represented in the

graph by vertex , where . is the

ordered set of MPEG-7 visual descriptors characterizing the re-

gion in terms of low-level features, while

is the fuzzy set of candidate labels for the region, extracted in

a process described in the following Section. The adjacency re-

lation between two neighbor regions of the image is

represented by graph’s edge . is

a similarity value for the two adjacent regions represented by

the pair . This value is calculated based on the semantic

similarity of the two regions as described by the two fuzzy sets

and

(4)

The above formula states that the similarity of two regions is

the default fuzzy union over all common concepts of the

default fuzzy intersection of the degrees of membership

and for the specific concept of the two regions

and .

Finally, we consider two regions to be connected

when at least one pixel of one region is 4-connected to one pixel

of the other. In an ARG, a neighborhood of a vertex

is the set of vertices whose corresponding regions are connected

to : . It is rather obvious now

that the subset of ARG’s edges that are incident to region can

be defined as: .

The current approach (i.e., using two different graphs within

this work) may look unusual to the reader at the first glance;

however, using RDF to represent our knowledge model does not

entail the use of RDF-based graphs for the representation of an

image in the image analysis domain. Use of ARG is clearly fa-

vored for image representation and analysis purposes, whereas

RDF-based knowledge model is ideal to store in and retrieve

from a knowledge base. The common element of the two repre-

sentations, which is the one that unifies and strengthens the cur-

rent approach, is the utilization of a common fuzzy set notation,

that bonds together both knowledge models. In the following

Section we shall focus on the use of the ARG model and pro-

vide the guidelines for the fundamental initial region labeling of

an image.

III. INITIAL REGION LABELING

Our intention within this work is to operate on a semantic

level where regions are linked to possible labels rather than only

to their visual features. As a result, the above described ARG is

used to store both the low level and the semantic information in a

region-based fashion. Two MPEG-7 Visual Descriptors, namely

dominant color (DC) and homogeneous texture (HT) [27], are

used to represent each region in the low level feature-space,

while fuzzy sets of candidate concepts are used to model high

level information. For this purpose a knowledge assisted anal-

ysis algorithm, discussed in depth in [5], has been designed and

implemented. The general architecture scheme is depicted in

Fig. 2, where in the center lies the ARG, interacting with the

rest processes.

The ARG is constructed based on an initial RSST segmen-

tation [1] that produces a few tens of regions (approximately

30–40 in our experiments). For every region DC and HT are ex-

tracted (i.e., for region : ) and stored in the

corresponding graph’s vertex. Formal definition of the two de-

scriptors as in [27] is

(5)

where is the th dominant color, the color’s variance, the

color’s percentage value, the spatial coherency, and can be
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up to eight. The distance function for two descriptors

is

(6)

where is a similarity coefficient between two colors. Sim-

ilarly for HT we have

(7)

where is the average intensity of the region, is the stan-

dard deviation of the region’s intensity, and and are the

energy and the deviation for thirty frequency

channels. A distance function is also defined

(8)

where is a normalization value for each frequency channel.

For the sake of simplicity and readability, we will use the fol-

lowing two distance notations equivalently:

(similarly for ). This is also justified as we do not

deal with abstract vectors but with image regions and repre-

sented by their visual descriptors.

Region labeling is based on a matching process between the

visual descriptors stored in each vertex of the ARG and the cor-

responding visual descriptors of all concepts , stored in

the form of prototype instances in the ontological knowl-

edge base. Matching of a region with a prototype instance

of a concept is done by combining the indi-

vidual distances of the two descriptors

(9)

where and are given in (6) and (8), and are

weights depending on each concept and

. Additionally, and are normalization func-

tions and more specifically were selected to be linear

(10)

where and are the minimum and maximum of the

two distance functions and , respectively.

After exhaustive matching between regions and all prototype

instances, the last step of the algorithm is to populate the fuzzy

set for all graph’s vertices. The degree of membership of

each concept in the fuzzy set is calculated as follows:

(11)

where is given in (9). This process results to an initial

fuzzy labeling of all regions with concepts from the knowledge

base, or more formally to a set whose ele-

ments are the fuzzy sets of all regions in the image.

This is obviously not a simple task and its efficiency depends

highly on the domain where it is applied, as well as on the quality

of the knowledge base. Main limitations of this approach are

the dependency on the initial segmentation and the creation of

representative prototype instances of the concepts. The latter

is easier to be managed, whereas we deal with the former in

this paper suggesting an extension based on region merging and

segmentation on a semantic level.

IV. SEMANTIC REGION GROWING

A. Overview

The major target of this work is to improve both image

segmentation and labeling of materials and simple objects at

the same time, with obvious benefits for problems in the area

of image understanding. As mentioned in the introduction, the

novelty of the proposed idea lies on blending well established

segmentation techniques with midlevel features, like those we

defined earlier in Section II-B.

In order to emphasize that this approach is independent of the

selection of the segmentation algorithm, we examine two tradi-

tional segmentation techniques, belonging in the general cate-

gory of region growing algorithms. The first is the watershed

segmentation [10], while the second is the recursive shortest

spanning tree (RSST) [30]. We modify these techniques to op-

erate on the fuzzy sets stored in the ARG in a similar way as if

they worked on low-level features (such as color, texture, etc.).

Both variations follow in principles the algorithmic definition of

their traditional counterparts, though several adjustments were

considered necessary and were added. We call this overall ap-

proach semantic region growing (SRG).

B. Semantic Watershed

The watershed algorithm [10] owes its name to the way

in which regions are segmented into catchment basins. A

catchment basin is the set of points that is the local minimum

of a height function (most often the gradient magnitude of the

image). After locating these minima, the surrounding regions

are incrementally flooded and the places where flood regions

touch are the boundaries of the regions. Unfortunately, this

strategy leads to oversegmentation of the image; therefore, a

marker controlled segmentation approach is usually applied.

Markers constrain the flooding process only inside their own

catchment basin; hence the final number of regions is equal to

the number of markers.

In our semantic approach of watershed segmentation, called

semantic watershed, certain regions play the role of markers/

seeds. During the construction of the ARG, every region

has been linked to a graph vertex that contains a fuzzy

set of labels . A subset of all regions are selected to be

used as seeds for the initialization of the semantic watershed al-

gorithm and form an initial set . The criteria for selecting

a region to be a seed are as follows.

1) The height of its fuzzy set (the largest degree of mem-

bership obtained by any element of [22]) should be

above a threshold: . Threshold is dif-

ferent for every image and its value depends on the distri-

bution of all degrees of membership over all regions of the
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particular image. The value of discriminates the top

percent of all degrees and this percentage (calculated

only once) is the optimal value (with respect to the objec-

tive evaluation criterion described in Section VI-A) derived

from a training set of images.

2) The specific region has only one dominant concept, i.e.,

the rest concepts should have low degrees of membership

comparatively to that of the dominant concept

(12)

where is the concetpt such that . These

two constrains ensure that the specific region has been cor-

rectly selected as seed for the particular concept .

An iterative process begins checking every initial re-

gion-seed, , for all its direct neighbors . Let

a neighbor region of , or in other words, is the propagator

region of : . We compare the fuzzy sets of those two

regions element by element and for every concept

in common we measure the degree of membership of region

, for the particular concept . If it is above a merging

threshold , then it is assumed that region

is semantically similar to its propagator and was incorrectly

segmented and therefore, we merge those two. Parameter

is a constant slightly above one, which increases the threshold

in every iteration of the algorithm in a nonlinear way to the

distance from the initial regions-seeds. Additionally region

is added in a new set of regions ( denotes the iteration

step, with , etc.), from which the new seeds

will be selected for the next iteration of the algorithm. After

merging, the algorithm re-evaluates the degrees of membership

of all concepts of

(13)

where is the propagator region of .

The above procedure is repeated until the termination crite-

rion of the algorithm is met, i.e., all sets of regions-seeds in step

are empty: . At this point, we should underline that

when neighbors of a region are examined, previous accessed re-

gions are excluded, i.e., each region is reached only once and

that is by the closest region-seed, as defined in the ARG.

After running this algorithm onto an image, some regions will

be merged with one of the seeds, while other will stay unaf-

fected. In order to deal with these regions as well, we run again

the algorithm on a new ARG each time that consists of the re-

gions that remained intact after all previous iterations. This hi-

erarchical strategy needs no additional parameters, since every

time new regions-seeds will be created automatically based on

a new threshold (apparently with smaller value than be-

fore). Obviously, the regions created in the first pass of the al-

gorithm have stronger confidence for their boundaries and their

assigned concept than those created in a later pass. This is not

a drawback of the algorithm; quite on the contrary, we consider

this fuzzy outcome to be actually an advantage as we maintain

all the available information.

C. Semantic RSST

Traditional RSST [30] is a bottom-up segmentation algorithm

that begins from the pixel level and iteratively merges similar

neighbor regions until certain termination criteria are satisfied.

RSST is using internally a graph representation of image re-

gions, like the ARG described in Section II-B. In the beginning,

all edges of the graph are sorted according to a criterion, e.g.,

color dissimilarity of the two connected regions using Euclidean

distance of the color components. The edge with the least weight

is found and the two regions connected by that edge are merged.

After each step, the merged region’s attributes (e.g., region’s

mean color) is recalculated. Traditional RSST will also recalcu-

late weights of related edges as well and resort them, so that in

every step the edge with the least weight will be selected. This

process goes on recursively until termination criteria are met.

Such criteria may vary, but usually these are either the number

of regions or a threshold on the distance.

Following the conventions and notation used so far, we intro-

duce here a modified version of RSST, called Semantic RSST.

In contrast to the approach described in the previous Section, in

this case no initial seeds are necessary, but instead of this we

need to define (dis)similarity and termination criteria. The cri-

terion for ordering the edges is based on the similarity measure

defined earlier in Section II-B. For an edge between two ad-

jacent regions and we define its weight as follows:

(14)

Equation (14) can be expanded by substituting from (4). We

considered that an edge’s weight should represent the degree of

dissimilarity between the two joined regions; therefore, we sub-

tract the estimated value from one. Commutativity and associa-

tivity axioms of all fuzzy set operations (thus including default

fuzzy union and default fuzzy intersection) ensure that the or-

dering of the arguments is indifferent. In this way all graph’s

edges are sorted by their weight.

Let us now examine in details one iteration of the semantic

RSST algorithm. Firstly, the edge with the least weight is se-

lected as: . Then regions and

are merged to form a new region . Region is removed com-

pletely from the ARG, whereas is updated appropriately. This

update procedure consists of the following two actions.

1) Update of the fuzzy set by re-evaluating all degrees of

membership in a weighted average fashion

(15)

The quantity is a measure of the size (area) of region

and is the number of pixels belonging to this region.

2) Re-adjustment of the ARG’s edges:

a) Removal of edge .

b) Re-evaluation of the weight of all affected edges :

the union of those incident to region and of those

incident to region : .

This procedure continues until the edge with the least

weight in the ARG is above a threshold: . This
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threshold is calculated in the beginning of the algorithm (sim-

ilarly with the traditional RSST), based on the cumulative

histogram of the weights of all edges .

V. VISUAL CONTEXT

The idea behind the use of visual context information re-

sponds to the fact that not all human acts are relevant in all

situations and this holds also when dealing with image anal-

ysis problems. Since visual context is a difficult notion to grasp

and capture [33], we restrict it herein to the notion of ontolog-

ical context. The latter is defined as part of the “fuzzified” ver-

sion of traditional ontologies presented in Section II. In this sec-

tion, the problems to be addressed include how to meaningfully

readjust the membership degrees of the merged regions after the

semantic region growing algorithm application and how to use

visual context to influence the overall results of knowledge-as-

sisted image analysis towards higher performance.

Based on the mathematical background described in detail

in the previous subsections, we introduce the algorithm used

to readjust the degree of membership of each concept

in the fuzzy set associated to a region in a scene.

Each specific concept present in the application-do-

main’s ontology is stored together with its relationship degrees

to any other related concept . To tackle cases that more

than one concept is related to multiple concepts, the term con-

text relevance is introduced, which refers to the overall

relevance of concept to the root element characterizing each

domain . For instance the root element of beach and mo-

torsports domains are concepts beach and motorsports respec-

tively. All possible routes in the graph are taken into considera-

tion forming an exhaustive approach to the domain, with respect

to the fact that all routes between concepts are reciprocal.

Estimation of each concept’s value is derived from direct and

indirect relationships of the concept with other concepts, using

a meaningful compatibility indicator or distance metric. De-

pending on the nature of the domains under consideration, the

best indicator could be selected using the max or the min op-

erator, respectively. Of course the ideal distance metric for two

concepts is again one that quantifies their semantic correlation.

For the problem at hand and given the beach and motorsports

domains, the max value is a meaningful measure of correlation

for both of them. A simplified example, assuming that the only

available concepts are motorsports (the root element—denoted

as ), , and is presented in Fig. 3

and summarized in the following: let concept be related to

concepts and directly with: and , while con-

cept is related to concept with and concept is related

to concept with . Additionally, is related to with .

Then, we calculate the value for

(16)

The general structure of the degree of membership re-evalu-

ation algorithm is as follows.

Fig. 3. Graph representation example. Compatibility indicator estimation.

1) Identify an optimal normalization parameter to use

within the algorithm’s steps, according to the considered

domain(s). The is also referred to as domain similarity,

or dissimilarity, measure and .

2) For each concept in the fuzzy set associated to a re-

gion in a scene with a degree of membership ,

obtain the particular contextual information in the form of

its relations to the set of any other concepts:

.

Calculate the new degree of membership associ-

ated to region , based on and the context’s relevance

value. In the case of multiple concept relations in the on-

tology, relating concept to more than one concepts, rather

than relating solely to the “root element” , an inter-

mediate aggregation step should be applied for :

. We express the calculation of

with the recursive formula

(17)

where denotes the iteration used. Equivalently, for an

arbitrary iteration

(18)

where represents the original degree of membership.

In praxis, typical values for reside between 3 and 5. Inter-

pretation of both (17) and (18) implies that the proposed contex-

tual approach will favor confident degrees of membership for a

region’s concept in conjunction to nonconfident or misleading

degrees of membership. It will amplify their differences, while

on the other hand it will diminish confidence in clearly mis-

leading concepts for a specific region. Further, based on the sup-

plied ontological knowledge it will clarify and solve ambiguities

in cases of similar concepts or difficult-to-analyze regions.

Key point in this approach remains the definition of a mean-

ingful normalization parameter . When re-evaluating these

values, the ideal is always defined with respect to the par-

ticular domain of knowledge and is the one that quantifies their

semantic correlation to the domain. In this work we conducted

a series of experiments on a training set of 120 images for both

application domains and selected the that resulted in the best

overall evaluation score values for each domain.

The proposed algorithm readjusts in a meaningful manner

the initial degrees of membership, utilizing semantics in the

form of the contextual information residing in the constructed

“fuzzified” ontology. In the following Section we discuss the ex-

perimental setup of this work and present both descriptive and

overall results.
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VI. EXPERIMENTAL RESULTS

A. Experiments Setup and Evaluation Procedure

In order to evaluate our work, we carried out experiments in

the domains of beach and motorsports, utilizing a data set of

602 images in total, i.e., 443 beach and 159 motorsports im-

ages acquired either from the Internet or from personal collec-

tions. In the process of evaluating this work and testing its tol-

erance to imprecision in initial labels, we conducted a series of

experiments with a subset of 482 images originating from the

above data set, since 120 images (a 20% subset) was used as

a training set for optimum parameter and threshold estimation,

such as np and . It is a common fact [15], [17] that the

most objective segmentation evaluation includes a relative eval-

uation method that employs a corresponding ground truth. For

this purpose we developed an annotation tool for the manual

construction of the ground truth. Human experts spent an effort

to select and annotate the subset of images utilized during the

evaluation steps. In order to demonstrate the proposed method-

ologies and keep track of each individual algorithm results, we

integrated the described techniques into a single application en-

hanced with a graphical user interface.

The evaluation procedure is always particularly critical be-

cause it quantifies the efficiency of an algorithm, assisting scien-

tific and coherent conclusions to be drawn. Since fuzzy sets were

used throughout this work, we adopted fuzzy sets operations to

evaluate the results. The final output of both semantic region

growing variations, as well as context algorithm is a segmen-

tation mask together with a fuzzy set for any region that

contains all candidate object/region labels with their degrees of

membership. The ground truth of an arbitrary image consists of

a number of connected, nonoverlapping segments that are

associated (manually) to a unique label.

First we calculate the overlap of each region with each seg-

ment of the ground truth, as illustrated in the following

equation, where the quantity is again a measure of the size

of a region and is defined right after (15) in Section IV-C

(19)

Then we calculate the Dombi t-norm [18] with parameter

of the overlap and the membership degree of the corresponding

(to the ground truth’s segment) label

(20)

where is the concept characterizing . Doing this for we

calculate the total score of region using Dombi t-conorm over

all concepts

(21)

Due to associativity axiom of fuzzy sets t-conorms, (21) argu-

ments’ order is totally indifferent. The equation gives us an eval-

uation score of a particular region, which is not completely use-

less, nevertheless is not a measure for the whole image. This

global measure is acquired by applying an aggregation opera-

tion on all individual w.r.t. the size of each region

(22)

Equation (22) provides an overall performance evaluation

score suitable for the herein presented algorithms against some

ground truth.

The above evaluation strategy is also followed for assessing

the segmentation results of the traditional watershed and RSST

algorithms, which is necessary for comparison purposes with

the proposed semantic approach. Obviously both traditional al-

gorithms lack the semantic information (i.e., the fuzzy set for

every region), therefore, we need to insert this at the end of the

process in order to be able to calculate the evaluation score. This

is done by following exactly the methodology presented in Sec-

tion III, i.e., extraction and matching of visual descriptors. The

apparent difference with the semantic segmentation approach is

that labels and degrees are not taken into consideration during

segmentation but only at the end of the process.

B. Indicative Results and Discussion

The overall outcome from evaluation tests conducted on the

entire dataset of images are promising, even in cases where de-

tection of specific object labels is rather difficult; region growing

is guided correctly and ends up in a considerable improvement

of the traditional counterpart segmentation algorithm. Addition-

ally final regions are associated to membership degrees pro-

viding a meaningful measure of belief for the segmentation ac-

curacy.

In the following, we present three detailed sets of descrip-

tive experimental results in order to illustrate the proposed tech-

niques, implicating two images derived from the beach domain

and one image from the motorsports domain. We also include

an illustration of the semantic similarity between two adjacent

regions, as well as a contextualization example on two arbitrary

images to stress both our region similarity calculation approach

and the aid of context in the process. To provide an assessment

overview over both application domains, we present evaluation

results over the entire dataset utilized, implementing both image

segmentation algorithms with and without context optimization.

Each one of the descriptive image sets includes four images:

(a) the original image; (b) the result of the traditional RSST; (c)

of the semantic watershed; and (d) of the semantic RSST. The

ground truth corresponding to the three image sets is included

in Fig. 4. In the case of the traditional RSST, we predefined the

final number of regions to be produced to be equal to that pro-

duced by the semantic watershed; in this fashion, segmentation

results are better comparable.

Fig. 5 illustrates the first example derived from the beach do-

main. An obvious observation is that RSST segmentation per-

formance in Fig. 5(b) is rather poor, given the specific image

content; persons are merged with sand, whereas sea on the left

and in the middle under the big cliff is divided into several re-

gions, while adjacent regions of the same cliff are classified as

different ones. The results of the application of the semantic
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Fig. 4. Ground truth of two beach and one motorsports images.

Fig. 5. Experimental results for the beach domain—Example 1. (a) Input
image. (b) RSST segmentation. (c) Semantic watershed. (d) Semantic RSST.

watershed algorithm are shown in Fig. 5(c) and are consider-

ably better. More specifically, we observe that both parts of sea

are merged together and sea appears unified, both in the upper

left corner and in the middle under the rock. The rocks on the

right side are comprised of only two large regions, although their

original variations in texture and color information. Splitting of

the rocks into two regions is acceptable in this case, since one

region comprises the thick shadow of the cliff, which typically

confuses such a process.

Moreover, identification of the regions that constitute persons

lying on the sand is sufficient, given the difficulty of the task, i.e.,

the fact that irrelevant objects are present in the foreground and

that different low level variations insert a degree of uncertainty

in the process. Good results are obtained also in the case of the

bright shadow in the middle of the image, i.e., underneath the big

cliff curve and below the corresponding sea part. This region is

correctly identified as sand in contradiction to the dark shadow

merged previously with the cliff. Finally, Fig. 5(d) illustrates the

results of the application of our second semantic region growing

approach, based on semantic RSST. In comparison to semantic

watershed results, we observe small differences. For instance,

the cliff on the right side is comprised by three regions and sea

underneath the big cliff curve is also divided. Such variations in

the results are expected, because of the nature of the semantic

TABLE I
DEGREES OF MEMBERSHIP OF EACH CONCEPT FOR FOUR NEIGHBORING

REGIONS OF THE IMAGE OF FIG. 5(a)

TABLE II
SIMILARITY AND WEIGHTS OF THE EDGES BETWEEN THE FOUR NEIGHBORING

REGIONS OF TABLE I

RSST algorithm, i.e., the latter is focused more on material de-

tection. Overall quantitative results are following the described

guidelines and their performance is good, given their individual

total scores, as defined in previous subsection: 0.61 for RSST,

0.85 for semantic watershed and 0.78 for semantic RSST.

At this point, let us examine in detail a specific part of the

image for one iteration of the semantic RSST algorithm. Ini-

tial segmentation and region labeling produced thirty regions

in total with their associated labels. According to the ground

truth, four of them (regions a, b, c, d) correspond to only one

region, which is a sea region. These four regions form a sub-

graph of the , where

and .

In Table I, we illustrate the degrees of membership of each

concept for those four regions. Based on these values and on

(4) and (14), we calculate the similarity of all neighbor re-

gions and the weights of the corresponding edges, as illustrated

in Table II. Utilizing the degrees obtained from Table I, we cal-

culate the similarity of two regions for each concept, as depicted

in the inner columns of Table II.

We can see that the edge with the least weight is , where

and that regions have the greater similarity

value: , based on their common concept sea. Those

two regions are merged and form a new region . According to

(13) the fuzzy set of concepts for the new region is updated

and by substituting the values

Similarly, we calculate , etc. Following the

second step of the algorithm, edge is removed from the graph
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Fig. 6. Experimental results for the beach domain—Example 2. (a) Input
image. (b) RSST segmentation. (c) Semantic watershed. (d) Semantic RSST.

and all affected weights are recalculated according to (13) and

the new fuzzy set .

In Fig. 6, RSST segmentation results [Fig. 6(b)] are again in-

sufficient: some persons are unified with sea segments, while

others are not detected at all and most sea regions are divided

because of the waves. Semantic watershed application results

into significant improvements [Fig. 6(c)]. Sea regions on the left

part of the image are successfully merged together, the woman

on the left is correctly identified as one region, despite the exis-

tence of variations in low level characteristics, i.e., green swim-

suit versus color of the skin, etc. Persons on the right side are

identified and not merged with sea or sand regions, having as a

side effect the fact that there are multiple persons in the image

and not just a single one. Very good results are obtained in the

case of the sea in the right region, although it is inhomoge-

neous in terms of color and material because of the waving. We

observe that it is successfully merged into one region and the

person standing in the foreground is also identified as a whole.

Finally, the semantic RSST algorithm in Fig. 6(d) performs sim-

ilarly well. Small differences between semantic watershed and

semantic RSST are justified by the fact that with the semantic

RSST approach focus is given on material and not in objects in

the image. Consequently, persons are identified with greater ac-

curacy in the image and are segmented, but not wrongly merged,

e.g., the woman on the left is composed by multiple regions due

to the nature of the material or people on the right are composed

by different regions. In terms of the objective evaluation score,

results are verifying previous observations, namely RSST has a

score of 0.82, semantic watershed a score of 0.90, and semantic

RSST a score of 0.88.

Results from the motorsports domain are described in Fig. 7.

More specifically, in Fig. 7(a) we present the original image de-

rived from the World Rally Championship. Plain segmentation

results [Fig. 7(b)] are again poor, since they do not identify cor-

rectly materials and objects in the image and incorrectly unify

large portions of the latter into a single region. Fig. 7(c) and (d)

illustrate distinctions between vegetation and cliff regions in the

Fig. 7. Experimental results for the motorsports domain. (a) Input image. (b)
RSST segmentation. (c) Semantic watershed. (d) Semantic RSST.

upper left corner of the image. Even different vegetation areas

are identified as different regions in the same area. Furthermore,

the car’s windshield remains correctly a standalone region, be-

cause of its large color and material diversities in comparison to

the regions in its neighborhood. Because of the difficulties and

obstacles set by the nature of the image, the thick shadow in

the front of the car is inevitably unified with the front dark part

of the latter and the “gravel smoke” on the side is recognized

as gravel, resulting into a deformation of the vehicle’s chassis.

These are two cases where both semantic region growing al-

gorithms seem to perform poorly. This is due to the fact that

the corresponding segments differ visually and the possible de-

tected object is a composite one—in contradiction to the so far

encountered material objects—and is composed by regions of

completely different characteristics. Furthermore, on the right

side of the image, the yellow ribbon is dividing two similar but

not identical gravel regions, fact that is correctly identified by

our algorithm. The main difference between the semantic water-

shed and semantic RSST approaches is summarized in the way

they handle vegetation in the upper left corner of the image, with

semantic RSST performing closer to the ground truth, since it

detects the variations in vegetation and grass successfully. Fi-

nally, in terms of evaluation, we observe the following scores:

0.64 for RSST, 0.70 for semantic watershed and 0.71 for se-

mantic RSST.

At this point we continue by presenting a detailed visual-

ization of the contextualization step implemented within our

approach. In general, our context algorithm successfully aids

in the determination of regions in the image and corrects mis-

leading behaviors, originating from over- or under-segmenta-

tion, by meaningfully adjusting their membership degrees. Uti-

lizing the training set of 120 images, we selected the np value

that resulted in the best overall evaluation score values for each

domain. In other words, one np value is used for images be-

longing to the beach domain, namely and a different

one is utilized when dealing with images from the motorsports

domain, i.e., in this case.



308 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 3, MARCH 2007

Fig. 8. Contextual experimental results for the first beach image example.

In Fig. 8 we observe the contextualization step for the first

beach image, presented within the developed contextual anal-

ysis tool. Contextualization, which works on a per region basis,

is applied after semantic region growing, in order for its results

to be meaningful. We have selected the unified sea region in

the upper left part of the image, as illustrated by its artificial

electric-blue color. The contextualized results are presented in

red in the right column at the bottom of the tool. Context fa-

vors strongly the fact that the merged region belongs to sea, in-

creasing its degree of membership from 86.15% to a crisp 92%.

The totally irrelevant (for the region) membership degree for

person is extinguished, whereas medium degrees of member-

ship for the rest of the possible beach concepts are slightly in-

creased, due to the ontological knowledge relations that exist in

the considered knowledge model. In all cases context normal-

izes results in a meaningful manner, i.e., the dominant concept

is detected with increased degree of membership.

To illustrate further the aid of context in our approach, we

also present Table III, which illustrates the merged region con-

cepts together with their membership degrees before and after

the aid of visual context in the case of the second beach image.

Table III is provided in order to summarize the influence of con-

text on the merged regions, indicating significant improvements

in most cases. The first column of the Table represents the final

merged region id after the application of our semantic image

segmentation approach. Each of the next six concept columns

includes a twofold value, i.e., the membership degree without

and with the aid of context. Pairs of values in boldface indicate

the ground truth for the specific region.

It is easy to observe that in the majority of cases context op-

timizes the final labeling results, in terms of improving the con-

cept’s membership degree. Ground truth values are highlighted

in order to provide comparative results to the reader, since these

are the values of interest during the evaluation process. For in-

stance, when considering region 0, which is a sea region ac-

cording to the ground truth, context improves sea’s membership

degree by an 11.11% increase from 0.81 to 0.90. Similarly, con-

sidering region 18, context denotes a 13.10% increase regarding

the actual sky concept, whereas region 29 illustrates a 6.69% in-

crease of the membership degree for context, when tackling the

sand concept. The above ground truth concept improvements

(e.g., an overall average value of 12.55% for the concept sea

and 6.17% for the concept person) are important, as depicted

by their percentage increase and as they provide a basic evalua-

tion tool of the proposed approach. As an overall conclusion, it

is evident that a clear trend exists in most cases, i.e., the appli-

cation of visual context affects positively the semantic segmen-

tation process and this can be verified by the available ground

truth information.

C. Overall Results

Finally, in the process of evaluating this work and testing its

tolerance to imprecision in initial labels, we provide an evalu-

ation overview of the application of the proposed methodology

on the dataset of the beach domain. It must be pointed out that

for the experiments regarding semantic watershed, the same

value of was used. For the estimation of the value ,

we need to calculate the percentage , as mentioned in Sec-

tion IV-B. This is achieved by running the semantic watershed

algorithm on the training set defined in Section VI-A and cal-

culating the overall evaluation score for eight different values
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TABLE III
FINAL DEGREES OF MEMBERSHIP BEFORE AND AFTER APPLYING VISUAL CONTEXT TO THE SECOND BEACH IMAGE—BOLDFACE INDICATE GROUND TRUTH

INFORMATION

TABLE IV
EVALUATION SCORES OF SEMANTIC WATERSHED ALGORITHM FOR THE

TRAINING SET, WITH RESPECT TO PERCENTAGE p

of (see Table IV). In this way we acquired the best results for

%.

In Table V, detection results for each concept, as well as the

overall score derived from the six beach domain concepts are il-

lustrated. Scores are presented for six different algorithms: tra-

ditional watershed (W), semantic watershed (SW), semantic wa-

tershed with context (SW+C), traditional RSST (R), semantic

RSST (SR), and semantic RSST with context (SR+C). Appar-

ently, concept sky has the best score among the rest, since its

color and texture are relatively invariable. Visual context indeed

aids the labeling process, even with the overall marginal im-

provement of approximately 2%, given in Table V, a fact mainly

justified by the diversity and the quality of the provided image

data set. Apart from that, the efficiency of visual context de-

pends also on the particularity of each specific concept; for in-

stance, in Table V we observe that in the case of the semantic

watershed algorithm and for the concepts sea and person the im-

provement measured over the complete dataset is 5% and 7.2%,

respectively. Similarly, in the case of the semantic RSST and for

concepts sea, sand, and person we see an overall increase signif-

icantly above the 2% average, namely 7.2%, 7.3%, and 14.6%,

respectively.

Adding visual context to the segmentation algorithms is not

an expensive process, in terms of computational complexity or

timing. Average timing measurements for the contextualizing

process on the set of 355 beach images illustrate that visual con-

text is a rather fast process, resulting in an overall optimization

of the results. Based on our implementation, initial color image

segmentation resulting to approximate 30–40 regions requires

about 10 s, while visual descriptors extraction and initial re-

gion labeling are the major bottleneck, requiring 60 and 30 s,

TABLE V
OVERALL AND PER CONCEPT DETECTION SCORES FOR THE ENTIRE BEACH

DOMAIN

respectively. Comparing to the above numbers, all proposed al-

gorithms (semantic watershed, semantic RSST and visual con-

text) have significantly lower computational time, in the order

of one second. It is also worth noting, that context’s resulting

effect achieves an optimum of 13.10% increase, justifying its

effectiveness in the semantic image segmentation process.

In order to test the robustness of our approach to impreci-

sion in initial labels, we added several levels of Gaussian noise

on the membership degrees of the initial region labeling of the

images and repeated exactly the same experiment for semantic

watershed segmentation to obtain a final evaluation score. We

used a variety of values for the Gaussian noise variance, ranging

from 0 (noise-free) to 0.30 with a step of 0.025. This variation

scale was selected because it was observed that values above

0.30 produced erroneous results for all images, obtaining un-

feasible membership degrees above 100%. The selection of the

noise model is indifferent, since we want to test our algorithm

with randomly altered input (i.e., partly incorrect initial labeling

values) and this random alternation does not have to follow a

specific distribution.

Application of Gaussian noise to the entire subset of 482 im-

ages resulted to the construction of the evaluation diagram pre-

sented in Fig. 9, illustrating the mean value for the evaluation

score of each concept, as well as the overall evaluation score

of the beach domain over different noise levels. As observed

in Fig. 9 the overall behavior of our approach is stable and ro-

bust, considering minimal to medium amount of noise. More

specifically, for small values of Gaussian noise, the total eval-

uation score remains at the same level as the noise-free score,
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Fig. 9. Evaluation of semantic watershed’s robustness against Gaussian noise
over the entire data set of images.

approximately 70%–80%, while individual scores for each con-

cept vary between 55%–95%, which is very good given the di-

versity of the image data set. Concepts sky and sea prove to

have great resilience to noise, since we observe nearly stable

and close to noise-free series of values even for great variance

of Gaussian noise. In cases of very stressful noise, we expect

that the proposed framework will conclude to nondeterministic

behavior, which is verified by the evaluation score presented

for high values of Gaussian noise addition; the evaluation score

degrades and increases independently of the amount of noise

added to the original images. However, provided that additional

noise is kept to sane levels, the overall performance of the pro-

posed contextual semantic region segmentation methodologies

is decent.

VII. CONCLUSION

The methodologies presented in this paper can be exploited

towards the development of more intelligent and efficient image

analysis environments. Image segmentation and detection of

materials and simple objects based on the semantic level, with

the aid of contextual information, results into meaningful re-

sults. The core contributions of the overall approach have been

the implementation of two novel semantic region growing algo-

rithms, acting independently from each other, as well as a novel

visual context interpretation based on an ontological representa-

tion, exploited towards optimization of the region label degrees

of membership provided by the segmentation results. Another

important point to consider is the provision of simultaneous still

image region segmentation and labeling, providing a new aspect

to traditional object detection techniques. In order to verify the

efficiency of the proposed algorithms when faced with real-life

data, we have implemented and tested them in the framework of

developed research applications.

This approach made some interesting steps towards the

correct direction and its developments are currently influencing

subsequent research activities in the area of semantic-based

image analysis. Future research efforts include tackling of com-

posite objects in an image, utilizing both subgraphs and graphs

instead of the straightforward approach of describing the image

as a structured set of simple individual objects. Additionally,

further exploitation of ontological knowledge is feasible by

adding reasoning services as extensions to current approach. A

fuzzy reasoning engine can compute fuzzy interpretations of

regions, based on labels and fuzzy degrees, driving the segmen-

tation process in a more structured way than for example the

semantic distance of two neighbor regions used in this paper.

In this work, visual context aided to an extend to the semantic

segmentation process (i.e., 7%–8% on average), however, it is

the authors’ belief that increased optimization can be achieved

within a future, tweaked contextualization approach and our re-

search efforts are focused on this field, as well. For instance,

spatiotemporal relations may also be utilized during the con-

textualization step, whereas part of the proposed methodology

may be used for detection of objects, i.e., incorporating alterna-

tive techniques in comparison to the graph matching technique

currently utilized. Finally, conducting experiments over a much

larger data set is within our priorities, as well as constructing

proportionately ground truth information, while application of

the proposed methodologies to video sequences remains always

a challenging task.
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