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Label Ground Truth CRN [8] pix2pixHD [45] Ours

Figure 5: Visual comparison of semantic image synthesis results on the COCO-Stuff dataset. Our method successfully

synthesizes realistic details from semantic labels.

Label Ground Truth CRN [8] SIMS [40] pix2pixHD [45] Ours

Figure 6: Visual comparison of semantic image synthesis results on the ADE20K outdoor and Cityscapes datasets. Our

method produces realistic images while respecting the spatial semantic layout at the same time.

COCO-Stuff ADE20K ADE20K-outdoor Cityscapes

Method mIoU accu FID mIoU accu FID mIoU accu FID mIoU accu FID

CRN [8] 23.7 40.4 70.4 22.4 68.8 73.3 16.5 68.6 99.0 52.4 77.1 104.7

SIMS [40] N/A N/A N/A N/A N/A N/A 13.1 74.7 67.7 47.2 75.5 49.7

pix2pixHD [45] 14.6 45.8 111.5 20.3 69.2 81.8 17.4 71.6 97.8 58.3 81.4 95.0

Ours 37.4 67.9 22.6 38.5 79.9 33.9 30.8 82.9 63.3 62.3 81.9 71.8

Table 1: Our method outperforms current leading methods in semantic segmentation scores (mean IoU and overall pixel

accuracy) and FID [17] on all the benchmark datasets. For mIoU and pixel accuracy, higher is better. For FID, lower is better.

the distance between the distributions of synthesized results

and the distribution of real images.

Baselines. We compare our method with three leading se-

mantic image synthesis models: the pix2pixHD model [45],

the cascaded refinement network model (CRN) [8], and

the semi-parametric image synthesis model (SIMS) [40].

pix2pixHD is the current state-of-the-art GAN-based con-

ditional image synthesis framework. CRN uses a deep net-

work that repeatedly refines the output from low to high res-

olution, while the SIMS takes a semi-parametric approach

that composites real segments from a training set and refines

the boundaries. Both the CRN and SIMS are mainly trained

using image reconstruction loss. For a fair comparison, we

train the CRN and pix2pixHD models using the implemen-

tations provided by the authors. As synthesizing an image

using SIMS requires many queries to the training dataset,

it is computationally prohibitive for a large dataset such as

COCO-stuff and the full ADE20K. Therefore, we use the

result images provided by the authors whenever possible.

Quantitative comparisons. As shown in Table 1, our
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Figure 7: Semantic image synthesis results on the Flickr Landscapes dataset. The images were generated from semantic

layout of photographs on Flickr.

method outperforms the current state-of-the-art methods by

a large margin in all the datasets. For COCO-Stuff, our

method achieves a mIoU score of 35.2, which is about 1.5

times better than the previous leading method. Our FID

is also 2.2 times better than the previous leading method.

We note that the SIMS model produces a lower FID score

but has poor segmentation performances on the Cityscapes

dataset. This is because the SIMS synthesizes an image by

first stitching image patches from the training dataset. As

using the real image patches, the resulting image distribu-

tion can better match the distribution of real images. How-

ever, because there is no guarantee that a perfect query (e.g.,

a person in a particular pose) exists in the dataset, it tends

to copy objects with mismatched segments.

Qualitative results. In Figures 5 and 6, we provide a

qualitative comparison of the competing methods. We find

that our method produces results with much better visual

quality and fewer artifacts, especially for diverse scenes in

the COCO-Stuff and ADE20K dataset. When the training

dataset size is small, the SIMS model also renders images

with good visual quality. However, the depicted content

often deviates from the input segmentation mask (e.g., the

shape of the swimming pool in the second row of Figure 6).

In Figures 7 and 8, we show more example results from

the Flickr Landscape and COCO-Stuff datasets. The pro-

posed method can generate diverse scenes with high image

fidelity. More results are included in the appendix of our

Dataset
Ours vs. Ours vs. Ours vs.

CRN pix2pixHD SIMS

COCO-Stuff 79.76 86.64 N/A

ADE20K 76.66 83.74 N/A

ADE20K-outdoor 66.04 79.34 85.70

Cityscapes 63.60 53.64 51.52

Table 2: User preference study. The numbers indicate the

percentage of users who favor the results of the proposed

method over the competing method.

arXiv version.

Human evaluation. We use Amazon Mechanical Turk

(AMT) to compare the perceived visual fidelity of our

method against existing approaches. Specifically, we give

the AMT workers an input segmentation mask and two

synthesis outputs from different methods and ask them to

choose the output image that looks more like a correspond-

ing image of the segmentation mask. The workers are given

unlimited time to make the selection. For each comparison,

we randomly generate 500 questions for each dataset, and

each question is answered by 5 different workers. For qual-

ity control, only workers with a lifetime task approval rate

greater than 98% can participate in our evaluation.

Table 2 shows the evaluation results. We find that users

strongly favor our results on all the datasets, especially on

the challenging COCO-Stuff and ADE20K datasets. For the

Cityscapes, even when all the competing methods achieve
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Figure 8: Semantic image synthesis results on COCO-Stuff. Our method successfully generates realistic images in diverse

scenes ranging from animals to sports activities.

Method #param COCO. ADE. City.

decoder w/ SPADE (Ours) 96M 35.2 38.5 62.3

compact decoder w/ SPADE 61M 35.2 38.0 62.5

decoder w/ Concat 79M 31.9 33.6 61.1

pix2pixHD++ w/ SPADE 237M 34.4 39.0 62.2

pix2pixHD++ w/ Concat 195M 32.9 38.9 57.1

pix2pixHD++ 183M 32.7 38.3 58.8

compact pix2pixHD++ 103M 31.6 37.3 57.6

pix2pixHD [45] 183M 14.6 20.3 58.3

Table 3: mIoU scores are boosted when SPADE lay-

ers are used, for both the decoder architecture (Figure 4)

and encoder-decoder architecture of pix2pixHD++ (our im-

proved baseline over pix2pixHD [45]). On the other hand,

simply concatenating semantic input at every layer fails to

do so. Moreover, our compact model with smaller depth at

all layers outperforms all baselines.

high image fidelity, users still prefer our results.

The effectiveness of SPADE. To study the impor-

tance of SPADE, we introduce a strong baseline called

pix2pixHD++, which combines all the techniques we find

useful for enhancing the performance of pix2pixHD except

SPADE. We also train models that receive segmentation

mask input at all the intermediate layers via concatenation

(pix2pixHD++ w/ Concat) in the channel direction. Finally,

the model that combines the strong baseline with SPADE

is denoted as pix2pixHD++ w/ SPADE. Additionally, we

compare models with different capacity by using a different

number of convolutional filters in the generator.

Method COCO ADE20K Cityscapes

segmap input 35.2 38.5 62.3

random input 35.3 38.3 61.6

kernelsize 5x5 35.0 39.3 61.8

kernelsize 3x3 35.2 38.5 62.3

kernelsize 1x1 32.7 35.9 59.9

#params 141M 35.3 38.3 62.5

#params 96M 35.2 38.5 62.3

#params 61M 35.2 38.0 62.5

Sync Batch Norm 35.0 39.3 61.8

Batch Norm 33.7 37.9 61.8

Instance Norm 33.9 37.4 58.7

Table 4: The SPADE generator works with different con-

figurations. We change the input of the generator, the con-

volutional kernel size acting on the segmentation map, the

capacity of the network, and the parameter-free normaliza-

tion method. The settings used in the paper are boldfaced.

As shown in Table 3 the architectures with the pro-

posed SPADE consistently outperforms its counterparts, in

both the decoder-style architecture described in Figure 4

and more traditional encoder-decoder architecture used in

pix2pixHD. We also find that concatenating segmentation

masks at all intermediate layers, an intuitive alternative to

SPADE to provide semantic signal, does not achieve the

same performance as SPADE. Furthermore, the decoder-

style SPADE generator achieves better performance than

the strong baselines even when using a smaller number of

parameters.
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Figure 9: Our model attains multimodal synthesis capability when trained with the image encoder. During deployment,

by using different random noise, our model synthesizes outputs with diverse appearances but all having the same semantic

layouts depicted in the input mask. For reference, the ground truth image is shown inside the input segmentation mask.

Variations of SPADE generator. Table 4 reports the per-

formance of variations of our generator. First, we compare

two types of the input to the generator: random noise or

downsampled segmentation maps. We find that both ren-

der similar performance, and conclude that the modulation

by SPADE alone provides sufficient signal about the input

mask. Second, we vary the type of parameter-free normal-

ization layers before applying the modulation parameters.

We observe that SPADE works reliably across different nor-

malization methods. Next, we vary the convolutional kernel

size acting on the label map, and find that kernel size of

1x1 hurts performance, likely because it prohibits utilizing

the context of the label. Lastly, we modify the capacity of

the generator network by changing the number of convolu-

tional filters. We present more variations and ablations in

the arXiv version for more detailed investigation.

Multi-modal synthesis. In Figure 9, we show the mul-

timodal image synthesis results on the Flickr Landscape

dataset. For the same input segmentation mask, we sam-

ple different noise inputs to achieve different outputs. More

results are included in the arXiv paper.

Semantic manipulation and guided image synthesis. In

Figure 1, we show an application where a user draws dif-

ferent segmentation masks, and our model renders the cor-

responding landscape images. Moreover, our model allows

users to choose an external style image to control the global

appearances of the output image. We achieve it by replac-

ing the input noise with the embedding vector of the style

image computed by the image encoder.

5. Conclusion

We have proposed the spatially-adaptive normalization,

which utilizes the input semantic layout while performing

the affine transformation in the normalization layers. The

proposed normalization leads to the first semantic image

synthesis model that can produce photorealistic outputs for

diverse scenes including indoor, outdoor, landscape, and

street scenes. We further demonstrate its application for

multi-modal synthesis and guided image synthesis.
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