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Abstract

Conventional sensor-based localization relies on high-precision maps, which are generally built using specialized mapping tech-
niques involving high labor and computational costs. In the architectural, engineering and construction industry, Building Informa-
tion Models (BIM) are available and can provide informative descriptions of environments. This paper explores an effective way
to localize a mobile 3D LiDAR sensor on BIM-generated maps considering both geometric and semantic properties. First, original
BIM elements are converted to semantically augmented point cloud maps using categories and locations. After that, a coarse-to-fine
semantic localization is performed to align laser points to the map based on iterative closest point registration. The experimental
results show that the semantic localization can track the pose successfully with only one LiDAR sensor, thus demonstrating the
feasibility of the proposed mapping-free localization framework. The results also show that using semantic information can help
reduce localization errors on BIM-generated maps.
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1. Introduction

Localization is an essential capability for robot navigation
that estimates the position and orientation of a robot. Almost
all construction robots, whether tele-operated or autonomous
require the estimated poses from the localization module to
achieve safe human operation or self-navigation [1, 2].

With the development of sensor technologies, indoor lo-
calization can be achieved by deploying AprilTag [3], ultra-
wideband [4] or other signal emitters in buildings. Such meth-
ods rely on the distribution of sensors and inherently lack flexi-
bility within large built-up environments. Instead of deploying
sensors in such environments, a more popular approach is to
utilize the perception capabilities of onboard sensors, such as
laser scanners and cameras, which can improve the generaliz-
ability of the localization module in large scenes.

In robotics, a general localization approach is the Simultane-
ous Localization and Mapping (SLAM) system [5, 6], which
achieves mapping and localization simultaneously using on-
board sensors. However, for some long-term applications that
operate under stable conditions, i.e., a quadruped robot work-
ing daily on building inspection, the mapping process of SLAM
is redundant because the generated map is almost invariant in
each run of SLAM. Besides that, a complete SLAM system re-
quires high computing resources and multiple additional mod-
ules to guarantee both efficiency and accuracy, such as online
loop closing [7], map management [8] and sensor calibration
[9], leading to high costs for long-term operations.

A two-stage approach is widely used to address this problem:
first mapping and then metric localization within the known
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map [10, 11]. In this approach, map building is required only
once and after that localization on the map is able to handle
the pose tracking for long-term operations, thereby reducing the
complexity of repetitive SLAM processes. In the Architectural,
Engineering and Construction (AEC) industry, some models
or representations are directly available, such as Computer-
aided Design (CAD) or Building Information Models (BIM).
These map-like representations contain informative measure-
ments that are human readable. We propose the idea that high-
cost pre-mapping may not always be necessary in known built
environments, and mapping-free localization could be an alter-
native choice.

On the other hand, architectural CAD and BIM are designed
for construction and building management so they are not
localization-oriented. To bridge the gap between architectural
models and pose estimation, a number of research works pro-
posed to align laser points or visual images to the as-designed
models [12, 13, 14, 15]. However, almost all alignment ap-
proaches were performed using only geometric properties of
observed points and models. In recent years, with the popular-
ity of BIM, semantically rich models provide high-level seman-
tic information for building construction and management. This
semantic information is helpful for scene understanding and is
easy to obtain compared to traditional CAD models. Thus, we
hypothesize that the semantic property of BIM could help im-
prove the performance of robot localization.

Deep learning techniques have been widely used to build a
semantic localization method for feature extraction and data as-
sociation [16, 17, 18]. Large amounts of labeled data is re-
quired to train neural networks and these existing works can
not guarantee the generalization ability in unseen environments.
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In addition, learning-based localization methods are generally
computationally expensive with high time costs in the inference
stage, especially for real-time 3D LiDAR points, leading to in-
efficient applications when using resource-constrained devices.

It is concluded that a desirable localization in BIM requires
both effectiveness and efficiency for applications in the real
world. In this paper, a novel learning-free framework is pro-
posed to achieve localization on BIM-generated maps with only
one 3D mobile LiDAR sensor, as shown in Figure 1. Specifi-
cally, the entire framework consists of two pipelines: offline
BIM-to-Map conversion and online coarse-to-fine localization.
The offline pipeline can convert the as-designed BIM to seman-
tically augmented point cloud maps. After that, these semantic
maps are utilized to filter input laser points, and pose tracking
is achieved by performing Iterative Closest Point (ICP) on the
filtered points. The entire framework requires no deep learning
for feature extraction or pose regression, making it totally in-
terpretable. Finally, extensive experiments are conducted using
our self-collected multi-session dataset in a real-world univer-
sity building.

Our major contributions are summarized as follows:

• A pipeline is built to effectively convert BIM to semantic
point cloud maps, which can bridge the gap between dig-
ital representations and localization-oriented maps. The
pipeline does not require manually labeled data.

• The semantic information of BIM is utilized to filter
laser points and weight data associations, thus building
a semantic-aided LiDAR localization on BIM-generated
maps.

• The proposed method is validated in a real-world build-
ing via multi-session tests. Experimental results validate
the feasibility and effectiveness of semantic localization
on BIM-generated maps.

The rest of this paper is organized as follows: the related
work is presented in Section 2. The proposed semantic localiza-
tion framework is introduced in Section 3. Section 4 reports the
experimental set-up and results on our self-collected datasets.
Section 5 presents conclusions and future studies.

2. Related Work

2.1. Robot localization on CAD or BIM-based maps
Many research publications have reviewed pose estimation

topics from different perspectives, including deep learning-
based [28], sensor-based [29, 30, 31], etc. These research pa-
pers mainly focused on robot localization on visual or lidar
maps, which require SLAM or data collection for pre-mapping.
In this study, we propose to achieve mapping-free localization,
and the related works mainly focus on CAD or BIM-based lo-
calization in this subsection.

Floor plans or point clouds can be generated from CAD mod-
els for LiDAR localization [32, 19, 20, 21, 14, 22]. Researchers
in [32] proposed to localize a 2D laser scanner on floor plans
and hand-drawn maps using stochastic gradient descent. At

the back-end, pose graphs were built in [19, 20] to increase
the localization robustness on floor plan-based maps. As for
localization in 3D space, ICP-based alignment is considered
an effective method to track the robot pose [14]. Other than
the point-based ICP method, meshes were also used for robot
global localization without the need of an initial guess in [33].
Recently, researchers in [34] proposed a novel interface to con-
nect building construction and map representation, which could
also detect deviations between as-designed and as-built models
via localization results.

Compared to traditional CAD models, BIM is more interop-
erable in the construction industry and contains more seman-
tic information that may be suitable for robot navigation. For
single-frame-based localization, photogrammetric point clouds
can be aligned to BIM [15] for camera pose estimation from
scratch. As for pose tracking, visual-based pose tracking was
also demonstrated to be effective [13], in which camera poses
were estimated by aligning images to BIM models. In [17],
learning-based visual localization was proposed for facility
operations and management. Generally, deep learning-based
methods rely on pre-trained neural networks for feature extrac-
tion or pose regression, bringing difficulties for debugging and
deployment in the real world. Researchers in [27] extracted
semantic features without learning and also performed robot
localization in BIM using 2D laser scans. Some recent stud-
ies [23, 25, 26] also used BIMs as maps in Gazebo for robot
planning tasks, in which Adaptive Monte Carlo Localization
(AMCL) [24] was used to track the mobile robot pose. These
recent studies inspire us that it is feasible to integrate BIM into
robotic systems as maps.

Table 1 presents several representative studies with brief de-
scriptions. Most of these works in the table used some other
sensors as support, such as wheel odometry [21, 27] and IMU
[22, 23], which will increase the robustness of the localization
module. But on the other hand, these sensors bring higher hard-
ware costs and potential calibration problems. Besides that,
many works utilized state estimators at the back-end, i.e., graph
optimization-based [20, 21] and particle filter-based [23, 25],
which are mainly designed for multiple sensor fusion. These
methods are more computational expensive compared to those
that only use scan matching at the front-end [14]. In this study,
only one LiDAR scanner is used for pose estimation, and the
method can be deployed on a resource-constrained laptop de-
vice.

Furthermore, most studies only used the geometric informa-
tion for localization. In [14] and [27], semantic information
was integrated into LiDAR localization system. Specifically,
in [14], semantic information was generated from learning-
based image segmentation, and the researchers validated the
method using a stationary robot. In [27], semantic features
were extracted from laser scans and then matched to BIM-based
database. The features were sparse compared to laser points,
and a factor graph was also built to achieve pose estimation in
[27]. Overall, our method is inspired by these existing studies,
and we propose to build a semantic-aided LiDAR-only local-
ization on BIM-generated point cloud maps.
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Table 1: Selected LiDAR-based localization on CAD or BIM-based maps

Ref. Source of
map Sensors for localization Task / Method / Highlight Experimental

validation

[19] floor plan 2D LiDAR robot localization via pose-graph SLAM and
GICP-based scan-to-map matching real world

[20] floor plan 2D LiDAR increase the robusteness and efficiency of [19] real world

[21] floor plan 3D LiDAR and wheel
encoder and gyroscope

global localization using edge features and pose
tracking using factor graph real world

[14] 3D floor plan 3D LiDAR and cameras selective ICP-based localization by integrating
semantic information from images

real world
(stationary)

[22] floor plan 3D LiDAR and IMU build a novel nearest neighbour field on CAD for
efficient feature registration real world

[23] BIM 2D LiDAR and IMU
(Husky A200 MRP)

propose BIM-generated time-dependent maps,
and use AMCL [24] for localization

Gazebo and
real world

[25] BIM 2D LiDAR and odometry
(Neobotix MMO-500)

develop a robotic wall painting system, including
AMCL for localization Gazebo

[26] BIM 2D LiDAR and odometry
(Turtlebot2)

create a semantic building world for task
planning, including AMCL for localization Gazebo

[27] BIM 2D LiDAR and wheel
odometry

robot localization via feature matching in
spatial-semantic database and factor graph real world

Ours BIM 3D LiDAR semantic localization via filtering points using
BIM and performing semantic ICP real world

2.2. Semantic mapping and localization

Semantic mapping and localization is a popular topic in the
robotics community. Compared to geometric-only localization,
semantic localization is able to closely mimic human under-
standing of the real world.

Semantic information is easy to extract from visual im-
ages. A typical semantic-based visual localization is retrieving
query images from database, namely visual place recognition
or global localization [29]. Semantic information is also help-
ful for metric pose estimation [35]. Almost all semantic-based
visual localization require deep neural networks for feature ex-
traction at the front-end.

As for point cloud-based localization, researchers also pro-
posed to use semantics to enhance the data matching. A seman-
tic ICP-based registration was proposed and validated in RGBD
dataset [36]. Similarly, semantic ICP was also used in [16] to
localize a vehicle on the road. In [37], semantic-based LiDAR
SLAM was tested in challenging forest environments, where
tree trunks can be segmented by neural networks. Overall, se-
mantic information was obtained by manually labeled data and
trained networks in [36, 16, 37]. In this study, the input laser
points are labeled using the BIM-generated maps, which could
make the localization module more efficient.

3. Methodology

3.1. Overview
Given a mobile LiDAR scanner and a BIM file, we denote

the input LiDAR data as Pk at timestamp k and the global point
cloud map asM. The timestamp index is omitted for simplified
representation of a single time instance in this paper. The main
problem of metric localization is how to alignP to the reference
M by estimating a transformation T = [R, t] ∈ SE(3),R4×4,
where R and t are estimated rotation and translation respec-
tively. The alignment must be precise and efficient to guaran-
tee the estimation of Tk=1,2,···with sequential inputs Pk=1,2,···, or
namely pose tracking. In the context of this paper, pose tracking
and localization are deemed to have the same meaning.

As shown in Figure 1, the proposed semantic localization
framework consists of two pipelines: offline BIM-to-Map con-
version and online semantic localization with a mobile LiDAR
scanner. The offline pipeline converts original BIM file to a
localization-oriented point cloud map M, and also labels the
map points with categories from BIM. The semantic localiza-
tion pipeline is designed to track the mobile LiDAR scanner
based on the referenceM and inputs Pk=1,2,··· .

3.2. From BIM to semantic maps
Within the AEC industry, BIMs can be created by many soft-

ware tools and has been used to support various construction
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Figure 1: Our proposed mapping-free localization framework consists of two pipelines: offline BIM-to-Map conversion and online semantic localization.

processes, such as building inspection [38] and quality manage-
ment [39]. To achieve robot or sensor localization in Euclidean
space, precise metric maps are required instead of modeled in-
formation. In this study, the first challenge is how to generate
localization-oriented point cloud maps from BIM files.

The BIM-to-Map conversion consists of three steps, shown
in the upper part of Figure 1. The whole BIM of one build-
ing is first split into several separate BIMs according to differ-
ent storeys. After that, the digital BIM files are converted to
obj files using IfcOpenShell [40]. Finally, 3D point clouds are
sampled from triangular meshes of obj files with a defined den-
sity [41]. There are several other sampling strategies in some
software [42, 43], such as Monte-Carlo Sampling. Consider-
ing that density value is easily understood and defined by most
users, we decide to use this strategy for point cloud generation
in this paper. The final point cloud maps can be regarded as
sub-maps of each floor in the building.

Our experience has shown that it is better not to change the
sequence of this conversion. In other words, if geometries
are extracted from the whole BIM first without separating into
storeys, the storey information of BIM is not captured. It then
becomes more challenging to split a large geometric model or

point cloud map into storey-based sub-maps.

Until this step, the point cloud maps are generated using the
geometric and storey information of BIM. However, BIM also
contains rich semantic information compared to a typical geom-
etry model and these semantic properties can be updated manu-
ally and dynamically, which may bring potential advantages for
robot navigation. Thus we also propose to integrate the seman-
tics into the offline BIM-to-Map process, thus maximizing the
utilization of information from BIM for metric localization in
this paper.

To achieve this, an automated approach for map labeling is
used, which is simple but effective compared to the manually
labeling process [37]. Let mi be a map point of M. To la-
bel the map point mi, Dynamo [44] is used to extract the cat-
egory labels C and bounding boxes D of all elements in BIM.
The minimum and maximum location points of one bounding
box d j are notated as dmin =

[
xmin, ymin, zmin

]> and dmax =[
xmax, ymax, zmax

]>, which can represent the coverage of d j in
3D space. With the extracted bounding boxes and labels, we
then retrieve all the boxes and classify whether mi =

[
xi, yi, zi

]>
is in a specific box. The classification criteria is as follows:
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(a) BIM for map generation

(b) Map points in bounding boxes

Figure 2: BIM, bounding boxes and map points at the same place. Box colors
stand for different categories: blue for “Floor”, red for “Column”, green for
“Wall” and pink for “Window” respectively. Yellow points in boxes are map
points generated from BIM.

mi is in d j =


xmin ≤ xi ≤ xmax

1 , ymin ≤ yi ≤ ymax
zmin ≤ zi ≤ zmax

0 , else.

(1)

Specifically, to accelerate the semantic labeling process, a
K-Dimensional (k-d) tree is built based on the center points of
D. In summary, the proposed semantic labeling process is pre-
sented in detail in Algorithm 1. Note that the labels of C are not
unique, which means some map points are in different boxes
but with the same category label c(·), e.g., columns are with the
same category label “Column”. An example is presented in Fig-
ure 2 to help better understand the semantic mapping process,
in which different colors represent different categories.

One might argue that the bounding box extraction in Dy-
namo is not so accurate and some map points could exist in
multiple boxes, i.e, points may lie on the boundary of columns
and floors, leading to the ambiguity of semantic map building.
These are termed as mixed labeled points. In reality, there are
relatively few of such ambiguously labeled points on the bound-
ary of multiple elements.

Another problem is that the bounding box is not oriented
from Dynamo in this study, and it might be so large that could

Algorithm 1 Semantic Labeling of Map Points Using BIM

Input:
A point cloud map from BIM:M = {mi}

Bounding boxes from BIM:D = {d j}

Category labels of each box: C = {c j}

Output:
Build a k-d tree onD
for mi inM do
Dnn ← nearest neighbor search of mi in the tree
for d j inDnn do

if Creteria (1) then
c (mi) = c j

break
end if

end for
end for

cover other elements. For example, a thin wall is from (0,0,0)
to (10,10,10), but the size of its box is 10×10×10, which will
make some points incorrectly labeled in this large box. Fig-
ure 8 presents two cases in the following experimental section.
Overall, these mixed labeled or incorrectly labeled points have
impact on the localization performance, but will not cause lo-
calization failures. This will be validated in the experimental
section.

3.3. Semantic localization on BIM-generated maps

With the generated semantic map M, the online semantic
localization pipeline aims to estimate transformations Tk=1,2,···
with inputs Pk=1,2,···. At timestamp k, the kernel of the local-
ization problem is to align a LiDAR scan P to M, which can
be achieved by minimizing the error function e (·) between two
point clouds, stated as follows:

T = arg min
T∈SE(3)

(e (M,TP)) (2)

Then, data association is required to build the error function.
We denote the data association as A = {(p,m) ; p ∈ TP,m ∈
M}, where (p,m) is a match between the transformed input
LiDAR scan and the reference map. The error function is for-
mulated as follows:

T = arg min
T∈SE(3)

 A∑ e (p,m)

 (3)

Furthermore, to build a robust data association, some re-
lations can be used to build weights W = {w (p,m) ∈
[0, 1] ; (p,m) ∈ A}. W = 1 means all point matches are used
without weights in error minimization. Consequently, the error
function is as follows:

T = arg min
T∈SE(3)

 A∑ w (p,m) e (p,m)

 (4)

Various point cloud registration methods have been proposed
to minimize the error function in Equation (4). Generally,
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Figure 3: Proposed three-step semantic localization pipeline.

among these methods, ICP is one of the most widely used meth-
ods in the robotics community [45, 46]. Equation (4) is solved
via ICP iteratively and the matches A and weightsW are up-
dated in each iteration.

ICP has many variants in different robotic or computer vision
applications. For the error term e (·), we estimate the normal
vectors n of each map point m and use point-to-plane ICP for
pose estimation. Thus the error metric term in Equation (4) can
be expressed as:

e (p,m) = ‖(Rp + t −m) · n‖2 (5)

where R and t are rotation and translation of T respectively.

As for the weight term w (·) in Equation (4), we intend to
use semantic associations to weight the data associations in this
paper. Generally, the semantic associations are built from se-
mantically labeled maps and sensor readings, as presented in
previous studies [36, 16]. In this study, semantic mapsM can
be built from BIM, but the raw input scan P are not labeled,
leading to a difficulty in building semantic associations. Thus,
the challenge is how to label the input laser points effectively
and efficiently on BIM-generated maps. Then the labeled laser
points can be utilized for a semantic-aided localization on se-
mantic maps.

To address this challenge, a coarse-to-fine localization is pro-
posed and it consists of three steps: original ICP, semantic fil-
tering, semantic ICP. Original ICP can be regarded as the coarse
step to achieve a preliminary result. Then semantic filtering step
can achieve laser points labeling and selection based on the re-
sult of the first step. Finally, semantic ICP is used to refine the
pose estimation. Semantic filtering and semantic ICP can be
regarded as the fine step in the pipeline. The whole pipeline is
illustrated in Figure 3 and Algorithm 2.

Firstly, an original ICP is performed to minimize Equa-
tion (3). The data association of the last iteration can be
recorded, denoted asAo, as follows:

Algorithm 2 Three-step Semantic Localization

Input:
Semantic map from BIM using Algorithm 1: M = {mi}

Input LiDAR scan at timestamp t: P = {ps}

Estimated transformation at k − 1: Tk−1
Output:

// Set initial guess
Tinit = Tk−1
// Filter dense LiDAR scan
datafilter(P)
// Original point-to-plane ICP
To,Ao ← arg minT∈SE(3)

(
e
(
M,TinitP

))
// Semantic labeling by Criteria (7) and point selection
P′ ← fselect ( flabel (P,Ao))
// Weighted point-to-plane ICP with Equation (9,10,11)
Tk ← arg minT∈SE(3) (w (M,ToP′) e (M,ToP′))

Ao =


(
p1,m1,1

) (
p2,m2,1

)
· · ·

(
pS ,mS ,1

)
...

...
. . .

...(
p1,m1,K

) (
p2,m2,K

)
· · ·

(
pS ,mS ,K

)
 (6)

where S is the number of points in P and K is the number of
nearest neighbor search of each point in P. Each column of
Ao represents the matched results of one point ps to its nearest
neighbors after ICP alignment.

In the second step, we check each column inAo and label ps

if the matched map points satisfy the consistency criteria: all
the matched map points should be in the same category, formu-
lated as follows:

c (ps) =

{
c
(
ms,1

)
, if c

(
ms,1

)
= · · · = c

(
ms,K

)
Not labeled , otherwise (7)

Thereafter, some points in P are “labeled” and some are not.
Only labeled points are considered in the following process.
However, not all the labeled points are informative, e.g., points
matched as “Windows” may not return any meaningful mea-
surements using LiDAR sensors. Besides that, we consider the
category selection is flexible, and can be decided by users in dif-
ferent working environments and conditions, e.g., “Furniture”
could be helpful for the localization when a robot is traveling in
a room filled with static furniture, but might be harmful when
there are many semi-dynamic office chairs.

Thus, we only select those labeled points of certain specific
types, so the second step can be formulated as two steps: first
label and then select, as follows:

P′ ← fselect ( flabel (P,Ao)) (8)

where flabel (·) and fselect (·) represent the labeling and selection
process, respectively; P′ is the filtered point cloud that will be
used in the following estimation.

In the third step, semantic ICP is designed to minimize Equa-

7
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Curtain Panels

(a) Original point-to-plane ICP (b) Semantic labeling and selection (c) Semantic-aided ICP

Figure 4: A toy case for our proposed coarse-to-fine localization pipeline. (a) A point-to-plane ICP is performed as the coarse step to achieve pose estimation. (b)
Then three laser points are labeled with the consistency criteria (green, red and blue), and only two are used for the fine step after selection (red and blue). (c) A
semantic-aided ICP is performed as the fine step to refine robot pose at timestamp k.

tion (4) based on the coarse result from the first step. A
semantic-aided weight function wc (·) is formulated that incor-
porates the labels of LiDAR readings P′ and the mapM:

wc =

{
µ , c (ps) = c

(
ms,k

)
1 − µ , c (ps) , c

(
ms,k

) (9)

in which µ ∈ [0.5, 1] is a variable that determines the impor-
tance of semantic association. If µ = 1, only few matched lasers
are kept in challenging scenes. In the experimental section of
this paper, we set µ = 0.8 as a constant value, which means a
data association is with higher weight when the laser point is in
the same category as the matched map point.

Besides the semantic-aided weight function, a Huber func-
tion [47, 48] is also utilized to weight the data association, as
follows:

wρ =

{
1 , e (·) < δ
δ

e(·) , else (10)

where δ is a point-to-plane distance threshold. Finally, the over-
all weight function of for each matched (p,m) is computed as
the combination of the semantic and geometric relation:

w = wcwρ (11)

The proposed three-step semantic localization is shown in
Figure 3 and Algorithm 2. A toy example is also presented
to illustrate the proposed coarse-to-fine localization pipeline in
Figure 4, in which the number of nearest neighbor K is set as 3
and “Curtain Panels” is not selected in the fine step.

To guarantee the efficiency for real-time application, we ran-
domly sample the raw LiDAR scan and sub-sample input points
in high-density regions. The initial guess of the transforma-
tion is also critical to build an efficient and robust scan match-
ing. However, in this study, there is no Inertial Measurement
Unit (IMU) or other odometry to estimate the transformation
between k − 1 and k, which is different from other CAD or
BIM-based localization methods [22, 23, 27]. At each times-
tamp k, we set the previous estimated Tk−1 as the initial guess
to estimate Tk, as shown in Figure 3 and 4. This means we only
test the robustness and accuracy via scan-by-scan matching at
the front-end, and there is no customized back-end estimator in

Velodyne VLP-16

Portable Power

Laptop

Figure 5: Devices for data collection and experimental validation.

our proposed localization pipeline.

4. Experiments

In order to validate the effectiveness of the proposed frame-
work, several experiments are conducted in the real world, in-
cluding the offline BIM-to-Map conversion and online semantic
localization.

4.1. Set-up

Ten sequences are collected using a Velodyne VLP-16 sen-
sor. The data collection devices are shown in Figure 5. All the
data sessions are collected in the building of School of Design
and Environment 4 (SDE4) at NUS, which is a six-storey uni-
versity building. For an extensive experiment, the localization
performance is tested from the second to the fifth storey, cov-
ering different environments including corridors and lounges,
as shown in Table 2. Approximated traveled distances of se-
quences are also presented. The total traveled distance is over
340 meters.
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Table 2: Self-collected Data Sequences in NUS SDE4 Building

Sequence Storey Travel Distance (m) Environment

2-1 2nd 43.5

2-2 2nd 39.8

2-3 2nd 38.6

3-1 3rd 25.2

3-2 3rd 26.5

3-3 3rd 48.0

4-1 4th 34.1

4-2 4th 46.6

5-1 5th 21.1

5-2 5th 20.0

2nd Storey

2-1 2-2

2-3

3rd Storey 4th Storey 5th Storey

3-1

3-2

3-3

Start

End

4-1

4-2

5-1

5-2

Figure 6: A bird’s eye view of ground truth trajectories with blue lines. Red rectangular and black triangular represent start and end position respectively. Dashed
box on the 2nd Storey include incorrectly labeled map points.

The semantic maps are generated using Dynamo, Cloud-
Compare and MATLAB. The density of map points is set as 30
points/m3. The semantic localization is implemented using a
C++ package libpointmatcher [49] on Robot Operating System
(ROS). All the online localization experiments are performed
using a low power laptop with Intel I5-8265U and 16G RAM.

A visualization of trajectories and semantic maps are shown
in Figure 6. Two sequences are with loop closings (Sequence 3-
3 and 4-2). Furthermore, we consider that the localization tasks
on the 2nd and 4th Storey are more challenging than those on
the 3rd and 5th. The 2nd Storey is connected to the building
entrance and the street, where a few dynamics (mostly pedestri-
ans) exist in the collected LiDAR data. There also exist mixed
and incorrectly labeled map points close to the start positions
of Sequence 2-1 and 2-2, shown in Figure 6 and 8. The 4th

Storey contains a long narrow corridor, which will degenerate
the accuracy of pose tracking.

4.2. BIM-generated semantic maps

First of all, the original BIM model and its generated maps
are presented in Figure 7(a). Sub-maps of individual storeys
are also presented in Figure 7(b) and several categories are
visualized with different colors. In SDE4 building, there
are 13 categories extracted from Dynamo software: “Ceilings
(CE)”, “Columns (CO)”, “Curtain Panels (CP)”, “Curtain Wall
Mullions (CWM)”, “Floors (FL)”, “Furniture (FU)”, “Generic
Models (GM)”, “Planting (PL)”, “Roofs (RO)”, “Structural
Columns (SC)”, “Structural Framing (SF)”, “Walls (WA)” and
“Windows (WI)”. Furthermore, we make a statistic on the num-
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(a) BIM and semantic map from 2nd storey to 5th storey

Wall

Floor

Column

Structural Column

Curtain Panel

Generic Model

Curtain Wall  Mullion

Ceiling

2nd

4th

3rd

5th

(b) Map of each storey

(c) 2nd storey (d) 3rd storey (e) 4th storey (f) 5th storey

Figure 7: BIM file and semantic maps are shown in 7(a). Different colors indicate different categories of BIM elements in 7(b). Ratios of semantic points are also
presented from 7(c) to 7(f).
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Case 1 

Case 2

Figure 8: Incorrectly or mixed labeled map points on 2nd Storey. Case 1: one wall element is aligned with a large bounding box, making some ground points are
labeled with “Wall” (red color). Case 2: some points are aligned with two boxes.
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Figure 9: Boxplot for visualizing summary statistics on translation errors.

ber of each category and the distributions are shown in Fig-
ure 7(c),7(d),7(e) and 7(f).

As shown in Figure 7(b), the mapping pipeline can gener-
ate semantically augmented point cloud maps. With regards
to the distribution of points, it was found that most points are
associated to Walls (≈ 40%), Floors (≈ 20%) and Curtain
Panels (≈ 20%). We find that there are some incorrectly or
mixed labeled map points on the 2nd storey, shown in Figure 8.
The main reasons for this problem have been analyzed in Sec-
tion 3.2. On the other hand, most of the map points are labeled
with correct categories. In the next subsection, the proposed se-
mantic localization pipeline will be evaluated in the NUS SDE4
building quantitatively.

4.3. Localization evaluation

Ground truth poses are required to evaluate the continuous
localization. But compared to outdoor autonomous vehicles
equipped with GPS/INS, it is challenging to collect ground truth
poses in indoor scenes, since motion capture systems, such as

Vicon, are difficult to be deployed across all halls and corridors
in a large building.

In recent research work [37, 51], state-of-the-art SLAM
methods are often used as a proxy for ground truth during eval-
uation. Cartographer [52] is a well-designed SLAM system
with a loop closing module. In [53], it showed a superior per-
formance over other SLAM systems in indoor scenes, and we
adopt this as ground truth. Specifically, in this paper, Cartog-
rapher is run with our fine-tuned parameters and also with low-
speed rosbag to generate ground truth poses. Cartographer and
some other SLAM methods typically require IMU sensors to
achieve accurate 3D pose estimation, which is infeasible with
only a mobile LiDAR sensor in this study. Thus we set Cartog-
rapher with 2D configurations and evaluate our method in 2D
space (x,y and yaw).

The generated ground truth poses are not aligned to map ref-
erence or BIM model. To obtain localization errors, we set sen-
sor timestamps as indexes in all the trajectories, and utilize the
open source tool [50] to achieve trajectory alignment and error
calculation. The Root Mean Square Error (RMSE) is calculated
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Table 3: RMSE of Sem (ORG) tests on Sequence 3-1 with different combinations of BIM elements

- ALL CPNT FL+WI+CP FL+WI+CP+WA FL+WA FL+CO FL+WA+CO

Tr. (m) 0.062 0.139 0.085 0.071 0.037 0.030

Rt. (◦) 0.540 0.730 1.048 0.817 0.337 0.385

Table 4: RMSE of Each Sequence

Seq.
ICP (ORG) ICP (wρ) Sem (ORG) Sem (wc) Sem (wρ) Sem (wcwρ)

Tr.(m) Rt.(◦) Tr.(m) Rt.(◦) Tr.(m) Rt.(◦) Tr.(m) Rt.(◦) Tr.(m) Rt.(◦) Tr.(m) Rt.(◦)

2-1 0.140 0.780 0.139 0.668 0.127 0.976 0.117 0.891 0.115 0.891 0.113 0.893

2-2 0.116 0.657 0.112 0.536 0.121 0.919 0.107 0.814 0.081 0.603 0.097 0.759

2-3 0.078 0.640 0.091 0.734 0.091 0.441 0.093 0.739 0.079 0.611 0.077 0.590

3-1 0.062 0.540 0.041 0.409 0.030 0.385 0.044 0.425 0.029 0.348 0.029 0.335

3-2 0.049 0.485 0.045 0.387 0.032 0.375 0.044 0.417 0.030 0.343 0.030 0.324

3-3 0.037 0.367 0.044 0.442 0.034 0.348 0.041 0.372 0.031 0.362 0.030 0.359

4-1 0.235 1.284 0.292 1.406 0.179 0.681 0.076 1.389 0.127 0.671 0.137 0.842

4-2 0.193 1.097 0.236 2.029 0.129 0.792 0.136 0.989 0.117 0.651 0.079 1.198

5-1 0.069 0.366 0.066 0.722 0.031 0.404 0.058 0.407 0.022 0.327 0.025 0.369

5-2 0.072 0.539 0.078 0.548 0.046 0.365 0.061 0.479 0.054 0.318 0.036 0.345

All 0.122 0.735 0.143 0.956 0.100 0.640 0.091 0.721 0.081 0.573 0.080 0.663

as follows:

RMSETrans. =

√√√
1
N

N∑
n=1

(∆tn)2 (12)

RMSERot. =

√√√
1
N

N∑
n=1

(∆Rn)2 (13)

in which ∆t and ∆R are the translation error (x and y) and
rotation error (only yaw angle) between one estimated pose and
ground truth pose respectively.

Our proposed semantic localization pipeline consists of three
steps: original ICP, semantic filtering and semantic-aided ICP
with wcwρ. We test several combinations of these steps to val-
idate the effectiveness gradually. All the tested methods are
listed as follows:

• ICP (ORG) [45, 49], which is actually the first step
in Algorithm 2. A common configuration in libpoint-
matcher [54] includes two geometric-based outlier filters:
TrimmedDistOutlierFilter and SurfaceNormalOutlierFil-
ter. These outlier filters are essentially weight functions.
We keep this original configuration as a purely geometric-
based competitive method.

• ICP (wρ): we replace the original filters using the weight
function wρ. We set δ = 0.05 for the test, which means
the weights are with 1 when the distances are smaller than
5cm.

• Sem (ORG): we add the semantic labeling and selection
based on the ICP (ORG). After filtering, only selected
laser points are used in the second half of ICP (ORG).

• Sem (wc), which is an updated version of Sem (ORG). In
the second half of ICP, two geometric-based outlier filters
are replaced by the semantic-aided weight function wc. We
set µ = 0.8 as a constant value in the test.

• Sem (wρ): we also test the weight function wρ under the
semantic filtering scheme.

• Sem (wcwρ), which is the complete version of Algorithm 2
with the three steps: ICP (ORG), semantic filtering and
semantic ICP.

To achieve a fair comparison, all the methods above share the
same data pre-processing and filtering. Maximum number of
iteration (MaxIt) is critical for ICP-based localization. For ICP
(ORG), we set MaxIt as 40. As for semantic localization, MaxIt
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(a) Sem (wcwρ) localization on Sequence 4-1 (b) Sem (wcwρ) localization on Sequence 5-1

Figure 10: Trajectory comparison between ground truth and localization using [50]. Gray lines are aligned connections between two poses with same sensor
timestamps.

(a) ICP (ORG) (b) Sem (ORG) (c) Sem (wcwρ)

Figure 11: Error variation on Sequence 4-1. Red, green and blue lines represent errors of x, y and yaw estimation with respect to traveled distances.

(a) ICP (ORG) (b) Sem (ORG) (c) Sem (wcwρ)

Figure 12: Error variation on Sequence 5-1. Red, green and blue lines represent errors of x, y and yaw estimation with respect to traveled distances.

of ICP (ORG) and semantic ICP is fixed as 20 respectively, so
there are also 40 iterations for a fair comparison.

Before tests on all sequences, one important configuration is
to decide which elements should be used in the semantic fil-

tering. We test the Sem (ORG) with several combinations on
Sequence 3-1 in the SDE4 building, and present localization re-
sults in Table 3, in which ALL CPNT means semantic filtering
is not used and all components are integrated into ICP-based lo-
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(a) Sequence 2-2 (b) Sequence 3-3

(c) Sequence 4-1 (d) Sequence 5-1

Figure 13: Screen captures in ROS Rviz. White points are input LiDAR scan P without data filters applied, cyan-colored trajectories are estimated poses Tk=1,2,···,
semantic map pointsM are with various colors and matched points P′ are with larger size and colors: red for Columns, pink for Walls and green for Floors. Boxes
in Figure 13(a) are deviations discussed in Section 4.5. Red box in Figure 13(c) is a discontinuity discussed in Section 4.5.

calization. As observed from the table, the errors increase when
windows and curtain panels are selected for localization, and
decrease gradually when walls or columns are integrated into
the localization. The results indicate that walls and columns
could be more helpful and informative for the proposed seman-
tic localization in the SDE4 building.

Therefore, floors, walls and columns are selected for seman-
tic filtering based on the results and analyses above. Then, all
the methods are tested on ten sequences, and errors are pre-
sented in Table 4. We summarize the conclusions as follows
by analyzing the results from ICP (ORG) (Column 1) to Sem
(wcwρ) (Column 6):

• ICP (ORG) and ICP (wρ) results in an acceptable accuracy.
This indicates that it is feasible to achieve LiDAR localiza-
tion on BIM-generated maps with only one LiDAR sensor.

• Sem (ORG) performs better than ICP (ORG) on most se-
quences, indicating that the proposed semantic filtering
can help improve LiDAR localization. There is an over-
all improvement of 18% on the translation error.

• Compared to Sem (ORG), Sem (wc) achieves higher ac-
curacy on translation estimation but lower accuracy on
heading estimation. This indicates that the semantic-aided

weight function wc almost has the same performance as
the two geometric-based outlier functions, but it could not
improve the original method significantly.

• Compared to Sem (ORG) and Sem (wc), Sem (wρ) per-
forms the best under the semantic filtering scheme. We
consider it is because the Huber function wρ can better
overcomes the deviations.

• The complete version Sem (wcwρ) could not improve the
overall performance compared to Sem (wρ), but it can han-
dle a challenging sequence 4-2 in the datasets. Finally,
Sem (wcwρ) can achieve an overall improvement of 34%
on translation estimation compared to the original version
ICP (ORG).

More specifically, we can find that the localization errors of
the 2nd and 4th Storey are higher than that of the 3rd and 5th.
This indicates that localization difficulty is related to the accu-
racy of maps and environments, as analyzed in Section 4.1.

The translation errors are also presented in Figure 9 using
boxplots. The localization performance can be visualized from
the median error and the error variance in the boxplots. The lo-
calization errors decrease when the semantic filtering is applied
on ICP (ORG), thus verifying the hypothesis that using seman-
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Table 5: Number of Laser Points in Figure 13

Case raw P datafilter(P) P′ after (8)

2-2 23375 2099 679

3-3 22932 2204 897

4-1 21209 1910 660

5-1 25428 1569 487

tic properties can improve localization. The evaluation package
[50] also provides variations on errors with respect to the trav-
eled distance. The estimated localization trajectories and errors
are shown in Figure 10, 11 and 12. As observed from the tra-
jectories and errors, Sem (wcwρ) results in a smooth trajectory
close to the ground truth, thus verifying the effectiveness of the
proposed coarse-to-fine localization pipeline.

In addition to the numerical analyses, we present several case
studies of localized LiDAR scan on BIM-generated semantic
maps, as shown in Figure 13. The four cases show the local-
ization process of Sequence 2-2, 3-3, 4-1 and 5-1 in different
storeys of the SDE4 building. We also present the number of
points in each step of these four cases, shown in Table 5. Af-
ter the random sampling and semantic filter, only hundreds of
laser points (≈3% of raw data) are selected for the final seman-
tic ICP step. As for efficiency, the mean-time cost of semantic
localization (Algorithm 2) is 108ms, 79ms, 112ms and 114ms
in these four sequences. The real-time method is able to track
the LiDAR scanner operating at 10Hz with only a resource-
constrained embedded device. We also release a video demon-
stration online 1.

4.4. Compared to LiDAR-only SLAM systems

SLAM is a widely-used mapping system that aims to achieve
localization and mapping simultaneously. In this subsection,
we also compare the proposed BIM-based localization with the
SLAM systems. Three open-sourced SLAM systems are per-
formed on our self-collected data: Lidar Odometry and Map-
ping (LOAM) [5] 2, Direct Lidar Odometry (DLO) [55] 3 and
Open3D SLAM [56] 4. Specifically, LOAM and DLO are
LiDAR-based odometry methods (reduced LiDAR SLAM sys-
tems), while Open3D SLAM is a complete LiDAR SLAM sys-
tem, including loop closing and graph optimization. For a fair
comparison, there is no IMU or other information as assistance
used in this experiment.

The SLAM systems are first evaluated by comparing them
to the ground truth poses in 2D space, and the translation and
orientation errors can be obtained accordingly. These errors
are eventually calculated on 2D x-y plane using Equation 12

1The video is available at this link
2https://github.com/HKUST-Aerial-Robotics/A-LOAM
3https://github.com/vectr-ucla/direct lidar odometry
4https://github.com/leggedrobotics/open3d slam

and 13. In addition, we also propose to evaluate the drifts on
the Z-axis of SLAM systems and our proposed BIM-based lo-
calization. The drift errors are calculated under the criteria:
∆Z = Zlast − Zinit (m), in which Zinit and Zlast are the average
height of 50 poses at the beginning and the end of the trajec-
tory. The data collection process is conducted with a planar
motion. Thus ∆Z can be regarded as a measurement metric to
evaluate the drift on Z-axis.

The quantitative results on four sequences are presented in
Table 6. Compared with the LiDAR-only SLAM systems, the
proposed BIM-based lidar localization does not show better
performance on 2D pose estimation. Still, it shows competi-
tive results by matching scans on BIM-generated maps. On the
other hand, LiDAR-only SLAM systems show more significant
height drifts in Sequence 2-3, 4-2 and 5-2, because these tra-
jectories contain few revisted places for loop closing, as shown
in Figure 6. The drift on Z-axis is a common degeneracy prob-
lem for LiDAR-only SLAM applications, especially in a long
straight travel. We also present the SLAM-generated maps in
Figure 14. While in the BIM-generated maps, the floor is al-
most perfectly flat in one storey, which means all floor points
are with the same height, thus providing certain constraints for
BIM-based localization.

4.5. Discussion
In Figure 13(a), it is interestingly found that there are notable

differences between pre-builtM and observed P, which are es-
sentially the differences between as-designed and the as-built.
The two columns in green boxes are observed in the LiDAR
scan but there are no columns on the map respectively, making
the LiDAR points match to walls (colored with pink) due to the
nearest neighbor search strategy of ICP. Another observed col-
umn in the blue box is not matched to any element since there
is a considerable distance between the nearest column on the
map. Actually, the mismatch problem occurs on every storey in
the NUS SDE4 building because of the deviations between as-
built and as-designed. There are other factors that cause errors
in this study, such as dynamics and sensor noises. On the other
hand, the localization pipeline is designed with powerful weight
functions, so it can still track the pose successfully under these
challenges.

We also notice that there is a large error when traveling in the
long, challenging corridor on the 4th Storey. This results in a
discontinuity in the estimated trajectory, shown in the red box
of Figure 13(c). Specifically, the large drift is not eliminated in
a short time. There are mainly two reasons for this. Generally,
a long corridor is a challenging scene for localization that will
degenerate the localization performance. Besides, once a pose
is with a large error, the considerable error may be conducted
into the following pose estimation.

Overall, there are still some requirements and challenges
when applying the proposed localization method on BIM-
generated maps. We first summarize the requirements for ap-
plying our proposed framework:

(a) The proposed method is applicable in static built environ-
ments. In a dynamic environment, like an ever-changing

15

https://youtu.be/6jscy2Y5mj4


Table 6: Localization accuracy using SLAM and BIM-based localization

Seq.
LOAM [5] DLO [55] Open3D SLAM [56] BIM-based Localization

Tr.(m) Rt.(◦) ∆ Z(m) Tr.(m) Rt.(◦) ∆ Z(m) Tr.(m) Rt.(◦) ∆ Z(m) Tr.(m) Rt.(◦) ∆ Z(m)

2-3 0.058 0.296 -0.968 0.062 0.263 -2.675 0.100 0.280 -1.547 0.077 0.590 0.084

3-3 0.040 0.302 -0.010 0.034 0.396 -0.025 0.046 0.662 0.015 0.030 0.359 -0.002

4-2 0.038 0.326 -0.793 0.036 0.291 -0.981 0.041 0.276 -0.874 0.079 1.198 -0.052

5-2 0.017 0.303 -0.938 0.017 0.182 -1.149 0.033 0.215 -0.709 0.036 0.345 0.083

LOAM DLO Open3D SLAM

(a) Top view

LOAM DLO Open3D SLAM

(b) Side view

Figure 14: Maps generated from LOAM, DLO and Open3D SLAM using Sequence 5-1 data. Red lines are used for visually displaying drifts on Z-axis.

construction site, the BIM model should be reviewed and
updated by the user, which will involve human labor and
be time-consuming in application.

(b) The BIM content should contain the basic geometric sizes
and category labels of main structures in a building. These
two pieces of information are necessary requirements to
generate semantic point cloud maps in this study.

(c) It is unavoidable that there exist deviations between as-
designed and as-built. The deviations should not be too
large in the application for localization success.

(d) The proposed method is more appropriate to use in en-
vironments that have certain diversity. This diversity in-
cludes the categories and spatial distribution of BIM el-
ements. For example, a typical scene is a long straight
corridor which consists of only walls and floors, which is
lack of diversity and is challenging for LiDAR-only local-
ization.

We also list the challenges and limitations of the proposed
method as follows:

(a) The biggest challenge is the deviations between as-
designed and as-built. The deviations can cause incorrect
data associations and ambiguous scans, which could cause
localization failure in challenging scenes.

(b) There exist inaccurate semantic maps using the proposed
BIM-to-Map conversion, as shown in Figure 9. These in-
correctly or mixed labeled map points may reduce the di-
versity of the semantics, leading to a degeneration of lo-
calization accuracy.

(c) The pose estimation of Tk relies on the result of Tk−1,
which means the significant error in Tk−1 may also result
in Tk, or even cause a localization failure. In addition, we
manually set the floor and Tk=0 at the first stamp of each
sequence. To build a more automatic localization system,
we need to estimate the initial pose in a whole building
with a global localization module [57, 33].
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5. Conclusions

This paper proposes a mapping-free and learning-free se-
mantic localization framework. A BIM-to-Map conversion is
proposed by using spatial locations and category labels of ele-
ments in BIM. This paper also proposes a coarse-to-fine local-
ization method to track a 3D LiDAR sensor based on semantic
maps, in which both geometric and semantic information are
considered in data associations. The tests on real-world datasets
demonstrate that the proposed framework can achieve effective
and efficient localization using only one BIM file and one mo-
bile LiDAR sensor.

We consider there remain research directions based on the
experimental results and discussion on limitations in Sec-
tion 4.5. We list some of them as follows:

• The accuracy of semantic map building and data label-
ing can be improved by integrating the geometrics of local
point clouds, e.g., the points with similar surface normals
might be in the same category.

• Another promising study is that we can first filter certain
elements in BIM first [23], and then generate semantic
maps. It is also worth studying how to filter the BIM to
guarantee the localization performance.

• Multiple sensors can help improve the robustness and ac-
curacy of localization, e.g., IMU as an assistance and sup-
port to overcome the Limitation (c) and (d).

• To address the Limitation (e), global registration or lo-
calization is critical for applications, which can localize
a robot from scratch without initial guess.

• Besides, the map management is also important in large
indoor scenes. A concise and interactive map form is de-
sired for robot navigation, such as topological maps.
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