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Abstract—We propose semantic model vectors, an intermediate
level semantic representation, as a basis for modeling and detecting
complex events in unconstrained real-world videos, such as those
from YouTube. The semantic model vectors are extracted using a
set of discriminative semantic classifiers, each being an ensemble
of SVM models trained from thousands of labeled web images,
for a total of 280 generic concepts. Our study reveals that the pro-
posed semantic model vectors representation outperforms—and
is complementary to—other low-level visual descriptors for video
event modeling. We hence present an end-to-end video event
detection system, which combines semantic model vectors with
other static or dynamic visual descriptors, extracted at the frame,
segment, or full clip level. We perform a comprehensive empir-
ical study on the 2010 TRECVID Multimedia Event Detection
task (http://www.nist.gov/itl/iad/mig/med10.cfm), which validates
the semantic model vectors representation not only as the best
individual descriptor, outperforming state-of-the-art global and
local static features as well as spatio-temporal HOG and HOF
descriptors, but also as the most compact. We also study early
and late feature fusion across the various approaches, leading to
a 15% performance boost and an overall system performance of
0.46 mean average precision. In order to promote further research
in this direction, we made our semantic model vectors for the
TRECVID MED 2010 set publicly available for the community to
use (http://www1.cs.columbia.edu/~mmerler/SMV.html).

Index Terms—Complex video events, event recognition, high-
level descriptor.

I. INTRODUCTION

R
ECENT statistics show that videos “in the wild” are

growing at a staggering rate [1], [2]. This has posed

great challenges for data management, and has attracted the

interest of the multimedia analysis research community. These
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videos are often taken by consumers in unconstrained environ-

ments with different recording devices, including cell phones,

cameras, camcorders, or professional equipment. They usually

contain significant visual variations, largely due to different

settings, contents, unconstrained camera motions, production

styles, and compression artifacts, to name a few. A challenging

task is to build an intelligent system to automatically recognize

and detect interesting video events, which will greatly facilitate

end users to better index and search video content.

Nevertheless, such videos present new challenges for event

detection, not only because of their content diversity and lack of

structure, but also for their remarkable growing quantity, which

necessitates scalable solutions in terms of both computational

cost and memory consumption. For example, on Youtube alone,

35 hours of video are uploaded every minute [2], and over 700

billion videos were watched in 20101.

Most previous work in event detection has been on visual

surveillance scenarios. Events in videos have been defined in

the literature as unusual occurrences in surveillance feeds, such

as temporally varying sequence of sub-events [13], [34], mo-

tion relativity of visually similar patches [50], or short human

actions, which may be modeled by graphical models such as

hidden Markov models (HMM) or conditional random fields

(CRF) [14], [53], [61], [63]. Usually, the event only exists for

a short time span of up to a few seconds. Only recently, people

have started working on complex video event detection from

videos taken from unconstrained environment, where the video

events consist of a long sequence of actions and interactions that

last tens of seconds to several minutes. A number of previous

works model such complex events as combinations of actions

[37], scenes [35], people, and objects [36].

Related research has explored various visual features, either

static or spatiotemporal, to serve as the visual representation for

recognition, as documented in the TRECVID benchmark [43]

of past years. For example, local features [22], [54] extracted at

spatiotemporal interest points [8], [23], [54] have been shown to

obtain the best recognition accuracy for the task of action recog-

nition [51]. Most of these approaches attempted to model the vi-

sual concepts or events directly from the low-level features [5],

[25], [62], [65]. Notwithstanding their demonstrated success,

we believe that for complex events, an intermediate level se-

mantic representation will help bridge the semantic gap between

events and low-level features. Such intermediate semantic rep-

resentation will make use of discriminative learning to account

for the large variations in low-level features that correspond to

the same semantic concept (e.g., “people”, “cake”), and allow

1http://www.youtube.com/t/press_statistics
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events to be expressed directly in terms of concepts, rather than

low-level features (e.g., “baking a cake” would contain at least

one person interacting with cake materials in various stages).

The semantic model vectors we adopted form such an inter-

mediate semantic layer, composed by concatenating the output

from 280 discriminative semantic detectors. Based on our prior

work [10], [30], [44], each of these semantic detectors is an

ensemble SVM trained from thousands of labeled web images.

These semantic descriptors cover scenes, objects, people, and

various other visual semantics. Each of these semantic dimen-

sions provides the ability to discriminate different semantics

from low-level and mid-level visual cues, even though such

discrimination may be noisy and imperfect. We previously pro-

posed the semantic model vector representation for semantic

content-based multimedia retrieval and mining [30], [44] as

well as for modeling the dynamic evolution of semantics within

video shots [10]. This paper is a natural extension for clip-level

event modeling and detection. Torresani et al. [47] followed

the same intuition and proposed “classemes” for object cat-

egory recognition, training weak object classifiers based on

an ontology of visual concepts, while Xu et al. [57] used the

Columbia374-baseline [59] semantic concept classifiers for

video event classification. As an alternative way to generate

a mid-level semantic representation, unsupervised topic mod-

eling such as LDA/PLSA on top of bag-of-visual-word local

features has been employed to model video events [52]. These

works differ substantially from the proposed semantic model

vectors, which are discriminative classifiers with explicit as-

signed meanings and learned from a completely separate and

independent training set.

We adopt the dataset released by the TRECVID Multimedia

Event Detection (MED) Track in 2010 for evaluating our se-

mantic model vector-based representation. This dataset contains

3778 video clips, representing three complex events, i.e., As-

sembling a shelter, Baking a cake, and Batting in a run plus a

random category with videos not representing any of the other

three categories. Each of these events spans an entire video clip

(up to one hour) and is comprised of a collection of different

objects, scenes, and actions. For example, the event Batting in a

run involves a hitter batting, followed by a baserunner scoring

a run.

We carefully examined the performance of our proposed se-

mantic model vectors on the TRECVID MED task, and com-

pared it with other low-level visual descriptors, which include

both static and spatiotemporal visual features. We built SVM

classifiers on top of our semantic model vectors, and on top

of static visual (global or local) and dynamic spatio-temporal

descriptors, extracted either at frame (keyframes or temporally

sampled frames) or video level. Our study revealed that the pro-

posed semantic model vector-based representation produced the

best classifier over all detectors based on a single descriptor for

this video event detection task, which achieved an average pre-

cision of 0.392. This demonstrated that the semantic model vec-

tors indeed can better bridge the semantic gap.

Our investigation also implies that the semantic model

vectors are largely complementary to low-level visual features.

Therefore, we further develop a comprehensive solution for

video event detection by fusing the semantic model vectors

with low-level visual features. In our solution, both early and

late feature fusion is performed in a hierarchical fashion, which

groups together both static and dynamic feature classifiers. Our

empirical evaluation indicates that such fusion can significantly

boost the recognition accuracy, i.e., it increases average preci-

sion to 0.46 for detecting the target video events.

The remainder of the paper is organized as follows: in

Section II, we review related work on complex video event

detection, Section III describes in detail the type of video events

investigated in this work. We present details of the semantic

model vectors in Section IV. In Section V, we introduce the

proposed framework with the features used for event recog-

nition, also exploring feature fusion strategies. We report the

results of our experiments on the 2010 TRECVID MED corpus

and discuss them in Section VI. Finally, in Section VII, we

draw conclusions and discuss future research directions.

II. RELATED WORK

We will briefly discuss some related work on complex video

event detection. We will first summarize some previous tech-

nical efforts, followed by a discussion of related benchmark

datasets for evaluation.

Largely inspired by the success of structure-free bag-of-

words (BoW) representations for visual object recognition,

previous systems have employed bags of visual words, or spa-

tiotemporal visual words, to describe objects, scenes, actions, or

events [40]. For example, Ballan et al. [4] represent an event as

a sequence of BoW histograms and use a string kernel to match

them. Zhou et al. [64] use Gaussian mixture models (GMM)

instead of the standard BoW approach to describe an event

as a SIFT-Bag. Jiang et al. [19] follow the same direction by

defining an event as a combination of short-term audio-visual

atoms. Nevertheless, valuable spatial context is neglected due

to the spatial structure-free BoW representation, which limits

the potential of these methods. A more global approach has

also been pursued to model directly a whole scene employing

holistic, biologically inspired descriptors such as GIST [33]

and its derivatives [15], [16], [45].

Besides direct discriminative modeling, some works leverage

web data (images [17] or videos [9]) to build reference models

for actions or events. A few attempts have also been made to

build and leverage ontologies to describe events [3], [6], [42].

Some other works have focused on context and interactions

among objects, scenes, and people in order to describe and rec-

ognize complex events. Contextual information indeed has been

modeled in many different ways, such as human-object interac-

tion [46], [55], [60], visual context for object [11] and scene

recognition [56], scene and action combination [29], object and

action combination [12], and object, person, and activity rela-

tions [38]. Moreover, temporal context has been explored in pre-

vious work by modeling complex activities as series of simple

actions [21], [39]. Some works model concepts in atomic units

(action, scene, and object) for still images [24] or short, simple

actions [18].

Before the TRECVID 2010 MED task dataset, there was

no clear benchmark for complex video event detection. A few

datasets have been introduced in previous work for simple
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TABLE I
STATISTICS ON THE CURRENTLY AVAILABLE VIDEO EVENT DATASETS.

NOTE HOW THE 2010 TRECVID MED CORPUS CONTAINS MUCH LONGER

VIDEOS THAN ANY OTHER AVAILABLE DATASET

action recognition, including KTH [41], Moving People Stan-

ford [32], Hollywood [22], Youtube actions dataset [26] (now

expanded to UCF50), and UCF Sports Actions dataset, to list a

few. INRIA recently introduced the Hollywood2 [29] dataset,

which explicitly aims at finding a correlation between actions

and scenes. However, the only existing datasets which may be

suitable for evaluation of research on complex video events are

the Kodak’s consumer video benchmark [27] and the TRECVID

2005 news collection. Most recently, the Columbia Consumer

Video (CCV) dataset [20] was introduced, which is also de-

signed for event category recognition in unconstrained videos.

Our attention is on videos “in the wild”, where a typical video

is Youtube-like, often generated by users in unconstrained envi-

ronments. Some datasets present the same “wilderness” of un-

constrained Youtube videos in terms of lack of editing, non-pro-

fessional recording, and variety of illumination, camera motion,

background clutter, changes in object appearance, etc. However,

as reported in Table I, most of the existing sets are quite lim-

ited in length, particularly when compared to the average length

of Youtube videos, which is approximately 4 min and 12 s.2 As

mentioned in Section II, the TRECVID MED corpus we investi-

gate in this work is the closest to Youtube in terms of clip length.

The definitions of the video events we analyze, as posted on

the TRECVID MED official site,3 are the following:

• Assembling a shelter: One or more people construct a tem-

porary or semi-permanent shelter for humans that could

provide protection from the elements.

• Batting in a run: Within a single play during a baseball-

type game, a batter hits a ball and one or more runners

(possibly including the batter) scores a run.

• Making a cake: One or more people make a cake.

Some example video frames from each category are reported

in Fig. 1. Clearly evident are the substantial challenges imposed

by the widely varying content, quality, viewpoints, settings, il-

lumination conditions, compression, and so on, both across and

within event categories.

Most existing approaches and datasets for video event recog-

nition focus on building classifiers for short actions through

spatio-temporal features and for concepts based on low-level vi-

sual descriptors extracted from keyframes.

2http://www.sysomos.com/reports/youtube#video-statistics

3http://projects.ldc.upenn.edu/havic/MED10/EventKits.html

Fig. 1. Examples from the 2010 TRECVID MED video event categories:
(top) assembling shelter, (middle) batting in a run, and (bottom) making

cake. Note the significant variety of quality, viewpoint, illumination, setting,
compression, etc. both intra and inter categories.

III. COMPLEX VIDEO EVENTS

Complex video events however cannot be described by a

single action or keyframe. For example, the category Making

a cake comprises multiple actions (mixing, inserting into

oven, tasting) which involve different interactions between

primitive semantics (people and objects) over extended periods

of time. Therefore, a complex representation which involves

such semantic primitives is needed. This concept is illustrated

in Fig. 2, where a Mixing clip from the UCF50 dataset (top)

is compared against a Making a cake video from TRECVID

MED (bottom), and a subsegment (middle) of the latter. From

the significant frames reported for each clip, the greater length

and complexity of the bottom Making a cake video emerges,

since it spans a number of objects and settings (from mixing in

the bowl to cooking in the oven, and finally decorating).

A portion of the clip, expanded in the middle row of the

figure, represents a part of the cake preparation which involves

mixing in a bowl. Notwithstanding a significant difference in

visual appearance, the circular movement of the mixer closely

resembles that of the spoon in the Mixing clip in the top row.

Therefore, following the principles adopted in the literature for

action and event recognition, one can correctly match the two

clips by choosing an appropriate representation, for example the

histogram of flow (HOF), which focuses in motion rather than

on appearance, assuming that the two sequences are properly

aligned temporally.

We build a vocabulary of 100 spatio-temporal HOF words,

with K-means clustering, from a dataset of 141 positive and

294 negative clips randomly extracted from the UCF50 dataset,

using the widely adopted BoW approach. The graphs in Fig. 2

represent the occurrence frequency of HOF codewords in the

three clips. The similarity between the HOF BoW descriptor

of the UCF50 Mixing clip (top, in green) and the subshot from

Making a cake video (middle, in blue) is quite clear. However,

when considering the whole video from the TRECVID MED

set (bottom, in red), we see that the distribution of HOF words is

quite different. The reason is that the codewords associated with

the mixing part are “masked” by the distribution of the code-

words associated with the extremely large number of features

appearing in the remainder of the clip. Hence, the complexity

and length of the video play against its distinctiveness from the
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Fig. 2. Comparison between (top, in green) a UFC50 Mixing clip and (bottom, in red) a TRECVID MED Making a cake video based on 100 codewords bag of
words HOF representation. There is a close similarity in codewords distribution between the Mixing clip and a subshot of the Making a cake clip (expanded from
the bottom to the middle row, in blue), which is also evident in the circular motion shown in the frames (on the left side of the figure). Such similarity is lost when
the longer, composite whole video in the bottom is considered.

low-level feature point of view. This is also confirmed in the ex-

perimental results reported in Section VI-C, where it is clear that

the low-level feature representation has drawbacks, even when

sophisticated matching schemes are employed, such as temporal

pyramid-based matching.

Therefore, the low-level feature-based representations

adopted so far in the literature fails to capture the structure and

semantics in long, complex video events. In fact, while other

types of state-of-the-art low-level descriptors, such as GIST

and SIFT, may achieve slightly better performance at the cost of

higher dimensionality, they are still limited, as evidenced by the

experimental results on the 2010 TRECVID MED collection

reported in Figs. 6, 7, and 10.

In this work, we try to alleviate this limitation by using a se-

mantically higher level representation, the semantic model vec-

tors, and integrating it with multiple low-level features in a com-

posite framework. The semantic model vectors, comprising a

semantic representation, are able to mitigate the semantic gap,

as demonstrated in the experimental results of Section VI.

Besides accuracy, compactness of the descriptors is an im-

portant consideration for feasibility, particularly for large-scale

multimedia collections such as the one investigated in this work.

The proposed semantic model vector, with its 280 dimensions,

offers a much more compact representation with respect to tra-

ditional low-level descriptors, especially when associated with

spatial and/or temporal pyramid frameworks (see the detail in

Fig. 7).

In Sections IV and V, we explain in detail the semantic model

vectors and the end-to-end event recognition framework.

IV. SEMANTIC MODEL VECTORS

Intuitively, complex temporal events can be described using a

combination of elementary visual concepts, their relationships,

and temporal evolutions. If an image is worth a thousand words,

then a video can be considered the equivalent of a sentence, or

even a paragraph.

To this end, we propose an intermediate semantic layer be-

tween low-level features and high-level event concepts. This

representation, named semantic model vectors, consists of hun-

dreds of discriminative semantic detectors, each derived from

an ensemble SVM, trained from a separate collection of thou-

sands of labeled web images, using a common collection of

global visual features (described in Section V-B and prior re-

ports [31], [58]). These semantic descriptors cover scenes, ob-

jects, people, and various image types. Each of these semantic

dimensions provides the ability to discriminate among low-level

and mid-level visual cues, even if such discrimination is noisy

and imperfect across different data domains.

The semantic model is an ensemble of SVMs with RBF

kernel learned from a development set of thousands of manu-

ally labeled web images, which were randomly partitioned into

three collections: 70% as the training set, 15% as the validation

set, and 15% as the held-out set. The number of feature types

from which each of the individual SVMs are learned was 98,

by means of computing 13 different global visual descriptors

including color histogram, color correlogram, color moment,

wavelet texture, edge histogram, etc., at up to 8 granularities

(i.e., global, center, cross, grid, horizontal parts, horizontal

center, vertical parts, and vertical center).

For each feature type, we learn base models (RBF SVMs)

from a number of bags of training data, randomly sampled

with a balanced number of positive and negative samples, with

sample ratio . The default parameters for and used to

train all the base models for the semantic models were 2 and 0.2,

respectively, which result in a pool of base models

for each concept. To minimize the sensitivity of the parameters

for each base model, we choose the SVM parameters based on

a grid search strategy. In our experiments, we build the SVM

models with different values on the RBF kernel parameters
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Fig. 3. Usefulness of semantic model vectors for classifying events. (Top) T-score of top 50 model vector dimensions for each event, red indicates positive
correlation, blue negative correlation. (Bottom) Example model vectors that are informative for classifying events: ����� ������� �� 	
� (sand on the beach
is similar to sandy baseball courts); �����	� � ����� ��� (cakes are usually cooked in kitchens, whereas assembling shelters and playing baseball are events
typically occurring outdoors).

and , the relative cost factors of positive versus negative ex-

amples, the feature normalization schemes, and the weights be-

tween training error and margin. The optimal learning param-

eters are selected based on the performance measure on 2-fold

cross validation on validation data. Each model is then associ-

ated with its cross validation performance, where average pre-

cision is employed as the performance measure.

Finally, the fusion strategies of the base models into an en-

semble classifier are determined based on average precision per-

formance on the held-out data. To reduce the risk of overfit-

ting, we control the strength and correlation of the selected base

models by employing a forward model selection step. The al-

gorithm iteratively selects the most effective base model from

the unit models pool, adds it to the composite classifier without

replacement, and evaluates its average precision on the held-out

set. The semantic model output is then the ensemble classifier

with the highest average precision observed on the held-out set.

This selection step is very fast, and typically prunes more than

70%–80% base models in practice. In fact, the number of se-

lected base models for our 280 semantic models is much

smaller than : the mean and standard deviation values are

for , where is the number of

base models forming the final ensemble SVM for the th se-

mantic concept (see details in Fig. 4).

Semantic concept detection in a new image consists in clas-

sifying the image using the corresponding ensemble SVM. The

score for semantic concept on is then

(1)

is the weighted sum of the individual base models

scores on . The weights are the AP cross-validation scores

learned during training.

Semantic concept detection is done starting from the

low-level features extracted at multiple, fixed granularities.

This process is done at the full image level; no object detection

or sliding window approaches are required. The detection time

thus depends on the number/type of features selected in the

ensemble SVM, plus the extraction time for individual SVM

scores. The average extraction time per image is 0.6709 s for

the low-level features extraction step, which is shared among

semantic models, and s to obtain the ensemble

SVM prediction ( deviation over the 280

semantic models), on a 2.33-GHZ 32-bit Windows machine

with 3 GB of RAM.

The average precision and accuracy values for the individual

semantic models on the held-out set are, respectively,

and ( deviation over the

280 models). The details of number of base models, extraction

time, and average precision scores of each individual semantic

model are reported in Fig. 4.

The final semantic model vectors descriptor results from the

concatenation of the 280 semantic detectors for each frame

:

(2)

Note that this representation (after being aggregated from frame

level to video level) is a lot more compact than most descriptors

introduced in Sections V-B and C, as shown in Fig. 7.

Fig. 3 shows a few examples of semantic model vectors. At

the top is a visualization of the classification power of model

vectors with respect to each of the three target events in the 2010

MED development set.

The -axis shows a union of the top 50 model vector dimen-

sions most correlated to each event, where correlations scores
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Fig. 4. Statistics for the 280 model vectors. BM: number of base SVM models used to generate the final ensemble classifiers. AP: average precision cross-
validation score obtained during the training process. Time: classifier scoring (i.e., evaluation) time per image (in seconds).
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Fig. 5. System framework adopted for video event recognition. We investigated multiple layers of operation/representation: video versus frame level, static versus
dynamic features, early versus late aggregation (fusion).

are measured using Student’s T-test statistic for score distribu-

tions with unequal sample sizes and variances.4 Red hues de-

note positive correlation, and blue hues denote negative corre-

lation—likely/unlikely that the concept detector is triggered for

the event. The magnitude of the T-scores is reflected in the sat-

uration. Some examples of these concept detector results are

included in the bottom part of the figure. Our hypothesis is

that the combination and temporal aggregation of the semantic

concepts maps closely to complex video events, for example,

the making_cake event is likely to include food prepared on a

table in an indoor setting (i.e., a kitchen). There is not always

a one-to-one correspondence between video categories and se-

mantic models, since some of the categories the model vectors

were trained on are simply not relevant to the high-level event

categories (for example the model vector for Cellphone and the

event Batting in a run). Nonetheless, if we look at the model

vectors outputs as features, the space they span has a dimension-

ality (280) which is sufficiently high to provide a separation in

feature space to discriminate high-level video event categories,

even when a direct correlation model vector–high-level event is

not found. The SVM models we learn for the high-level video

events, using the model vector scores concatenated into a fea-

ture vector, basically perform a feature selection.

V. DETECTION SYSTEM AND ALGORITHMS

Our event detection system includes a variety of approaches.

This allows us to explore effective methods for the new multi-

media event detection domain, and forms the basis of a compre-

hensive performance validation.

An overview of the proposed event detection system is

shown in Fig. 5, and there are four main parts for processing

and learning (roughly from left-to-right in the layout): video

processing, feature extraction, model learning, and decision

aggregation. The rest of this section will discuss each part in

detail.

4http://en.wikipedia.org/wiki/Student’s_t-test#Unequal_sample_sizes.
2C_unequal_variance

A. Video Processing

Each input video is processed a number of different ways in

order to extract frame-based and dynamic visual features. Our

system has three different modes to prepare a video for feature

extraction.

• Uniformly sampled frames. We decode the video clip,

and uniformly save one frame every two seconds. These

frames are later used to extract static visual descriptors:

local (SIFT), GIST, Global, and semantic model vectors.

• Adaptively sampled keyframes. We perform shot

boundary detection using color histogram differences in

adjacent frames, and we then take one frame per shot.

This frame sampling scheme produces less shots for the

event videos since amateur videos tend to have long and

unsteady shots. By being temporally adaptive, this scheme

may decrease overall appearance diversity in the frames,

yet it avoids over-sampling from long shots.

• Down-sampled short video segments. We keep short

video segments for extracting spatial temporal features

(Section V-C). The video sequence is downsampled to five

frames per second to reduce computational time, and the

spatial temporal features are extracted within windows of

four seconds each.

B. Frame Descriptors

We extract a large number of static image features from

the sampled frames/keyframes. These features capture a wide

range of image information including color, texture, edge, local

appearances, and scene characteristics. We build upon these

features to extract the semantic model vectors (as described

in Section IV) and carry out a comprehensive comparison of

state-of-the-art features for classification.

• Local descriptors are extracted as SIFT [28] features

with dense spatial sampling for keyframes—we use 16

pixels per grid, resulting in approximately 12 000 points

per image, and Harris Laplace interest point detection for

uniformly sampled frames. Each keypoint is described
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with a 128-dimensional vector containing oriented gradi-

ents. We obtain a “visual keyword” dictionary of size 1000

(for keyframes) and 4000 (for uniformly sampled frames)

by running K-means clustering on a random sample of

approximately 300 K interest point features, and we then

represent each frame with a histogram of visual words.

For keyframes, we used soft assignment following Van

Gemert et al. [49] using .

• GIST: the GIST descriptor [33] describes the dominant

spatial structure of a scene in a low-dimensional represen-

tation, estimated using spectral and coarsely localized in-

formation. We extract a 512-dimensional representation by

dividing the image into a 4 4 grid. We also histogram

the outputs of steerable filter banks on 8 orientations and 4

scales.

• Global descriptors are extracted using 13 different visual

descriptors on 8 granularities and spatial divisions. SVMs

are trained on each feature and subsequently linearly com-

bined in an ensemble classifier. We include a summary of

the main descriptors and granularities. Details on features

and ensemble classifier training can be found in our prior

report [7].

Color Histogram—global color distribution represented as

a 166-dimensional histogram in HSV color space.

Color Correlogram—global color and structure repre-

sented as a 166-dimensional single-banded auto-correlo-

gram in HSV space using 8 radii depths.

Color Moments—localized color extracted from a 5 5

grid and represented by the first 3 moments for each grid

region in Lab color space as a normalized 225-dimensional

vector.

Wavelet Texture—localized texture extracted from a 3 3

grid and represented by the normalized 108-dimensional

vector of the normalized variances in 12 Haar wavelet sub-

bands for each grid region.

Edge Histogram—global edge histograms with 8 edge di-

rection bins and 8 edge magnitude bins, based on a Sobel

filter (64-dimensional).

Having a large diversity of visual descriptors is important for

capturing different semantics and dynamics in the scene, as so

far no single descriptor can dominate across a large vocabulary

of visual concepts and events, and using all has shown robust

performance [7], [48].

The spatial granularities include global, center, cross, grid,

horizontal parts, horizontal center, vertical parts, and vertical

center—each of which is a fixed division of the video frame

into spatial layout regions, and then concatenating the descriptor

vectors from each region. Such spatial divisions have shown

improved performance and robustness in image/video retrieval

benchmarks such as TRECVID [43].

C. Spatial-Temporal Features

It is open for debate whether the essence of an event is in its

visual appearances over time or in the motion dynamics, though

strong arguments for both sides suggest considering both. We

compute spatial-temporal features using both motion and dy-

namic texture information. We detect spatial-temporal interest

points (STIP) [23] over the down-sampled video segments

(Section V-A), within temporal windows of 20 frames (four

seconds). We then compute histogram of gradients (HOG) and

histogram of flow (HOF) features extracted in spatio-temporal

regions localized around each STIP. For both HOG and HOF

features, we generated a codebook of 1000 visual words by

clustering a data sample of approximately 300 K and computed

bag-of-words histograms similar to those for the SIFT features

in Section V-B, with soft assignment.

We explore three aggregation methods both for HOG and

HOF. The first is to build a single BoW histogram directly for

the entire video, resulting in a 1000-dimensional descriptor

[named HOG(F)_Pyr0]. The second employs the temporal

pyramid matching scheme [57], with the video temporally

split into 2 and 4 segments. A BoW histogram is computed for

each shot, and the descriptors are concatenated and weighted

according to the temporal level at which they were computed

(0.25 for levels 0 and 1, 0.5 for level 2). As reported in Fig. 9, we

test two different pyramidal configurations:

(3000 dimensional, with whole video and two halves segments

concatenated) and (7000 dimensional,

with whole video, two halves, and four quarters segments

concatenated). Since multiple STIP can be detected in the same

frame, we also explore computing a BoW histogram for each

frame where STIPs were found. We then aggregate from frame

level to video level using the same methods employed for the

static features and introduced in Section VI, thus obtaining

1000-dimensional vectors. We name descriptors obtained with

this third aggregation method simply HOG and HOF.

D. Model Learning

One-versus-all SVMs with RBF kernel are trained, in-

dependently for each category, based on each descriptor.

During training for one category, all the videos from the other

categories (including the random one) are used as negative

examples. Parameters and are computed though grid

search on a 5-fold cross validation, with a 70% training and

30% validation random splits on both positive and negative

examples of the development set. Once the best parameters are

determined, the SVMs are retrained on the whole development

set.

Either sampling approach seen in Section V-A typically pro-

duces multiple frames per video; this yields several features vec-

tors per video for each descriptor (excluding the Pyramid ver-

sions of the HOG and HOF features). Given that the problem

we investigate consists in classifying whole videos and not indi-

vidual frames, an aggregation process from frame level to video

level is necessary.

We perform such aggregation both at feature level (early fu-

sion) and at prediction level (late fusion). For all features besides

Global, the descriptors extracted from the individual frames are

combined through average or max aggregation into a single de-

scriptor, representative of the whole video.

We also test aggregation at prediction level, meaning training

a classifier at the frame level and then combining the predictions

on the individual frames of a test video into a final score. This

approach is used for the Global descriptor, for which we take the

predictions of the ensemble classifier on the frames of a video

and averaged them to obtain the score for the entire video.
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Finally, we performed late fusion to combine the predictions

of models trained on different descriptors, which offer comple-

mentary information. First we grouped static features and dy-

namic features separately, using linear combinations with uni-

form weights. We then performed late fusion involving all the

descriptors in two ways: hierarchical, as a combination of the

static and dynamic sets, and horizontal, as a linear combination

of all the features.

E. Feature Fusion

Our baseline approach consists of training RBF kernel

SVMs based on individual descriptors. However, we notice that

such descriptors are inherently complementary under different

perspectives:

• Semantic model vectors operate on a higher semantic level

with respect to all the other ones.

• GIST, Global, SIFT, and semantic model vectors are in-

herently static, as they operate on individual (key)frames,

while HOG and HOF are dynamic, as they analyze spatio-

temporal volumes within the videos.

• GIST, Global, and semantic model vectors are global fea-

tures that analyze a whole image, while SIFT, HOG, and

HOF model patches localized around local interest points.

Furthermore, even for individual descriptors, we also needed

a way of obtaining entire video clip predictions starting from

features extracted at multiple frames.

Therefore we apply ensemble late fusion methods to combine

all event detection hypotheses generated by the different ap-

proaches. We pursue different combination strategies according

to the principles adopted:

• Frame-to-video aggregation: for individual descrip-

tors, we try combinations both at the feature level and

at the prediction score level, using averaging or max

pooling. We find that aggregating frame features into a

single video descriptor and obtaining the clip prediction

based on the single video-level descriptor outperforms

frame-level detection followed by video-level prediction

score aggregation.

• Horizontal combination of all descriptors: we average the

predictions scores of all individual descriptors at every

(key)frame, then perform the same frame-to-video score

aggregation described above.

• Hierarchical grouping into static and dynamic features:

we first group the descriptors into static (GIST, Global,

SIFT, and semantic model vectors) and dynamic (HOG and

HOF) and obtain two aggregate frame scores from them

(static score and dynamic score). Then, we further com-

bine the static and dynamic scores into a final prediction

for every frame and, finally, use average pooling to aggre-

gate from frames to video.

The results of such fusion strategies are reported in

Sections VI-B–D.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

We evaluate the different approaches outlined in the previous

sections on the 2010 TRECVID MED corpus, which consists

in 1723 development and 1742 test videos of length varying

from a few seconds to an hour, corresponding to three event

TABLE II
VIDEO AND FRAMES DISTRIBUTION OF THE 2010 TRECVID MED

CORPUS ON WHICH WE PERFORMED OUR EXPERIMENTS

categories: Making shelter, Baking cake, and Batting in a run,

plus a random category of videos serving as a distractor set.

Table II summarizes the composition of the dataset, speci-

fying also the number of (key)frames extracted with uniform

and adaptive sampling. From the table clearly emerges the

imbalance between positive and negative examples in both

development and test sets.

Hence, in order to measure the performance of each model, a

suitable metric is the AP, which is a popular ranking metric and

has been used in all the editions of the TRECVID High Level

Feature extraction task. For each category, let be the total

number of relevant samples in the collection (which contains a

total samples). Let be the number of relevant samples

found in the top ranked samples returned by the system. Let

if the th sample in the ranked list is relevant and 0

otherwise. The AP is then defined as .

The mean of average precision scores over all target categories

is defined as the mean average precision (MAP).

In the following, we discuss in detail the results emerging

from the experiments.

A. Individual Descriptors Performance

First we compare the performance of event classifiers based

on individual descriptors. For all the features, a frame to

video aggregation step is performed, as explained in detail

in Section VI-B. As reported in Fig. 10, performance varies

across categories, with AP scores ranging from 0.15 to 0.3 for

Assembling_Shelter and Making_cake, while Batting_in_run

ends up being easier to recognize, with AP scores ranging from

0.49 to 0.62. Some general conclusions can be drawn from

these MAP scores. Most importantly, the proposed semantic

model vectors outperform all the other features in terms of

mean average precision (0.392), regardless of which sampling

method is used.

From the results presented in Fig. 6 emerges that for any

static descriptor, feature extraction on frames obtained by uni-

form sampling provides better MAP rates than adaptive sam-

pling. This is probably due to the complexity of the events and

the “wild” nature of the videos, with a low number of repetitive

or static shots. Therefore uniform sampling, which generates a

significantly larger number of frames (as shown in Table II),

provides richer information to the classifiers.

Considering the large-scale nature of the video event recog-

nition problem at hand, the space occupied by the feature rep-

resentation of each video is crucial. In Fig. 7 are reported the
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Fig. 6. Mean average precision retrieval performance comparison between
keyframes and temporal sampled frames analysis. For each static descriptor,
we registered a significant improvement when using temporal sampling, with
semantic model vectors resulting as the best descriptor in both cases.

Fig. 7. Mean average precision versus video descriptor size (in kilobytes) based
on individual video descriptors. Semantic model vectors offer the most compact
representation as well as the best recognition performance.

number of kilobytes (KB) necessary to represent each video

(after the feature frames to video aggregation), for each de-

scriptor. Semantic model vectors can represent an entire video

with a 280-dimensional feature vector, which is not only the best

performing single descriptor but also the most compact one. The

second best performing descriptor, the SIFT BoW representa-

tion, occupies approximately 15 times more space than the se-

mantic model vector representation. The Global features, com-

prising multiple descriptors, occupy by far the largest amount

of kilobytes.

B. Frame-to-Video Aggregation

As we discussed inSection V-D, since each feature is ex-

tracted at frame level, we must aggregate them to determine a

single score for each video. We perform an experiment on the

semantic model vectors, which is the single best performing de-

scriptor, to determine which aggregation strategy works best.

We compare feature-level versus detector score-level aggrega-

tion using average or max pooling.

The AP results outlined in Fig. 8 clearly suggest to use fea-

ture-level aggregation for all three categories. Hence, we em-

ploy this early fusion strategy for all the individual descriptors.

Fig. 8. Semantic model vectors are extracted at every keyframe, thus requiring
a fusion from frame level to video level. Fusing features from keyframes into
a single descriptor per video and learning a classifier on top of it performs sig-
nificantly better than learning a classifier directly on the frames and then aggre-
gating the predictions from all the frames into a score for the entire video.

Fig. 9. Mean average precision retrieval performance of the HOG and HOF
descriptors: comparison between different methods to generate bags of words
video representation. In global histogram aggregation, all the visual words from
the whole video are binned into a single histogram (plus temporal pyramid
declinations), while in local histogram aggregation, one histogram per STIP
space-time volume is built first, and then all histograms are aggregated using
average pooling to form a single video-level descriptor.

The results reported in all other figures in this section follow this

framework.

This result corroborates the initial intuition about the com-

plexity of the events we are examining. Classification at the

granularity of a single frame, or very a short video segment, is

not sufficient to correctly recognize complex video events—a

broader context must be inspected instead. Early fusion (or

feature-level aggregation) allows each frame to contribute to a

richer and more contextualized video representation, therefore

providing a more comprehensive description and discrimination

for event recognition.

C. Dynamic Features: Global versus Local BoW

Histogram Aggregation

As explained in detail in Section V-C, when considering

the bag of words approach for spatial-temporal features, there
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Fig. 10. Retrieval performance of different event recognition approaches based on (lighter colors) individual features and (darker colors) their combinations.
Average precision computed for each category and MAP scores over the whole 2010 TRECVID MED dataset.

are different options for building the histogram of codebook

words occurrences in a video: one is to bin all interest points

descriptors into a single histogram representing the entire

video [HOG(F)_Pyr0], which can be further extended to em-

ploy a temporal pyramid matching framework to compute

separate histograms over temporally partitioned segments

and ). We refer

to this strategy as global histogram aggregation since all

histogram counts are accumulated globally and then normal-

ized. The second option is to generate a separate normalized

histogram for each spatio-temporal volume where STIPs have

been detected, and then aggregate these local segment his-

tograms into a video-level histogram similarly to the method

described in Section VI-B for aggregation of static frame-based

features. We call this strategy local histogram aggregation, and

denote the corresponding runs as HOG and HOF. Note that

all dynamic features are video-level features, regardless of the

histogram aggregation method.

We compare the MAP performance of the above options in

Fig. 9. The results show a significant performance advantage of

the local histogram aggregation (HOG and HOF bars in dark

blue), obtained by averaging BoW local histograms computed

from spatio-temporal cubes centered at detected STIP points.

This result confirms the intuition expressed in Section III that

the target videos are too long and complex to rely on global his-

tograms accumulated over video clips of widely varying lengths.

Such representations tend to weaken the contribution of code-

book words that may be discriminative locally but whose con-

tribution drowns within the sea of thousands of other (noisy) de-

scriptors accumulated over a long video clip. Local histogram

computation and video-level aggregation allows for locally-dis-

tinctive codewords to retain a higher weight in the final descrip-

tors, which in turn yields better performance.

In order to alleviate this effect in the pyramid type represen-

tations, one might increase their granularity by adding further

levels in the temporal pyramid. This idea has two major lim-

itations. The first is the size of the descriptor: already with a

pyramid of depth 2, a 7000-dimensional vector is needed (as op-

posed to the fixed 1000 dimensions of the frame-to-video aggre-

gation used in Fig. 7). The second lies in the hierarchical weight

given to higher levels in the pyramid. Finer scale matches are

weighted much more than coarse matches. This is desirable if

the consecutive, uniformly sampled video sequences describing

an event are aligned. The large variety both in appearance and

length of the inspected videos suggest that this is not necessarily

the case. This could explain why we observe degrading perfor-

mance for the HOG descriptor as the number of levels in the

pyramid increased.

D. Feature Fusion

In Section V-E, we observed the complementary nature of the

descriptors from the view point of semantics, temporal, and spa-

tial resolution, which suggests that fusion across these descrip-

tors is likely to improve performance even further.

Here we report the results obtained by late fusion methods

to combine all event detection hypotheses generated by the

different approaches. We ensured that the scores from all

approached were compatible for fusion by applying sigmoid

normalization on the non-probabilistic predictors. Fusion was

performed by averaging prediction scores. The MAP scores are

reported in Fig. 10.

We observe that a combination of static features (Com-

boStatic, including Global, SIFT, GIST, and semantic model

vectors) works better for events that can be predicted by

some iconic objects or settings (e.g., a cake for Making_cake;

the baseball field and player outfits, including helmet and
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bat, for Batting_in_run), while combining dynamic features

(ComboDynamic, including HOG, , HOF, and

descriptors) performs better for events with

more widely varying visual appearance and temporal evolution

(e.g., Assembling_shelter videos showing different stages of

shelter construction and their temporal progression).

Both combinations (or static or dynamic descriptors) boost

the average precision scores with respect to the individual

descriptors across all three events. The performance behavior

of static and dynamic features appears to be complementary

across event categories. Hence, we apply a hierarchical fu-

sion (ComboHierarchical), which combines ComboStatic and

ComboDynamic predictions. This final fusion step further

improves the MAP rate, confirming the complementary nature

of static and dynamic features. We also perform an aggregation

of all the static and dynamic runs in a single step (Combo-

Horizontal), and observe performance boost similar to the

hierarchical fusion method.

In all the combination cases inspected, late fusion of mul-

tiple descriptors results in a boost of MAP with respect to the

individual descriptors for all the events in the dataset, thereby

confirming the complementary nature of these features. The

best MAP performance of 0.46 is achieved by fusing all runs,

without an appreciable difference between horizontal versus

hierarchical fusion.

VII. CONCLUSION

We have proposed a system for complex video event recogni-

tion in unconstrained real-world consumer videos, such as those

from YouTube. Our recognition system incorporates informa-

tion from a wide range of static and dynamic visual features.

We evaluate our framework on the 2010 TRECVID Multimedia

Event Detection dataset, a fully annotated unconstrained video

collection in terms of content complexity and average video clip

length.

In particular, we propose semantic model vectors, an interme-

diate level visual representation, to help bridge the semantic gap

between low-level visual features and complex video events.

We use a large number of semantic detectors covering scenes,

objects, people, and various image types. The semantic model

vector representation turns out to be the best-performing single

feature in our experiments, achieving mean average precision

of 0.392 on the TRECVID MED10 dataset, while also being

the most compact representation (only 280 dimensions versus

thousands of dimensions for traditional low-level descriptors).

All these properties make this semantic representation particu-

larly suitable for large-scale video modeling, classification, and

retrieval. The semantic model vectors also appear to be com-

plementary to the other descriptors. We experimented with dif-

ferent feature granularities (frame-based versus video-based)

and fusion types (e.g., early versus late fusion), and observed a

performance boost leading to 0.46 overall MAP scores obtained

from a late fusion of static and dynamic features.

In the future, we plan to generalize this approach to a wider

range of video events. We also plan on learning the temporal

evolution of descriptors representing actions, people, objects,

and scenes.
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