
Editors:

Tim Hussein, University of Duisburg-Essen

Stephan Lukosch, Delft University of Technology

Heiko Paulheim, SAP Research

Jürgen Ziegler, University of Duisburg-Essen

Gaëlle Calvary, University of Grenoble

Proceedings of the 2st International Workshop on

Semantic Models for Adaptive

Interactive Systems

(SEMAIS 2011)

Co-located with the 2011 International Conference on

Intelligent User Interfaces (IUI)

Palo Alto, CA, USA

Automated planning for User Interface Composition
Yoann Gabillon Mathieu Petit Gaëlle Calvary Humbert Fiorino

University of Grenoble, CNRS, LIG
385, avenue de la Bibliothèque, 38400, Saint-Martin d’Hères, France

{yoann.gabillon, mathieu.petit, gaelle.calvary, humbert.fiorino}@imag.fr

ABSTRACT

In ubiquitous computing, both the context of use and the users’
needs may change dynamically with users’ mobility and with the
availability of interaction resources. In such changing

environment, an interactive system must be dynamically

composable according to the user need and to the current context

of use. This article elicits the degrees of freedom User Interfaces

(UI) composition faces to, and investigates automated planning to

compose UIs without relying on a predefined task model. The

composition process considers a set of ergonomic criterions, the

current context of use, and the user need as inputs of a planning

problem. The user need is specified by the end-user (e.g., get

medical assistance). The system composes a UI in turn by

assembling fragments of models along a planning process.

Categories and Subject Descriptors

H.5.2 [User Interfaces]: Ergonomics, Graphical user interfaces

(GUI), Prototyping, User-centered design. D2.2 [Software

Engineering]: Design Tools and Techniques, User-Interfaces.

General Terms

Design, Human factors, Algorithms.

Keywords

User Interfaces composition, Semantic models, Automated task

planning, Context of use.

1. INTRODUCTION
Pushed forward by new information technologies, Weiser’s vision
of ubiquitous computing comes to reality [11]. His definition of

ambient computing implies 1) a global knowledge of an

information system context, and 2) adaptation processes to

comply with a given context of use. The context of use is usually

defined as a <user, platform, environment> triplet. Unpredictable

contexts of use might affect users’ interactive behaviors and task
organization. Therefore, each User Interface (UI) design option

from the task model to the final UI is highly contextual and might

be decided at runtime. Therefore, most of the ubiquitous design

frameworks consider variations of the context of use as inputs to

select UI options (i.e., plastic design [9], automatic generation [6],

mashups [1]). However, to the best of our knowledge, the user

task variation is usually left out.

This article outlines an approach, based on automated planning, to

support task as well as UI variations in an integrated framework

for UI composition. In the following, section 2 exemplifies multi-

level UI composition on a medical support case study. Section 3

elicits the degrees of freedom UI composition faces to. Section 4

introduces automated planning and highlights the UI composition

process. Section 5 presents an integrative framework for UI

composition by planning. The focus is set on the composition of

models (Model-based composer) and code (Code composer).

Section 6 summarizes our contributions and draws some

perspectives.

2. RUNNING CASE STUDY
Victor is a New-York citizen on vacation in Philadelphia. After

spending his day tasting the rich local food, Victor feels bloated at

night and needs to find the doctor on duty. Using his PDA, he

specifies his need in general terms: “I would like to get medical

support”.
According to Victor’s need and to the available interaction

resources and existing information, the system abstracts the goal,

plans a task model, and composes one possible UI. The

composition process is not fully autonomous: it requires

additional information from Victor. The negotiation UIs (Figure

1) are composed by the system as well.

Given Victor’s current location, the system asks Victor whether

he prefers to return home or to find assistance in Philadelphia

(Figure 1a). Victor chooses to consult a local doctor. The system

therefore finds and provides him with possible local contact

information: the nearest hospital or doctor on duty, a medical hot-

line, or the firemen (Figure 1b).

(a) Possible locations.
(b) Possible options.

Fig. 1. Automatically composed UI.

Victor selects the doctor on duty. The systems provides him with

contact and location information. The UI layout matches the

current user platform:

Smartphone. If Victor prefers to keep information at hand, a UI

is generated for his Smartphone. With respect to the limited

screen resolution, pieces of information are tabbed and no

additional data is provided (Figure 2).

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Fig. 2. The generated UIs for a Smartphone.

Desktop Wall. If a desktop wall is available, the system generates

a single pane UI allowing to contact and/or to get route

information to the doctor’s office. Additional information about

close services, like the nearest all-night chemist, is also provided

(Figure 3).

 Fig. 3. The UI generated for a desktop wall display.

3. MODELS ARE KEY
This section goes back to model based design in Human

Computer Interaction (HCI), and claims for keeping these models

at runtime so that to support dynamic adaptation.

3.1 Model based design
UIs are modeled along several levels of abstraction. For example,

the CAMELEON reference framework identifies four main levels

of design decisions [2]. The task model (TM) describes how a

given user task can be carried out; the abstract UI (AUI)

delineates task-grouping structures (i.e., workspaces); the

concrete UI (CUI) selects and layouts the interaction elements

(i.e., interactors) into the workspaces; at last, the final UI (FUI) is

about the code. Mappings relate these models to each other. For

example, a task should be mapped to one workspace of the AUI at

least.

In a dynamic context of use, any of these UI design decisions and

their subsequent models and mappings might be updated at

runtime to match the current context of use. As long as these

adaptations satisfy the usability and utility properties, the UI is

said to be plastic [9]. In Victor's case study, every design decision

might be adapted in a plastic way. For example, the task “Find

nearest chemist” may be removed from the task model. The AUI
model associated to the Smartphone favors the “Call the office”

subtask whilst the desktop wall version gives a simultaneous

access to the two subtasks (“Call the office” and “Find route

information”). Variations at the CUI level are not exemplified in

the case study. We could imagine a switch from a route display to

a list of directions so that to fit with the Smartphone display. Such

adaptations might be seen as a transformation between two graphs

of models.

3.2 Graph of models to support adaptation
Earlier work defined principles for UI plasticity [8]. The authors

structured the CAMELEON reference framework as a network of

models and mappings (Figure 4), and claimed for keeping this

graph alive at runtime so that to support adaptation.

Fig. 4. Semantic graph of models of an interactive system [8].

The graph expresses and maintains multiple perspectives on a

system. For example, a UI may include a task model, a concept

model, an AUI model and a CUI model linked by mappings. In

turn, the UI components are mapped onto items of the Functional

Core, whereas the CUI interactors are mapped onto the input and

output (I/O) devices of the platform. Although such a model

provides a helpful organizational view on the elements and

relationships involved when designing a plastic interactive

software, the proposed mappings between the context of use and

the other components hardly describe contextual choices inside

each model (TM, CUI, AUI, etc.).

Demeure et.al. provide a complementary semantic graph of

models to control UI plasticity within each design option level [4].

Their model allows UI designers to check out replaceable (i.e.

functionally equivalent) units at run-time. For example, a given

layout of interactors at the CUI level might be switched to another

one depending on the desired ergonomic properties [7]. We

propose to replace these hand-made choices by predicates

dependent of the context of use, and manipulated by the system.

Figure 5 illustrates the design process along the models and

mappings proposed in [8] and the replaceable options described in

[4]. For example, at the task level (TM), two options exist for T2

depending on the context of use (Figure 5 b&c).

In Figure 5, within a level of abstraction, units relate to each other

according to a consumer-provider relationship (Figure 5: pc

link). For example, at the TM level, one of the options for the task

T2 relies on the occurrence of a provider leaf option1 for the task

T3 (Figure 5a). Therefore, as T2 “consumes” T3, this option will

be triggered if and only if T3 is satisfied. Depending on the

current context of use, consumer-provider links behave like

2A leaf option has no relationship for neither providing nor

reifying options.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

“opened” or “closed” transistors. In a given pc relationship,

the status of a transistor depends on the contextual requirements

of the provider (p). For example, at the TM level in Figure 5, one

of the task T2 options is possible only for experienced users

(Figure 5d).

Fig. 5. Example of a TM options graph.

In UI design, mappings link together options of different levels of

abstraction. For example, interactors from the CUI level are

usually mapped onto workspaces of the AUI level. These

mappings, presented in Figure 4, or the definitional links in [4]

constitute abstracting-reifying relationships between the options

of distinct CAMELEON levels of abstraction (Figure 6:  

links).

Fig.6. Abstracting-reifying relationships between two design

options at the TM and AUI levels of abstraction.

For example, the TM level presented in Figure 5 might be reified

into several options of an AUI level (Figure 6). In Figure 6, a task

option T1 is reified into a workspace layout “W3” of the AUI
level. Like the pc relationship,   relationship

between levels of abstraction makes sense in a given context of

use only. For example, Figure 6 depicts a runtime configuration

where the workspace layout W3 cannot reify the task T2 given the

current context of use (Figure 6 a).

The relationships we propose (  and pc) for

modeling software can easily be explored automatically. The next

section investigates automated planning.

4. UI COMPOSITION BY PLANNING
This section presents the core principles of planning and shows

how this approach is valuable for UI composition.

4.1 Principles of automated planning
An automated planning algorithm derives a temporal sequence of

actions into a plan to accomplish a given goal [5]. For example, in

the previous case study, the sequence {“Call the doctor”→“Find

route information”} is a plan made of two actions. A Planning

algorithm pipes syntactic processes to perform symbolic

computations. Such logical reasoning is formally described by a

finite-state machine where actions are transitions between

possible states of the world. Actions are defined by sets of

pre/post-conditions. Pre-conditions specify the run-time

dependencies of an action while post-conditions are met after

executing the action. For example, Victor’s Smartphone should be

connected (pre-condition) to display a location map (action).

When this action is executed, the map is eventually displayed

(post-condition) on the Smartphone. An updated state of the world

integrates these new post-conditions, therefore enabling further

actions.

4.2 Automated planning for UI composition
A planning solver algorithm computes a transition graph between

an initial state of the world and a final state corresponding to the

system/user goal. Currently, such algorithms are mainly applied to

service composition [10]. However, as illustrated in our case

study, context-dependent UI composition and automated planning

strongly relate. Thus, we propose to address UI composition by

planning where:

 “Actions” are “User interfaces options”. Existing components

(e.g., the UI associated to the task “Call the office”) are

actions for the planner;

 The “State of the world” is made of the current “Context of

use” and the “Ergonomic properties” to be satisfied. For

example, the fact “Victor owns a Smartphone” is a predicate

of the state of the world;

 The “selected plan” is the “composed UI”. For example, the

UI displayed on the Smartphone is a concretization of the plan

{“Choose the city”→“Choose the doctor” →“Contact the
doctor”→{“Call the office”→“Find the route information”→

“Find the nearest pharmacy”}} computed by the planner.

Even if several challenges still need to be worked out to bridge the

gap between automated planning and UI composition, next

section presents “Compose”, a first framework for rapidly

prototyping UIs by planning. Its use by end-users belongs to the

future.

5. THE COMPOSE FRAMEWORK
Compose is a proof of concept of UI composition by planning. It

has been built on top of several functional Java-coded components

(Figure 7).

Fig. 7. Functional decomposition of Compose.

The Context of use and quality in use managers translate the

required ergonomic criteria and the current context of use into

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

predicates. These assertions define the current state of the world.

For example, the predicate Has(“User”,“Desktop Wall”) is true

when Victor stands nearby a managed desktop wall.

The User requirements manager expresses a user need as a goal

to be met. For example, Victor’s need would be to “Get medical
support”.
The Model-based composer and the code composer are the core

components of Compose. The model-based composer handles the

planning process, whilst the code composer translates a resulting

plan into a FUI. In the current prototype, planning is applied to the

task level only. Once the TM level is composed, mappings are

made with a generic purpose graphic toolkit called COMET [3].

COMETs are reusable context-aware widgets defined at the task

level and reified along the CAMELEON reference framework.

The next sections focuses on the core components of Compose.

5.1 Model-based composer
The model based composer takes actions as inputs and structures

them into a plan. This planning process is twofold: at first, the

user task modeling is composed by collating predefined subtasks

(Figure 8(p1)); next, each task (i.e.: the planner actions) is

mapped onto a UI (Figure 8(p2)). These selections bring out a

composed UI (i.e., the selected plan) whose properties match the

current state of the world. The resulting plan is a semantic

description of the UI to be composed.

Fig. 8. Compose planner instantiation.

In Victors’ case study, Compose waits for a user need

specification (i.e. “Get medical support”). The composer tries to

find a corresponding TM level entry point. The option “Get
Medical Support” is selected. The planning algorithm then

explores the semantic network of pc relationships between

the task options of the TM level (Figure 9). For each uncovered

task option, Compose checks whether it is possible or not to map

the task onto a COMET and render the UI. These mappings are

derived according to the current state of the world. For example,

leaf task options like “Choose the city” or “Choose the doctor”
might be mapped onto a UI as soon as Victor’s platform is
available whatever the characteristics of the platform are (in

Figure 9: t1 & t2). Other task options like “Call the office” rely on

carrier capabilities at the platform level (in Figure 9: t3).

“Contacting the doctor” option distinguishes between several

screen sizes and resolutions (Figure 9: t4 & t5). When a large

screen is available, such a sub-task option involves tree leaf

options (Figure 9: u1), while on a Smartphone display, solely two

of them are displayed (Figure 9: u2).

Once all contextual pre-requisites of a provider option are met, the

relationships to his consumers turn green and each of them might

in turn be checked-out. After a provider/consumer relationship

status has been specified, the state of the world is updated with the

new facts the providing option concurs to establish. For example,

when “Choose the city” pre-requisites are met, the composer

knows for sure that Victor will be able to specify his searching

location and the fact “The location has been set” is added to the
state of the world.

Figure 9 outlines the status of the pc relationship between

the task options after Compose has explored and checked-out a

state of the world wherein Victor interacts on a desktop wall

display.

Fig. 9. Possible TM level planning when a desktop wall is

available.

Such contextualized semantic UI model highlights the appropriate

task factorization in a given context of use. When a green path of

provider-consumer relationship is established from the provided

objective to the leafs task options, a task tree has been found to

achieve the user goal. In such case, the code composer is provided

with the planned task tree. Subsequent mappings are made

between tasks and COMETs to derive the final UI.

5.2 Code composer
The Code composer derives the UI code from the graph of models

at the task level. At design time, the options of the task level have

been statically associated to COMETS. Therefore, in Compose,

each action of the plan is reified by a contextualized COMET. For

example, the option “Get medical support” is mapped to a
COMET laying out a sequence of frames on the desktop wall. The

Code Composer brings these pieces of UI together in a unified

layout. For instance, the desktop wall task tree provided by the

model-based composed is mapped to the COMET presented in

Figure 10. For example, the action “Get medical assistance” is
mapped to a “COMET C7” laying out a sequence of frames on the

desktop wall. These frames contain several sub-COMETs

(“COMET {C3, C1, C4}”) to map the task options “Choose the
city”, “Choose the doctor” and “Contact the doctor”. In turn, the
mapping “COMET C4”, that reifies the task “Contact the doctor”,
contains several vertically aligned sub-COMETs. These sub-

COMETs (“COMET {C2, C5, C6}”) are mapped in the same

way.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Fig. 10. The “Desktop Wall” planned task tree. Each task is

reified by a pre-defined COMET.

6. CONCLUSION AND FUTURE WORK
This article outlines a work in progress to support opportunistic

user needs. A UI is composed by selecting a path in a graph of

models according to the current context of use and the ergonomic

properties to be satisfied. UI composition is seen as a planning

problem. So far, the focus has been set on the model-based

composer whatever the time is: design time for the designer thus

providing a rapid prototyping tool, or runtime for the end-user as

an intelligent assistant.

Future works include improvements of planners to fully support

UI composition. This means (1) generating trees (i.e., tasks

structures) instead of sequences, (2) defining appropriate

functional and implementational software architectures for

general-purpose ubiquitous computing, (3) taking non functional

properties into account (i.e., returning the best plan instead of the

first one). Thus, beyond perspectives in HCI, this work has

challenged planning for ubiquitous computing.

7. ACKNOWLEDGMENTS
This work has been mainly founded by the “Informatique, Signal,
Logiciel Embarqué” research cluster of the Rhône-Alpes region. It

has also been supported by the french “ANR MyCitizSpace” and

the european ITEA2 UsiXML projects.

8. REFERENCES
[1] Brodt, A., Nicklas, D., Sathish, S., and Mitschang, B. 2008.

Context-aware mashups for mobile devices. In WISE 2008:

Web Information Systems Engineering. Springer-Verlag,

280-291.

[2] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J. 2003. A unifying

reference framework for multi-target user interfaces.

Interacting with Comp. 15, 3, 289-308.

[3] Demeure, A., Calvary, G., and Coninx. 2008. K. COMET(s),

A Software Architecture Style and an Interactors Toolkit for

Plastic User Interfaces. In 15
th

 Int. Work. on Interactive

Systems Design, Specification, and Verification. Springer-

Verlag, 2008, 225-237.

[4] Demeure, A., Calvary, G., Coutaz, J. and Vanderdonckt, J.

2006. The COMETS Inspector: towards run time plasticity

control based on a semantic network. In Proceedings of the

5th Int. Workshop on Task Models and Diagrams for User

Interface Design: TAMODIA'06, Springer LNCS 4385,

Haselt, Belgium, 324-339.

[5] Nau, D., Ghallab, M., and Traverso. P. 2004. Automated

Planning: Theory & Practice. Morgan Kaufmann Publishers

Inc. San Francisco, CA, USA.

[6] Paternò, F., Mancini, C., and Meniconi, S. 1997.

ConcurTaskTrees: A Diagrammatic Notation for Specifying

Task Models. Proceedings of the IFIP TC13 Interantional

Conference on Human-Computer Interaction, Chapman &

Hall, Ltd., 362-369.

[7] Scapin, D.L. and Bastien, J.M.C. 1997. Ergonomic criteria

for evaluating the ergonomic quality of interactive systems.

Behaviour & Information Technology. Colchester,

ROYAUME-UNI: Taylor & Franci 16, 4 (1997), 220-231.

[8] Sottet, J-S., Ganneau, V., Calvary, G., Coutaz, J., Demeure,

A., Favre, J-M. and Demumieux, 2007. R. Model-driven

adaptation for plastic user interfaces. In Proc. of the 11
th

IFIP TC.13 Int. Conf. on Human-Computer Interaction :

INTERACT'07, Springer LNCS 4662, Rio de Janeiro, Brazil,

397-410.

[9] Thevenin, D. and Coutaz, J. 1999. Plasticity of user

interfaces: Framework and research agenda. Human-

computer Interaction, INTERACT'99: IFIP TC. 13 , 30th

August-3rd September 1999, IOS Press, 110.

[10] Traverso, P. and Pistore, M. 2004. Automated Composition

of Semantic Web Services into Executable Processes.

Proceedings of ISWC, LNCS, 380-394.

[11] Weiser, M. 1991. The computer for the 21st century. Special

Issue on Communications, Computers, and Networks 272, 3,

78-89.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Generating High-Level Interaction Models
out of Ontologies

Dominik Ertl, Hermann Kaindl,
Edin Arnautovic, Jürgen Falb,

and Roman Popp
Vienna University of Technology
Institute of Computer Technology

(ertl, kaindl, arnautovic, falb,
popp)@ict.tuwien.ac.at

ABSTRACT

Generating user interfaces out of semantic models is still
an issue because of the semantic gap between ontologies
and user interfaces. We bridge this gap through semantic
model-driven development. More precisely, we show how
to automatically generate high-level interaction models (in
the form of communication models representing discourses)
out of (annotated) ontologies, using model-transformation
rules. From these discourse models, user interfaces can be
generated (semi-)automatically.

INTRODUCTION

The most important elements of any interactive system are
the information it contains and the user interface through
which this system communicates with its users. The infor-
mation may be represented with (formal) semantic models
(e.g., based on ontologies), and the user interface is typi-
cally created manually on top of such models. This requires
a lot of effort, especially if these models are modified and
the user interface has to be adapted manually.

In a specific category of interactive systems, such as product
recommendation systems, reservation systems or shopping
applications, the underlying (semantic) model may strongly
influence the behavior of the systems and, therefore, also the
interactions to be implemented through the user interfaces.
For this category of interactive systems, we address the se-
mantic gap between underlying ontologies and user inter-
faces. We make use of our discourse models [1, 3] for bridg-
ing this gap. In this course, a discourse model and a domain-
of-discourse model together serve as a high-level interaction
model and, as such, as a kind of “intermediate language” be-
tween the ontology and the user interface. In addition, such a
model can even be used for the (semi-)automatic generation
of a user interface [3, 10].

IUI SEMAIS Workshop 2011.

The remainder of this paper is organized as in the follow-
ing manner. First we give a brief background on our previ-
ous work relevant for this paper, and compare it with some
of the related work in the field. Then we present our ap-
proach for generating interaction models out of (annotated)
ontologies. This approach contains two parts: the generation
of discourse models representing the flow of communica-
tion between the user and the computer, and the generation
of domain-of-discourse models representing what they “talk
about”. Finally we conclude and provide an outlook of our
future work in this direction.

BACKGROUND AND RELATED WORK

Our previous work focused on manual modeling of interac-
tion designs [1], where even end users created interaction
designs in the form of discourse models using the graphi-
cal editor developed for this purpose. These discourse mod-
els are based on several theories of human communication
[2]. The key parts of our discourse models are Commu-
nicative Acts as derived from speech acts [11], Adjacency
Pairs adopted from Conversation Analysis [5], and RST rela-
tions inherited from Rhetorical Structure Theory (RST) [6].
Communicative Acts are semi-structured messages carrying
the intention (e.g., asking a question or issuing a request)
and represent basic units of language communication. Ad-
jacency Pairs are sequences of talk-turns that are specific to
human (oral) communication, e.g., a question should have a
related answer. RST relations specify relationships among
text portions and associated constraints and effects, and are
organized in a tree structure. In our work, we use RST for
linking Adjacency Pairs of Communicative Acts and further
structures made up of RST relations. We have also included
procedural constructs, to provide means to express a partic-
ular order during discourse execution, to specify repetitions
or conditional execution of different discourse parts. Since
such discourses cast the communication between a human
and the computer on a high level, abstracting from technical
details, they may even be created without any programming
knowledge and experience.

Instead of our discourse models, ConcurTaskTrees from Pa-
terno et al. [7] may be used for bridging the semantic gap be-
tween ontologies and user interfaces. ConcurTaskTrees fa-
cilitate modeling tasks, that are being transformed into a user
interface. Our discourse models focus more on the commu-

1
Copyright is held by the owner/author(s)

Domain-Specific

Constraints for

Discourse

Model

Discourse Model

(without content

description)

Annotated Generic

Ontology
Rule-Based

Transformation

User

Interface

Rule-Based

Transformation

Set of Individuals

Discourse Model

Domain-Specific

Constraints for

Domain-of-

Discourse Model

Domain-of-Discourse Model
Rule-Based

Transformation

COMMUNICATION MODEL

Step 1

Step 2

ONTOLOGY

Figure 1. Transformation from ontology to communication model.

nication, and they can be used for machine-machine com-
munication as well [9]. According to our best knowledge,
this has not been done with ConcurTaskTrees. We are also
not aware of any approach for generating ConcurTaskTrees
out of ontologies.

UsiXML [4] is an XML-based specification language for
user interface design. It allows describing a user interface at
different levels of abstraction, from high-level task models
to the concrete code of a user interface. So, it provides an al-
ternative approach to ConcurTaskTrees. Also for UsiXML,
we are not aware of any approach for generating UsiXML
models out of ontologies.

Paulheim and Probst [8] present a survey about ontology-
enhanced user interfaces. They point out that ontologies
can be used to improve interaction possibilities, and our ap-
proach addresses such a possibility.

FROM ONTOLOGIES TO INTERACTION MODELS

Now let us present our approach to automatically transform-
ing an ontology to a high-level interaction model in the form
of a specific communication model by using model trans-
formations. We focus on a small part of an ontology and
its corresponding transformations to generate the interaction
model of a Product Advisor for digital cameras as a running
example. The Product Advisor is designed to ask questions
about desired properties of a digital camera to be bought.

Overall Transformation Approach

In Figure 1, we provide an overview of the transformation
process, which consists of two steps for generating a com-
munication model from an annotated ontology. We start
from such an ontology represented in OWL1 (illustrated in
the left part of Figure 1). While the ontology per se con-

1Last visited on December 10, 2010: http://www.w3.org/
TR/owl2-overview/

tains the knowledge of the given domain, the annotations
contain meta-knowledge, e.g., the priority of a given piece
of knowledge with respect to the Product Advisor to be im-
plemented. The result is a communication model consisting
of a discourse model and a domain-of-discourse model.

We use a GoodRelation2 ontology for digital cameras as a
basis. In Figure 2, we depict selected parts from the Digi-
cam GoodRelation ontology. The top concept Thing is spe-
cialized by the concepts ProductOrService and DomainSeg-
ment. ProductOrService is further specialized by the Digi-
cam concept. DomainSegment groups together properties of
a ProductOrService that have a semantic relation with each
other.

Our ontology contains additional annotations that describe
characteristics of certain datatype and object properties with
respect to the intended Product Advisor. For example, the
annotation priority specifies how important for the Product
Advisor a specific object or datatype property is compared
to other properties. These priorities are a distinguishing fea-
ture when the transformation process applies the transfor-
mation rules. The priority is an integer value between 0 (low
priority) and 100 (high priority). The priorities allow the
transformation process to decide which datatype and object
properties are of interest for the discourse and the domain-
of-discourse.

In the first step, a set of model-transformation rules matches
parts of the ontology (including its individuals) and trans-
forms them automatically into corresponding parts of a dis-
course model (see the middle part of Figure 1). These
transformations are subject to domain-specific constraints
explained in detail below. The discourse model generated
in this step represents only the generic communication flow

2Last visited on December 10, 2010: http://www.
heppnetz.de/projects/goodrelations/

2
Copyright is held by the owner/author(s)

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.heppnetz.de/projects/goodrelations/
http://www.heppnetz.de/projects/goodrelations/

[2]

[3]

[3]

[1]

[2]

[1]

Class example:

Instance example:

Figure 2. Selected parts from Digicam ontology.

and is incomplete since the content of its communicative acts
does not (yet) refer to the content of the communication (the
domain-of-discourse model).

In the second step, our model-transformation approach
transforms the individuals of the ontology and their con-
crete datatypes and object property values into a domain-of-
discourse model. Here we apply domain-specific constraints
for a domain-of-discourse model. In effect, this step defines
the content of the communicative acts so that the discourse
model refers to the domain-of-discourse model. The con-
tents of communicative acts in the case of a Product Advisor
are concrete question and answer texts that link to elements
of the domain-of-discourse model.

From Ontologies to Discourse Models

Our transformation approach applies several rules to create
a discourse and a domain-of-discourse model out of the on-
tology. Each rule application can be constrained by domain-
specific constraints, that are externally configured. We have
a logical rule chain (by using Operational Query/View/-
Transformation3 (QVT)) defining the application order of
the rules. In principle, a rule that is applied later in the trans-
formation process can influence the outcome of a rule that is
applied sooner. In the following, however, we describe two
independent rules applied in the transformation process, the
DomainSegmentClusterRule and the SingleQuestionRule.

The first rule explained as an example is the DomainSeg-

3Last visited on December 10, 2010: http://wiki.
eclipse.org/M2M/Operational_QVT_Language_
%28QVTO%29

mentClusterRule illustrated in Figure 3. It matches the con-
cept DomainSegment in the ontology, which has several in-
dividuals. For example, the digital camera ontology has
the domain segments EnergySupply, LensFeatures, Ports,
etc. All datatype and object properties in the ontology that
are related to a DomainSegment via the object property be-
longsToDomainSegment are of interest for our transforma-
tion process.

The rule DomainSegmentClusterRule creates a cluster of
questions for all object and datatype properties that belong to
the same domain segment. A cluster groups questions that
hold a semantic relation (e.g., the ports USB and FireWire
belong to the DomainSegment Ports). Such a definition of a
cluster results in a Joint RST relation of a discourse (see the
right part of Figure 3). The datatype and object properties
are transformed into question/answer pairs that are branches
of the Joint relation. In addition to the rule presented above,
the following domain-specific constraint applies: Each prop-
erty needs a minimum priority value (e.g., 20) to be included
in a cluster. The minimum priority value is configured a pri-
ori in the domain-specific constraints.

After the DomainSegmentClusterRule has been applied, all
properties with a minimum priority are grouped in the dif-
ferent clusters. For example, USB belongs to the segment
Ports. Now a rule applies that combines all Boolean prop-
erties (like USB) of one domain segment into one question,
for optimizing the interaction with the Product Advisor. The
left part of Figure 4 shows the datatype property USB, which
represents the USB port of a digital camera having the prior-
ity 85. For this USB property, the SingleQuestionRule takes

3
Copyright is held by the owner/author(s)

http://wiki.eclipse.org/M2M/Operational_QVT_Language_%28QVTO%29
http://wiki.eclipse.org/M2M/Operational_QVT_Language_%28QVTO%29
http://wiki.eclipse.org/M2M/Operational_QVT_Language_%28QVTO%29

Knowledge of

DomainSegments in Ontology

Domain-Specific Constraint

Create cluster for domain segments

that have properties with

priority > 20

Related Part in

Discourse Model

Domain-

Segment-

Cluster

Rule
for each

domain

segment

Figure 3. Transformation with DomainSegmentCluster Rule.

effect now. Due to its high priority value (and importance),
USB becomes a single ClosedQuestion-Answer pair again.
This adjacency pair, shown in the right part of Figure 4, be-
comes also part of the generated discourse model.

As shown with these example rules and their applications,
for each selected property a corresponding question is be-
ing generated for the Product Advisor, since this property is
considered important for the selection of a camera. While
the ontology specifies what exists in the domain, the process
being implemented in the Product Advisor contains related
questions. This semantic gap is bridged by our approach in
the context of the given application.

We show an excerpt of a yet incomplete discourse model in
Figure 5, that is the result of the first transformation step de-
picted in Figure 1. The contents of the communicative acts
are URIs that refer to datatype or object properties in the on-
tology. A Joint relation combines one Adjacency Pair and
the Background relation connecting two more Adjacency
Pairs. In this example, these properties have a high enough
priority, so that they have to be grouped together in a spe-
cial cluster at the beginning of the recommendation process
of the Product Advisor. The first question gathers informa-
tion on the price range, defining the minimum and maximum
price that the user is potentially willing to pay. The second
question elicits the interest for a USB port on the digital cam-
era. This Boolean question is modeled as a closed question.
Moreover, there is an RST relation Background intended to
optionally inform the human user on additional details about
the subject matter, e.g., more information on USB.

From Ontology to Domain-of-Discourse Model

The second step in the transformation from ontologies to
our communication models is to generate the domain-of-
discourse model. This model represents the content of the
communication, more precisely the content of the commu-
nicative acts within our discourse models. For example,
the digital camera’s property hasCurrencyValue (represent-
ing the price of the camera) is the content of the question

Property in Ontology

Domain-Specific Constraint

Create question/answer pair ONLY

if priority of property > 70

Related Part in

Discourse Model

SingleQuestion

Rule

http://rdf4ecommerce.esolda.

com/digitalcamera#USB. . .

Figure 4. Transformation with SingleQuestion Rule.

where the Product Advisor asks the user about his or her
preferences (e.g., price range) regarding the camera price
(shown at the top of Figure 5). The Product Advisor should
only ask for relevant product properties and their values. For
example, the prices of all cameras should be within the price
range offered for selection. So, the set of individuals of the
products is used to generate the possible contents of the com-
municative acts, e.g., to determine their price range.

So, for the content of each question in the discourse model,
a unique datatype representing the product property is gen-
erated in the domain-of-discourse model. Figure 6 shows
a small excerpt of such a generated domain-of-discourse
model. For product properties representing numbers (e.g.,
price), only the minimum and maximum values are relevant
for the Product Advisor (e.g., to generate a slider in the fi-
nal UI for selecting the preferred value between the mini-
mum and maximum). These values are stored together with
the generated datatype. The left part of Figure 6 shows the
datatype of the price property realized by a Float number.
The minimum and maximum values are displayed as an an-
notation in a note below the datatype. For product properties
representing Boolean values, the concrete individuals do not
have to be searched for possible values, of course. As an
example of such a Boolean datatype, the USB datatype is
shown in the middle of Figure 6. For all other properties, an
Enumeration datatype is generated for storing all possible
values. The right part of Figure 6 shows the Enumeration
type generated for the producer datatype. The values of the
enumeration are derived from the set of all camera producer
individuals in the given ontology.

The applications of these transformation rules can be in-
fluenced by domain-specific constraints specific for the
domain-of-discourse model. For example, if no values for
a specific property exist in the set of individuals in the on-
tology or if all of them are same (e.g., if all cameras have
a USB interface), then the content of the question would be
empty, so that the whole question is deleted from the dis-
course model.

4
Copyright is held by the owner/author(s)

Figure 5. A cluster of questions with high priority.

Figure 6. Excerpt of Domain-of-Discourse Model.

CONCLUSION

To ease and speed up the development of ontology-based
interactive systems, the automatic generation of their user
interfaces would be advantageous. However, due to differ-
ent perspectives as well as technical and conceptual foci of
ontologies used in such systems, the generation of user in-
terfaces directly from ontologies would be hard. We use a
high-level interaction model in the form of a communication
model based on discourses as an intermediate language. In
this paper, we explain the automatic generation of such mod-
els out of (annotated) ontologies, and taking application-
specific constraints into account.

From such communication models, user interfaces can
be generated (semi-)automatically, as we have previously
shown already [3]. For small devices, even fully automatic
generation leads to usable interfaces through special opti-
mizations of the use of the constrained space [10].

Acknowledgment

This research has been carried out in the SOFAR project
(No. 825061), funded by the Austrian FIT-IT Program of
the FFG and Smart Information Systems GmbH.

REFERENCES

1. C. Bogdan, H. Kaindl, J. Falb, and R. Popp. Modeling
of interaction design by end users through discourse
modeling. In Proceedings of the 2008 ACM
International Conference on Intelligent User Interfaces
(IUI 2008), Maspalomas, Gran Canaria, Spain, 2008.
ACM Press: New York, NY.

2. J. Falb, H. Kaindl, H. Horacek, C. Bogdan, R. Popp,
and E. Arnautovic. A discourse model for interaction
design based on theories of human communication. In
Extended Abstracts on Human Factors in Computing
Systems (CHI ’06), pages 754–759. ACM Press: New
York, NY, 2006.

3. J. Falb, S. Kavaldjian, R. Popp, D. Raneburger,
E. Arnautovic, and H. Kaindl. Fully automatic user
interface generation from discourse models. In
Proceedings of the 13th International Conference on
Intelligent User Interfaces (IUI ’09), pages 475–476.
ACM Press: New York, NY, 2009.

4. D. Faure and J. Vanderdonckt. User interface extensible
markup language. In Proceedings of the 2nd ACM
SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS ’10), pages 361–362. ACM
Press: New York, NY, 2010.

5. P. Luff, D. Frohlich, and N. Gilbert. Computers and
Conversation. Academic Press, London, UK, January
1990.

6. W. C. Mann and S. Thompson. Rhetorical Structure
Theory: Toward a functional theory of text
organization. Text, 8(3):243–281, 1988.

7. F. Paterno, C. Mancini, and S. Meniconi.
ConcurTaskTrees: A diagrammatic notation for
specifying task models. In Proceedings of the IFIP
TC13 Sixth International Conference on
Human-Computer Interaction, pages 362–369, 1997.

8. H. Paulheim and F. Probst. Ontology-enhanced user
interfaces: A survey. Int. J. Semantic Web Inf. Syst.,
6(2):36–59, 2010.

9. R. Popp. Defining communication in SOA based on
discourse models. In Proceeding of the 24th ACM
SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications
(OOPSLA ’09), pages 829–830. ACM Press: New
York, NY, 2009.

10. D. Raneburger, R. Popp, S. Kavaldjian, H. Kaindl, and
J. Falb. Optimized GUI generation for small screens. In
LNCS Volume on Models in Software Engineering:
Workshops and Symposia at MoDELS 2010. Springer,
2011.

11. J. R. Searle. Speech Acts: An Essay in the Philosophy
of Language. Cambridge University Press, Cambridge,
England, 1969.

5
Copyright is held by the owner/author(s)

Adaptive presentation of itineraries in navigation systems
by means of semantic models

Daniel Muenter & Tim Hussein
University of Duisburg-Essen

Lotharstr. 65, 47057 Duisburg, Germany
{daniel.muenter, tim.hussein}@uni-due.de

ABSTRACT

In this paper, we introduce a technique for adaptive presen-
tation of itineraries in navigation systems based on seman-
tic models. We enrich waypoints with semantic information
and display only those waypoints to the driver that he is re-
ally interested in, hiding information that will most probably
be distracting.

Author Keywords

Model-driven UI Generation, Navigation Support

ACM Classification Keywords

D.1.2 Software: Programming Techniques—Automatic Pro-
gramming

INTRODUCTION

Navigation systems are widespread tools in automobiles. Ac-
cording to recent german studies [5], the percentage of pre-
installed navigation systems increased from less than 6% to
18% within the last six years (in Germany). The percentage
of mobile navigation systems even rose from 1% to almost
31% in the same period. With regard to usability [7] and
traffic routing [3, 11], constant progress has been made dur-
ing the last years. However, there is room for improvement
in many ways.

Usually, the presentation of the itinerary is very detailed –
even if the driver knows parts of the route very well. This is
often distracting and annoying. Presentation techniques that
take the users knowledge and driving behavior into account
can improve the user experience considerably.

Present solutions aim at optimizing routes without taking the
driver’s personal knowledge, experience, and preferences into
account and, thus, are not personalized. However, incorpo-
ration of personal information could improve presentation
of routes significantly. On the one hand, instructions should
be rather short and abstract, if the user knows the particular

area, and, on the other hand, more detailed, while driving
through unknown territory.

In this paper, we introduce a concept to enhance the presen-
tation of the route by adapting it to the driver and his pref-
erences and experience. For that purpose, we use semanti-
cally enriched models of the itineraries. In the end, the user
should only see and hear necessary and helpful information
instead of every single detail. Besides automated adaptation,
the user has always the option to adjust the level of detail of
the presentation manually.

RELATED WORK

Even if not focused on the particular problem depicted in
the introduction, research has been conducted, in order to
enhance presentation of itineraries.

A generalization technique that is geared to hand-drawn route
descriptions and tries to solve the visibility problem of minor
parts of an itinerary on a constant scale factor, is presented
by Agrawala and Stolte [1]. They assume that humans de-
scribe routes in a different way than systems. People always
relate to their own knowledge of the environment in a route
description.

In addition, humans are mainly interested in information about
the main waypoints and not the connections between them.
They rather neglect the length of individual roads and instead
raise their visibility or specific route characteristics (e.g. a
big building or a roundabout) that they consider to be rele-
vant to the navigation process [9].

In [6], Klippel et. al. propose a formal characterization of
route knowledge, that allows for communicating informa-
tion on how to reach a destination (even if a specific route
is not known). Therefore, changes of granularity in route
directions resulting from combining elementary route infor-
mation into higher-order elements (so called spatial chunk-
ing) are discussed.

The authors of that paper also point out, that if environ-
mental features are taken into account for structuring route
knowledge, a coarser perspective on the required way-finding
action than simple turn-by-turn directions can be provided.
Variable granularity in route directions is also focused in
[10]. However, while these approaches attempt to improve
the route guidance by structuring route knowledge, they dis-
regard the individual needs of the user.

1

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Most users have at least some knowledge of the vicinity they
live. Although most people are familiar with their hometown
or parts of it, they receive detailed route instructions from
their device. A personalized granularity in route directions
regarding the special knowledge of a user about the routing
environment could lead to a more intelligent navigation sys-
tem.

Such a comprehension of the user’s knowledge about several
parts of the route has been largely neglected by device man-
ufacturers and suppliers of relevant web services, so far. The
fact that such navigators would need an extended learning
phase to provide customized assistance, is mostly seen as a
major drawback.

To address this problem, Richter and Tomko present an ap-
proach to generate adaptive route directions generated through
a dialog-based knowledge recognition process [9]. There-
fore, the way-finder by default is presented with with desti-
nation descriptions, assuming that the environment is known,
and can request more detailed directions using a provided
dialog facility, if the currently presented information is not
adequate.

We argue that a system could automatically provide user spe-
cific route directions based on a learning process that primar-
ily is supported by a dialog-driven approach. Therefore, we
act on the dialogue suggestion by Richter and Tomko, which
in a first step can enhance the learning process to solve the
cold start problem of completely unknown user preferences
and also avoids the user from unnecessary interactions while
driving.

ITINERARIES AS SEMANTIC MODELS

In order to personalize the route descriptions, we need a de-
tailed and machine-readable model of the route in order to
adapt it to the user’s knowledge and preferences. Thus, we
have to encode all information that may be helpful to decide
whether a particular part of the route should be displayed in
detail, only briefly, or not at all.

Itineraries usually are described by a set of waypoints, which
represent positions between origin and target location. The
idea is now to semantically enhance the waypoints in order
to use the semantic information for filtering.

We therefore propose a layer model where each layer repre-
sents a degree of granularity in the route presentation. The
lowest layer contains the default route directions including
all details of the itinerary, as known from conventional sys-
tems. All upcoming layers show, depending on the level of
abstraction, only certain parts of the route and provide the
related routing instructions.

To achieve this goal, we transform the route description into
a semantic model, which allows us to characterize each way-
point on the basis of its properties comprehensively. In ad-
dition to the general information of an itinerary, such as lo-
cation coordinates, street name and driving instructions, a
semantic description includes further information, such as

a classification of each route point on the nature and type
of geographical conditions. This means that a place can ei-
ther be characterized as town, city, region or even a country
and the connection between two places as a street, road or
motorway. This hierarchical distinction enables later filter-
ing to distinguish the different levels of abstraction. For the
transformation every route object provided by online web
services like Google Maps1 can be used.

If a user has sufficient knowledge about the environment in
a particular area, only a few instructions, limited to the issue
of the next motorway link and the direction of the nearest
town, may be appropriate, while in areas less or not at all
familiar, a detailed route guidance without any abstraction
will be a better choice.

For enriching semantic itinerary models with further infor-
mation, geo-services such as LinkedGeoData.org2 can be
used. Those services provide comprehensive background
knowledge related to spatial features of the ways, structures
and landscapes around the waypoints of an itinerary [2].

Other services that provide additional information for route
enhancement are, for instance, OpenStreetMap3, GeoNames4,
or Topocoding5, which enables us to add the related altitude
value to each waypoint. Figure 1 shows such a semantic
route representation enhanced with additional information.

"Turn left at ..."

Waypoint
hasSuccessor

Waypoint

instruction

residential

typ
e

51.416

la
tit

ud
e

6.790

longitude

"Koloniestraße"

la
b
e
l

Duisburg

City

la
b

e
l

locatedInlocatedIn

"Keep right at the.."

instruction

residential

typ
e

"Bissingheimer Str"

la
b
e
l

51.409

la
tit

u
d
e

6.799

longitude

36 m / 118 ft

a
lt
it
u

d
e

39 m / 128 ft

a
ltitu

d
e

Figure 1. Semantic route representation enriched with additional in-

formation.

An itinerary that has been semantically enriched in that way,
finally, facilitates the applications of particular “views” on
the route. This mechanism can be used to show or hide cer-
tain waypoints and create an optimal presentation based on
the users’ preferences and experiences.

The navigation system could, for instance, only display promi-
nent waypoints such as freeways (if the user already has ba-
sic knowledge of the area). In this case, the directive could
simply be “Head for Freeway 1”, whereas other users would
receive a set of detailed instructions leading the driver to the
particular freeway.

1http://maps.google.com/
2http://linkedgeodata.org/
3http://wiki.openstreetmap.org/
4http://www.geonames.org/
5http://www.topocoding.com/

2

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

The use of semantic models has different advantages com-
pared to traditional ways routes are displayed in navigation
systems:

• Standardization: As information comes from various sources,
each with their own formats and specifications, we need a
standard to cover all these information. Semantic models
are flexible enough to import all information provided by
the original sources and make them accessible in a unified
way (e.g. via SPARQL).

• Extensibility: The characteristics of semantic models men-
tioned in the last paragraph allow integration of new infor-
mation sources as well, regardless of their format.

• Ease of data processing: If the models are encoded in
a standardized language like RDF or OWL, they can be
queried using the SPARQL Protocol and RDF Query Lan-
guage (SPARQL).

• Additional services: The use of standardized semantic mod-
els lays ground for future services apart from classical
navigation. Recommender systems that incorporate se-
mantic data [4], could for instance find filling stations
with attractive bargains or popular restaurants on the way.
Ideas for realizing such value-added services have been
introduced in a german publication written by some of the
authors [8].

LAYERS OF DETAIL

As an intermediate step towards a personalized presenta-
tion, we create a layered model based on the semantic route,
so that the distinct layers reflect a particular level-of-detail.
The bottom layer contains all waypoints, whereas the level-
of-detail decreases on each layer (see Figure 2). SPARQL
queries can be used as a filtering technique in order to show
or hide certain waypoints for each layer.

Figure 2. Particular “views” on the route of a semantically enriched

itinerary.

Each layer can be seen as a “view” on the itinerary show-
ing or hiding certain details. The base-layer corresponds to
the way traditional navigators would display a route; it sim-
ply contains every single waypoint. If a higher level of ab-
straction is selected (either automatically or by hand), the
navigator hides certain waypoints and only displays more
prominent ones. If the adaptation process is supposed to be
automatically instead, the level of detail can be adjusted rule-
based or by other means.

ADAPTIVE ROUTE GENERATION

The layered model now allows us to switch between the
levels-of-detail, such as zooming in or zooming out details
of the route presentation. We provide means of manually
and automatically switching between the degree of detail as
well as choosing the granularity based on user profiles.

Manual Adjustment

A simple way of adjusting the presentation could be by in-
teracting with the driver. Initially the user should be able to
convey known regions dialogue based at the beginning of the
guiding process, where the route has been calculated. There-
fore, he can check the known parts of the itinerary step by
step. Such a procedure is necessary on each guidance where
no part has been marked as well known, yet. This approach
is similar to the dialog-driven process described by Richter
et. al. [9].

The significant deviation in our approach is that we use the
dialogue initially to customize the whole route guidance on
the users individual needs, while Richter provides abstract
instructions by default and requires user interactions at any
time the user needs more detailed ones. Nevertheless, that
kind of interaction facility we will provide additionally. The
user can use a simple widget such as a slider or a turning
knob, which he can set up or adjust the level of detail manu-
ally.

This functionality is available at each stage of the guidance
process to allow the user to react appropriately in any situ-
ation depending on his individual perception. The opportu-
nity to interact with the system at any time also enhances the
satisfaction, thus, the acceptance of the automated process
can be improved. Figure 3 shows an example of such an in-
teraction widget. The user interface provides two buttons for
changing the level of detail. If the user pushes the “More”
button he receives more details of the itinerary presented on
the screen and as driving instructions. A push on the “Less”
button on the other hand causes a higher level of abstraction.

Take the A3 motorway LessMore

Figure 3. Interaction widget for manually adjust the level of detail.

User Profiles

For more sophisticated adaptation effects, dedicated user pro-
files cam be maintained to keep track of the user’s knowl-
edge and preferences. The system keeps track of all places
and routes the user has marked as well known. It then can

3

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

provide recommendation for the levels of detail on new cal-
culated itineraries. In this way, a user knowledge model
evolves from the users interaction in a step by step man-
ner. Figure 4 shows a schematic example of a map repre-
senting the users area knowledge, where the dark regions are
assumed as well known and the lighter ones as unfamiliar.

well known area
partially known area
unknown area

Figure 4. Schematic representation of a users individual area knowl-

edge. Dark areas represent well known areas while bright regions are

less known.

Automatic Adjustment

In order to automatically switch between the levels of detail,
knowledge about the user is necessary. On the one hand,
the system could incorporate information explicitly entered
by the user or, alternatively, keep track of his itineraries, in
order to “learn” such a profile. The first case requires user
interaction, for instance by tagging certain areas on a map as
“well-known” or selecting them from a list of areas.

If the system should learn and update the profile automati-
cally based on the driver’s routes, it has to keep track of the
waypoints on these routes and autonomously mark them as
“rather known” or “well-known”. The level of detail then is
based on the supposed degree of familiarity with the partic-
ular route section.

Combining explicit profile information with learning, of course,
is an opportunity as well.

DISCUSSION

In this paper we presented an approach for enriching the
waypoints of itineraries with semantic information, enabling
a route guiding system to provide an adaptive user interface.
If a driver already knows parts of the itinerary very well, the
system presents the route by adapting it to the drivers pref-
erences and experience.

During the workshop, we would like to discuss, among other
issues, the following questions: What would be better? Tag-
ging a route object with semantic information vs. converting
the whole route as a semantic model? What could be alter-
natives for interactive definition of already known waypoints
(e.g. marking them at the route planning process). How

could a learning system look like that recognizes frequently
used route parts or repeatedly visited places?

REFERENCES

1. M. Agrawala and C. Stolte. Rendering effective route
maps: improving usability through generalization. In
Proceedings of the 28th annual conference on
Computer graphics and interactive techniques,
SIGGRAPH ’01, pages 241–249, New York, NY, USA,
2001. ACM.

2. S. Auer, J. Lehmann, and S. Hellmann.
LinkedGeoData: Adding a spatial dimension to the
Web of Data. The Semantic Web-ISWC 2009, pages
731–746, 2009.

3. J. Hu, I. Kaparias, and M. Bell. Spatial econometrics
models for congestion prediction with in-vehicle route
guidance. Intelligent Transport Systems, IET, 3(2):159
–167, 2009.

4. T. Hussein, T. Linder, W. Gaulke, and J. Ziegler.
Context-aware recommendations on rails. In Workshop
on Context-Aware Recommender Systems (CARS-2009)
in conjunction with the 3rd ACM Conference on
Recommender Systems (ACM RecSys 2009), New York,
NY, USA, 2009.

5. Institut für Demoskopie Allensbach. ACTA 2010 -
Innovationen treiben die Märkte. Presentation, October
2010.

6. A. Klippel, S. Hansen, K. Richter, and S. Winter. Urban
granularities—a data structure for cognitively
ergonomic route directions. GeoInformatica,
13(2):223–247, 2009.

7. T. Kujala. Efficiency of visual time-sharing behavior:
the effects of menu structure on poi search tasks while
driving. In AutomotiveUI ’09: Proceedings of the 1st
International Conference on Automotive User
Interfaces and Interactive Vehicular Applications,
pages 63–70, New York, NY, USA, 2009. ACM.

8. D. Münter, T. Hussein, and W. Gaulke.
Kontextabhängige empfehlung von services zur
intelligente navigationsunterstützung. In Proceedings
of the 1st German Workshop on Human Service
Interaction, 2010.

9. K. Richter, M. Tomko, and S. Winter. A dialog-driven
process of generating route directions. Computers,
Environment and Urban Systems, 32(3):233–245, 2008.

10. T. Tenbrink and S. Winter. Variable granularity in route
directions. Spatial Cognition & Computation,
9(1):64–93, 2009.

11. J. Yoon, B. Noble, and M. Liu. Surface street traffic
estimation. In MobiSys ’07: Proceedings of the 5th
international conference on Mobile systems,
applications and services, pages 220–232, New York,
NY, USA, 2007. ACM.

4

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

SemSor: Combining Social and Semantic Web to Support
the Analysis of Emergency Situations

Philipp Heim
Institute for Visualization and

Interactive Systems (VIS)
Universitätsstraße 38
Stuttgart, Germany

philipp.heim@vis.uni-
stuttgart.de

Dennis Thom
Institute for Visualization and

Interactive Systems (VIS)
Universitätsstraße 38
Stuttgart, Germany

dennis.thom@vis.uni-
stuttgart.de

Thomas Ertl
Institute for Visualization and

Interactive Systems (VIS)
Universitätsstraße 38
Stuttgart, Germany

thomas.ertl@vis.uni-
stuttgart.de

ABSTRACT

In this paper we introduce SemSor, a system developed espe-
cially for the analysis of emergency situations. It constantly
collects information from sources of the Social Web, maps
it to unique resources in the Semantic Web and uses the
annotated information as basis for the situation analysis. If
an emergency situation needs to get analyzed, four steps are
required: First, all information that is already known about
this situation must be entered in the SemSor-GUI. Second,
the entered information needs to be mapped to resources in
the Semantic Web. Third, using these resources as starting
nodes, a spreading activation is applied along the relation-
ships within the Semantic Web to find relevant Social Web
information. And fourth, the newly identified information is
visualized according to different dimensions and can be fil-
tered and explored by the user. In an iterative process, new
insights can be used to refine the query and thus improve
the activated information until a comprehensive analysis of
even complex situations is possible.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods; H.3.3 [Information Search and Retrieval]: Infor-
mation filtering, query formulation, relevance feedback; H.5.2
[User Interfaces]: Graphical user interfaces (GUI)

Keywords

Social Web, Web 2.0, Semantic Web, Social Semantic Web,
situation analysis, spreading activation, interactive informa-
tion retrieval

1. INTRODUCTION
Analyzing emergency situations is difficult in cases where

either the agent who does the analysis is not close by and
thus is not able to directly hear or see what is going on, or

.

the situation itself is distributed in space or time so that one
single person alone has difficulties in getting an overview.
These cases hold true, e.g., in emergency operation centers
(EOCs), where neither the agent who receives an emergency
call is onside nor the person who has made the call has
usually a comprehensive picture of the situation. However,
having a comprehensive picture is especially important for
the analysis of emergency situations in order to take the
right actions and thus prevent all kinds of damage.

To overcome the difficulties in analyzing emergency situa-
tions, we propose an approach that combines the advantages
of the Social Web with those of the Semantic Web. The idea
is to scan Social Web entries, semantically annotate their
content and use spreading activation to find exactly those
entries that are useful for the analysis of a specific emergency
situation. The idea of combining Social and Semantic Web
to a Social Semantic Web has already been described e.g.
in [10] and implemented in many applications, e.g. within
the WeKnowIt-Project [6]. Also tools have been developed
that use this idea to support the analysis of emergency sit-
uations [8, 13]. In these tools the found Social Web entries
are often arranged on a map to provide an overview of the
geographical extent, e.g. on the Interactive Fire Map [3], or
to extract relevant information via geographical filters [14].
Also popular are timelines that order Social Web entries ac-
cording to the date of their creation and thus support an
understanding of the chronology of events [15]. However,
none of these approaches use spreading activation to find
semantically related Social Web entries automatically.

The general idea of spreading activation in semantic graphs
has first been introduced in [9]. Initially a set of starting
nodes is labeled with activation energy, which then is it-
eratively propagated to other nodes that are linked to the
starting nodes. Links can be weighted in order to control the
spreading of energy. This can be used, for instance, in rec-
ommender systems to adapt the content of a web site to the
current context of its visitors. Next to the users’ concrete in-
formation needs, contextual information like location, time,
role, or weather conditions can be used to spread the activa-
tion differently and thus to find information that is relevant
with respect to a specific context [12]. In addition, every
user action can lead to refined link weights and activation
energies to account for individual preferences and interests.
However, this requires the semantic graph to be stored lo-
cally or on a server with write permissions in order to be able
to adapt the weights and activation energies accordingly.

Figure 1: SemSor architecture: Social Web entries are constantly crawled (A) and mapped to semantic
resources (B). If a situation has to be analyzed, all known information also needs to get mapped to semantic
resources (C), which function as starting nodes for the spreading activation (D). The found Social Web entries
are visualized and can be explored and filtered by the user (E). Gained insights, from the visualization or
from external sources (F), can then iteratively be used to improve the activated information.

In this paper we introduce an approach that applies spread-
ing activation in external semantic datasets and thus saves
storage space and calculating capacities. Datasets in the
LOD cloud [2] are accessed via SPARQL [5] queries to trig-
ger the spreading activation and thus to find semantically
related resources. Besides the low system requirements, the
two main advantages of an outsourced spreading activation
approach are: 1) The datasets are always up-to-date; no
complicated methods for updating local copies are required.
2) Semantic relationships of all kinds and domains are used
to activate relevant information; spreading activation is not
restricted to a predefined set of resources, e.g. resources
of a certain domain, but can include all domains contained
in the LOD cloud. With the SemSor system, we present an
prototypical implementation of our approach that facilitates
the extraction of community information relevant to analyze
a certain emergency situation. Even though the spreading
activation takes place externally, the user can rate the rel-
evance of the found Social Web entries to refine the search
query and thus change the activation values until a thorough
analysis can be achieved.

In the following we first describe the general SemSor archi-
tecture with all the components and steps that are required
for the analysis of emergency situations and provide further
details to each of the steps afterwards. This includes the
crawling and annotating of Social Web entries, the initial
query formulation, the spreading activation, the visualiza-
tion and filtering, and the interactive query refinement. At
the end of the paper a conclusion and an outlook on future
work is given.

2. SYSTEM ARCHITECTURE
The SemSor System constantly scans Social Web sources,

e.g. Twitter, Flickr and YouTube, for new entries (Fig. 1,
A) and semantically annotates their textual content. Terms
with a distinct meaning, e.g. geographical or temporal ref-

erences, are therefore mapped to unique semantic resources
of datasets in the LOD cloud, e.g. DBpedia [7] or GeoN-
ames [1] (Fig. 1, B). Thus the system automatically creates
a machine readable representation of the semantic that is
contained in the found Social Web entries, which can later
on be used to support the analysis.

Once a certain situation needs to be analyzed (Fig. 1,
F), e.g. because of an incoming emergency call, everything
that is known about this situation must also be mapped
to unique semantic resources (Fig. 1, C). These resources
are then used as starting nodes for the spreading activation
[9] that is applied to find all semantic resources that might
be of relevance (Fig. 1, D). In a next step, all the Social
Web entries that have been annotated with at least one of
the activated resources are collected and form the result set,
which is presented to the user via multiple views (Fig. 1, E).
The result set can interactively be explored and filtered by
the user in order to gain new insights about the situation.
Gained insights or news from external sources, e.g. from the
first responders, (Fig. 1, F) can then iteratively be used to
refine the search query, thereby activate new resources in
the Semantic Web and thus improve the situation analysis.
Due to the possibility to iteratively refine the search query,
humans and computers can co-operate in this task.

3. CRAWLING AND ANNOTATING SOCIAL

WEB ENTRIES
In order to use information that is contained in Social

Web entries to support the analysis of emergency situations,
the entries first have to be extracted and annotated by the
crawler component of SemSor. Even though the Social Web
contains a huge amount of data, only a minimum of this
information needs to get stored in the SemSor database.
In a first step, a broad multitude of Social Web data gets
collected and evaluated according to a preconfigured met-
ric that determines the a priori relevance of each individual

entry. Within this metric, different properties of an entry
like its source, the date and time of its creation as well as
location-based data get extracted and serve as basis to cal-
culate a weighted importance rating. The weights of the
metric can be configured according to the individual needs
of its users (e.g. a specific emergency response team) and
provide a basic means to decide, which entries should be
kept and which can be deleted if computational- or storage-
resources become short. Following the collection and a priori
evaluation, the Social Web entries are analyzed and certain
terms in their textual contents are automatically assigned to
unique resources in datasets in the LOD cloud by using ser-
vices like e.g. OpenCalais [4]. Once new entries have been
registered and evaluated, only their URLs and the URIs of
the assigned semantic resources have to be kept for subse-
quent steps.

4. INTERACTIVE SITUATION ANALYSIS
The SemSor system supports the whole situation analysis

process, including the initial query formulation, the search
for relevant information via spreading activation, the visu-
alization and filtering of the results as well as mechanisms
to iteratively refine the query.

4.1 Initial Query Formulation
The method of query is based on common question schemes

of emergency calls according to relevant aspects of a situa-
tion: ”What has happened?”, ”Where did it happen?” and
”Who is involved?”(Fig. 2, B). The agent is supposed to pro-
vide approximate answers to at least some of these questions
and can further substantiate his query by providing bound-
aries for the temporal and spatial extent of the situation.
In this process, the agent is assisted by an adaptive auto-
complete feature, which will try to interactively map given
search terms to resources in the Semantic Web. Through-
out this process the definitions of proposed resources are
provided in pop-up windows, e.g. corresponding Wikipedia
articles (Fig. 2, A), to help users especially in the disam-
biguation of ambiguous input terms. Based on this proce-
dure the system is able to get a reliable handle onto the
relevant nodes in the Semantic Web. During an emergency
situation, like e.g. the 2010 Haiti earthquake, disaster agents
can obtain a general overview of the situation by performing
a broad search on keywords like ”Earthquake” and ”Haiti”.
Based on the interactive mapping of search terms to seman-
tic resources the query is annotated by SemSor and con-
nected with resources in the Semantic Web. The nodes of
this framework serve as the initially activated nodes in the
spreading activation procedure.

4.2 Spreading Activation
Based on the initial activation of the user defined staring

nodes (Fig. 3, A), a homogeneous spreading activation is
applied along the relationships between the resources in the
datasets. In order to automatically activate semantically
related resources that might also be relevant for the situ-
ation analysis, the activation happens along the instance-
relationship layer (Fig. 3, B) as well as the class-relationship
layer (Fig. 3, C). Thus the resulting set of Social Web en-
tries is not limited to those containing references to one of
the user defined starting nodes only, but also includes entries
referring to resources that are within a distinct semantic ra-
dius around the user defined starting nodes (Fig. 3, D);

Figure 3: Search terms are interactively mapped
to resources in semantic datasets (A) that function
as starting nodes for the spreading activation that
is applied along the links within these datasets (B
and C). As a result, semantically related resources
get activated and thus Social Web entries annotated
with at least one of them get found (D).

this facilitates finding information that is relevant for the
analysis of a certain emergency situation.

The spreading activation in SemSor is implemented mostly
as a remote process. On the client side, the process is only
triggered and controlled but is run completely within exter-
nal datasets on server side. Therefore SPARQL queries are
sent to the datasets to find resources related to the starting
nodes, which are then scored according to the semantical
and topological properties of their relationships.

Related resources are found based on an approach de-
scribed in [11]. Taking the starting nodes as roots, a breadth-
first search (BFS) is applied to find all resources that are re-
lated to one of the starting nodes up to a predefined depth
threshold. The depth threshold defines the number of nodes
that are allowed between a starting node and a resource
that can be activated. Thus having e.g. a depth threshold
equal null restricts the activation radius to resources that are
directly connected to one of the starting nodes. For each re-
lated resource that is found, the algorithm checks whether
Social Web entries have been crawled that are assigned to it
(e.g. the Flickr entry is assigned to Fire in Fig. 3).

All those Social Web entries are then activated according
to topological and semantical aspects and thereby scored.
In our implementation the extent of activation depends on
three aspects: 1) The length of the relationship, e.g. the
length between the Flickr entry and the starting nodes is
two, 2) the connection types within the relationships, e.g.
”district of” or ”capital”, and 3) the classes of the interme-
diate resources, e.g. ”Port-au-Prince” is a city. It is also
possible to define certain connection types or classes that
should not be used to spread the activation, which is use-
ful if someone is not interested in relationships that contain
certain instances or connections.

Figure 2: SemSor GUI: Search terms are interactively mapped to semantic resources (A) that together form
the search query (B). Relevant information from Social Web sources is found automatically and shown in
a list (C). Single entries can be examined in detail (D) and filters can be formulated according to various
dimensions, e.g. spatial filters (E) or temporal filters (G).

4.3 Visualization and Filtering
Based on their activation, the Social Web entries are visu-

alized in the SemSor GUI. While the search still continues,
all Social Web entries that were already discovered by the
activation are presented through the result browser in dif-
ferent user-selectable views (e.g. tabular, map and statistic
view). Every view provides the opportunity to obtain pic-
tures, videos and other user generated content related to the
situation (Fig. 2, D). The standard view is a listing of en-
tries sorted by their individual semantic relevance (Fig. 2,
C). In order to get an overview of the spatial distribution
of possibly relevant entries, the agent can view them on a
map that can also be used to formulate geographical con-
straints, e.g. to show only results that refer to a certain
geographic region (Fig. 2, E). To further explore the set
of results a time line offers an overview over the temporal
distribution of events (Fig. 2, G) and allows to formulate
temporal constraints, e.g. to show only results that refer to
a specific period of time. To further explore the quality and
diversity of results the agent has the opportunity to analyze
diagrams that show the composition of chosen result-subsets
by author, location or tag-categories. By acquiring these ini-
tial impressions, the agent can further asses the nature and
extent of the situation and initiate subsequent steps.

4.4 Interactive Query Refinement
At this point the advantages of the interactive features

in SemSor come into play. If the resulting set generated
by the initial spreading activation (Fig. 4, A and B) and
diminished by the user defined filters is yet not sufficient,
the agent can further refine and expand his initial query by
rating single result items on a continuous scale (Fig. 4, C)

and by dragging additional tags from the items to the query
fields. High ratings of some Social Web entries can then lead
to the activation of semantic resources which are directly
connected to those entries (Fig. 4, D). Thus after rating the
items, the agent is given the possibility to restart his search,
but this time, the spreading activation will execute starting
also from the newly activated items (Fig. 4, E). Through this
”pollination” and subsequent activation of remote nodes in
the semantic graph the agent is given the chance to discover
relevant regions and new Social Web entries that were not
included or even near his initial query (Fig. 4, F). Based on
the filters and the interaction procedure, the agent is able to
cope with the enormous flood of Social Web data that can
be found in connection with emergency situations and make
beneficial use of them.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we described an approach that combines the

Social and the Semantic Web in order to support the analysis
of emergency situations. Exploiting information from the
Social Web is especially useful when: (1) the situation is
distributed in space or time, (2) first responders are not on
site, or (3) the situation cannot or only partly be observed;
e.g. this can be the case if a situation takes place within a
building or is hidden behind some obstacles.

The automatic semantic annotation of entries in the So-
cial Web as well as the interactive mapping of entered search
terms to unique resources in the Semantic Web allows infor-
mation to be found not only by string matching but also
according to its meaning. Therefore spreading activation is
applied in external semantic datasets that offer both up-to-
date and comprehensive information on all kinds of topics.

Figure 4: Once an entry has been found via spread-
ing activation (A and B), the agent can rate it as
relevant (C) and thus indirectly expand the search
query (D). This leads to the activation of other
nodes (E) and thus can produce Social Web entries
as result set that are only distantly related to the
user defined search query (F).

Because of the outsourced spreading activation and the
minimum information that is needed to store the annotated
Social Web entries – an entry is represented by its URL and
the URIs of the annotated resources only – SemSor is able
to handle the huge amounts of available data and find in-
formation relevant for the analysis of a certain emergency
situation. The found information is visualized in multiple
views and can be explored and filtered by the agent based
on individual information needs. If the result set is not yet
sufficient, the query can interactively be expanded or nar-
rowed down. Single entries can be rated as relevant or as
irrelevant which changes the starting nodes and thus can re-
sult in other entries to be found by the spreading activation.
The query can be refined until a sufficient analysis of the
emergency situation is possible.

In its current implementation, the SemSor system is most
suitable to analyze current or past emergency situations (cp.
Fig. 2). Since many people use the Social Web to comment
on emergency situations, relevant information is available
even while a situation is happening. Together with the fact
that only seconds are required from the time a new com-
ment is uploaded to when it can be found in SemSor, it is
already possible to facilitate the analysis of current and past
emergency situations.

However, analyzing current or past emergency situations
often cannot prevent them from happening. In order to pre-
vent emergency situations a preventive analysis is required.
First signs of a forthcoming emergency situation need to be
detected and interpreted in the right way so that the right
actions can be initiated. Besides the agent triggered search,
this would require SemSor to automatically scan the Social
Web entries for new topics and trends and iteratively pro-
duce an overview of the current situation. If certain topics
get popular or unusual changes can be detected an alarm
could be raced automatically that could force an agent to
check the situation and decide on the right actions to pre-

vent a possible emergency situation from happening.

6. ACKNOWLEDGMENTS
The prototypical implementation of our approach, the

SemSor system, was developed within a student project by
Clint Banzhaf, David Schmid, Dominik Jäckle, Edwin Pütt-
mann, Jochen Seitz, Johannes Dilli, Marijo Macet, Nico
Ploner, Steffen Bold, Stephan Engelhardt and Thomas Mich-
elbach. We would like to thank them for their excellent work.
Furthermore we thank Bernhard Schmitz, Michael Wörner
and Thomas Schlegel for co-supervising the project.

7. REFERENCES
[1] Geonames. http://www.geonames.org/, 2006.

[2] Linking open data community project (lod).
http://esw.w3.org/SweoIG/TaskForces/

CommunityProjects/LinkingOpenData, 2007.

[3] San diego wildfires 2007 interactive fire map.
http://www.signonsandiego.com/firemap/, 2007.

[4] Opencalais. http://www.opencalais.com/, 2008.

[5] Sparql protocol and rdf query language.
http://www.w3.org/TR/rdf-sparql-query/, 2008.

[6] Weknowit project. http://www.weknowit.eu, 2010.

[7] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives. DBpedia: a nucleus for a
web of open data. In Proc. of the 6th Int. Semantic
Web Conf. (ISWC’08), volume 4825 of LNCS, pages
722–735. Springer, 2008.

[8] J. Borsje, L. Levering, and F. Frasincar. Hermes: a
semantic web-based news decision support system. In
Proc. of the 2008 ACM symposium on Applied
computing, SAC ’08, pages 2415–2420, New York, NY,
USA, 2008. ACM.

[9] A. M. Collins and E. F. Loftus. A spreading-activation
theory of semantic processing. Psychological Review,
82(6):407 – 428, 1975.

[10] T. Gruber. Collective knowledge systems: Where the
social web meets the semantic web. Web Semantics:
Science, Services and Agents on the World Wide Web,
6:4–13, 2008.

[11] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann, and
T. Stegemann. Relfinder: Revealing relationships in
rdf knowledge bases. In Proc. of the 4th Int. Conf. on
Semantic and Digital Media Technologies (SAMT
2009), pages 182–187. Springer, 2009.

[12] T. Hussein and J. Ziegler. Adapting web sites by
spreading activation in ontologies. In Proc. of the Int.
Workshop on Recommendation and Collaboration
(ReColl ’08), 2008.

[13] N. Ireson. Local community situational awareness
during an emergency. In Proc. of the IEEE Int. Conf.
on Digital Ecosystems and Technologies (DEST 2009),
pages 49–54. IEEE, 2009.

[14] C. P. Julio and C. A. Iglesias Fernández. Disasters 2.0:
Application of web 2.0 technologies in emergency
situations. In Proc. of the 6th Int. ISCRAM Conf.,
Gothenburg, Sweden, 2009.

[15] S. B. Liu and L. Palen. Spatiotemporal mashups: A
survey of current tools to inform next generation crisis
support. In Proc. of the 6th Int. ISCRAM Conf.,
Gothenburg, Sweden, 2009.

Interactive News Video Recommendation: An Example
System

Frank Hopfgartner
International Computer Science Institute

1947 Center Street, Suite 600
Berkeley, CA, 94704
fh@icsi.berkeley.edu

ABSTRACT
This position paper introduces a recommender system which
has been developed to study research questions in the field
of news video recommendation and personalization. The
system is based on semantically enriched video data and
can be seen as an example system that allows research on
semantic models for adaptive interactive systems.

1. INTRODUCTION
In recent years, the amount of multimedia content available
to users has increased exponentially. This phenomenon has
come along with (and to much an extent is the consequence
of) a rapid development of tools, devices, and social services
which facilitate the creation, storage and sharing of personal
multimedia content. A new landscape for business and in-
novation opportunities in multimedia content and technolo-
gies has naturally emerged from this evolution, at the same
time that new problems and challenges arise. In particular,
the hype around social services dealing with visual content,
such as YouTube or Dailymotion has led to a rather scat-
tered publishing of video data by users worldwide [8]. Due
to the sheer amount of large data collections, there is a grow-
ing need to develop new methods that support the users in
searching and finding videos they are interested in.

Video retrieval is a specialization of information retrieval
(IR), a research domain that focuses on the effective stor-
age and access of data. In a classical information retrieval
scenario, a user aims to satisfy their information need by
formulating a search query. This action triggers a retrieval
process which results in a list of ranked documents, usually
presented in decreasing order of relevance. The activity of
performing a search is called the information seeking pro-
cess. A document can be any type of data accessible by a
retrieval system. In the text retrieval domain, documents
can be textual documents such as emails or websites. Image
documents can be photos, graphics or other types of visual il-
lustrations. Video documents consist of a set of audio-visual

signals and accompanying metadata. The audio-visual fea-
tures can be described by low-level feature descriptors, the
main description standard being MPEG-7.

Retrieving videos using low-level features is, due to the Se-
mantic Gap [18], a challenging approach. An analysis of
state-of-the-art research on video retrieval indicates that
content-based video retrieval performance is still far away
from their textual counterparts [7]. An interesting approach
to narrow this performance gap is to further enrich video
documents using external data sources, called metadata.
Blanken et al. [4] list three types of metadata: (1) Descrip-
tive Data, (2) Text Annotations and (3) Semantic Annota-
tion. All approaches aim to provide annotations in textual
form that allow to bridge the Semantic Gap. Fernández et
al. [9], for instance, have shown that ontology-based search
models that exploit semantic annotations can outperform
classical information retrieval models at a web scale. The
advantage of these models is that external knowledge is used
to set the content into their semantic context.

In [10], we introduced a news video recommender system
which relies on such semantic annotations. The system cap-
tures daily broadcasting news, and segments the bulletins
into semantically related news stories. DBpedia is exploited
to set these stories into context. DBpedia is a structured
representation of Wikipedia [2]. This semantic augmenta-
tion of news stories is used as the backbone of our news video
recommendation. Our first hypothesis was that implicit rel-
evance feedback can be used to create appropriate long-term
user profiles. Implicit relevance feedback refers to user in-
teractions that are performed implicitly during a search ses-
sion, such as clicking a search result or spending time to
read/view a document. We introduced an implicit user mod-
eling approach which automatically captured users’ evolving
information needs, representing interests in a dynamic user
profile. Another research question was to study whether the
selection of concepts in a generic ontology can be used for
accurate news video recommendations. Therefore, we intro-
duced our approach of exploiting DBpedia to set concepts
of news stories into their semantic context. As our evalu-
ation indicates, semantic recommendations can successfully
be employed to improve the recommendation quality.

While we evaluated within this work the underlying person-
alization technique, which takes advantage of an ontology,
the impact of the adaptive presentation of the recommen-
dations and search results, i.e. the interface design, has not

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

been evaluated yet. Given a well-evaluated backend which
relies on Semantic Web technologies, we argue in this posi-
tion paper that the introduced personalization system can
be seen as an exemplar system which allows for studying the
research questions that are within the scope of this work-
shop. After introducing the research domain in Section 2,
we illustrate in Section 3 how users can use the system to re-
ceive frequent news video recommendations that match their
personal interests. In Section 4, we introduce the interface
of prior mentioned system, which is required to visualize se-
mantically enriched video data. Section 5 discusses how this
system can be used as an example to study semantic models
for adaptive interactive systems.

2. SEMANTIC NEWS VIDEO RECOMMEN-

DATION
When interacting with a video retrieval system, users ex-
press their information need in search queries. The under-
lying retrieval engine then retrieves relevant results to the
given queries. A necessary requisite for this IR scenario is to
correctly interpret the users’ information need. As Spink et
al. [19] indicate though, users very often are not sure about
their information need. One problem they face is that they
are often unfamiliar with the data collection, thus they do
not exactly know what information they can expect from
the corpus [17]. Further, Jansen et al. [12] have shown that
video search queries are rather short, usually consisting of
approximately three terms. Considering these observations,
it is hence challenging to satisfy users’ information needs,
especially when dealing with ambiguous queries. Triggering
the short search query “Victoria”, for example, a user might
be interested in videos about cities called Victoria (e.g. in
Canada, United States or Malta), landmarks (e.g. Victoria
Park in Glasgow or London), famous persons (e.g. Queen
Victoria or Victoria Beckham) or other entities called Vic-
toria. Without further knowledge, it is a demanding task
to understand the users’ intentions. Interactive information
retrieval aims at improving the classic information retrieval
model by studying how to further engage users in the re-
trieval process, in a way that the system can have a more
complete understanding of their information need. Thus,
aiming to minimize the users’ efforts to fulfill their informa-
tion seeking task, there is a need to personalize search. In
a web search scenario, Mobasher et al. [14] define personal-
ization as “any action that tailors the Web experience to a
particular user, or a set of users”. Another popular name is
adaptive information retrieval, which was coined by Belew
[3] to describe the approach of adapting, over time, retrieval
results based on users’ interests.

Most of the approaches that follow the interactive informa-
tion retrieval model are based on relevance feedback tech-
niques [17]. Relevance feedback (RF) is one of the most im-
portant techniques within the IR community. An overview
of the large amount of research focusing on exploiting rele-
vance feedback is given by Ruthven and Lalmas [16]. The
principle of relevance feedback is to identify the user’s infor-
mation need and then, exploiting this knowledge, adapting
search results. Rocchio [15] defines relevance feedback as
follows: The retrieval system displays search results, users
provide feedback by specifying keywords or judging the rel-
evance of retrieved documents and the system updates the
results by incorporating this feedback. The main benefit

of this approach is that it simplifies the information seeking
process, e.g. by releasing the user from manually reformulat-
ing the search query, which might be problematic especially
when the user is not exactly sure what they are looking for or
does not know how to formulate their information need. Two
types of relevance feedback exist: explicit and implicit feed-
back. While explicit RF models rely on users permanently
providing relevance information about documents they re-
trieved, implicit RF models rely on automatically mining
user interaction data. The main advantage is that this ap-
proach delivers the user from providing explicit feedback.

Most personalization services rely on users explicitly specify-
ing preferences. However, users tend not to provide constant
explicit feedback on what they are interested in. In a long-
term user profiling scenario, this lack of feedback is critical,
since feedback is essential for the creation of such profiles.
Considering that each interface feature is designed to allow
users to either retrieve or explore document collections, we
hypothesized in [10] that the users’ interactions with these
features can be exploited as implicit relevance feedback. We
introduced a news video recommender system which auto-
matically generates personalized multimedia news that cover
topics of the users’ long-term interests.

Defining the technical conditions for such recommender sys-
tems, we argued that the creation of a private news video
collection is required, consisting of up-to-date news bulletins
from different broadcasting stations. Further, we argued
that semantic web technology can be exploited to link con-
cepts in the news broadcasts and suggested a categorization
of stories into broad news categories. From a user profiling
point of view, these links and categories can be of high value
to recommend semantically related transcripts, hence creat-
ing a semantic-based user profile. For example, a user could
show interest in a story about the sunset at the Greek island
Santorini. The story transcript might contain the following
sentence:

“This is Peter Miller, reporting live from San-
torini, Greece, where we are just about to wit-
ness one of the most magnificent sunsets of the
decade. [...]”.

If the same user enjoys travel with emphasis on warm Mediter-
ranean sites, he/she might also be interested in a report
about the Spanish island Majorca. For example, imagine
the following story:

“Just as every year, thousands of tourists enjoy
their annual sun bath here in Majorca. [...]”.

An interesting research question is how to identify whether
this story matches the user’s interests. Lioma and Ounis
[13] argue that the semantic meaning of a text is mostly ex-
pressed by nouns and foreign names, since they carry the
highest content load. Indeed, most adaptation approaches
rely on these terms to personalize retrieval results, e.g. by
performing a simple query expansion. The two example sto-
ries, however, do not share similar terms. A personalization

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

technique exploiting the terms only would hence not be able
to recommend the second story. However, linking the con-
cepts of the transcripts using DBpedia reveals the semantic
context of both stories. It becomes evident that both sto-
ries are about two islands in the Mediterranean Sea. Ex-
ploiting this link could hence satisfy the user’s interest in
warm Mediterranean Sites. We therefore proposed to set
news broadcasts into their semantic context by exploiting
the large pool of linked concepts provided by DBpedia.

Having established a semantically annotated data collection,
the recommender system can be operated on a regular basis
to retrieve news stories that match the user’s interests. In
the next section, we illustrate a typical use-case that illus-
trates the use of the exemplar system.

3. USE-CASE SCENARIO
In the previous section, we provided a brief summary of the
research challenges that have been tackled in [10]. Users
can interact with this system on a regular basis, e.g. over
several weeks, to satisfy their information need, allowing for
longitudinal user studies where the system can be evaluated.
The following example depicts a typical use-case scenario:

“Imagine a user who is interested in multiple news
topics. They registered with a news recommender
system with a unique identifier. For a period of
several months, they log into the system, which
provides them access to the latest news video sto-
ries of the day. On the system’s graphical inter-
face, they have a list of the latest stories which
have been broadcast on two national television
channels. They now interact with the presented
results and logs off again. On each subsequent
day, they log in again and continue the above
process.”

In this scenario, a user frequently uses the system to gather
latest news. The interface has been designed to adapt its
content based on users’ personal interests by employing the
semantic context of the data collection. Each time, he/she
interacts with the video documents which have been dis-
played by the graphical user interface, he/she leaves a “se-
mantic fingerprint” of their interests. Based on this finger-
print, more video documents are identified by exploiting the
semantic link between the video documents in the collection.
Hence, each time the user interacts with retrieval results,
other related videos are identified and displayed. A long-
term user study focusing on evaluating the performance of
different recommendation techniques has been introduced in
[11].

While this evaluation is focused on the recommendation
techniques, a thorough evaluation of the interface has not
been done yet. An overview over the interface is given in
the next section.

4. INTERFACE DESIGN
Figure 1 shows a screenshot of the adaptive news video re-
trieval interface which was used within the study. It can be
split into three main areas: Search queries can be entered

in the search panel on top, results are listed on the right
side and a navigation panel is placed on the left side of the
interface. When logging in, the latest news will be listed in
the results panel. Search results are listed based on their
relevance to the query. Since we are using a news corpus,
however, users can re-arrange the results in chronological
order with latest news listed first. Each entry in the result
list is visualized by an example key frame and a text snippet
of the story’s transcript. Keywords from the search query
are highlighted to ease the access to the results. Moving
the mouse over one of the key frames shows a tool tip pro-
viding additional information about the story. A user can
get additional information about the result by clicking on
either the text or the key frame. This will expand the result
and present additional information including the full text
transcript, broadcasting date, time and channel and a list
of extracted named entities. In the example screenshot, the
third search result has been expanded. The shots forming
the news story are represented by animated key frames of
each shot. Users can browse through these animations either
by clicking on the key frame or by using the mouse wheel.
This action will center the selected key frame and surround
it by its neighboring key frames. The user’s interactions
with the interface are exploited to identify multiple topics
of interests. On the left hand side of the interface, these in-
terests are presented by different categories, i.e. those news
categories that the user showed interest in during previous
search sessions.

Summarizing, the interface provides access to different news
categories in which the user showed interest in. These inter-
ests can adapt over time, i.e. when a user shows interest in a
certain news aspect right now, this aspect might already be
irrelevant in a few days. Imagine, for example, a user who
has shown high interest in any news regarding the FIFA
Soccer World Cup. Just a few days after the end of the
tournament, the user’s interest might drop to a minimum
again. Our interface serves this evolving need by automati-
cally updating the categories in which the user showed the
most interest in during the last sessions. The evolving inter-
est is modeled by applying the Ostensive Model [6], which
provides a decay function that aligns a higher weighting to
more recent user interests.

5. DISCUSSION AND CONCLUSION
Above description reveals that the interface has been de-
signed to visualize news videos that match users’ interests.
The categorization of these interests is highly user-centric.
The interface adapts its content, i.e. both categories on the
left hand side and news videos on the right hand side based
on the users’ previous interactions. Even though the recom-
mendation technique relies on interlinked data, the interface
itself does not support filtering or browsing the data accord-
ingly.

As mentioned before, this constraint is due to the different
focus of the research, which was aiming at studying rec-
ommendation techniques rather than adaptive interface de-
signs. Nevertheless, given the support of semantically en-
riched video data, we argue that the system can be seen
as an example framework which enables to study such in-
terface features. Example improvements include visualizing
story interlinking by using a hyperbolic tree, as has been

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Figure 1: News Video Recommender Interface

introduced by Bürger et al. [5]. In their Smart Content
Factory, each document in the index has been enriched with
semantic information, i.e. places mentioned in the transcript
are matched with a generic geography thesaurus. Such tree
would allow users to browse the video collection based on the
semantic content of each video. Another improvement could
be to provide thesaurus supported query auto-completion
features as shown by Amin et al. [1]. This would allow users
to get an idea about the collection based on the query sug-
gestions.

Acknowledgment
The author was supported by a fellowship within the Postdoc-
Program of the German Academic Exchange Service (DAAD).

6. REFERENCES
[1] A. Amin, M. Hildebrand, J. van Ossenbruggen,

V. Evers, and L. Hardman. Organizing suggestions in
autocompletion interfaces. In ECIR’09: Proceedings of
the 31st European Conference on IR Research, ECIR
2009, Toulouse, France, pages 521–529, 2009.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. G. Ives. DBpedia: A Nucleus for
a Web of Open Data. In Proc. 6th Int. Semantic Web
Conf., pages 722–735. Springer Berlin / Heidelberg, 11
2007.

[3] R. K. Belew. Adaptive information retrieval: using a
connectionist representation to retrieve and learn
about documents. SIGIR Forum, 23(SI):11–20, 1989.

[4] H. M. Blanken, A. P. de Vries, H. E. Bok, and
L. Feng. Multimedia Retrieval. Springer Verlag,
Heidelberg, Germany, 1 edition, 2007.

[5] T. Bürger, E. Gams, and G. Güntner. Smart content
factory: assisting search for digital objects by generic
linking concepts to multimedia content. In Proc. HT,
pages 286–287. ACM, 2005.

[6] I. Campbell and C. J. van Rijsbergen. The ostensive
model of developing information needs. In Proc.
Library Science, pages 251–268, 1996.

[7] M. G. Christel. Establishing the utility of non-text
search for news video retrieval with real world users.
In MULTIMEDIA ’07: Proceedings of the 15th
international conference on Multimedia, pages
707–716, New York, NY, USA, 2007. ACM.

[8] S. J. Cunningham and D. M. Nichols. How people find
videos. In Proc. 8th ACM/IEEE-CS Joint Conference
on Digital libraries, pages 201–210, New York, NY,
USA, 2008. ACM.

[9] M. Fernández, V. López, M. Sabou, V. Uren,
D. Vallet, E. Motta, and P. Castells. Using TREC for
cross-comparison between classic IR and
ontology-based search models at a Web scale. In

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

SemSearch’09, 4 2009.

[10] F. Hopfgartner and J. M. Jose. Semantic user
modelling for personal news video retrieval. In MMM,
pages 336–346, 2010.

[11] F. Hopfgartner and J. M. Jose. Semantic user profiling
techniques for personalised multimedia
recommendation. Multimedia Systems, 16(4):255–274,
2010.

[12] B. J. Jansen, A. Goodrum, and A. Spink. Searching
for multimedia: analysis of audio, video and image
web queries. World Wide Web, 3(4):249–254, 2000.

[13] C. Lioma and I. Ounis. Examining the Content Load
of Part of Speech Blocks for Information Retrieval. In
ACL’06: Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics, Sydney, Australia, 2006.

[14] B. Mobasher, R. Cooley, and J. Srivastava. Automatic
personalization based on web usage mining.
Communications of the ACM, 43(8):142–151, 2000.

[15] J. J. Rocchio. Relevance feedback in information
retrieval. In G. Salton, editor, The SMART retrieval
system: experiments in automatic document
processing, pages 313–323, Englewood Cliffs, USA,
1971. Prentice-Hall.

[16] I. Ruthven and M. Lalmas. A survey on the use of
relevance feedback for information access systems. The
Knowledge Engineering Review, 18(2):95–145, 2003.

[17] G. Salton and C. Buckley. Improving retrieval
performance by relevance feedback. Readings in
information retrieval, pages 355–364, 1997.

[18] A. W. M. Smeulders, M. Worring, S. Santini,
A. Gupta, and R. Jain. Content-Based Image
Retrieval at the End of the Early Years. IEEE Trans.
on Pattern Analysis and Machine Intelligence,
22(12):1349–1380, 2000.

[19] A. Spink, H. Greisdorf, and J. Bateman. From highly
relevant to not relevant: examining different regions of
relevance. Inf. Process. Manage., 34(5):599–621, 1998.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

A Context-Aware Proactive Controller for Smart

Environments

Frank Krüger∗ Gernot Ruscher Sebastian Bader Thomas Kirste

Universität Rostock,
Albert-Einstein-Str. 21,

18059 Rostock, Germany
∗corresponding author: frank.krueger2@uni-rostock.de

ABSTRACT
In this paper we describe an implicit user interface for smart en-

vironment control: We make our system guess how to assist the

user(s) proactively. Our controller is based on two formal descrip-

tions: One that describes user activities, and another that specifies

the devices in the environment. Putting both together, we can syn-

thesize a probabilistic model, the states of which resemble activities

performed by the user(s) and are annotated with sequences of de-

vice actions, with the latter to be executed in cases particular activ-

ities have been recognized. The resulting system is purely reactive

and can be executed in real time.

Categories and Subject Descriptors
H.5 [User Interfaces]: Input Devices and Strategies

General Terms
Theory

Keywords
intention recognition, HMM, planning, smart environments

1. INTRODUCTION
As computers become smaller and smaller, the vision of ubiquitous

computing becomes true. At the same time, smart environments

contain a large number of devices and become thus more and more

complex. Thus, configuration as well as correct usage gets more

time consuming and error prone. Exploring new ways to control

these invisible devices is a challenge addressed by current research

[2]. Our approach is to create an entirely reactive system to control

all devices of the environment by inferring the intentions of the

user. The system gives support by controlling the devices the way

the user would do to achieve his goals. We use a semantic modeling

of the user and the environment to assure that the support is sound

and complete, in the sense that the environment is able to support

the user correctly in every recognizable situation.

To proactively support users in instrumented environments, we need

to infer their intentions, the goals behind their current activities.

Here we use a rather technical notion of intention: given descrip-

tions of complex actions, like giving a presentation or preparing

a meal. If we detect the user performing some sub-tasks of these

complex action, we assume that his goal is to perform the complex

action completely. A controller such as described requires all calcu-

lation to be executed in realtime. It is therefore necessary to move

time consuming operations like planning processes from runtime to

compile time. Thus, we can create a purely reactive controller with

time-bounded complexity, able to control the environment in every

possible situation.

As illustrating example in this paper we use the task of giving a

presentation inside our smart meeting room. This environment is

introduced below. The graphical representation of this task is given

in Figure 1. Here the task of giving a presentation decomposes to a

sequence of sub-tasks. The user starts the presentation with enter-

ing the room and moving to the front of the room. When the pre-

sentation is finished the user moves to the door to leave the room.

A more detailed description of this example is given in section 3.

2. PRELIMINARIES
The controller described below is based on semantic models of the

user and its environment. For our system we currently employ for-

mal action descriptions and task models which are compiled into a

probabilistic model. All necessary concepts are briefly introduced

below.

Hidden Markov Models (HMMs) [7] are probabilistic models, that

allow to infer a state of a system that is not observable directly,

but through noisy or ambiguous sensor data. An HMM defines a

probabilistic model, that consists of a finite number of states, each

containing a probability distribution function over sensor observa-

tion, that allow to conclude the system state given sensor data. To

describe temporal behavior of a system an HMM specifies proba-

bilities for state transitions. HMMs are state of the art methods for

activity recognition.

Depending on the available sensors, we can detect the current activ-

ity of users. For example, an indoor positioning system can be used

to detect whether a user is entering the room and heading for the

presentation stage. As customary in activity and intention recog-

nition, we use probabilistic models. Such models can cope with

noisy and contradictory sensor data and allow nonetheless to infer

the most likely sequence of actions or complex intention. Here,

we use Dynamic Bayesian Networks [6], such as HMM’s for prob-

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

1. Give
Presentation

2. Enter
Room

4. Move
Front

5. Present 7. Move Door
8. Leave

Room
>> >>

effect: (and (ison projector1)
(isdown canvas1))

>>

effect: (and (not (ison projector1))
(not (isdown canvas1)))

>>

Figure 1: Simplified CTML model describing a typical presentation within our smart environment

abilistic modeling. Calculating a probability distribution over the

current state with respect to the observed sensor data as well as the

previous state is known as filtering. Doing this requires a model,

that describes both, the behavior of the user and the sensor data

observable. In addition of recognizing the activity these methods

allow to predict future activities, in this case intentions, of the user.

Complex behaviors of (groups of) users can formally be described

using CTTE [5] or CTML-models [9], which basically are a hier-

archical description of tasks. Sub-tasks can be set into a temporal

relation of each other. CTML utilizes temporal operators as the

sequence operator (»), the order independence operator (|=|), the

concurrent operators (|||) and others that are not used with the ex-

amples in this paper. The Collaborative Task Modeling Language

(CTML) is especially designed for smart environments and offers

features for team modeling, location modeling, device modeling

and domain modeling. As described in section 4, we can transfer

such a description into a probabilistic model allowing to recognize

the current complex action, and thus allowing to infer the overall

intention of a sequence of actions.

In the planning domain definition language (PDDL) [8], device

actions are formalized as 4-tuples: 〈Name, Parameters, Precon-

ditions, Effects〉. Based on such a formal description we can use

standard AI planning techniques to infer a plan (sequence of ac-

tions) leading from the current to the desired state of the world.

Figure 2 and 3 show examples for PDDL descriptions.

3. AN APPLICATION EXAMPLE
The environment where most of our experiments take place is the

so called Smart Appliance Lab. This room is instrumented with

various sensors such as the location tracking system Ubisense [1].

Thus, the location of different users is given by the environment.

Other parts of our experimental environment are actuators such as

projectors and canvases. Here both sensors and actuators are called

devices. Software counterparts of all these devices are provided by

the middleware implemented for this environment. These software

devices enable us to gain the status of each device inside the room

to create a world state. The world state of our environment is thus

comprised of the sensor observations and the device states. The

Projector1 on true false

Canvas1 down

true TT TF

false FT FF

Table 1: The cartesian product of all device states forming the

world state.

environment as well as the middleware controlling the devices of

the environment are described in [3]

Since the experimental environment may be used as smart meeting

room, a typical application is giving a presentation. In this scenario

the user first enters the room. For our example we assume that the

room contains one projector and one canvas. After the user moves

to the front of the room where the canvas is located, he prepares the

environment for his presentation. Therefore he has to plug in the

notebook, set up the projector and lower the canvas. After this is

done the user starts his talk and finishes it by moving to the door.

Finally the user leaves the room. This example is kept simple to

illustrate the main points. The real environment is comprised of

eight projectors and eight canvases.

The task specification in Figure 1 contains a detailed description of

this example. The annotated effects (illustrated as clouds) describe

the desired state of the environment for the following sub-tasks. As

description language for task models we use CTML, as described in

section 2. The graphical representation of the task model omits the

description of the observation data and the priority function. The

world state in this example is given in Table 1 and only consists

of the two devices. Each of them has a binary state, in case of the

projector it is either turned on or turned off. The canvas can be up

or down.

Our goal is now to build a controller that recognizes the current

state of the user and executes corresponding device actions that

makes the annotated effects come true. By executing these action

sequences that system automatically assists the user in achieving

his goals.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

(:action canvasdown

:parameters (?c - canvas) :

:precondition (not (isdown ?c))

:effect (isdown ?c))

Figure 2: A PDDL specification of the CanvasDown action.

(:action projectoron

:parameters (?p - projector) :

:precondition (not (ison ?p))

:effect (ison ?p))

Figure 3: A PDDL specification of the ProjectorOn action.

4. A CONTEXT-AWARE PROACTIVE CON-

TROLLER
This section explains how to combine formal descriptions of the en-

vironment and the user behavior into a purely reactive probabilistic

model. First the description of the user is compiled into a proba-

bilistic model allowing to recognize the user’s intentions. Then, we

enrich this model by annotating the states with actions, executable

by the environment. While running the system, and based on the

current state of the environment one of the states will be most likely.

The actions attached to the state are then simply executed, result-

ing in a system supporting the user while achieving his high-level

goals.

In the following sections we discuss two different possibilities of

enriching the model with device actions. The first is to generate

different HMM states for each possible world state. The latter is to

annotate the corresponding state with sequences of device actions

for all possible world states. A plan for the current world state is

then accessible by taking the world state as key for a lookup table

resulting in the corresponding plan.

4.1 From Symbolic to Probabilistic Models
We start with the annotated task model from Figure 1, which con-

sists of a task model and effects annotated to sub-tasks. Each effect

is a subset of the world state. It consists of the cartesian product

of all device states. We apply the transformation given in [4]. This

is done by parsing the syntax tree of the annotated task model and

applying the inference rules for each of the temporal operators. The

states of the resulting annotated HMM correspond to tasks of the

task model with corresponding effects. The whole model captures

all possible (with respect to the task model) sequences to complete

the root task.

We extend the original task model by annotating tasks with their

effects with respect to the world state. The effect of the annotated

task should be true after executing the task. This can be done by

either the user or the controller. Figure 1 contains the additional

effect specification for the Move Front and the Move Door sub-

tasks. In our scenario the effect of the state Move Front is that the

environment is prepared for the presentation, namely the canvas is

down and the projector is on.

To ensure the effects of an annotated HMM state become true, the

controller has to execute device actions depending on the current

world state. The canvas has to be lowered if it is up but if the

projector is already turned on we can omit turning on the projec-

annotated

Task Model

annotated

HMM

extended

HMM

World State

Executable

Figure 5: The workflow for creating the controller.

tor. Therefore we have to generate sequences of devices actions for

each possible situation. This is done by taking each world state as

start situation for a planner and the desired subset of the world state,

described by the effects of the annotated HMM state as goal. To re-

alize this the planner takes device action specifications, as shown in

Figure 2 and Figure 3. Result of this planning step is a sequence of

device actions for each possible world state that has to be executed

to create the effects specified in the original annotated task model

in Figure 1.

The next two sections describe how to use these world state device

action sequence pairs to generate the controller. Both approaches

follow the workflow given in Figure 5.

4.2 Unfolding HMM states
In order to create the distinction of the different world states as

HMM states, it is necessary to unfold annotated HMM states by

using the different world states. Therefore we replace the anno-

tated HMM state by extended HMM states that are generated from

each possible world state and the state itself. In our example Move

Front will be replaced by each element of the cartesian product of

the world state to ensure that each observation of a world state cor-

responds to one HMM state. Here Move Front is replaced by four

new HMM states, each representing a possible world state. Only

the HMM state that covers the complete effects has a transition to

the HMM state generated from the following sub-task. In our ex-

ample only the Move Front TT state, that assumes that the projector

is on and the canvas is down has this transition.

This allows to attach plans to the states in the probabilistic model

that needs to be executed in that state as follows: Every annotated

user state is combined with every world state, that is a combination

of all states of the devices. This world state is used as precondition

for device actions during compilation process.

Figure 4 contains the extended HMM that was generated from the

task model in Figure 1 combined with the world state defined in

Table 1. Please note that self-transitions as well as probabilities for

transitions or observations are omitted in the graphical representa-

tion.

The generated HMM contains so called slices, that consists of all

states generated from one sub-task from the CTML specification.

One slice itself was created from the cartesian product of the world

state. The intra-slice states differ from each other only by the pos-

sible observations of the world state. The names of the intra-slice

states illustrated in Figure 4 contain the true/false value given in Ta-

ble 1. Every state of the slice has an incoming intra-slice transition

with a probability given by the number of states. Only the states

that create the effects given in task model description have a out-

going inter-slice transition with very high probability. It is possible

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Initial
Enter

Room

Move

Front

FT

Present

Leave

Room

Move

Front

FF

Move

Front

TF

Move

Front

TT

CanvasDown (canvas1)

ProjectorOn (projector1)

ProjectorOn (projector1)

CanvasDown (canvas1)

CanvasUp (canvas1)

ProjectorOff (projector1)

ProjectorOff (projector1)

CanvasUp (canvas1)

Move

Front

FT

Move

Front

FF

Move

Front

TF

Move

Front

TT

Figure 4: The extended HMM created from the task model and the world state.

that there are more than one state that covers the same effect due

to missing effects to single devices of the world. The probabilities

of the intra-slice transitions are just given by the number of target

states. Inter-slice transitions are generated with respect to the tem-

poral operator of the sub-tasks. The probability of transitions are

generated by the normalized weight of the single sub-tasks.

4.3 Lookup table
Another approach to enrich the HMM with device action sequences

for user assistance is to create a lookup table for necessary device

actions and attach it to the corresponding annotated HMM state.

As in the first approach the device action sequences depend on the

current world state and need to be generated by a planner that uses

the specified effects as goals. Attaching this device action sequence

- world state pairs to the annotated HMM state provides a lookup

table at runtime. Using the world state, consisting of all device

states the table provides the pre-generated device action sequence

that has to be executed in order to make the specified effects to the

environment become true.

In our scenario the states Move Front and Move Door are extended

by lookup tables for user assistance. The table annotated to the

Move Front state contains device action sequences that ensure that

the projector is turned on and the canvas is down. The Move Door

HMM state is annotated with a table of device action sequences

that ensure that given any world state the projector is turned off

and the canvas is up. Figure 6 contains a graphical representation

of the generated extended HMM. Probability distribution functions

as well as state transition probabilities are omitted for reasons of

clarity.

4.4 Choosing one method
The previous sections describe two approaches to attach pre-generated

plans to states of a probabilistic model, namely an HMM. Both ap-

proaches generate realtime capable systems, that do not have to

solve planning problems such as finding a sequence of device ac-

tions to support the user. The first approach creates an HMM with

Initial
Enter

Room

Leave

Room

Move

Front

Move

Front

TT

TF

FF

FT

CanvasDown (canvas1)

ProjectorOn (projector1)

CanvasDown (canvas1)

ProjectorOn (projector1)

TT

TF

FF

FT

CanvasUp (canvas1)

ProjectorOff (projector1)

CanvasUp (canvas1)

ProjectorOff (projector1)

Figure 6: The generated HMM extended by lookup tables for

the plans.

very much states, because it creates states for every possible world

state. Here the distinction of the world state is done at the state

level. The idea of unfolding HMM states by using every possible

world state is appropriate if the state of a device is not reliable or

noisy.

The second approach is to move the distinction of the world states

from different HMM states with attached plans to one HMM state

that contains a table of multiple plans, one for each possible world

state. The number of HMM states is independent from the world

state, which avoids a very high number of states. This approach

is applicable whenever the world state is known definitely. This

means that each device state is observable without any noise or

inconsistency.

5. THE EXECUTION ENVIRONMENT
We developed an execution framework for Bayesian inference that

is able to perform fast online filtering of HMM’s and particle fil-

ters. By separating the model description from the implementation

of the algorithms we designed a highly reusable framework. This

framework enables users to embed parameterized filters into differ-

ent environments. This enables us to integrate the generated con-

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

troller into the software structure described above. Users of this

environment only need to implement problem specific details.

A probabilistic model for filtering in our framework has to be im-

plemented in C++. One has to describe three different parts. First a

specification of the state space, that is in the case of an HMM rep-

resented by a set of states. Second the transition probabilities from

each state to another, represented as matrix of probabilities. Third

a probability distribution of sensor observations for each state. To

provide a more intuitive tool for describing HMM’s we introduced

a description language that supports a simple way to describe HMM

based models.

The compilation process creates the state space of our controller

from the single sub-tasks of the user model combined with each

possible device state combination. The transition probabilities are

given by the probabilities of the model generated only by the sub-

tasks as described in [4] and the observation probability distribu-

tions of the original approach are extended by an observation of the

device states in the extended state. A model specified in the way

needs sensor data and the world state as input and provides a se-

quence of device actions as output. These device actions need to be

executed in order to support the user.

6. SUMMARY AND OPEN PROBLEMS
In this paper we showed that a context-aware controller for smart

environments can be created from a combination of semantic mod-

els of the user and the environment. The controller is based on

bayesian inference where the model was generated from task-based

specification of users together with a precondition and effect spec-

ifications of each device forming the environment. Sensor data as

well a accumulated world state serve as input, a device action se-

quence, that needs to be executed as output of the inference pro-

cess. We introduced two ideas to merge task based user models and

precondition and effects specification of the environment to create

probabilistic models that assist the user.

Further research should include smart environment evaluation of

the controller described here. Both approaches should be evaluated

and the results should be compared for different devices and sce-

narios. This includes tests for maximum manageable complexity

of the state space as well as minimal complexity that creates suf-

ficient user support. Due to the compile time planning process we

are able to pre-generate action sequences. This allows to find mod-

eling problems such as deadlocks at compile time. Our approach in

this paper utilizes HMM’s for inference. However, since the state

space may explode and exact inference will not be suitable, we can

change the inference algorithm to Monte Carlo based methods such

as particle filters. These methods are already supported by the exe-

cution environment described above.

The controller introduced here is described as central service. It

is possible to decentralize this approach to the usage of multiple

services, each of them describing a subspace of the model. By

comparing the likelihood of multiple services, it is be possible to

choose either an action sequence of one agent or a combination of

multiple sequences that do not disturb each other.

Another point that should be analyzed is how both systems be-

have if only the most probable device action sequences will be pre-

planned. If the system reaches a state that does not contain a device

action sequence the plan has to created at runtime. The realtime

behavior of this extension has to be examined.

Acknowledgements
Frank Krüger’s work in the MAXIMA project as well as Gernot

Ruschers’s work in the MAIKE project are both supported by Wirt-

schaftsministerium M-V at expense of EFRE and ESF.

7. REFERENCES
[1] http://www.ubisense.de, JUN 2009.

[2] Ubicomp ’10: Proceedings of the 12th ACM international

conference on Ubiquitous computing, New York, NY, USA,

2010. ACM. 608109.

[3] S. Bader, G. Ruscher, and T. Kirste. Decoupling smart

environments. In S. Bader, T. Kirste, W. G. Griswold, and

A. Martens, editors, Proceedings of PerEd2010, Copenhagen,

SEP 2010.

[4] C. Burghardt, M. Wurdel, S. Bader, G. Ruscher, and T. Kirste.

Synthesising generative probabilistic models for high-level

activity recognition. In Activity Recognition in Pervasive

Intelligent Environments. Atlantis Press, Paris, France, 2010.

To appear.

[5] G. Mori, F. Paterno, and C. Santoro. Ctte: Support for

developing and analyzing task models for interactive system

design. IEEE Transactions on Software Engineering,

28:797–813, 2002.

[6] K. P. Murphy. Dynamic Bayesian Networks: Representation,

Inference and Learning. PhD thesis, University of California,

Berkeley, CA, USA, 2002.

[7] L. R. Rabiner. A tutorial on hidden markov models and

selected applications in speech recognition. In Proceedings of

the IEEE, pages 257–286, 1989.

[8] S. Russell and P. Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, 3 edition, 2009.

[9] M. Wurdel, D. Sinnig, and P. Forbrig. CTML: Domain and

Task Modeling for Collaborative Environments. J. UCS,

14(19):3188–3201, 2008.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Towards effective collaborative design and engineering

Stephan Lukosch
Delft University of Technology

Faculty of Technology, Policy, and Management
Jaffalaan 5, 2628 BX Delft, The Netherlands

s.g.lukosch@tudelft.nl

Gwendolyn Kolfschoten
Delft University of Technology

Faculty of Technology, Policy, and Management
Jaffalaan 5, 2628 BX Delft, The Netherlands

g.l.kolfschoten@tudelft.nl

ABSTRACT
Effective collaborative design and engineering has to deal with var-

ious challenges. It is essential to create a shared understanding and

facilitate interaction in such a way that effective collaboration be-

comes possible. Free riding, group think or hidden agendas need

to be addressed by rarely available process facilitators. Available

tools are not regularly used, are not intuitive and often are difficult

to adapt to the changing group needs. In order to tackle the above

issues, we want to enable effective collaborative design and engi-

neering by offering intelligent collaboration support that supports

facilitators of collaboration processes when monitoring collabora-

tion processes and planning process interventions or tool adapta-

tions.

Categories and Subject Descriptors
H.4.1 [Office Automation]: Groupware; H.5.3 [Group and Or-

ganization Interfaces]: Computer-supported cooperative work;

K.4.3 [Organizational Impacts]: Computer-supported collabora-

tive work

General Terms
Design, Human Factors

Keywords
Collaboration support systems, intelligent collaboration support,

facilitation, group support systems

1. INTRODUCTION
Collaboration has become a critical skill as products and services

are becoming increasingly complex, no individual has the skills to

design, develop and deliver these alone. Collaboration is however,

not without challenges. On a group level, it is essential to create a

shared understanding, define rules for decision-making and facili-

tate interaction in such a way that effective collaboration becomes

possible [13]. On a process level, free riding, dominance, group

think, hidden agendas, are but a few phenomena in group work that

make it a non straight-forward effort [16].

Groups might not be able to overcome the challenges of collabo-

ration by themselves [16]. Even if groups are able to accomplish

their goals, they can often collaborate more efficiently and effec-

tively using collaboration support [6]. Collaboration support can

be comprised by tools, processes and services that support groups

in their joint effort. In knowledge oriented organizations, there is

often a need or demand for collaboration support. However, tools

and technology for group support exist in a variety of shapes from

complex computer systems, as e.g. Group Support Systems (GSS),

to simple boxes with cards and pencils. Each of these tools can

be used by the group to be more successful in sharing ideas and

indicating relations and preferences, but current challenges emerge

from the fact that available tools are not regularly used, are not in-

tuitive and often are difficult to adapt to the changing group needs

[7]. This makes it difficult for organizations to provide their teams

with a suitable and adaptable collaboration support that help them

accomplish their goals efficiently and effectively.

As discussed in [7], current collaboration support systems focus

adaptations with a limited scope. They are either restricted to spe-

cific domains or to specific aspects of collaborative work, often

focusing on awareness or knowledge management. Compared to

this, we aim to create intelligent collaboration support that creates

a shared understanding, facilitates collaborative actions across vari-

ous geographic, temporal, disciplinary, and cultural boundaries and

provides intuitive and adaptive tool support. This will allow us to

offer collaboration support for a variety of collaborative tasks in

a way that groups can use it for themselves without the need for

extensive training or a professional facilitator. In this paper, we

will as a first step propose a conceptual framework towards intel-

ligent collaboration support. We modeled collaboration processes

and identified factors suggesting process changes as well as adap-

tations. These factors are the basis for this framework of intelligent

collaboration support, which will offer us a first step in monitoring

groups and predicting the need for facilitation interventions.

In the next section we will explain in detail how facilitators guide

collaboration processes. This will lead to a conceptual framework

of collaboration support interventions, presented in section 3. Next

we will present how this framework can be used to identify specific

collaboration situations to create intelligent collaboration support.

We will then reflect on this design and end with conclusions and a

research agenda.

2. FACILITATING COLLABORATION

PROCESSES
One of way of supporting groups in achieving their goals more ef-

ficiently and effectively is to support the group by structuring and

guiding their activities. This skill and profession is called facilita-

tion. The facilitation task is described extensively in GSS literature

[1, 8, 14]. The task of a facilitator requires both experience and

extensive knowledge of group dynamics and facilitation methods.

This tasks involves for instance management of the activities the

group is performing, quality of their deliverables, relations between

the participants and the use of resources and time [9]. This type of

process guidance is often offered by someone external to the group,

to ensure impartiality and objectivity.

In an effort to reduce the need for professional facilitators, re-

searchers have been coding facilitation practices to enable the sepa-

ration of the design task of a facilitator and the execution task [11].

In this way a master facilitator called collaboration engineer, can

design and transfer a collaborative work practice to practitioners to

execute it for them selves based on a short training. This approach

is called Collaboration Engineering [3]. To ensure the predictabil-

ity and transferability of the collaborative work practice, they are

designed with design patterns called thinkLets [4].

To realize an intention by means of intervention, two types of in-

terventions are required [2]. First, there are static interventions in

which one or more commands are given to initiate the key activi-

ties of a process. We will refer to this kind of communication as an

instruction intervention. Second, there are dynamic interventions

intended to adjust the actions performed by the group to resolve a

discrepancy between the facilitator’s intentions and the groups’ ac-

tions. These interventions depend on emergent conditions. We will

call these messages adjustment interventions.

The conceptual design of a thinkLet exists of a set of instruction

and adjustment interventions described as rules [4]. These rules

are similar to rules mimicking human behavior in avatars [2]. Each

rule describes for a role an action that needs to be performed using

a capability under some set of constraints to restrict those actions.

Further, some thinkLets include conditional rules for frequently-

required adjustment interventions because specific discrepancies

manifest predictably during the execution of an activity based on

the thinkLet.

An example of a set of rules are captured in the LEAFHOPPER thin-

kLet [4]:

1. Allow participants to add in parallel any number of contribu-

tions to any category.

2. Allow participants to add only contributions that are relevant

to the categories in which they are placed.

3. Allow participants to add only contributions that match to the

contribution specification.

4. Let participants shift focus from category to category as in-

terest and inspiration dictate.

5. Ensure that participants read the contributions of others for

inspiration.

3. CONCEPTUAL FRAMEWORK
In order to provide intelligent collaboration support, we first need

to identify the key goals that guide facilitation interventions. When

facilitators intervene to initiate activity they can offer these at dif-

ferent levels [15]:

1. Collaboration process design: Interventions to guide col-

laborators in choosing appropriate tools and techniques to

support the collaboration process.

2. Collaboration process execution: guidance to move from

one activity to a next activity, changing the collaboration sup-

port environment to transfer between activities, while taking

documents and decisions along to a next phase.

3. Collaboration process guidance: Activities need to be ini-

tiated and guarded to execute the collaborative activity.

4. Collaborative behavior guidance: guidance in determining

and adjusting improves collaborative effectiveness.

In a face to face context, facilitators can make adjustment interven-

tions based on behavior of group members, including communica-

tion with group members, quality of the output of the group, and

progress versus planned time for the group task. Based on our ex-

perience and discussion with expert facilitators, the following list

is a first attempt to identify factors used to determine the need to

make an intervention:

• Group: behavior, emotions, communication, body language,

address facilitator, gestures

• Task: amount of input, rate of input, quality of input, quality

of output, shared understanding, fit in relations in output

• Time: progress, time left

Some of these aspects are non-digital and based partially on inter-

pretations. This requires a translation to gain the same insights

from the online interaction. For instance facilitators might monitor

de-focus of participants as an indicator that the group is finished

with the task. However, this might also be learned from a signifi-

cant decrease in input rate. However, without technology support

to monitor input rate, perhaps per participant, this would be diffi-

cult to detect for a facilitator. Also the interpretation of input rate

requires some experience and understanding of the cognitive impli-

cations of tools and knowledge sharing. Therefore we need more

than a thermometer to measure input rate, we need an intelligent

collaboration support system that can monitor these factors, and

use them to reason about the current collaboration process in order

to support facilitators in making intervention decisions.

4. LEAFHOPPER FACILITATION INTER-

VENTIONS
In the textbox below we describe what a facilitator does after initi-

ating the LEAFHOPPER thinkLet to brainstorm ideas in categories.

Underlined are those indicators the facilitator uses to make deci-

sions on interventions. Some of these indicators can directly be

observed, others are an interpretation of the facilitator.

After initiating the Leafhopper the facilitator needs to maintain sev-

eral rules. The contributions of the group need to meet the quality

intended, they need to meet the contribution specification, the cat-

egory in which they are placed. The contributions need to be made

in a certain timeframe, and they need to cover a certain scope of

information (completeness). Additionally the facilitator will need

to maintain a safe and respectful atmosphere to ensure that people

feel free and encouraged to participate. To ensure that the partic-

ipants can share all relevant contributions, the facilitator can add

Figure 1: Domain model for collaboration in a shared workspace

a category ’other’. This category is monitored by the facilitator.

When a pattern of contributions can be found in this category, the

facilitator will add a new category to cover this topic.

The facilitator will monitor the input, mainly to detect if there are

small or insufficient quality contributions. Later in the process

the facilitator will monitor if the categories each contain a suffi-

cient number of contributions. Also, the facilitator will monitor

the ’other’ category to see if there is a persistent topic addressed,

and therefore, a need to add a category. The facilitator might inter-

vene if some categories are not filled. Such intervention would be

made before the time for the task is passed, to give participants

time to add ideas in these categories, but not too early, when par-

ticipants might not yet had a chance to contribute to all categories.

The facilitator will also observe the group to see if participants get

distracted, or focus on other activities, which indicate that they

are (no longer) motivated for the task. The facilitator will also mon-

itor behavior, communication and body language to see if any of the

input causes an emotional reaction, which could indicate conflict

or flaming, which would require intervention. Finally the facilitator

will monitor the input rate and the focus of participants to detect

when there is no more inspiration and the task can be ended. If the

group is still very active and focused when time is running out,

the facilitator might encourage the group to speed up or to focus

on more important contributions in order to ensure that sufficient

progress is made when the task should be finished. In some cases

this can also be a reason to give the group more time for the task.

5. DESIGNING INTELLIGENT COLLAB-

ORATION SUPPORT
In order to create a collaboration support system that can suggest

facilitators to make interventions, we use an explicit context model

to describe the current collaboration situation. A collaboration situ-

ation can be characterized by the configuration of the collaboration

environment as well as the state of interaction of the users with the

system (e.g., based on interaction history) and the organizational

setting (e.g., team structure, roles, tasks). Dey et al. [5]define con-

text as any information used to characterize a situation of an entity

where an entity may be any object, person or place providing in-

formation about the interaction between a user and an application.

With this definition, any information may help characterizing the

situation of the interaction’s participants because it is part of the

context itself. For our purposes, we can narrow this definition so

that context includes all information which is necessary or helpful

to adapt a shared workspace to better fit the needs of a collaborat-

ing team. This implies that the context contains information about

the team as well as about the current collaboration situation. This

context information is necessary to recognize situations which de-

mand a facilitator’s intervention (and thus help minimizing the ef-

fort needed for adaptation).

We use a collaboration domain model for describing collaboration

environments and collaboration situations [7]. Figure 1 summa-

rizes this domain model and shows the basic classes and their rela-

tions that can be used to describe collaboration context in a global

collaboration space. The domain model intends to capture the basic

concepts of collaborative workspaces. It focuses on the technolog-

ical support for collaborative interaction and does not distinguish

different artifact types or task domains. If applied to a certain col-

laboration environment, it must be extended with concepts match-

ing the specific properties.

The model in Figure 1 distinguishes different concepts that describe

collaboration in a collaboration environment and relations between

these concepts. We start exploring and explaining the model in Fig-

ure 1 with the concept of an Actor (see lower part of Figure 1). The

domain model assumes that Actors are member of a Team and have

a Role defined by the User Workspace, as Applications are started

from within the User Workspace and thus the workspace can en-

sure pre-defined Roles. Each Role allows an Actor to perform spe-

cific Actions. The available Actions are defined by the supported

Application Functionality of an Application. As an example con-

sider a chat application which should offer at least two action types:

OpenChat and SendMsg. These two actions would allow users to

communicate with each other by opening a chat tool and send mes-

sages to each other. Other forms of collaboration such as within a

collaborative diagram editor would require to add additional action

types in order to specify the application functionality.

As Actors interact with the Application by performing Actions al-

lowed by their Roles, Roles define interaction possibilities within

an application, e.g. in a shared writing application an author might

perform all edit actions whereas a reviewer can only comment ex-

isting text. The Actions are received by the corresponding Con-

troller components of the Application. An Application implements

the model-view-controller (MVC) paradigm [12] and consists of

Views and Controllers components. Views and Controllers use Ser-

vices to access the Artifacts. Artifacts use Services to notify Views

and Controllers about changes. Each Application is part of a User

Workspace and is created by an Application Factory which spec-

ifies what Applications are available within a workspace and how

these can be initialized. Finally, the class Application Functionality

specifies the functionality an Application offers, e.g. in relation to

communication, shared editing, or awareness.

All above classes are useful to model and store the configuration of

a collaboration environment and to capture the current context at

runtime. Based on such context information, a collaboration envi-

ronment is enabled to recognize situations, which demand a facili-

tator’s attention and intervention.

The domain model is abstract and not related to a specific applica-

tion domain. When considering our example on the LEAFHOPPER

thinkLet, we need to extend the model as shown in Figure 2. In

order to incorporate the LEAFHOPPER thinkLet, the Artifact class,

the Action class and the Role class were extended. Based on this

extension, we can now distinguish between participants and the fa-

cilitator as well as identify contributions within a category.

Based on the extended domain model, we can suggest process in-

terventions or tool adaptations in order to improve collaborative

interaction. One process intervention within our LEAFHOPPER ex-

ample is triggered when the category ’other’ exceeds a specified

threshold. The following rule consists of a condition and an action

block. The condition block retrieves all contributions within the

context model that belong to the category ’other’ and then evalu-

ates whether the number of contribution has exceeded a specified

threshold. If this is the case, the action block opens an alert view

for the facilitator. The following pseudo code shows how such a

rule can be specified:

rule "create new category"

when

$contributions: Contribution(category ==

’other’)

eval($contributions.size() >= 20)

then

openForFacilitator(Alert, "Number of

contributions in

category ’other’ has

exceeded specified

limit. Check whether

new category is

necessary.")

end

Another example for a rule that monitors whether there are empty

categories and in case again alerts the facilitator can specified as

follows:

rule "empty categories"

when

$category: Category(size == 0)

then

forall $c in $category

openForFacilitator(Alert, "Category "+

$c.name()+" is empty.

Focus the attention of

the participants on the

empty category.")

end

As final example, the following rule checks the focus of the partici-

pants in order to alert the facilitator when half of the participants do

not focus on the activity of creating contributions. For that purpose,

the rule retrieves for focus of each participant by identifying the ac-

tive View in the User Workspace. Based on the basic collaboration

model (cf. Figure 1), this information can be inferred via the User

Workspace and the opened Applications within the workspace. The

following example rule assumes that the participants should focus

on a view with the name ’contribution input’ and if they do not do

so alerts the facilitator:

rule "participants distracted"

when

$participants: Participant(focus !=

"contribution input")

$threshold: $participants[0].team().

size()/2

eval($participants.size() >= $threshold)

then

openForFacilitator(Alert, "More than 50%

of the participants do

not focus on creating

contributions.")

end

6. DISCUSSION AND CONCLUSION
Collaboration has become a critical success factor for many orga-

nizations, as products and services are becoming increasingly com-

plex and cannot be designed individually. However, collaboration

has several challenges. It is essential to create a shared understand-

ing and facilitate interaction in such a way that effective collabora-

tion becomes possible. Free riding, group think or hidden agendas

need to be addressed by rarely available process facilitators. Avail-

able tools are not regularly used, are not intuitive and often are

difficult to adapt to the changing group needs. In order to tackle

the above issues, we want to enable effective collaborative design

and engineering by offering intelligent collaboration support that

supports facilitators of collaboration processes when monitoring

collaboration processes and planning process interventions or tool

adaptations.

In this article, we identified several factors that are observed by

professional facilitators before changing and adapting an ongoing

collaboration process. We further introduced an abstract context

model which can be used to model collaboration within a shared

workspace. We extended this model to include concepts and classes

of the LEAFHOPPER thinkLet. Based on the experiences of a pro-

fessional facilitator, we used this extended context model to define

rules which can assist a facilitator.

Based on the proposed rules, a context-adaptive and intelligent col-

laboration support environment, such as [17], can alert a facilita-

Figure 2: Extended domain model for the LEAFHOPPER thinkLet

tor when an intervention might become necessary and reduce the

facilitator’s overhead. In future work, we will go a step further

and model entire collaboration processes based on thinkLets [10].

We then will study factors that determine and influence collabora-

tion performance, e.g. cognitive load or shared understanding, and

that inform facilitation interventions. Once identified, we will inte-

grate these factors in our context model and think about possibili-

ties to measure soft factors via additional application functionality

and without obstructing or distracting the group work, e.g. by of-

fering means for self reporting. We will further identify and specify

rules that recognize situations that require process interventions by

recording facilitation interventions and the performance indicators

at the point of intervention to gain more fine-grained rules for pro-

cess intervention.

The path to intelligent collaboration support sketched above is long,

but small steps might already improve collaborative design and en-

gineering today. As facilitators need to monitor many factors and

indicators of progress, basic suggestions for process intervention as

outlined above might already reduce some of the cognitive load of

the facilitation task.

7. REFERENCES
[1] F. Ackermann. Participants perceptions on the role of

facilitators using group decision support systems. Group

Decision and Negotiation, 5:93–519, 1996.

[2] N. Badler, R. Bindiganavale, J. Bourne, M. Palmer, J. Shi,

and W. Schuler. A parameterized action representation for

virtual human agents. In Workshop on Embodied

Conversational Characters, 1998.

[3] R. Briggs, G. de Vreede, and J. Nunamaker. Collaboration

engineering with thinklets to pursue sustained success with

group support systems. Journal of Management Information

Systems, 19:31–63, 2003.

[4] R. Briggs and G.-J. de Vreede. ThinkLets: Building Blocks

for Concerted Collaboration. Delft University of

Technology, Delft, The Netherlands, 2001.

[5] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual

framework and a toolkit for supporting the rapid prototyping

of context-aware applications. Human-Computer Interaction,

16(2, 3, & 4):97–166, 2001.

[6] J. Fjermestad and S. Hiltz. A descriptive evaluation of group

support systems case and field studies. ournal of

Management Information Systems, 17:115–159, 2001.

[7] J. M. Haake, T. Hussein, B. Joop, S. Lukosch, D. Veiel, and

J. Ziegler. Modeling and exploiting context for adaptive

collaboration. International Journal for Cooperative

Information Systems (IJCIS), 19(1-2):71–120, 2010.

[8] S. Hayne. The facilitator’s perspective on meetings and

implications for group support systems design. Database,

30(3-4):72–91, 1999.

[9] G. Kolfschoten and G. de Vreede. A design approach for

collaboration processes: A multi-method design science

study in collaboration engineering. Journal of Management

Information Systems, 26:225–256, 2009.

[10] G. Kolfschoten, S. Lukosch, and M. Seck. Modeling

collaboration processes to understand and predict group

performance. In A. Dix, T. Hussein, S. Lukosch, and

J. Ziegler, editors, Proceedings of the IUI workshop on

Semantic Models for Adaptive Interactive Systems (SEMAIS)

2010, 2010.

[11] G. Kolfschoten, F. Niederman, G. de Vreede, and R. Briggs.

Roles in collaboration support and the effect on sustained

collaboration support. In Hawaii International Conference

on System Science (HICSS-41), 2008.

[12] G. E. Krasner and S. T. Pope. A cookbook for using the

model-view-controller user interface paradigm in

Smalltalk-80. Journal of Object-Oriented Programming,

1(3):26–49, Aug. 1988.

[13] S.-Y. Lu, W. Elmaraghy, G. Schuh, and R. Wilhelm. A

scientific foundation of collaborative engineering. CIRP

Annals - Manufacturing Technology, 56(2):605 – 634, 2007.

[14] F. Niederman, C. Beise, and P. Beranek. Issues and concerns

about computer-supported meetings: The facilitator’s

perspective. Management Information Systems Quarterly,

20(1):1–22, 1996.

[15] F. Niederman, G. de Vreede, R. Briggs, and G. Kolfschoten.

Extending the contextual and organizational elements of

adaptive structuration theory in GSS research. Journal of the

Association for Information Systems, 9(10), 2008.

[16] J. J. Nunamaker, R. Briggs, D. Mittleman, D. Vogel, and

P. Balthazard. Lessons from a dozen years of group support

systems research: A discussion of lab and field findings.

Journal of Management Information Systems, 13:163–207,

1997.

[17] D. Veiel, J. M. Haake, and S. Lukosch. Facilitating

team-based adaptation of shared workspaces. In

International Symposium on Collaborative Technologies and

Systems (CTS 2010), pages 275–284. IEEE, 2010.

Graphs of models for exploring design spaces in the

engineering of Human Computer Interaction

Alexandre Demeure, Dimitri Masson

Laboratory of Informatics of Grenoble

655 Avenue de l'Europe

38330 Montbonnot-Saint-Martin, France

+33 (0)4 76 51 48 54

firstname.lastname@inrialpes.fr

Gaelle Calvary

Laboratory of Informatics of Grenoble

385, rue de la Bibliothèque - B.P. 53 - 38041

Grenoble Cedex 9, France

+33 (0)4 76 51 48 54

gaelle.calvary@imag.fr

ABSTRACT

Model Driven Engineering (MDE) has focused on the latest

stages of the design process so far and as a result has

missed the opportunity to foster creativity in the early

phases. Our research aims at stretching MDE all over the

design process including the creative phases so that to go

beyond the well-known „fast-food UIs‟ limit of MDE. We

propose to consider sketches and prototypes as models.

This paper claims for storing these models in a graph so that

to both inspire designers and support adaptation at runtime.

Keywords

Model based User Interfaces, graph of models, design

spaces, creativity.

ACM Classification Keywords

H.5.2 [Information interfaces and presentation]: User

interfaces – prototyping.

INTRODUCTION

Early phases of User Interfaces (UI) design require the

production of numerous propositions so that to result in a

successful design [1, 11]. Those propositions are usually

explored through sketches and prototypes that quickly

materialize designers‟ ideas as a support for discussion,

selection and validation. Whilst those early phases are

crucial for good design, we observe that currently Model

Driven Engineering (MDE) sustains the latest stages of

design only (i.e., when the code of the concrete UI is

produced). This can be explained by the historical

grounding of MDE that comes from software engineering.

Those approaches aim at proposing optimal solutions for a

given problem in a particular context (e.g. SUPPLE [5]) but

not at sustaining human creativity. As a result, MDE seems

to be pushed at its limits [2]: advanced UIs or aesthetic UIs

seem to be out of range.

We believe that the relative disappointment with regard to

MDE is due to this lack of support of early phases. In this

paper, we propose to consider sketches and prototypes as

models to support the exploration of numerous ideas. We

store these models in a graph that makes explicit the

relationships between models. This graph and the related

exploring tools are currently work-in-progress.

RELATED WORKS

Buxton [1] and Tohidi [11] elicit sketching and prototyping

as key for creative designs whatever the domain is. Buxton

[1] stresses that the value of sketches does not lie in the

produced artifact itself (the drawing) but in its ability to

trigger the desired and appropriate behaviors, conversations

and interactions. Indeed, sketches are a vehicle, not a target:

designers do not draw sketches to depict ideas that are well

consolidated in their mind. Rather, they draw sketches to

try out vague and uncertain ideas. When seeing the

sketches, designers can spot problems they may not have

anticipated. Even more, they can see new features and

relations among elements that they have drawn. Some of

them were not intended in the original sketches. These

unintended discoveries promote new ideas and refine

current ones.

Tools exist to help designers to sketch and prototype UIs. A

simple yet quiet efficient example is a pen coupled with a

sheet of paper. However, paper based sketches are not really

appropriate to describe interaction. In some cases, this

shortcoming can simply be overcome by using animated

GIF. More generally, electronic tools such as SILK [6] or

DENIM [8] have been developed to enable designers to

quickly specify the interaction directly from sketches. Other

tools such as SketchiXML [3] enable the designers to

sketch a UI that is then interpreted as a set of UsiXML

widgets. However, the set of widgets is not extensible (i.e. a

brand new widget can not be added), which is a strong

limitation for creativity.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Demeure [4] explored semantic graphs for storing and

reusing UI components both at design time and runtime.

Masson [9] investigated genetic algorithms as a support for

exploring possible UIs for a given task by assembling UI

components that correspond to the (sub)tasks and tasks

operators. However, in both cases, the components were

formally described. Thus sketches and prototypes were not

taken into account which dramatically limits the design

space exploration.

STRUCTURE OF THE GRAPH OF MODELS

As in [4], we propose to organize the UIs‟ models in a graph

but enriched with informal models such as sketches and

prototypes.

Nodes of the graph

Nodes of the graph are UIs‟ models defined at one of the

CAMELEON levels of abstraction: Concepts and tasks

(C&T), Abstract UI (AUI), Concrete UI (CUI) and Final UI

(FUI). Each node is enriched with a level of precision. This

level ranges from “rough sketch” to “formal definition”,
covering all levels of fidelity in prototyping.

XXX EX : Interleaving at code level /XXX

XXX EX : Sketch of an interleaving by zoom /XXX

Figure 2: An example of Point B in Figure 1: the node

is the interleaving task operator. It is defined at the CUI

and Sketch level.

Point A in Figure 1 may correspond to a formal definition

of the interleaving task operator. Such a definition could be

based on CTT [10]. More concrete descriptions of this

operator could be provided. For instance, point B is a

concrete description of this operator but at a sketch level of

precision only. Figure 2 provides an example of such a CUI-

Sketch definition.

Arcs of the graph

The arcs of the graph model the relationships between UI

models. Arcs can be seen as transformations that produce

target UI models from source UI models. A transformation

is defined by:

 A level of precision ranging from informal to

formal;

 The context of use (in terms of platform, user and

environment) the transformation requires;

 A degree of originality that conveys how much the

know-how expressed in the arc is spread over

designers: is it shared by the whole HCI

community, or just by a part of it? This attribute

gives designers clues on how well established or

how innovative the transformation is.

Figure 3 illustrates a possible classification of

transformations. This classification goes beyond usual

transformations that are limited to the levels of abstraction

they manipulate (Abstracts and Concretizes). Thanks to our

classification, transformations can also be used for:

 Changing the level of precision of UI models (e.g.,

providing a formally defined UI model from an

informal prototype).

 Making the composition of a UI model explicit

(e.g., a task tree is composed of subtasks and task

operators).

 Expressing that a UI model is another version of

another one. This can be useful for knowing that

UI alternatives exist.

Overall, transformations are a means for expressing the

design rationale of an evolution in the design process.

S
k

et
ch

L
o

w
 F

i

p
ro

to
ty

p
e

H
ig

h
 F

i

p
ro

to
ty

p
e

F
o

rm
al

 d
ef

in
it

io
n

Level of

precision

C&T

AUI

CUI

FUI

Level of abstraction

(as defined in CAMELEON)

A

B

Transformation

Abstraction Composes Precision Is a

version of

Abstracts

Concretizes

Blurs

Sharpens

Figure 3: Classification of transformations.

Figure 1: Nodes are characterized by a level of

abstraction and a level of precision. A and B are two

samples detailed below.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

EXPLOITATION OF THE GRAPH OF MODELS

This section develops how powerful the graph is to support

evolution both at design time and at runtime. Figure 4 is

used to support explanation.

At design time

At design time, the graph serves two purposes: 1) to inspire

designers by capitalizing the know-how in UI design, and 2)

to provide a space to store and access UIs produced by

designers during the design process.

The graph provides a means for designers‟ teams to

structure their production of sketches and prototypes.

Relationships between the UI models can embed the design

rationale of the design process (the motivations of the

design choices). For instance, in Figure 4, a project starts

by a sketch of a C&T description. Neither the tasks nor the

concepts are well defined, but stakeholders agree on an

informal description of the project. Then this description is

sharpened to a formal C&T model (here a CTT model).

Nodes C, D, E, F and G describe one possible design

evolution: from the C&T model, designers explore two

paths: C followed by E and G, in parallel with F. C is more

thoroughly explored. Several design versions are proposed

and explained. The last version (G) sharpens parts of the

design.

The graph stores the evolutions, discussions, and choices

along with their rationale. Thus designers can later on go

back to understand where an idea comes from, or start a new

branch while keeping memory of alternatives. Indeed,

different parts of the design may evolve at different places in

the graph, or along different paths. In a same node, some

parts can be highly detailed denoting a high level of

confidence in the design choice, whilst other parts can still

be roughly sketched (for instance node G in Figure 4 where

only a part of the UI is sharpened).

Designers can select parts of a drawing and link them to

other nodes, or parts of other nodes. For instance, designers

can specify that one part of the C&T model represents the

“Manage contacts list” and link it with the corresponding
nodes. They can also link it to the circle part in node C.

This possibility to identify parts of models is particularly

useful when applied together with the “Composes”
relationship. Designers can specify that a node is composed

of several sub-nodes. In the case of a C&T model, sub

nodes may represent sub tasks involved in the model. The

“Composes” relationship makes it possible to split

problems carried out by models into sub-problems. This is

key for reducing complexity by finding, capitalizing and

reusing solutions to smaller problems.

Designers can then explore possible solutions by

assembling solutions of sub-problems together. As sub-

problems can be decomposed in turn, this leads to a

combinatory explosion and makes it impossible for

designers to explore all of them. Thus one solution is to let

the exploration of the combinations to search algorithms.

Masson [9] proposed to use genetic algorithms to produce

examples of UIs designs. Based on an external database that

capitalizes widgets at several levels of abstraction (C&T to

FUI), it takes a C&T model in input and produces a set of

transformations to be applied on the C&T model to produce

final UIs. However this approach focuses on widgets at a

very high level of precision only. As a consequence, the

generated UIs might not be suitable for early design phases.

This approach can be extended to sketches and prototypes.

At runtime

Designers can rely on nodes and arcs at the formal

definition level to propose automatic UI generators that can

produce UI adapted to a given context of use. Indeed, for a

given task, one can go through arcs and nodes to retrieve all

possible implementations of this task. For each of these

implementations, the path that links it with the original task

informs about the context of use it is designed for. For

instance, in Figure 4, one can follow the concretization arcs

from the interleaving node to find all possible solutions to

represent it. This process can be guided by the information

about the context of use the node requires. By doing so, it

is possible to retrieve all CUI/FUIs adapted to a given

context of use. This was explored in [4]. It is related to a

service broker devoted to HCI.

The graph, used as a service broker, could be integrated in

automatic UI generation algorithms like SUPPLE [5]. The

richer the graph is for a given task, higher the chance is to

produce adapted UIs. Thus the openness and extendibility

of the graph is key compared to closed or non explicit

approaches that enumerate possible renderings for tasks or

tasks operators. Actually, algorithms like SUPPLE [5] can

be seen as a concretization arc in the graph that produces a

CUI/FUI (at the formal definition level precision) based on

a C&T description (at the formal definition level precision),

a user model (his/her UI preferences, Fitts parameters and

typical traces) and the targeted platform (widgets set and

screen size). Applying SUPPLE to a particular task tree

results in adding an arc in the graph starting from the node

that embeds the C&T description to a node that describes

the generated CUI/FUI. For instance, in Figure 4, SUPPLE

can be applied to the C&T node that describes the instant

messenger to produce a CUI (B in Figure 4) optimized for

the platform P and user characteristics U.

CONCLUSION

Considering sketches and prototypes as models in MDE is

promising to avoid the “fast-food UI” limit. It should enable

UI designers to take advantages of these powerful

approaches while taking benefit of the strong know-how

HCI has in MDE.

We explore how capitalizing models in a graph can be

useful both at design time and runtime to get inspired and
Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

make the exploration of the design spaces easier. The

implementation of this graph and the related exploration

tools is currently work-in-progress. We plan to involve UI

designers in their design as well.

REFERENCES

1. Buxton, B. Sketching User Experiences: Getting the

Design Right and the Right Design. 448 pages, Morgan

Kaufmann (March 30, 2007). ISBN-13: 978-

0123740373.

2. Coutaz, J., User Interface Plasticity: Model Driven

Engineering to the Limit!, in ACM, Engineering

Interactive Computing Systems (EICS 2010)

International Conference. Keynote paper. Pages 1-8.

2010.

3. Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q.,

Vanderdonckt, J., SketchiXML: Towards a Multi-Agent

Design Tool for Sketching User Interfaces Based on

UsiXML, Proc. of 3rd Int. Workshop on Task Models

and Diagrams for user interface design TAMODIA'2004

(Prague, November 15-16, 2004), Ph. Palanque, P.

Slavik, M. Winckler (eds.), ACM Press, New York,

2004, pp. 75-82.

4. Demeure, A., Calvary, G., Coutaz, J., and Vanderdonckt,

J. The comets inspector: Towards run time plasticity

control based on a semantic network. In TAMODIA‟06.

5. Gajos, K., and Weld, D. S. Supple: automatically

generating user interfaces. In IUI ‟04: Proceedings of
the 9

th
 international conference on Intelligent user

interface (New York, NY, USA, 2004), ACM Press, pp.

93–100.

6. Landay, J.A. and Myers, B.A. Interactive sketching for

the early stages of user interface design. Proceedings of

the SIGCHI conference on Human factors in computing

systems, 1995.

7. Lee, B. and Srivastava, S. and Kumar, R. and Brafman,

R. and Klemmer, S.R. Designing with interactive

example galleries. Proceedings of the 28th international

conference on Human factors in computing systems,

2010, pp. 2257--2266

8. Lin, J. and Newman, M.W. and Hong, J.I. and Landay,

J.A. DENIM: finding a tighter fit between tools and

practice for Web site design. Proceedings of the SIGCHI

conference on Human factors in computing systems,

2000.

9. Masson, D. and Demeure, A. and Calvary, G. Magellan,

an Evolutionary System to Foster User Interface Design

Creativity. In proceedings of EICS‟10, Berlin, 2010.
10. Paterno, F. and Mancini, C. and Meniconi, S.

ConcurTaskTrees: A Diagrammatic Notation for

Specifying Task Models. In Proceedings Interact‟97,
July‟97, Sydney, Chapman&Hall, 1997, pp. 362-369.

11. Tohidi, M., Buxton, W., Baecker, R., and Sellen, A.

Getting the right design and the design right. In CHI

‟06: Proceedings of the SIGCHI conference on Human

Factors in computing systems (New York, NY, USA,

2006), ACM, pp. 1243–1252.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

C&T Sketch

of an instant

messager

….

Definition of the

interleaving operator

with respect to CTT.

Composes

Sharpens

Concretizes

Blurs

C&T Manage

contacts list

C&T Manage

conversations

C&T Manage

profile

Next version:

explains the rationale of

the change

Informal description

of instant messenger

based on images

samples…

Sharpens

Concretizes

…

…

…

Concretizes

Blurs

…

…

A

C

D

E

F

SUPPLE

<platform P, User U>

B

Sharpens

G

Figure 4: Excerpt of a graph of UI models.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

A Formal Ontology on User Interfaces –
Yet Another User Interface Description Language?

Position Paper

Heiko Paulheim and Florian Probst

SAP Research
Bleichstrasse 8

64283 Darmstadt, Germany
{heiko.paulheim,f.probst}@sap.com

ABSTRACT

During the past years, a lot of user interface descrip-
tion languages, most of them based on XML, have been
introduced. At the same time, the use of formal ontolo-
gies for describing user interfaces has been discussed
for a number of use cases. This paper discusses the
differences between a formal ontologies and user inter-
face description languages and and points out how both
research directions can benefit from each other.

Author Keywords

User Interfaces, Ontology, UI Description Languages,
Formal Models

ACM Classification Keywords

D.2.2 Software Engineering: Design Tools and Tech-
niques—User Interfaces; D.2.11 Software Engineering:
Software Architectures—Languages; I.2.4 Artificial In-
telligence: Knowledge Representation Formalisms and
Methods—Semantic Networks

General Terms

Design, Languages

INTRODUCTION

Recently, a number of use cases have been proposed that
employ ontologies for modeling user interfaces, their
components and interaction capabilities. Examples are
automatic generation of explanations for user interfaces,
adaptation of user interfaces for different needs and con-
texts, and integration of user interface components [14].
Those use cases require a strongly formalized ontology
of the domain of user interfaces and interactions.

In parallel, various UI description languages have been
proposed, most of them XML based [7, 12]. The duality
of UI description languages and formal ontologies gives
rise to the question whether an additional ontology is
really needed, or whether it is going to be yet another
user interface description language.

ONTOLOGIES AND MODELS

Although ontologies and software models are related,
they are not essentially the same. Software models and

ontologies are different by nature. An ontology claims
to be a generic, commonly agreed upon specification of
a conceptualization of a domain [6], with a focus on pre-
cisely capturing and formalizing the semantics of terms
used in a domain. A software model in turn is task-
specific, with the focus on an efficient implementation
of an application for solving tasks in the modeled do-
main [2, 16, 18]. Thus, a software engineer would rather
trade off precision for a simple, efficient model, with the
possibility of code generation, while an ontology engi-
neer would trade off simplicity for a precise representa-
tion. Another difference is that in software engineering,
models are most often prescriptive models, which are
used to specify how a system is supposed to behave,
while ontologies are rather descriptive models, which
describe how the world is [1]. Figure 1 illustrates those
differences.

Taking this thought to the domain of user interfaces
and interactions, models are used to define particular
user interfaces (e.g. with the goal of generating code
implementing those interfaces), while a formal ontology
would capture the nature of things that exist in the
domain, e.g., which types of user interfaces exist, and
how they are related.

Due to those differences, we argue that developing a
formal ontology on user interfaces will not lead to yet
another user interface description language, but to a
formal model with different intentions and usages. In
the next sections, we will discuss how the two worlds
can benefit from each other.

HOW A FORMAL ONTOLOGY CAN BENEFIT

FROM UI DESCRIPTION LANGUAGES

A lot of research work has gone into the development
of different user interface description languages. Those
research efforts can be and should be taken into account
when developing an ontology of the domain.

Collection of Concepts

Most methodologies for ontology engineering foresee the
capturing of key concepts and relationships as one of the
first steps. This can be done by conducting interviews

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

 shared

conceptualization

of a domain

Goal: efficient

programming

ontology engineersoftware developer

develops

Goal: „complete picture“,
semantic account of terms

in a domain

- task-specific approach

- prescriptive
- simplicity over precise

 representation

- generic approach

- descriptive

- precise representation

 over simplicity

develops

Different goals lead to

different models

Software Model
Ontology

Figure 1. Ontologies and modeling languages serve different purposes.

with domain experts, scanning books and other mate-
rial, and/or reusing parts of other ontologies [5, 19]. At
this point of ontology engineering, lots of input can be
used from existing user interface description languages.

Since those languages are most often XML-based, they
consist of a smaller or larger number of tags and at-
tributes, which determine the expressivity of the lan-
guage. As many of those elements define certain con-
cepts of the domain, such as UI components or actions
that can be performed with them, they are a good start-
ing point for developing a formal ontology of the do-
main.

Benchmarking the Ontology’s Completeness

As discussed above, ontology engineering aims at pro-
viding a complete, comprehensive formal description of
a domain. However, assessing the completeness of an
ontology is not always an easy task. Here, user interface
description languages can once again help by providing
a benchmark for the ontology’s completeness.

Such a benchmark can be performed in different ways.
On the meta-model level, the number of concepts con-
tained in the meta model (e.g., tags and attributes in
an XML schema) which have a counterpart in the on-
tology can be determined. On the model level, one can
check whether given models in a user interface descrip-
tion language can be expressed using only the terms
given in an ontology, either informally, or formally, e.g.,
in RDF. Thus, user interface description languages can
provide a measure for the completeness of an ontology
of the domain.

HOW UI DESCRIPTION LANGUAGES CAN BENEFIT

FROM A FORMAL ONTOLOGY

Once an ontology of the domain of user interfaces and
interactions has been created, it can be used to improve

the development and usage of new and existing user
interface description languages as well.

Disambiguation of Terms

In an analysis of user interface description languages,
we have found that terms are often used differently in
different standards. An example is the term dialog. In
XIML, for example, a dialog element is defined as be-
ing “like a command that can be executed [...] It is the
more concrete instantiation of a task.” [15]. In contrast,
XUL defines a dialog as an “element [which] should be
used in place of the window element for dialog boxes”
[10]. Such ambiguities can easily lead to misinterpre-
tations, especially if users are trained on a particular
language and switch to another one.

Mapping a user interface description language to a for-
mal ontology capturing the semantics of those terms
can avoid such misinterpretations. With the exam-
ple term dialog, a formal ontology can help resolving
the ambiguity by indicating that the languages imply
different top-level categories such as Process, Plan,
or Software Component as super-category for Dia-

log.

Facilitating Extensibility of User Interface Description

Languages

XML based languages usually use a fixed set of tags.
In order not to be too strictly limited for practical use,
many of those languages provide some extension mech-
anisms such as universal general purpose tags that can
be used for user-defined concepts (e.g. the ELEMENT tag
in XIML). These extension slots are then filled with ar-
bitrary strings.

Arbitrary strings, however, are dangerous. They lead
to extensions that are incompatible with each other,
interpreted differently by different people and systems

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

ontology

engineer

modeling language

designer and user

develops

develops

Modeling

Language

Ontology

- d
isambiguatio

n of te
rm

s

- e
xtensibilit

y

- c
omparis

on and

 c
onversion

- c
oncept c

olle
ctio

n

- b
enchmark fo

r

 o
ntology completeness

Figure 2. How user interface description languages and
ontologies can benefit from each other

relying on different conventions and external documen-
tations, and, in the end, foil the overall idea of having
a standardized modeling language.

A formal ontology can help here by providing a stan-
dardized vocabulary which can be used to fill such ex-
tension slots. Thus, it can be assured that there is an
unambiguous interpretation of the extensions.

Model Comparison and Conversion

When bringing together different development teams,
information systems, or organizations, it is likely that
models created with different user interface description
languages already exist. Using a mediating ontology for
annotating the models is a common way of establishing
comparability between models, not only user interface
models [4].

Once models are annotated and can be compared using
a common ontology, automatic conversion of models can
be long-term objective. For the moment, a common on-
tology can at least support developers in understanding
each other’s models and assist them in unambiguously
transferring their contents between modeling languages
manually.

Fig. 2 summarizes how modeling languages and a formal
ontology can benefit from each other.

TOWARDS A FORMAL ONTOLOGY OF THE DOMAIN

OF USER INTERFACES AND INTERACTIONS

With these considerations in mind, we have started to
develop a formal ontology of the domain of user inter-
faces and interactions. The goal is to end up with an
ontology that is comprehensive at least with respect to
the expressivity of current user interface definition lan-
guages, that is universal enough to be extendable to
future user interfaces that do not exist at the moment.
Furthermore, to support valuable reasoning on user in-
terfaces and provide meaningful semantics, the ontology
should be highly axiomatized.

To end up with a comprehensive ontology, we have an-
alyzed several user interface description languages in
order to collect a maximum set of relevant terms. We
have used UsiXML, XIML, UIML, Maria, XUL, LZX,
WAI ARIA, and XForms as a basis for identifying the
core concepts.

In order to build upon well-acknowledged roots, we have
chosen the top level ontology DOLCE [9] and its exten-
sions as a basis for our ontology. This top level ontology
provides an embracing basic classification of things and
has been used as a basis for building numerous ontolo-
gies. Since the top level provides a complete classifica-
tion, it ensures extensibility of the ontology by design,
as every new concept can be classified in some existing
category. Furthermore, we have reused two core ontolo-
gies of software and software components [11], which
are also built upon the foundations of DOLCE.

The ontology we have developed is divided into two
parts: a top level which captures the semantics of the
basic terms of the domain, such as User Interface Com-
ponent and Interaction, while the detail level classifies
the actual things that exist in the domain, such as types
of user interface components and user tasks that can be
performed with those components. The OWL version of
the top level ontology consists of 15 classes, two object
properties, and 75 axioms, while the detail level consists
of 179 classes, eleven object properties, and 448 axioms.

CONCLUDING REMARKS

This position paper has discussed the differences be-
tween UI description languages and a formal ontology
of the domain of user interfaces and interactions. Fur-
thermore, We have given insight into the development
of a comprehensive formal ontology of the user inter-
faces and interactions domain. In the long run, we are
confident that formal ontologies and UI definition lan-
guages will both have their places, and that both will
benefit from each other.

We have presented a number of potential improvements
where developers employing user interface description
languages could benefit from those languages being map-
ped to a formal ontology of user interfaces and interac-
tions. Thus, our claim is that organizations providing
user interface description languages could improve the
usability and acceptance of those languages by provid-
ing such a mapping.

As a long-term objective, such a mapping could even fa-
cilitate automatic conversion between models developed
with different user interface description languages. To
that end, more sophisticated mapping approaches than
simply relating elements form a modeling language to a
category in an ontology are needed [13].

A formal ontology will not replace user interface de-
scription languages, but be a valuable enhancement.
Due to the conceptual differences between software mod-

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

d
n

s
:d

e
fin

e
s

c
o

s
c
:S

o
ftw

a
re

 C
o

m
p

o
n

e
n

t

c
s
o

:S
o

ftw
a

re

(E
x
e

c
u

ta
b

le
 D

a
ta

)

io
:In

fo
rm

a
tio

n
 O

b
je

c
t

c
s
o

:D
a

ta

c
s
o

:A
b

s
tra

c
t D

a
ta

(R
e

p
re

s
e

n
ta

tio
n

a
l D

a
ta

)

d
o

lc
e

:P
a

rtic
u

la
r / o

w
l:T

h
in

g

c
s
o

:id
e

n
tifie

s

U
s
e

r In
te

rfa
c
e

 C
o

m
p

o
n

e
n

t
d

o
lc

e
:p

a
rt

d
n

s
:a

c
tiv

ity

U
s
e

r A
c
tiv

ity
c
s
o

:C
o

m
p

u
ta

tio
n

a
l A

c
tiv

ity

m
a

k
e

s
 u

s
e

 o
f

≡ fp
:u

s
e

 o
f

c
s
o

: d
a

ta
 ty

p
e

d
o

lc
e
:R

e
g

io
n

in
v
o

lv
e

s
 a

s
 to

o
l

≡ fp
:in

s
tru

m
e

n
t

d
n

s
:a

c
tio

n

d
o

lc
e
:a

c
c
o

m
p

lis
h

m
e

n
t

d
o

lc
e
:P

h
y
s
ic

a
l Q

u
a

lity

S
ty

le

d
o

lc
e

:h
a

s
 q

u
a

lity

In
te

ra
c
tio

n
 P

la
n

d
n

s
:e

x
p

re
s
s
e

s

d
n

s
:T

a
s
k

c
s
o

:C
o

m
p

u
ta

tio
n

a
l T

a
s
k

U
s
e

r T
a

s
k

d
n

s
:P

la
n

d
n

s
:S

itu
ta

tio
n

p
la

n
:ta

s
k
-p

o
s
tc

o
n

d
itio

n
p

la
n
:ta

s
k
-p

re
c
o

n
d

itio
n

d
o

lc
e
:e

v
e

n
t

c
s
o

:C
o

m
p

u
ta

tio
n

a
l O

b
je

c
t

d
n

s
:s

e
q

u
e

n
c
e

s

tr:c
a

u
s
a

lly
 fo

llo
w

s

p
la

n
s
:c

o
m

p
o

n
e

n
t

c
s
o

:U
s
e

r D
a

ta

d
n

s
:A

g
e

n
t

c
s
o

:id
e

n
tifie

s

H
a

rd
w

a
re

d
o

lc
e

:N
o

n
 A

g
e

n
tiv

e

P
h

y
s
ic

a
l O

b
je

c
t

d
o

lc
e
:s

p
e

c
ific

a
lly

c
o

n
s
ta

n
tly

 d
e

p
e

n
d

s
 o

nT
a

n
g

ib
le

 H
a

rd
w

a
re

 O
b

je
c
t

fp
:p

e
rfo

rm
s

V
is

u
a

l C
o

m
p

u
ta

tio
n

a
l

O
b

je
c
t

d
o

lc
e

:p
a

rt

P
ro

c
e

s
s
in

g
 C

o
m

p
o

n
e

n
t

S
to

ra
g

e
 C

o
m

p
o

n
e

n
t

P
e

rip
h

e
ric

a
l H

a
rd

w
a

re
N

o
n
-p

e
rip

h
e

ric
a

l H
a

rd
w

a
re

d
o

lc
e

:N
o

n
-P

h
y
s
ic

a
l O

b
je

c
t

M
o

n
ito

r

...d
o

lc
e

:R
e

g
io

n

S
c
re

e
n

 R
e

g
io

n

p
ro

v
id

e
s

D
e

ta
il L

e
v
e

l:

D
is

p
la

y
, H

ig
h

lig
h

t,

D
e

le
te

, ...

D
e

ta
il L

e
v
e

l:

S
e

le
c
t, O

rg
a

n
iz

e
, ...

D
e

ta
il L

e
v
e

l:

L
a

b
e

l, Im
a

g
e
,

B
u

tto
n

, T
e

x
t fie

ld
, ...

d
o

lc
e

:p
a

rt

d
o

lc
e
:s

p
a

tia
l-lo

c
a

tio
n

-q
u

a
lity

...

a
d

ja
c
e

n
t to

D
e

s
c
rip

tio
n

 o
f

C
o

m
p

o
n

e
n

ts

D
e

s
c
rip

tio
n

 o
f

In
te

ra
c
tio

n
s

D
e

s
ig

n
 T

im
e

R
u

n
 T

im
e

d
o

lc
e

:h
a

s
 q

u
a

lity

d
o

lc
e

:q
-lo

c
a

tio
n

P
o

s
itio

n
 o

n
 S

c
re

e
n

...
...

d
n

s
:re

a
liz

e
s

D
e

ta
il L

e
v
e

l:

C
lic

k
, T

y
p

e
,

S
c
ro

ll...

F
ig
u
r
e

3
.

T
h
e

to
p

le
v
e
l
o
f
th

e
o
n
to

lo
g
y

o
f
th

e
u
se

r
in
te

r
fa
c
e
s
a
n
d

in
te

r
a
c
tio

n
s
d
o
m

a
in

.
In

th
e

u
p
p
e
r
p
a
r
t,

th
e

d
e
sig

n
tim

e
c
o
n
c
e
p
ts

a
r
e

sh
o
w
n
,
th

e
lo
w
e
r

p
a
r
t
c
o
n
ta

in
s
th

e
r
u
n

tim
e

c
o
n
c
e
p
ts.

T
h
e

le
ft

p
a
r
t
d
e
a
ls

w
ith

in
te

r
a
c
tio

n
s,

th
e

r
ig
h
t
p
a
r
t
w
ith

c
o
m

p
o
n
e
n
ts.

T
h
e

w
h
ite

e
llip

se
s
d
e
n
o
te

c
o
n
c
e
p
ts

fr
o
m

th
e

r
e
u
se

d
o
n
to

lo
g
ie
s
(w

ith
th

e
fo
llo

w
in

g
n
a
m

e
sp

a
c
e

c
o
n
v
e
n
tio

n
s:

D
O
L
C
E

(d
o
lc
e
),

D
e
sc

r
ip

tio
n
s
a
n
d

S
itu

a
tio

n
s
(d

n
s),

P
la
n
s
(p

la
n
s),

F
u
n
c
tio

n
a
l
P
a
r
tic

ip
a
tio

n
(fp

),
T
e
m

p
o
r
a
l
r
e
la
tio

n
s
(tr

),
C
o
r
e
O
n
to

lo
g
y

o
f
S
o
ftw

a
r
e
(c

o
s),

C
o
r
e
O
n
to

lo
g
y

o
f
S
o
ftw

a
r
e
C
o
m

p
o
n
e
n
ts

(c
o
sc

)),
th

e
g
r
e
y

e
llip

se
s
d
e
n
o
te

c
o
n
c
e
p
ts

fr
o
m

th
e

to
p

le
v
e
l
o
n
to

lo
g
y

o
f
th

e
u
se

r
in
te

r
fa
c
e
s
a
n
d

in
te

r
a
c
tio

n
s
d
o
m

a
in

.
T
h
e
g
r
e
y

tr
ia
n
g
le
s
d
e
n
o
te

d
e
fi
n
itio

n
s
c
a
r
r
ie
d

o
u
t
in

th
e
d
e
ta

il
o
n
to

lo
g
y
.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

els and ontologies, user interface description languages
do a better job, e.g., when developing user interfaces
in model based approaches. Although there have been
attempts for UI code generation from ontologies [8, 17],
the latter even claiming that ontologies should entirely
replace existing user interface description languages, we
believe that a co-existence of both is more beneficial.

Acknowledgements

The work presented in this paper has been partly funded
by the German Federal Ministry of Education and Re-
search under grants no. 01IA08006 and 13N10711.

REFERENCES

1. U. Aßmann, S. Zschaler, and G. Wagner.
Ontologies, Meta-models, and the Model-Driven
Paradigm. In Calero et al. [3], chapter 9, pages
249–273.

2. C. Atkinson, M. Gutheil, and K. Kiko. On the
Relationship of Ontologies and Models. In
S. Brockmans, J. Jung, and Y. Sure, editors,
WoMM, volume 96 of LNI, pages 47–60. GI, 2006.

3. C. Calero, F. Ruiz, and M. Piattini, editors.
Ontologies for Software Engineering and Software
Technology. Springer, 2006.

4. J. Fengel and M. Rebstock. Linking Heterogeneous
Conceptual Models through a Unifying Modeling
Concepts Ontology. In N. Stojanovic and
B. Norton, editors, Proceedings of the 5th
International Workshop on Semantic Business
Process Management (SBPM 2010), volume 682 of
CEUR-WS, pages 1–4, 2010.

5. M. Fernández, A. Gómez-Pérez, and N. Juristo.
METHONTOLOGY: From Ontological Art
Towards Ontological Engineering. In Proceedings
of the AAAI97 Spring Symposium, pages 33–40,
1997.

6. T. R. Gruber. A translation approach to portable
ontology specifications. Knowledge Acquisition,
5(2):199–220, Juni 1993.

7. J. Guerrero-Garcia, J. M. Gonzalez-Calleros,
J. Vanderdonckt, and J. Munoz-Arteaga. A
Theoretical Survey of User Interface Description
Languages: Preliminary Results. In LA-WEB ’09:
Proceedings of the 2009 Latin American Web
Congress (la-web 2009), pages 36–43, Washington,
DC, USA, 2009. IEEE Computer Society.

8. B. Liu, H. Chen, and W. He. Deriving User
Interface from Ontologies: A Model-Based
Approach. In ICTAI ’05: Proceedings of the 17th
IEEE International Conference on Tools with
Artificial Intelligence, pages 254–259, Washington,
DC, USA, 2005. IEEE Computer Society.

9. C. Masolo, S. Borgo, A. Gangemi, N. Guarino,
and A. Oltramari. WonderWeb Deliverable D18 –

Ontology Library (final), 2003.
http://wonderweb.semanticweb.org/
deliverables/documents/D18.pdf. Accessed
August 2nd, 2010.

10. Mozilla. XUL.
https://developer.mozilla.org/en/XUL, 2010.
Accessed August 4th, 2010.

11. D. Oberle, S. Grimm, and S. Staab. An Ontology
for Software. In S. Staab and R. Studer, editors,
Handbook on Ontologies, International Handbooks
on Information Systems, chapter 18, pages
383–402. Springer, 2nd edition edition, 2009.

12. F. Paternò, C. Santoro, and L. D. Spano. XML
Languages for User Interface Models - Deliverable
D2.1 of the ServFace Project. http://141.76.40.
158/Servface/index.php?option=com_
docman&task=doc_download&gid=5&Itemid=61,
August 2008. Accessed August 9th, 2010.

13. H. Paulheim, R. Plendl, F. Probst, and D. Oberle.
Mapping Pragmatic Class Models to Reference
Ontologies. In 2nd International Workshop on
Data Engineering meets the Semantic Web
(DESWeb), 2011. to appear.

14. H. Paulheim and F. Probst. Ontology-Enhanced
User Interfaces: A Survey. International Journal
on Semantic Web and Information Systems,
6(2):36–59, 2010.

15. RedWhale Software. The XIML Specification.
Available as part of the XIML Starter Kit version
1, available at
http://www.ximl.org/download/step1.asp,
2000. Accessed August 3rd, 2010.

16. F. Ruiz and J. R. Hilera. Using Ontologies in
Software Engineering and Technology. In Calero
et al. [3], chapter 2, pages 49–102.

17. K. A. Sergevich and G. V. Viktorovna. From an
Ontology-Oriented Approach Conception to User
Interface Development. International Journal
”Information Theories and Applications”,
10(1):89–98, 2003.

18. P. Spyns, R. Meersmanand, and M. Jarrar. Data
modelling versus ontology engineering. SIGMOD
Rec., 31(4):12–17, 2002.

19. M. Uschold and M. Gruninger. Ontologies:
Principles, Methods and Applications. Knowledge
Engineering Review, 11:93–136, 1996.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Towards the user confidence in sensor-rich

interactive application environment

Ilkka Niskanen

Software Architectures and Platforms

VTT - Technical Research Center of

Finland

Oulu, Finland

Ilkka.Niskanen@vtt.fi

Julia Kantorovitch
Software Architectures and Platforms

VTT - Technical Research Center of

Finland

Espoo, Finland

Julia.Kantorovitch@vtt.fi

Vildjiounaite Elena
Context-awareness and service

interaction

VTT - Technical Research Center of

Finland

Oulu, Finland

Elena.Vildjiounaite@vtt.fi

ABSTRACT

The recent advances in sensor-rich, ambient computing

environmets have led to a situation in which ordinary users may

express negative reactions when they feel that their behaviour is

being monitored and analysed by technological systems which

they do not understand. Cooking guide is an example application

that is heavily depended on dynamic context information and

adapts its behavior according to the context data. The

VisuMonitor approach, described in this study, supports the users

of Cooking Guide by providing visualization views that show the

proceeding of cooking processes and also explains the

functionality and behavior of the system during different cooking

activities, thus improving user awareness, technology acceptance

and user education. VisuMonitor utilizes semantic technologies in

the modeling of workflows, which facilitates data integration and

enables more efficient work progress monitoring and

visualization.

ACM Classification Keywords
H.1.2 User/Machine Systems: Human factors.

Author keywords

Context awareness, proactive knowledge, sensors, user education,

semantic technologies, user education, data visualization

General Terms

Design, Human factors

1. INTRODUCTION
When evaluating the ideas of sensor-rich, ambient computing

environments to ordinary users, non-technical people, in

particular, express anxiety when they find themselves in

situations, where they feel that their behaviour is being monitored

and analysed by technological systems which they do not

understand [1]. Such negative reaction to applications which use

sensing technology sets a challenge which needs to be addressed.

Technology must be regarded as helpful rather than threatening.

We believe that if users perceive themselves to understand and to

have control over their personal application, they will be more

likely to trust applications which use sensing data. Accordingly a

knowledge-based system should be able to explain its reasoning,

and rules used to justify its conclusions to be accepted by users.

Cooking guide is an example application that is heavily depended

on dynamic context information [17]. The Cooking Guide may

run in a touch-screen device, for example, and it helps the user

during meal preparation by providing detailed, step-by-step

explanations. Cooking Guide adapts its behavior according to the

context information (e.g. available smart appliances augmented by

various sensors, output devices, and user's cooking experience)

thus each step can be potentially performed in a different way.

Cooking guide is a true effort towards the contextual rich dynamic

proactive knowledge-based application. Proactive knowledge base

is built from the sensors augmenting the objects in use,

surrounding devices and user profiles. Sophisticated data mining

algorithms, rule based mechanisms and user model learning

techniques facilitate contextual awareness and adaptability

towards the assistance and end user ambient support.

The importance of explanation interfaces in providing system

transparency and thus increasing user acceptance has been well

recognized early in a number of fields such as expert systems [2],

intelligent tutoring systems [3], office documents user assistance

systems [18], data exploration systems [4], and recommendation

systems [5][6][7]. In relation to ubicomp environment, the

necessity to support the features that aim at supporting user

acceptance by making system‟s reasoning process visible and
insight of the system comprehendible has been acknowledged

only recently [1][8][9], while prototyping of such feature is still in

its infancy. For our knowledge only work by K.Cheverst [9] has

practically addressed the transparency and comprehensibility of

the system leveraging the power of explanation user interfaces.

There the Intelligent Office System can learn a given user

situation to use the inferred rules and support appropriate

proactive behaviour such as e.g. turning on/off the fun or

opening/closing window under appropriate conditions. On the

same time, the system enables the user to explicitly scrutinise and

override the „if-then‟ rules held in user model. If the user wishes
to enquire why the system is performed in a certain way, the

appropriate button can be pressed in order to view a window such

as the one shown in Figure 1.

Figure 1. Scrutinising the rules behind the prompt me text
Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

http://espsr72.ad.vtt.fi/sandraweb/results.asp
http://espsr72.ad.vtt.fi/sandraweb/results.asp

However manually acquired textual explanations may not be

always sufficient especially in the cases where the context of the

application and user is rapidly varying such as in cooking which is

a creative process with continuously changing cooking situation,

appliances in use and products features. This sets the additional

challenges on the design of the user interface. Moreover, the

purpose of the system plays an important role in defying of

respective elements that influence system acceptance. When

interacting with work and task-oriented systems, the perceived

usefulness is more important. In contrast when interacting with

hedonic systems that are aimed at fun and pleasure (as cooking

guide mostly does) the perceived enjoyment is more desirable in

achieving user acceptance [10].

2. VISUALIZATION
Looking for the means to fulfil the above discussed requirements,

we believe that visualization based aids which are intuitive and

easily customizable, may help the user to link the complex

contextual world of physical services residing in the environment,

reasoning of the system and human mind. Visualization of data

makes it possible to obtain insight into these data in an efficient

and effective way, thanks to the unique capabilities of the human

visual system, which enables us to detect interesting features and

patterns in a short time [11]. In particular with recent advances in

computer graphics, visualization is able to benefit the sense of

wonder connected with the application presenting the content of

the data in a completely innovative and quickly comprehendible

form.

Currently existing approaches to visualise the rules of the system

are targeting mainly application developers [12][19] or data

exploitation professionals [13][14][15][16]. Accordingly common

for the developed techniques is that they rather support the

categorization, browsing and management of potentially complex

rule bases, while the ground to the world of physical devices and

context attractiveness, fast assimilation and intuitive visualization

important for non-technical end user are left beyond.

3. VISUMONITOR – TOWARDS BETTER

USER AWARENESS
In this position paper we present a visual monitoring approach –

VisuMonitor, which is currently under development. VisuMonitor

is directed for the end-users of different context-aware

applications and aims towards a better user awareness, technology

acceptance and user educating. The approach enhances the

sharing of knowledge by integrating information from multiple,

heterogeneous sources and providing interactive views to this

data. To enable the integration of heterogeneous data sources,

VisuMonitor utilizes semantic technologies and especially

ontologies that facilitate shared and common understanding of

knowledge domain and are able to describe explicitly the content

and semantics of heterogeneous data sources to support

integration, processing and further new knowledge discovering

tasks. The utilization of semantic technologies provides also an

intelligent way to define and use rules that guide the behavior of

the application.

The use of semantic technologies is especially pertinent with such

applications as the VisuMonitor where complex and

heterogeneous data is gathered from multiple sources and it has to

be presented to the users in a comprehensive way. The annotation

of the data using ontologies and concept taxonomies will allow

users to better perceive the relationships between different

concepts. Additionally, by utilizing reasoning mechanisms

provided by semantic technologies, the data can be better

clustered and targeted to the particular users.

VisuMonitor supports the users of Cooking Guide in two ways:

showing practical information related to the cooking process itself

(the proceeding of the cooking process from one step to another,

the information provided by different sensors, the usage of

different devices etc.) and providing explanations related to the

functionality and behavior of the cooking guide system (for

example why the cooking guide application decided to change

from speech to textual guidance in some point of the cooking

process etc.). VisuMonitor may also educate the user by

explaining why the particular recipe/ingredients are recommended

e.g. due health reasons, diseases, dietary, recent blood test, etc.

Different cooking processes executed with Cooking Guide are

modeled as workflow descriptions. Cooking Guide is tightly

integrated with a Workflow engine tool, which manages the

workflows that are executed in cooking processes. The executable

workflows are described with an XML-based serialization format

known as XPDL [20] (XML Process Definition Language).

XPDL is a common format supported by a number of editing tools

and process execution engines. XPDL workflow models are

standardized representations of one or more workflows. The

workflow engine plans, checks and manages the execution and

states of workflows. If an activity is finished, it is e.g. responsible

for checking outgoing conditions of transitions and deciding if the

transitions should be activated or not. Workflow engine utilizes

also context information extensively. Besides of information

source, the engine uses context data to adapt to the situation, to

trigger activity transitions and to influence the control flow.

VisuMonitor communicates with Workflow engine to retrieve the

necessary information needed for workflow visualizations. In

addition to static and dynamic workflow representations,

VisuMonitor provides also other workflow related information to

the users. It may show, for example, the different resources

needed to complete a workflow activity or information related to

functionality and behavior of the cooking guide system. By

integrating the data acquired from Workflow engine and Cooking

Guide, VisuMonitor is able to produce a global view of a cooking

process.

3.1 Compositional structure
The compositional structure of the VisuMonitor infrastructure is

shown in Figure 2.

Permission to make digital or hard copies of all or part of this work for

personal or classrom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.
 Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Figure 2. The compositional structure

(1) - Workflow visualization and monitoring, which is a

core of the tool. This component provides mechanisms

for visualizing workflows and other related information.

(2) - Semantic library represented by ontologies, which will

contain the workflow related knowledge base. This

component contains semantically modelled workflow

descriptions that are visualized with the tool. It may also

contain other semantically modelled information, such

as context and sensor data, rules and other system

functionality data and information about different

resources that are related to workflows.

(3) - Ontology management tools, which allow to query and

update ontology instances. Some existing open source

software like Jena and OWL-API reasoners can be used

for this purpose

(4) - Visualization libraries containing domain specific 3D

icons that are used in workflow visualizations.

(5) - System platform, which provides the necessary data

for workflow visualization. For example, the workflow

engine provides static information about workflows and

the Cooking guide allows to query such information as

the rules applied in the user interface adaptations.

Device/hardware level: from laptop/PC to light device like

PDA/smart phone.

3.2 Dynamic structure
While compositional structure provides the static layout of the

workflow monitoring architecture, the sequence diagram

presented in Figure 3 highlights the way on how different

components dynamically interact.

Figure 3. The dynamic workflow visualization

According to the sequence diagram above, the user may first

create a client in order to start monitoring workflows.

VisuMonitor connects to Workflow engine and retrieves the

workflows that are currently hosted by the engine. The user may

then select the workflows that he/she wants to visualize and

monitor. Subsequently, the monitor communicates with Workflow

engine and subscribes as a listener to the selected workflows. As a

result, Workflow engine notifies the monitor each time something

noticeable happens in the execution of the selected workflows (i.e.

a transition from one activity to another or some

exception/anomaly occurs during the execution). Each time

VisuMonitor receives a change notification it updates the

visualization view accordingly. VisuMonitor may also query some

additional, workflow related information from the Cooking Guide

application. The monitor may acquire, for example, such

information as the logical rules applied in a certain cooking

activity.

3.3 Semantic data integration
As earlier discussed, VisuMonitor utilizes semantic technologies

to provide visually rich and informative workflow representations

to the users. For example, by using well defined ontology

vocabularies and taxonomic hierarchies data gathered from

heterogeneous sources can be better integrated and semantically

modeled. For example, when the monitor tool receives non-

semantic workflow descriptions, it saves them semantically and

annotates the data with descriptive metadata. Next VisuMonitor

stores the workflow activities into an RDF data model and finally

visualizes the workflows. Whenever additional information is

queried from Cooking Guide application, it can be stored into the

same RDF model and linked to the appropriate activities of the

workflow.

The semantic modeling of workflows has many potential benefits.

For example, more comprehensive diagnostics information about

the work processes can be produced by discovering the hidden

relationships and patterns that may exist in the data. The

diagnostics information can include historical, real-time and

predictive data. Additionally, the utilization of different reasoning

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

mechanisms may lead to proactive action recommendations,

which in turn enable more efficient fault prevention. Finally, the

semantic modeling of data enables more efficient work progress

monitoring and visualization. An excerpt from an RDF-

description of semantically stored workflow data is presented in

Figure 4.

Figure 4. Example RDF workflow data description

Each of the activities contained by a workflow is defined as an

individual, which has certain property and value descriptions. For

example, the activity described above has a property

„activityDefinitionId‟ with value „makeCoffee‟ and a property

„state‟ with value „CLOSED.COMPLETED‟.

3.4 UI design mock-ups
VisuMonitor tool is currently in a design phase and different

specifications of the tool are being created. Since visualization

and graphical user interface form such an important part of the

approach several user interface mock-ups were decided to be

created and evaluated before the actual implementation work is

started. The purpose of the initial evaluations is to make sure that

user perceive the created views and explanation dialogs as

informative and comprehensible.

UI design mock-up presented in Figure 5 shows an overall view

of the cooking process, in which the proceeding of the workflow

from one step to another is illustrated. The already finished

activities are depicted with blue boxes, the current step of the

cooking process is emphasized with red color and the green boxes

represent the activities that have not yet been started. The user is

able to acquire more detailed information about different activities

by clicking the boxes representing the different steps. The purpose

of this kind of overall view is to enhance the general

comprehension of cooking processes.

Figure 5. A workflow visualization mock-up

As earlier discussed, a knowledge-based system should be able to

explain its reasoning and rules to justify its conclusions.

VisuMonitor addresses this requirement by providing illustrative

graphical explanations that makes the behavior of the cooking

guide system more transparent. VisuMonitor provides

explanations, for example, about the logical rules that guide the

functionality of the Cooking Guide system during a certain

cooking activity. As an example, a visualization presented in

Figure 6 explains one of the rules that automatically turn the

Cooking Guide‟s audio features off if music is detected during the
last 20 seconds.

Figure 6. A rule visualization mock-up

Although VisuMonitor is still on a design phase some of the

initial user interface mock-ups have been already evaluated in a

user study performed for the Cooking Guide prototype [17]. The

results proved that VisuMonitor enhances the understanding of

application behavior and makes the functionality of Cooking

Guide more appreciable for the user.

4. CONCLUSION AND FUTURE WORK
This paper has presented the VisuMonitor approach, which

addresses the problem of complex sensor-rich, ambient computing

environments causing negative reactions for ordinary users, as

they feel they do not have control over their personal applications.

VisuMonitor enhances the understanding of application behavior

by applying interactive visualization techniques that enable users

to observe, manipulate, search, navigate, explore, discover and

filter data far more rapidly and far more effectively.

VisuMonitor is tightly coupled with the Cooking Guide

application, which provides step-by-step explanations for meal

preparation and adapts its behavior according to the context

information. VisuMonitor supports the users of Cooking Guide by

providing visualization views that show the proceeding of the

cooking process from one step to another and also explains the

functionality and behavior of the system during different cooking

activities. By utilizing different visualization methodologies it

aims at improving user awareness, technology acceptance and

user education.

An important feature of chosen visualization approach is that it

semantically integrates heterogeneous data gathered from

different sources. In this way all the workflow related data can be

modeled and stored in a similar and structured way. The semantic

representation of data facilitates also the discovering of hidden

relationships that may exist in the data.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

The development of VisuMonitor is currently in its initial stage.

The work will continue by analyzing thoroughly the results gained

from the evaluation and applying this data in the implementation

phase. The construction process will be iterative by its nature and

after each design and implementation cycle the approach will be

evaluated with the end-users.

Although VisuMonitor is currently developed in a close

cooperation with the Cooking Guide application, we are looking

for more generic domain independent way to support application

users. Different application domain may set an additional research

challenge, for example on the visualization aspects like various

visualization types might be used depends on the problem domain

and also on application features to be monitored and visualized.

Additionally, the workflows describing semantic models will be

improved by developing the data integration methods and using

more sophisticated reasoning capabilities

5. ACKNOWLEDGMENTS
This research was conducted within the SmartProducts EU

project, grant number 231204. We would like to thank in

particular Philips for inspired and encouraging comments.

6. REFERENCES
[1] Feeney K. et al. 2008. Avoiding “Big Brother” Anxiety with

Progressive Self-Management of Ubiquitous Computing

Services, MobiQuitous 2008, July 21-25, 2008, Dublin,

Ireland

[2] Klein, D.A. and Shortliffe, E.H. 1994. A framework for

explaining decision-theoretic advice, Artificial Intelligence

67, 1994, 201-243.

[3] Sørmo, F. and Aamodt, A. 2002. Knowledge communication

and CBR. In Proceedings of the ECCBR-02 Workshop on

Case-Based Reasoning for Education and Training, 2002,

487-59.

[4] Carenini, G. and Moore, J. 1998. Multimedia explanations in

IDEA decision support system. Working Notes of the AAAI

Spring Symposium on Interactive and Mixed-Initiative

Decision Theoretic Systems.

[5] Chen, L. and Pu, P. 2005. Trust building in recommender

agents. In Proceedings of the Workshop on Web

Personalization, Recommender Systems and Intelligent User

Interfaces at the 2nd International Conference on E-Business

and Telecommunication Networks (ICETE‟02).
[6] McSherry, D. 2004. Explanation in recommender systems. In

Workshop Proceedings of the 7th European Conference on

Case-Based Reasoning, 2004, 125-134.

[7] O‟Donovan, J. and Smyth, B. 2005. Trust in recommender

systems. In Proceedings of the 10th International Conference

on Intelligent User Interfaces (IUI‟05), 167 - 174.

[8] Callaghan, V., Clarke, G. S., and Chin, S. J. Y. 2008. Some

socio-technical aspects of intelligent buildings and pervasive

computing research, Intell. Build. Int‟l J. 1:1.

[9] Cheverst K., et al. 2005. Exploring Issues of User Model

Transparency and Proactive Behaviour in an Office

Environment Control System, User Modeling and User-

Adapted Interaction 15:235-273

[10] Cramer,H.S.M., Evers V., Van Someren, M., Ramlal, S.,

Rutledge, L., Stash, N., Aroyo, L., Wielinga, B. 2008. The

effects of transparency on perceived and actual competence

of a content-based recommender, Semantic Web User

Interaction Workshop, CHI 2008, April 2008

[11] Wijk, J. 2005. The value of visualization. Proceedings of the

IEEE Visualization (VIS‟05), Minneapolis, MN, USA, 23.28
October 2005.

[12] Hassanpour, S., O‟Connor, M.J. and Das, A.K. 2010. A

Software Tool for Visualizing, Managing and Eliciting

SWRL Rules, ESWC 2010, Part II, LNCS 6089, pp. 381–385

[13] Blanchard J., et al. 2007. A 2D-3D visualization support for

human-centered rule-mining, Computer and Graphics 31, 3

(2007) 350-360

[14] Ma, Y., Liu B. and Wong, C.K. 2000. Web for data mining:

organizing and interpreting the discovered rules using the

Web. SIGKDD Explorations, ACM Press, vol. 2, num. 1, pp

16{23}

[15] Hofmann, H. and Wilhelm, A. 2001. Visual comparison of

association rules. Computational Statistics, Physica-Verlag,

vol. 16, num. 3, pp 399{415}

[16] Lehn, R. 2000. An interactive rule visualization system for

knowledge discovery in databases. PhD thesis, University of

Nantes

[17] Vildjiounaite E., et al. 2011. Designing Socially Acceptable

Multimodal Interaction in Cooking Assistants. In

proceedings of International Conference on Intelligent User

Interfaces, Palo Alto, California, USA, February 2011.

[18] Kohlhase, A., & Kohlhase, M. 2009. Semantic Transparency

in User Assistance Systems. In Proceedings of the 27th

annual ACM international conference on Design of

Communication.Special Interest Group on Design of

Communication (SIGDOC-09), Bloomingtion,, IN, United

States. ACM Press.

[19] Gribova, V. 2007. Automatic generation of context sensitive

help using a user interface project. In proceedings of 8thh

International Conference "Knowledge-Dialogue-Solutions" –

KDS 2007, July 2007, Varna, Bulgaria

[20] WFMC 2002. Workflow Management CoalitionWorkflow

Standard: Workflow Process Definition Interface – XML

Process Definition Language (XPDL) (WFMC-TC-1025).

Technical report, Workflow Management Coalition,

Lighthouse Point, Florida, USA.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

http://www.iuiconf.org/
http://www.iuiconf.org/

Controlling Smart Environments
using a Brain Computer Interface

Gernot Ruscher∗ Frank Krüger Sebastian Bader Thomas Kirste

Universität Rostock,
Albert-Einstein-Str. 21,

18059 Rostock, Germany
∗corresponding author: gernot.ruscher@uni-rostock.de

ABSTRACT
We describe first experiments for controlling smart environ-
ments using a brain-computer interface. The graphical user
interface is automatically synthesised from device models
that specify effects of device functions on the environment.
Thus, the number of interactions can be reduced, and a novel
way of human machine interaction is introduced: Control-
ling the environment instead of single devices.

Categories and Subject Descriptors
H.5 [User Interfaces]: Graphical User Interfaces, Input
Devices and Strategies

General Terms
Design

Keywords
BCI, smart environments, graphical user interfaces

1. INTRODUCTION & MOTIVATION
Brain Computer Interfaces (BCI) are ongoing research since
the 1970s [10], employing invasive technologies as well as
non-invasive approaches such as EEG. Key potential of BCI
is the possibility of man-machine interaction without requir-
ing motor activities: Hands free, no gestures, no speech, no
pointing and clicking. Recently, low-cost devices have be-
come available at market targeting the gaming scene, claim-
ing, at a very competitive price, to provide the capability of
cerebral control for at least a limited set of interactions.

Our experience so far shows that with those simple BCI de-
vices, interaction is kept within tight bounds due to the lim-
its of this communication channel: A merely small character
set is available at a low frequency, which leads to a severely
limited data rate. Applications based on low-cost BCIs thus

have to deal with these limitations and to adapt their graph-
ical user interfaces (GUIs). These need to optimise the num-
ber of user interactions necessary to trigger an intended ap-
plication function. Thus, highly application-specific GUIs
need to be implemented, and various approaches have been
developed that are aimed at grouping functions smartly.

With the vision of Ubiquitous Computing coming true, de-
vice become more and more invisible to the user, and hence
cause the need for novel user interfaces. One specific ap-
plication field in this context is that of smart environments

[7]. These build complex sets of heterogenous devices, partly
fixed to the environment and partly brought-in by the user.
Thus, applications in smart environments need to base on
such a dynamic ensemble of devices which are possibly un-
known in advance. Developing user interfaces which provide
control options for lots of devices with lots of different func-
tions would be a tough task by itself. In addition with the
dynamics of the underlying device ensemble it quickly seems
to be insolvable.

One approach to provide a user interface for a dynamic de-
vice ensemble would be the synthesis of a dynamic GUI from
formal device descriptions. Various approaches, for example
built upon UPnP [4] or Jini [1], make it possible to gener-
ate GUIs, even for the control of a dynamic device ensemble.
Unfortunately, users’ experience shows difficulties with these
approaches.

Our approach presented in this work relies on the following
working hypothesis: What users of a smart environment are
interested in is not the individual device, but their effect
on the environment. One simple example: When a user
switches a lamp on, he actually just wants to increase the
lightness of the room. In this way, all the lamps of this room
are able to increase the lightness and would therefore be
redundant with respect to their effects on the environment.

With this article, we describe first experiments to control a
smart environment using the neural impulse actuator (NIA),
a low-cost brain non-invasive computer interface. We use
semantic models of the environment and the devices. We
model the devices with respect to their specific influence
onto the environment. We present a principle approach for
the synthesis of graphical user interfaces in order to reduce
the number of necessary interactions.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

2. PRELIMINARIES
After presenting the neural impulse actuator, we briefly dis-
cuss our lab used for the experiments. Furthermore, we give
a short introduction to STRIPS: A formalism to describe
preconditions and effects of operations.

2.1 The Neural Impulse Actuator
In 2007, OCZ Technology Group Inc. [5] introduced the
Neural Impulse Actuator (NIA): A simple BCI controller,
basically a headband, equipped with three electrodes cap-
turing electrical potentials from the forehead. Those poten-
tials include electromyogram (potentials arising from muscle
control), electroencephalogram (signals from the nerves in
the brain) and electrooculogram (signals coming up during
eye movement). A special controller is used to connect the
sensors to the computer. The NIA registers itself as a USB
human interface device, which basically permits it to act like
any other input device, e.g. a keyboard or mouse. Figure 1
shows a photo of the NIA controller.

After calibrating the NIA, it is supposed to be usable as a
virtual joystick and to switch events, which can be triggered
by different electric potentials or muscle movements. In our
experiments, we found the following actions easy and stable
to recognise:

• eye movement in general,
• heavy muscle movement on the forehead, or moving

the jaw,
• light muscle movement on the forehead,
• heavy thinking, and
• relaxing, or closing the eyes.

Here, we want to use the NIA to control our lab environ-
ment, even while working on other subjects. Hence, inputs
triggered by heavy thinking and relaxing are not suitable
signals for a smart environment controller. However, paral-
lel performance to compose more complex signals does not
seem to be helpful, as we want to provide an easy-to-use
interface. Therefore, we have at most three distinguishable
signals at hand: (i) eye movement, together with (ii) heavy
and (iii) light forehead muscle movement. To complicate
things further, users of the NIA can perform those signals
at a merely low frequency of about 10 per minute at most,
leading to a comparatively low data rate.

2.2 Our SmartLab
For our experiments we utilised our SmartLab: An instru-
mented meeting room (cf. fig. 2) equipped with a number
of remotely controllable devices. It is frequently used as a

Figure 1: The NIA

Figure 2: Our SmartLab.

room for lectures, presentations, and meetings, but also as
an experimental setup for user studies.

Our lab is equipped with a couple of sensors, needed to
observe state changes in the room. There are e.g. sen-
sors capable of detecting whether the windows are closed
or opened, measuring the current temperature, or detecting
persons that enter or leave the room, and estimating their
number and current positions [3].

On the other hand there is a number of remotely control-
lable devices required in typical meeting rooms: Dimmable
lamps as well as movable projection screens and sun shades,
controllable via EIB [2], a computer video and audio matrix
switcher to connect brought-in devices with the installed
projectors and audio equipment, just to mention the most
important. Those devices are actuators in essence, but can
also be seen as specific sensors, in each case providing access
to their respective status.

Our lab features a powerful middleware (as for instance de-
scribed in [6]) which on the one hand allows for control of
all existing hardware using simple commands. On the other,
besides triggering device actions, our middleware enables ev-
ery device to make its specific properties accessible to other
components in the system.

2.3 STRIPS
To describe the capabilities of devices and their possible ac-
tions, we suggest to use STRIPS-operators as illustrated in
[9]. Those operators formalise (i) preconditions that need to
hold to make the execution of the respective operation possi-
ble and (ii) effects that specify the world state changes pro-
voked by the execution of the respective operation. STRIPS-
operators have successfully been used in the context of smart
environments before [8].

Due to their associated declarative semantics, they are well
suited for an automatic interpretation and hence for the con-
struction of a controller. We annotate every operator with
the middleware command which needs to be executed to
perform the operation. Figure 3 shows two simple operators
describing how to switch a lamp l on and off.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

3. OUR APPROACH
As depicted above our user interface needs to cope with a dy-
namic ensemble of heterogenous devices, which is the reason
we do not have the option to hard-code a certain controller
for a fixed environment. Therefore, we need to consider ways
and means of synthesising a controller from an abstract de-
scription of the environment and the devices.

According to figure 4, we consider three different modelling
tiers: Top left in the sketch is the layer of the background

model. It specifies existing parameters of the environment
and how they can be modified. To provide an example we
have formalised two specific parameters and their respective
operations in figure 5: There exists some parameter that cor-
responds to the lightness of our room, and it can be modified
by two operations named increase and decrease. The param-
eter temperature is handled likewise. This explicit kind of
formal specification of environmental parameters is needed
later on to describe the effects on the environment caused
by triggering device actions.

As illustrated in section 2.2 all of our devices are made ac-
cessible through our middleware, that way providing on the
one hand the entire set of current properties to other com-
ponents and on the other an easy-to-use interface for trig-
gering device actions. In figure 4 this device representation
layer is called device model and establishes a certain level
of abstraction from the plain hardware, where every device
can exist without requiring local knowledge on the existence
of other devices, the middleware or even the environment.
Besides properties and actions this layer holds additional in-
formation on the device such as the device type, its name,
or whether the device is currently available in the system.

The third modelling tier, the effect model, now etablishes
the relation between the raw device descriptions from the
device model and the environmental parameters from the
background model. This is done by modelling device ac-
tions with respect to their effect on the environment. Every
action is annotated with a formal description of the influence
of its execution on the specified environmental parameters.
As depicted in figure 3 for instance the execution of the
turnOn method of a lamp has an effect on the environmen-
tal parameter lightness in the form that the latter would
be increased. We suggest to use STRIPS as modelling for-
malism to describe the semantic meaning of actions to the
environment.

Action(switchOn(l,r))
Precond: Lamp(l) ∧ Room(r) ∧ In(r,l) ∧ Off(l)
Effect: ¬Off(l) ∧ On(l) ∧ Lightness.increase(r)
Command: l.turnOn()

Action(switchOff(l,r))
Precond: Lamp(l) ∧ Room(r) ∧ In(r,l) ∧ On(l)
Effect: ¬On(l) ∧ Off(l) ∧ Lightness.decrease(r)
Command: l.turnOff()

Figure 3: An annotated STRIPS-operator describ-

ing the switchOn and switchOff actions for a lamp.

Every operator contains preconditions and effects of

the action, and the command to be executed to per-

form the action.

Views

Middleware

Background Model

Effect Model

Device
Model

Device
Model

Device
Model

Device
Model

Devices

Controller

GUI GUI GUI

Semantic

Models

Actions

Figure 4: Integration outline of the proposed con-

troller within the smart environment system.

The information aggregation mechanisms of our middleware
enable applications to gather these effect models analogously
to the previously mentioned properties as well as type and
status information of devices. Therefore a GUI application
– called controller in figure 4 – is now able to provide itself
with a list of all devices together with their descriptions,
i.e. the type (lamp, sun shades, ...) of the device and all
its available actions, including their particular preconditions
and effects. After collecting the operators, it can generate
diverse GUIs views. Below we present some first experimen-
tal views that shall demonstrate the descriptive power of our
proposed approach.

As mentioned above, there are basically three different ac-
tions (keystrokes) a human can reliably perform. Based on
the formal description of our devices we implemented lab
controllers tailored for a limited communication between hu-
man and computer to evaluate our approach. We designed
them following the Mac Finder’s Column View. Two keys
are used to move the focus up and down a list, the third to
select the item.

Our very first prototype contained three columns, of which
the first contained a list of device types, the second all avail-
able devices of the type selected in the first column, and the
third all the applicable functions of the device in the second
column. This prototype does not involve any environmental
knowledge yet. Due to its three-button-based design, this
controller interface would enable users who have to rely on
a NIA to take control of a complex and dynamic set of het-
erogeneous devices once these have been seen by the system
through the middleware. But without further tweaking and
tuning – which we elaborate on in section 4 – the menus
would be very large if they contain every possible action for
every possible device.

Parameter(Room, Lightness)
Operation(Lightness, increase)
Operation(Lightness, decrease)

Parameter(Room, Temperature)
Operation(Temperature, increase)
Operation(Temperature, decrease)

Figure 5: Background knowledge: Two environmen-

tal parameters and their respective operations.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Figure 6: A user interface synthesised by our second

controller prototype.

Our second prototype now extracts advantages from our for-
malisation: As an alternative to a static arrangement based
on the device type, we can group our devices with respect
to their effects on the environment, as we did in our second
controller, which is shown in figure 6. Here, the first column
has been replaced by a column containing controllable pa-
rameters as for example the lightness, or the temperature.
Then, all those devices are listed in the second column which
can actually influence the selected parameter. Finally, the
third column would again contain performable actions.

But our formalisation of effects has further advantages: The
previously depicted controller still displays all the devices
even if they have similar influence on the environment. This
leads to a long list of devices with each of them still provid-
ing every possible action. But, with respect to their effects
they are kind of redundant and if we assume that a user is
not interested in the device and its particular action itself
but is interested in its effect, we can omit all these informa-
tion and simply provide control options of an environment.
For this purpose, we can simply use our existing model of
environmental parameters. Our third controller prototype
working this way is depicted in figure 7. In the first column
it displays the environmental parameters of the background
model, which can then be adjusted by selecting one of the
items in the second column.

Within our research project MAike, all devices send their
descriptions to a central look-up, realised as a tuple space
[6]. Furthermore, the NIA controller integrates itself as a
new modality for user interaction among other existing ones
(speech interaction, intention analysis, ...). So far, we inte-
grated four different device types, with at most eight devices
and five actions, and initial experiments showed that those
devices are easily controllable using this simple controller
together with the NIA.

Figure 7: Another user interface synthesised by our

third controller prototype.

4. CONCLUSIONS AND DISCUSSION
Our investigations leave us with mixed feelings. On the one
hand, it is indeed possible to evoke a limited set of actions
using the NIA controller. On the other hand, the concen-
tration required from the user (and, indeed, the level of self
control regarding the facial expression), in our opinion leaves
ample room for optimisation of both signal acquisition at the
sensory level and signal processing at the algorithmic level.

While developing the controller, we could reliably distin-
guish three different inputs only. Of course the NIA itself
provides a richer interface in form of analogue joysticks, but
we found that those are hard to control while concentrating
on other tasks and they cannot be distinguished as reliable
as needed to control the environment. Nonetheless, a better
recognition of crisp events would be desirable for the future.

With this work we present a mechanism that deals with the
issue of operating a complex and dynamic system through
such restricted channels. If we had to deal with an environ-
ment that would be static and consist of a fixed number of
well-known devices, we would be able to build a controller
being perfect in terms of the number of interactions. Be-
cause we need an automatically synthesised controller, our
approach uses STRIPS operators to apply semantic knowl-
edge of the system’s devices and their possible actions aim-
ing at design (and synthesis) of adequate user interfaces.

In the simple approaches presented above, the menus would
still grow very large with every new device entering the scene
if the menus still contain every possible action for every pos-
sible device. Therefore, it is desirable to show the user not
the whole menu. Instead, we should offer more abstract ac-
tions. Furthermore, we would like those abstract actions to
be context dependent and automatically generated.

The focus of this work was not to develop the perfect-working
graphical user interface for controlling tasks using the NIA
controller. Our goal was to investigate several approaches to
reduce the number of interactions a user has to perform to
have a function executed. Therefore, the synthesised GUIs
will never be the best ones one would find through manual
design. This work considers ways and means of involving
formal descriptions of environmental knowledge into auto-
matic GUI development. We have not yet evaluated which
are best suited for the present application case and different
approaches from the ones depicted in this work are imagin-
able.

As mentioned above, the menu structure used in our pro-
totype, does probably not allow to control larger environ-
ments. In the following section 5, we have discussed a num-
ber of methods to create more suitable menus and higher
level actions. Those have to be implemented and tested
with respect to their usability.

Nevertheless, our solution seems to be a principle approach
for the synthesis of graphical user interfaces in general, which
could bring a significant benefit not only for motorically
challenged users, or those who require hands-free interac-
tion in situations, where speech control is not an option.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

5. A ROADMAP FOR THE FUTURE
The controller described above is applicable for small well-
defined scenarios, but certainly not to control a complex
infrastructure with hundreds of device-actions. This is due
to the realised menu-based interaction. Considering a usual
living room, it is not hard to think of many different de-
vices which should be controllable. Just think of all lamps,
shades, multi-media devices, etc. Therefore, alternatives are
currently under investigation. We try to learn user prefer-
ences online and group devices dynamically. For example,
we could group devices together as one virtual device if they
have been used in one go a couple of times. Another group-
ing approach could be a Huffman-like encoding which would
put the more important devices above others in the list.

As mentioned above lots of user evaluation needs to be done
in order to find more intuitive user interface design methods
that make use of formal descriptions of the effects caused by
device actions on the environment and of the environment it-
self. One approach could be another control metaphor which
is especially designed for brain computer interfaces: A rect-
angle that periodically rolls over a list of items on the screen
and each time marks the currently covered item. The user
now simply thinks of the particular item he wants to choose
and a signal from the brain indicates the moment when the
bar covers this item. This selection mechanism can not only
be utilised with lists of items, but also like shown in figure 8:
First a horizontal bar goes the up-down direction and stops
when the height of the selected item is reached. Second,
the vertical bar starts moving and is used to indicate the
particular device in this line.

The area of automatic intention analysis, that is the detec-
tion of the user’s goals based on his current activities, opens
further possibilities. Given the user’s current goals, we could
automatically re-arrange the menus to provide faster access
to device which are most likely to be used in the current sit-
uation. Going one step further, high-level actions could also
be added to the controller. A room detecting the start of
a lecture could offer the compound action like “put my pre-
sentation on the projector”, which consists of several smaller
actions. For this purpose some additional strategy synthesis

component would be needed.

We have not yet fully covered the possibility of the existence
of multiple environments, containing different devices, but
controllable through the same user interface. This could be
the case in a smart home consisting of several smart rooms,
where users possibly would like to have functions performed
in other rooms remotely or trigger actions in different rooms
simultanously. One straightforward approach would be an
additional column inserted before the first one, that specifies
the particular room. After this column would be the ones
depicted in the previous sections.

So far we have been relying on the feedback on an existing
computer screen. This is possible for users that can carry
a small display with them. E.g., for people depending on a
wheel chair, this monitor can be integrated into it. Alter-
natives should be investigated, e.g. sounds or small displays
right next to the devices which are controllable. This would
enable the user to move freely around in the environment
without watching a computer screen for every action.

Figure 8: The user interface of a potential controller.

Acknowledgements
Gernot Ruscher’s work in the MAike project as well as
Frank Krüger’s work in the MAxima project are both sup-
ported by Wirtschaftsministerium M-V at expense of EFRE

and ESF.

6. REFERENCES
[1] http://www.jini.org, OCT 2009.

[2] http://www.knx.org/, OCT 2009.

[3] http://www.ubisense.de, JUN 2009.

[4] http://www.upnp.org/, DEC 2010.

[5] OCZ Technology Group, Inc. Retrieved from
http://www.ocztechnology.com, November 2010.

[6] S. Bader, G. Ruscher, and T. Kirste. A middleware for
rapid prototyping smart environments. In Proceedings

of the 12th ACM international conference adjunct

papers on Ubiquitous computing, pages 355–356,
Copenhagen, Denmark, SEP 2010. ACM.

[7] D. Cook and S. Das. Smart Environments. Wiley,
2005.

[8] C. Reisse and T. Kirste. A distributed action selection
mechanism for device cooperation in smart
environments. In Proceedings of the 4th International

Conference on Intelligent Environments, Seattle, USA,
2008.

[9] S. Russell and P. Norvig. Artificial Intelligence: A

Modern Approach. Prentice-Hall, 2nd edition edition,
2003.

[10] J. Vidal. Toward direct brain–computer
communication. In Annual Review of Biophysics and

Bioengineering, pages 157–180, 2 1972.

Copyright is held by the author/owner(s)

SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Automated Ontology Evolution as a Basis for Adaptive
Interactive Systems

Elmar P. Wach
STI Innsbruck, University of Innsbruck/
Elmar/P/Wach eCommerce Consulting
Technikerstraße 21a, 6020 Innsbruck,
Austria/ Hummelsbüttler Hauptstraße

43, 22339 Hamburg, Germany
+49 172 713 6928

elmar.wach@sti2.at/
wach@elmarpwach.com

ABSTRACT

The research presented in this paper aims at realising an

automated ontology evolution process based on feedback without

a human inspection. For that, a generic adaptation strategy

consisting of a feedback transformation strategy and an ontology

evolution strategy is formulated. It decides when and how to

evolve by evaluating the impact of the evolution in the precedent

feedback cycle. These strategies are implemented in a feedback

transformer component and an adaptation manager component

respectively, constituting a new adaptation layer. The adaptive

ontology is evaluated with an experiment and validated with a

real-world conversational content-based e-commerce

recommender system as use case.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory – graph

algorithms, graph labeling. H.3.3 [Information Storage and

Retrieval]: Information Search and Retrieval – relevance

feedback. H.3.5 [Information Storage and Retrieval]: Online

Information Services – commercial services, web-based services.

I.2.4 [Artificial Intelligence]: Knowledge Representation

Formalisms and Methods – representations (procedural and rule-

based), semantic networks. I.2.6 [Artificial Intelligence]:

Learning – concept learning, knowledge acquisition. K.4.3

[Computers and Society]: Organizational Impacts – automation

General Terms

Algorithms, Management, Measurement, Design,

Experimentation, Standardization, Languages.

Keywords

Ontology Evolution, Ontology Versioning, Recommender

Systems, Self-Adapting Information Systems, Algorithms.

1. INTRODUCTION
Today, the user in the Internet gets overflowed with information

and products that she should purchase. Not only becomes it

difficult for her to take the right buying decision, but also don’t

match many search results her needs. Hence, recommender

systems in e-commerce applications have become business

relevant in filtering the vast information available in the Internet

(and e-shops) to present useful search results and product

recommendations to the user.

As the range of products and customer needs and preferences

change – and they will change even more frequently – it is

necessary to adapt the recommendation process. Doing that

manually is inefficient and usually very expensive.

Therefore, this research proposes an automated adaptation of the

recommendation process by utilising semantic technology and

processing user feedback.

The shortcomings of a manual adaptation of the recommendation

process based on user feedback are aimed to be solved with a

system based on product domain ontologies (PDO) modelling the

products offered in the e-commerce application and automatically

evolving with processing user feedback. As the PDO describes the

products formally, it offers a higher computability than

conventional product descriptions and, hence, facilitates

automated processing of information.

In order to get the system user-driven, user feedback is gathered

by unobtrusively monitoring user needs. The more information is

available from a user, the better the adaptation to her needs can

be. Hence, implicit and explicit feedbacks provided via feedback

channels are evaluated. Implicit feedback is given by the user as a

side-effect of her usage behaviour, e.g. by clicking on the product

recommended. Explicit feedback could be provided by answering

questions about her satisfaction with the application. As this effort

cannot be expected from a user, an alternative is to extract

feedback from the Web that could also deliver new information

and aspects about the products offered. In order to focus this

research on developing an automated ontology evolution, the

feedback is assumed to be given.

On a more abstract level, this research aims at realising an

automated ontology evolution process based on feedback without

a human inspection.

Topics of the SEMAIS 2011 workshop related to this research:

Copyright is held by the author.

SEMAIS’11, February 13, 2011, Palo Alto, CA, USA

• What are the major technical challenges for developing or

generating user interfaces based on semantic models?

This paper aims to answer the above question with a generic

approach.

• For which kind of systems or applications are semantic models

particularly useful?

The use case in this paper is a recommender; for which other

systems or applications can it be useful?

• Additional question: Which ontological information and its

changes (properties, etc.) are requested by adaptive interactive

systems?

2. RELATED WORK
Previous approaches to the topic of this research can be found in

concepts for ontology evolution like formulated frameworks for

ontology evolution, e.g. [6], [7], [8], [14], [16], [18]. Due to the

specific challenges of the present research like the automated

ontology evolution process, none of the identified frameworks can

be completely used as basis, e.g. all of the frameworks include a

step for the human inspection of the ontology changes before they

are executed. The closest work to the research in this paper is [16]

– in the six phase evolution process, two steps include manual

activities, namely (i) “Implementation” in which the implications

of an ontology change are presented to the user and have to be

approved by her before execution, and (ii) “Validation” in which

performed changes can get manually validated. The research in

this paper proposes an extension of [16] towards an automated

ontology evolution by developing a generic adaptation strategy

and further introducing a complete feedback cycle based on the

ontology usage that eliminates the implementation and validation

steps of above – an ontology change needs those manual steps no

longer, as an insufficient change would be alerted by a negative

feedback and get corrected automatically.

The approaches to the identified recommender systems [1], [2],

[4], [11], [12], [13] research the impact on the recommendation

result by using the different recommender types (i.e. content-

based filtering, collaborative filtering, hybrid approaches) and

mostly utilising domain and user ontologies, whereas the feedback

gets processed in the latter one. None of them combines an e-

commerce domain ontology with the processing of implicit and

explicit user feedbacks.

3. ADAPTATION STRATEGY
For realising an automated ontology evolution, a generic

adaptation strategy consisting of a feedback transformation

strategy and an ontology evolution strategy is formulated. It

decides when and how to evolve by evaluating the impact of the

evolution in the precedent feedback cycle. The first question

defines the (temporal and causal) trigger initiating the ontology

change. Basically, this is receiving and transforming the feedback

into ontology input and will be addressed with a feedback

transformation strategy (confer chapter 3.1).

The second question defines the changing of the ontology

including instance data. This is denoted by ontology evolution

referring to the activity of facilitating the modification of an

ontology by preserving its consistency [19]. This will be

addressed with an ontology evolution strategy (confer chapter 3.2)

considering also how identified conflicts can be solved, e.g. when

moving a sub-concept.

By following the principles of adaptive systems [3], the

adaptation strategy is implemented in a new adaptation layer

consisting of components in which the user feedback gets

transformed (i.e. Feedback Transformer) and the respective

actions are decided and initiated (i.e. Adaptation Manager).

3.1 Feedback Transformation Strategy
In order to automatically process feedback, i.e. transforming it

into ontology input, an adequate feedback transformation strategy

has to be formulated and implemented. It has to allow for different

feedback channels as well as different kinds of feedback. This

strategy is implemented in the feedback transformer component

depicted in figure 1. In the Feedback Transformer the ontology

affected by the feedback reported is identified, the feedback is

analysed and transformed, and eventually get related to the

precedent feedback.

Figure 1. Conceptual architecture of the feedback transformer

component

Basically, the strategy comprises the following steps:

1. Gather feedback from the different channels

2. Transform different feedback types

1. Report transformed feedback to the next component

Ad 1. Each feedback channel provides user feedback as RDF

triples at separate SPARQL endpoints. The RDF triples are

retrieved by the Feedback Transformer and captured in a semantic

feedback log as instances of the feedback ontology (confer next

paragraph).

Ad 2. The feedback ontology is a prerequisite for the meaningful

analysis of the feedback [17]. In the present research, it models

the feedback at the product level and additionally contains all

product names of the product ontologies. The structure of the

feedback ontology enables reasoning about a product and its

ratings including the historical development as well as identifying

properties and relations to be newly added to the product

ontology. Accordingly, we distinguish between the three feedback

types “KPI1 trend”, “product rating”, and “new property”. The

root concept is “Feedback”. Its hierarchy consists of the sub-

concepts “KPI trend”, “product rating”, and “new property”.

Appropriate relations like “previousRating” model the history of

the ratings.

1 Key Performance Indicator, measured in the application layer

The first two feedback types are converted by either a simple

transformation or a feedback evaluation algorithm to values in the

range [+1…-1] relating the current transformed feedback to the

one in the precedent cycle.

For the feedback type “product rating” the RDF feedback includes

the product name and rating but no new potential property. The

feedback is transformed with a feedback evaluation algorithm. In

the first step, the impact of the ontology evolution on the KPI

(e.g. conversion rate and click-out rate) is calculated for each

product and feedback channel. In the next step, all feedback

channels are aggregated at the product level. Finally, a trend

metric is calculated relating the current transformed feedback to

the one in the precedent cycle.

For the feedback type “new property” the RDF feedback includes

the product name and a new potential property to be eventually

added to the product ontology, e.g. information like aspects or

relevant features of a product. This feedback type is not covered

by the feedback evaluation algorithm. A new sub-property for the

aspect/ feature is created in the feedback ontology and its count

gets related to the count of all properties in the respective PDO.

When reaching a defined threshold, the new property is added to

the respective PDO.

The semantic feedback log captures the exact sequence of the

reported feedbacks. Each feedback is associated with the

respective product (i.e. the RDF feedback contains the

corresponding product name) and represented as instances of the

sub-concepts of “Feedback”. These instances contain the product

name, feedback channel, date and time of the feedback, rating,

and the certainty of the rating as well as the number of properties

contained in the product ontology. The log allows the analysis of

the feedback development.

Ad 3. After having transformed the different feedback types, the

calculated metrics relating the current feedback to the feedback in

the precedent cycle are reported to the next component, i.e. the

Adaptation Manager.

3.2 Ontology Evolution Strategy
The ontology evolution strategy defines how the PDO change. It

associates the transformed feedback values to evolution actions

and ensures a consistent new version of a PDO. This strategy is

implemented in the adaptation manager component depicted in

figure 2. In the Adaptation Manager the structure of the respective

ontology get dynamically analysed with SPARQL SELECT

statements and the ontology changes (e.g. switching individuals,

switching annotation property labels and comments, changing

annotation property priorities, adding new properties) are

executed with SPARQL CONSTRUCT rules according to

predefined evolution strategies.

Figure 2. Conceptual architecture of the adaptation manager

component

Basically, the strategy comprises the following steps:

4. Gather feedback trends

5. Associate ontology changes with evolution strategies

6. Ensure a consistent ontology evolution

Ad 4. In each feedback cycle the transformed feedback gets

reported to the Adaptation Manager. The feedback is based on the

product level. Each reported feedback is captured in a trend log at

the product level.

Ad 5. The central task of the ontology evolution strategy and the

Adaptation Manager is to choose the right evolution, i.e. ontology

changes, for the transformed feedback.

[9] introduced a meta-ontology for the ontology evolution

enabling representation, analysis, realisation, and sharing of

ontological changes. Each possible change is represented as a

concept in that evolution ontology having an evolution log as

instance capturing the changes. A central element in the

framework of [7] are a change log and an ontology of change

operations for OWL describing basic ontology change operations2

and complex change operations composed of multiple basic

operations. This research aims at utilising the ontology of change

operations sketched above.

Derived from user scenarios, evolution strategies are defined

reflecting different behaviours and associating ontology changes,

namely:

• Risky Evolution (“always evolve differently”): Regardless of

the feedback trend between two consecutive feedback cycles,

other complex ontology change operations are executed

• Progressive Evolution (“learn from the past”): Depending on

the leap of the trend, same or different complex ontology

change operations are executed; in case of a negative trend, it

is optional to either do a different complex ontology change

operation or a rollback; additionally, with a threshold

indicating the increase of the trend between the current and

the precedent cycle the “risk” of the evolution can be

adjusted and the strategy tuned towards the Risky Evolution

(with a higher threshold)

• Safe Evolution (“only revert negative trends”): In case of a

negative trend, a rollback is executed

2 Basic ontology change operations modify only one specific

feature of an OWL ontology

• Rollback (“undo the ontology changes”): Reverts the

ontology changes from the precedent feedback cycle and is

based on any reason or decision of the manager; it is

executed only once but can be manually chosen multiple

times

Ad 6. After having chosen the ontology change operations to be

executed, the ontology has to evolve depending on rules and by

retaining its consistency to finally provide its knowledge to the

application layer.

The existing research about ontology evolution is based on the

work about data schema evolution but focuses on the specific

needs of ontologies, e.g. [10], [15], [16].

To execute ontology changes, an ontology evolution algorithm

has to be formulated. The following prerequisites have to be

respected:

• The basic and complex ontology change operations have to

be defined formally

• It has to be defined when an ontology is inconsistent, i.e. an

ontology consistency model has to be formulated; the

preconditions and postconditions of the change operations

have to be checked before execution

• The options for a consistent ontology evolution have to be

identified and the “best” evolution path chosen; in the

present research the belief revision principle of minimal

change will be followed [8]; eventually, the ontology

evolution algorithm can be formulated

When evolving the ontology, it has to be clear how the ontology

has been evolved over time, i.e. the different ontology evolutions

have to be versioned. In the context of this research this is of

paramount importance, for (i) the ontology changes in the current

feedback cycle are derived from the changes in the precedent

cycle and (ii) an undoing of the changes in the precedent feedback

cycle, i.e. a rollback, has to be realisable.

The preferred concept of ontology versioning is change-based

versioning (i.e. each state gets its own version number and

additionally stores information about the changes made), because

it facilitates change detection, integration, conflict management

[9], and it allows the interpretation how ontology changes

influence the KPI. A change-based versioning can be best realised

by tracking the ontology changes in a semantic log [9].

The change ontology models the applicable changes and meta-

information and provides the semantics of all possible ontology

changes. The root concept is “Change”. Its hierarchy consists of

the sub-concepts “complex ontology change operations” and

“basic ontology change operations”. Appropriate relations like

“previousChange” model the history of the ontology changes and

construct the sequence of the required changes. The structure of

the change ontology enables reasoning about changes including

their historical development.

The semantic change log captures the exact sequence of the

ontology changes executed. Each change is represented as

instances of the sub-concepts of “Change”. The log allows the

analysis of the change development including realising a rollback.

The whole adaptation strategy and its implementation via the

components Feedback Transformer and Adaptation Manager

allow eliminating both manual steps in the six phase evolution

process of [16]:

• Phase “Implementation” (ontology changes are manually

approved before execution): Nobody has to do that, as the

ontology evolution is seen as a complete feedback cycle – an

insufficient ontology change is indicated by decreased KPI

and gets revised according to the evolution strategy chosen

• Phase “Validation” (performed changes can get manually

validated): As the ontology changes are predefined, only

valid changes are executed, and nobody has to validate them

4. EVALUATION AND VALIDATION
The automatically evolved ontology is going to be compared with

a manually evolved one by setting up and evaluating an

experiment with ontology experts. Those analyse the feedbacks

delivered and decide the ontology changes to be executed.

Eventually, the ontology resulted from this manual evolution is

compared with the automatically evolved one regarding the

evaluation criteria consistency, completeness, conciseness,

expandability, and sensitiveness [5].

The validation of this research is done with a use case by utilising

a real-world conversational content-based e-commerce

recommender system and two feedback channels – the Web

application and information extracted from Linked Open Data. As

the recommender is already used in live e-commerce applications,

the evaluation of the system adaptations is a real-world scenario.

The recommender is based on PDO that semantically describe the

products offered in e-commerce applications according to the

GoodRelations ontology.3

The success of such a system is usually defined by analysing KPI

like the achieved conversion rate (i.e. customers-to-recommender

users ratio) or click-out rate (i.e. clicks-to-recommendations

ratio).

The evaluation scenario is to test and evaluate the impact of the

ontology evolution by utilising the formulated evolution

strategies, i.e. Risky Evolution, Progressive Evolution, and Safe

Evolution.

The impact of the ontology evolution will be analysed and

evaluated with regard to the respective KPI at the application

level after each to be defined number of accomplished

recommendation processes and reported to the ontology.

According to the respective results and feedbacks reported, the

ontology evolves. The ontological knowledge is provided to the

application layer, and eventually adapted recommendations are

presented to the customer. The feedback circle of the automated

system concludes with re-evaluating the KPI after having again

reached the defined number of recommendation processes.

The intended results are a highly adaptive system and eventually

better recommendations given to the user leading to an increase of

the defined KPI. The expected business impacts are a higher

3 www.purl.org/goodrelations

customer satisfaction and loyalty and eventually increased

revenue for the provider of the application.

This evaluation procedure will be executed for all three evolution

strategies and evaluated analogously.

An interesting result of the evaluation scenario would be that one

of the three evolution strategies leads to a higher increase of the

KPI.

In case a predominant evolution strategy is identified, it can be

interpreted that the historic development of changing the ontology

(i.e. doing the same change again versus doing a different change)

has a significant influence on the customer satisfaction. Though,

this can in the case of same changes only be valid within a

realisable frame, e.g. it is not possible to move up a sub-concept

in the concept hierarchy infinitely times.

5. CONCLUSION
The need for automatically updating and evolving ontologies is

urging in today’s usage scenarios. The present research tackles an

automated process for the first time (to the best knowledge of the

author). The reason for that can be found in the ontology

definition “formal, explicit specification of a shared

conceptualisation”. “Shared” means the knowledge contained in

an ontology is consensual, i.e. it has been accepted by a group of

people. Entailed from that, one can argue that by processing

feedback in an ontology and evolving it, it is no longer a shared

conceptualisation but an application-specific data model. On the

other hand, it is still shared by the group of people who are using

the application. It may even be argued that the ontology has been

optimised for the usage of that group (in a specific context or

application) and, hence, is a new way of interpreting ontologies:

They can also be a specifically tailored and usage-based

knowledge representation derived from an initial ontology – an

ontology view, preserving most of the advantages like the support

of automatically processing information. Thus, this changed way

of conceiving ontologies could facilitate the adoption and spread

of using this powerful representation mechanism in the real world,

as it is easier to accomplish consensus within a smaller group of

people than a larger one.

6. ACKNOWLEDGMENTS
The research presented in this paper is funded by the Austrian

Research Promotion Agency (FFG) and the Federal Ministry of

Transport, Innovation, and Technology (BMVIT) under the FIT-

IT “Semantic Systems” program (contract number 825061).

7. REFERENCES
[1] Aktas, M. S., Pierce M., Fox, G. C., Leake D. 2004. A Web

based conversational case-based recommender system for

ontology aided metadata discovery, Proceedings 5th IEEE/

ACM International Workshop on Grid Computing, pp. 69-

75.

[2] Blanco, Y. et al. 2005. AVATAR: An approach based on

semantic reasoning to recommend personalized TV

programs, Proceedings 14th International conference on

World Wide Web, pp. 1078-1079.

[3] Broy, M. et al. 2009. Formalizing the notion of adaptive

system behavior, Proceedings of the 2009 ACM Symposium

on Applied Computing (SAC ’09), pp. 1029-1033.

[4] Drachsler, H. et al. 2008. Effects of the ISIS recommender

system for navigation support in self-organised learning

networks, Proceedings of Special Track on Technology

Support for Self-Organised Learners, pp. 106-124.

[5] Gómez-Pérez, A. 2001. Evaluation of ontologies,

International Journal of Intelligent Systems, Volume 16, pp.

391-409.

[6] Haase, P. et al. 2005. A framework for handling

inconsistency in changing ontologies, Proceedings of the

2005 International Semantic Web Conference (ISWC05), pp.

353-367.

[7] Klein, M. and Noy N. F. 2003. A component-based

framework for ontology evolution, Proceedings of the IJCAI-

03 Workshop on Ontologies and Distributed Systems.

[8] Konstantinidis, G. et al. 2007. Ontology evolution: A

framework and its application to RDF, Proceedings of the

Joint ODBIS & SWDB Workshop on Semantic Web,

Ontologies, Databases.

[9] Mädche, A. et al. 2002. Managing multiple ontologies and

ontology evolution in Ontologging, Proceedings of the IFIP

17th World Computer Congress – TC12 Stream on Intelligent

Information Processing, pp. 51-63.

[10] Mädche, A. et al. 2003. Managing multiple and distributed

Ontologies on the Semantic Web, The VLDB Journal – The

International Journal on Very Large Data Bases, Volume

12, Issue 4, pp. 286-302.

[11] Maidel, V., Shoval, P., Shapira, B., Taieb-Maimon, M. 2008.

Evaluation of an ontology-content based filtering method for

a personalized newspaper, Proceedings of the 2008 ACM

conference on Recommender systems, pp. 91-98.

[12] Middleton, S. E., De Roure, D. C., Shadbolt, N. R. 2001.

Capturing knowledge of user preferences: Ontologies in

recommender systems, Proceedings 1st international

conference on Knowledge capture, pp. 100-107.

[13] Middleton, S. E., Shadbolt, N. R., De Roure D. C. 2003.

Capturing interest through inference and visualization:

Ontological user profiling in recommender systems,

Proceedings 2nd international conference on Knowledge

capture, pp. 62-69.

[14] Noy, N. F. et al. 2006. A framework for ontology evolution

in collaborative environments, Proceedings of the 2005

International Semantic Web Conference (ISWC05), pp. 544-

558.

[15] Plessers, P. 2006. An approach to Web-based ontology

evolution, Ph.D. Thesis, Department of Computer Science,

Vrije Universiteit Brussel.

[16] Stojanovic, L. et al. 2002. User-driven ontology evolution

management, Proceedings of the 13th International

Conference on Knowledge Engineering and Knowledge

Management (EKAW ’02), pp. 285-300.

[17] Stojanovic, N. and Stojanovic, L. 2002. Usage-oriented

evolution of ontology-based knowledge management

systems, LNCS 2519, pp. 1186-1204.

[18] Stojanovic, N. et al. 2003. The OntoManager – a system for

the usage-based ontology management, LNCS 2888, pp.

858-875.

[19] Suárez-Figueroa, M. C. and Gómez-Pérez, A. 2008. Towards

a glossary of activities in the ontology engineering field,

Proceedings of the Sixth International Conference on

Language Resources and Evaluation (LREC ’08).

	front
	title
	paper1
	paper2
	Introduction
	Background and Related Work
	From Ontologies to Interaction Models
	Overall Transformation Approach
	From Ontologies to Discourse Models
	From Ontology to Domain-of-Discourse Model

	Conclusion
	REFERENCES

	paper3
	paper4
	paper5
	paper6
	paper7
	paper8
	paper9
	paper10
	paper11
	paper12

	paper1
	paper2
	Introduction
	Background and Related Work
	From Ontologies to Interaction Models
	Overall Transformation Approach
	From Ontologies to Discourse Models
	From Ontology to Domain-of-Discourse Model

	Conclusion
	REFERENCES

	paper3
	paper4
	paper5
	paper6
	paper7
	paper8
	paper9
	paper10
	paper11
	paper12

