
Semantic MPEG
Query Format
Validation and
Processing

Mario Döller and Armelle Natacha Ndjafa Yakou
University of Passau, Germany

Ruben Tous and Jaime Delgado
Polytechnic University of Catalonia

Matthias Gruhne
Fraunhofer Institute for Digital Media Technology

Miran Choi
Electronics and Telecommunications

Research Institute, South Korea

Tae-Beom Lim
Korea Electronics Technology Institute

T
he retrieval of multimedia content

has experienced a tremendous

boost in the research and industry

sectors during the last couple of

years. Due to the intensive work in this area,

an unmanageable diversity of approaches and

retrieval systems in the image,1 video,2 and

audio3 domains has emerged. In addition, com-

puter scientists and industry professionals have

fostered major developments in the area of multi-

media databases.4�6 While this diversity serves

to stimulate the development of new technolo-

gies, it also prevents clients from relying on a

universal, interoperable search-and-retrieval

system. In this context, the MPEG standardiza-

tion committee (ISO/IEC JTC1/SC29/WG11)

has developed a new standard, the MPEG

Query Format (ISO/IEC 15938-12, MPQF),

which provides a standardized interface to

multimedia document repositories, including

multimedia databases, documental databases,

digital libraries, and geographical information

systems.7

Currently, the working groups are imple-

menting the MPQF reference software, which

consists of three different software modules,

the MPQF validator, parser, and basic inter-

preter.8 The MPQF validator first checks the

XML form and validity of an MPQF input/

output query according to the rules of XML

1.1 and the MPQF XML schema. Secondly,

the validator checks if the input or output

query is semantically compliant with the

rules, described in the MPQF standard, that

cannot be enforced by the XML schema.

After successful validation, the MPQF parser

translates the XML-based query instance into

an internal representation of a Java object,

complete with methods for accessing and

modifying the different parts of the query.

Finally, the MPQF basic interpreter serves to

help understand the semantics of certain

parts of the language, focusing on basic condi-

tions and query types.

In this context, this article presents the def-

inition and implementation of a semantic

MPQF validator and a processing engine for

an MPEG-7 multimedia database. This article

also presents an implementation of selected

query types of MPQF within Oracle’s object-

relational database management system.

Format and engine

The MPQF is an XML-based multimedia

query language that defines the format of

queries and replies that can be exchanged

between clients and servers in a multi-

media search-and-retrieval environment. The

key parts of the MPQF define three main

components:

� The Input Query Format provides means for

describing query requests from a client to a

multimedia retrieval system (MMRS).

� The Output Query Format specifies a mes-

sage container for MMRS responses.

� The Query Management Tools provide

means for functionalities such as service dis-

covery, service aggregation, and service ca-

pability description (for example, which

query types or multimedia formats are

supported).

Multimedia Metadata and Semantic
Management

This article presents

a validation and

processing

architecture for the

MPEG Query Format,

which provides a

standardized

interface to

multimedia

document

repositories.

1070-986X/09/$26.00 �c 2009 IEEE Published by the IEEE Computer Society22

The term service refers to all MMRSs, including

single databases as well as service providers

administrating a set of MMRSs.

A query request can consist of three different

parts. The declaration part points to resources

(for example, an image file or its metadata de-

scription) that are reused within the query con-

dition or output description part. By using the

respective MMRS metadata description, the

output description part allows the definition

of the structure as well as the content of the

expected result set. Finally, the query condition

part denotes the search criteria by providing a

set of different query types (for example, Query-

ByMedia) and expressions (for example, Greater-

Than), which can be combined by Boolean

operators. To respond to MPQF query requests,

the Output Query Format provides the Result-

Item element and attributes signal paging and

expiration dates. A detailed description about

MPQF can be found elsewhere.7

Figure 1 presents the overall architecture of

our MPQF-based retrieval engine. The engine

receives MPQF queries, which are forwarded to

an internal parser that transforms the XML-

based MPQF types into a Java-based object tree

representation. The transformation triggers a

syntactic and semantic validation of the

query, and low-level features are extracted for

further processing. In the next step, the query

tree is optimized according to rules (based on

cost, selectivity, and other factors) to imple-

ment an efficient query-execution plan. This

part of the process is still a work in progress

and is therefore not considered here. Finally,

the query plan is executed by our query-

processing engine and the results are generated.

Query validation and rules

In general, the validity of an XML document

can be evaluated by a syntactic check of the un-

derlying XML schema. However, the MPQF

schema specifies a format for expressing query

requests to MPQF-aware retrieval systems. This

format contains several internal rules that

have to be considered to create a semantically

valid request. In this context, the following sec-

tions introduce obstacles a user is confronted

with in producing a valid query. Note that in

most examples (except as noted otherwise),

we use the MPEG-7 standard as the multimedia

metadata format.9

AnyDescription semantic

MPQF can be used in combination with any

XML-based multimedia metadata format. The

standard provides the AnyDescription element,

which allows the integration of XML-based

descriptions. The possibility of including any

MPQF query
processing In

de
xe

r

MPQF result
generation

MPQF optimizer

Text
retrieval

MPQF
algebra

Low-level-feature
extraction

Validation

XQuery
engine

....

Query by
example

MM raw
data

MM
metadata

data

MPEG Query Format
(MPQF) parser

Figure 1. Architecture

of MPEG Query

Format-based retrieval

engine.

O
cto

b
e
r�

D
e
ce

m
b

e
r

2
0
0
9

23

schema into query format messages introduces

a large amount of flexibility, but becomes more

complex in series validation. The following

code snippet is an AnyDescription example:

<QFDeclaration>

<Resource resourceID="DC_title"

xsi:type="DescriptionResourceType">

<AnyDescription xmlns:dc=

"http://purl.org/dc/elements/1.1/"

xsi:schemaLocation=

"http://purl.org/dc/elements/1.1/dc.xsd">

<dc:title>World Cup 2006</dc:title>

</AnyDescription>

</Resource>

</QFDeclaration>

As the code illustrates, the use of an Any-

Description instance requires the declaration

of the used metadata format (for example,

Dublin Core) and the information that ex-

presses the search criteria (for example, the

title should be ‘‘World Cup 2006’’).

Before validating semantic aspects of the

AnyDescription element, the schema itself

must be validated. Then the data to be searched

for must be checked to see whether it validates

according to the schema described in the Any-

Description field.

XPath semantic

XPath expressions are used to identify ele-

ments and attributes in the corresponding res-

ponder description in an input query or an

output query. The instance of the xPathType

must be compliant with the XML Path

Language (XPath) 2.0 specification (see http://

www.w3.org/TR/xpath20/). Furthermore, in-

stantiated types referring to XPath expressions

must be valid in terms of their base element.

The following snippet is an XPath example:

<QueryCondition>

<Condition xsi:type="Equal">

<DateTimeField typeName="CreationType">

/CreationCoordinates/Date/TimePoint

</DateTimeField>

...

</Condition>

</QueryCondition>

This code presents an XPath example inte-

grated in a comparison expression. Note that

the standard distinguishes between two differ-

ent versions: absolute and relative addressing.

If the typeName attribute is missing, then the

XPath is absolute, meaning that resolving

must start at the top-level element of the

service’s metadata schema. Otherwise, the

attribute symbolizes the starting type and the

XPath term points to an element relative to

the starting type.

Validating the XPath expressions begins if

they satisfy the rules of the World Wide Web

Consortium (W3C) XPath 2.0 specification.

Then, the content of the XPath expression is

tested to see whether the selected path can be

retrieved according to the schema.

GroupBy Semantic

Grouping of result sets is important even for

multimedia requests to support the aggregation

of description values (for example, file size).

The snippet below is a GroupBy example:

<OutputDescription maxItemCount="30"

maxPageEntries="10"

outputNameSpace="urn:mpeg:mpeg7:2004">

<ReqField typeName="Creator">

/Character/FamilyName</ReqField>

<ReqFieldtypeName="CreationInformationType">

/Creation/Title</ReqField>

<ReqAggregateID>avgSize</ReqAggregateID>

<GroupBy>

<GroupByField typeName="Creator">

/Character/FamilyName</GroupByField>

<Aggregate xsi:type="AVG" aggregateID=

"avgSize">

<Field typeName="MediaFormat">

/FileSize</Field>

</Aggregate>

</GroupBy>

</OutputDescription>

In this code, the resulting media items are

grouped by the attached family name informa-

tion and an average file size is calculated. To

fulfill this operation, all used fields in the

GroupBy clause must occur as fields in the above

section of the OutputDescription element.

For validation, the XPath semantic rules for

all involved XPath expressions are first applied.

Then, for all used fields in the GroupBy clause,

their occurrence in the OutputDescription sec-

tion must be evaluated.

OutputDescription semantic

MPQF supports the OutputDescription type,

which enables the requester to select the infor-

mation that the result set must contain. This

type allows limiting the maximum number of

items per output page and the overall item

number. The OutputDescription consists of

the following elements:IE
E
E

M
u

lt
iM

e
d

ia

24

� ReqField describes a data path, within the

item’s metadata, that a requester asks to be

returned;

� ReqAggregateID describes the ID of the ag-

gregate operation the requester asks to be

returned;

� GroupBy describes the grouping operation

the user wants to apply to the query results;

and

� SortBy describes the sort operation the user

wants to apply to the query results.

In addition to using these elements, several

attributes can be selected to restrict the

maximum number of pages or the use of free

text.

The OutputDescription instance in the pre-

vious GroupBy example allows a maximum re-

sult set size of 30 items in MPEG-7 descriptions.

This number is requested by the attribute output-

NameSpace. The ReqField elements select the

specific MPEG-7 descriptions that the requester

wishes to be returned.

The validation of embedded XPath expres-

sions in the ReqField starts checking if the

embedded expressions satisfy the rules of the

W3C XPath 2.0 specification. Then, the con-

tent of the XPath expression is tested to see

whether the selected path can be retrieved

from the related outputNameSpace. Special im-

portance must be given to XPath expressions

selected in the GroupBy element. Because the

results are grouped by these types, the same

types must also be selected in the ReqField.

Finally, the system must evaluate whether

maxPageEntries is less than or equal to

maxItemCount.

QueryByFeatureRange semantic

The QueryByFeatureRange type enables the

client to perform two different range searches.

The first method allows a search on the basis

of given descriptions (for example, a color his-

togram) denoting the start and the end range

of the retrieval area. The second option allows

a range search on the basis of a given descrip-

tion and a distance. The snippet below is a

QueryByFeatureRange example:

<QFDeclaration>

<Resource xsi:type="DescriptionResourceType"

resourceID="startID">

<AnyDescription xmlns:mpeg7

="urn:mpeg:mpeg7:schema:2004">

<mpeg7:Mpeg7>

<mpeg7:DescriptionUnit xsi:type=

"mpeg7:AndioSpectrumEnvelopeType">

1 2 3 4 5

</mpeg7:DescriptionUnit>

</mpeg7:Mpeg7>

</AnyDescription>

</Resource>

<Resourcexsi:type="DescriptionResourceType"

resourceID="endID">

...

</Resource>

</QFDeclaration>

<QueryCondition>

<Condition xsi:type="QueryByFeatureRange">

<Range RangeEnd="endID" RangeStart=

"startID"/>

</Condition>

</QueryCondition>

Querying by a feature range assumes that the

RangeStart and the RangeEnd elements belong

to the same data type contained in the

DescriptionResourceType. For example, both

DescriptionResourceType types in this snipped

must point to an AudioSpectrumEnvelope-

Type description.

In addition, the validation determines that

RangeStart and RangeEnd addresses a resource

of type DescriptionResourceType. Furthermore,

the addressed descriptions (in the AnyDescription

element) must use the same metadata format (for

example, MPEG-7). And the descriptions must

point to the same data type (for example,

AudioSpectrumEnvelopeType).

SpatialQuery semantic

The SpatialQuery query type enables the

search of spatial features within still image

data. Depending on the underlying metadata

model and the given parameters, the query

type supports the retrieval of images or parts

of them containing a specific spatial configura-

tion of regions or content. The following snip-

pet is a SpatialQuery example:

<QFDeclaration>

<Resource resourceID="stillImage1"

xsi:type="DescriptionResourceType">

...

</Resource>

</QFDeclaration>

<QueryCondition>

<Condition xsi:type="SpatialQuery">

<SpatialRelation sourceResource=

"stillImage1"

O
cto

b
e
r�

D
e
ce

m
b

e
r

2
0
0
9

25

relationType="urn:mpeg:mpqf:cs:

SpatialRelationCS:2008:

northwest-Of"/>

</Condition>

</QueryCondition>

The main semantic rules that need to be

applied in this example determine whether

the content of the relationType attribute is

valid. Furthermore, depending on the seman-

tic of the spatial distribution (for example,

every spatial direction supports three different

semantic meanings: north, north-Of, north-

In), the targetResource attribute must be

omitted by the use of X-Of or X-In values,

with X standing for a substitution of the

respective spatial direction.

QueryByRelevanceFeedback semantic

The QueryByRelevanceFeedback element

describes a query operation that uses the result

from the previous retrieval method for post-

processing. This query operation allows the

requester to identify good or bad examples with-

in the previous result set and indicates what

should be retrieved. The following code snippet

is a QueryByRelevanceFeedback example:

<QueryCondition>

<Condition xsi:type=

"QueryByRelevanceFeedback"

answerID="IDofPreviousQuery">

<ResultItem>4</ResultItem>

<ResultItem>8</ResultItem>

</Condition>

</QueryCondition>

This snippet shows a QueryByRelevance-

Feedback request where two examples of a

previous result set have been identified as

good examples. Bad examples are represented

by a negation of the condition.

To validate the QueryByRelevanceFeedback

type semantically, the answerID must be eval-

uated and the previous result set obtained. On

the basis of the previous results, the number

in the ResultItem element must be verified.

Data type operand evaluation

The standard supports a set of operand data

types (for example, long for arithmetic oper-

ands or date for temporal operands) for express-

ing the values of comparison expressions. The

following code demonstrates a GreaterThan

comparison expression that evaluates whether

the value denoted by the XPath has a mini-

mum of 340,000:

<QueryCondition>

<Condition xsi:type="GreaterThan">

<ArithmeticField

typeName="MediaFormatType">/

TargetChannelBitRate

</ArithmeticField>

<LongValue>340000</LongValue>

</Condition>

</QueryCondition>

A semantic check of this query condition must

verify whether the data types of the operands

contain the correct value. For instance, the

LongValue element must point to a long or

integer type. The standard distinguishes only

between floating and whole numbers. Further-

more, for all field elements, the XPath seman-

tic rules must be applied.

Resolution of references semantic

To simplify MPQF queries, we can declare

resources, such as the location of a video, that

are referenced by individual query types (for ex-

ample, by a QueryByMedia) in the condition

clause. The following snippet is a QueryBy-

Media example:

<QFDeclaration>

<Resource resourceID="Image001"

xsi:type="MediaResourceType">

...

</Resource>

</QFDeclaration>

<QueryCondition>

<Condition xsi:type="QueryByMedia"

matchType="similar">

<MediaResourceREF>Image001

</MediaResourceREF>

</Condition>

</QueryCondition>

In this QueryByMedia example, the query type

must reference only resources of MediaResource-

Type type. In addition, the QueryByDescription

query type is only allowed to reference resources

of DescriptionResourceType type.

QueryByFreeText semantic

The QueryByFreeText type enables the user

to perform a free text search. It has an optional

choice of fields that allow the user to state

whether the search should be performed in spe-

cific elements (SearchField) or if specific ele-

ments should be ignored during the searchIE
E
E

M
u

lt
iM

e
d

ia

26

(IgnoreField). The following snippet is a Query-

ByFreetext condition example:

<QueryCondition>

<Condition xsi:type="QueryByFreeText">

<FreeText>Blob</FreeText>

<SearchField>

Mpeg7/Description/MultimediaContent//

TextAnnotation

</SearchField>

</Condition>

</QueryCondition>

The expression Blob is retrieved from all

TextAnnotation elements. The validation ap-

plies XPath semantic rules for all SearchField

and IgnoreField elements, and verifies that no

IgnoreField element is equal to the Search-

Field.

XQuery semantic

The current version of MPQF supports the

QueryByXQuery query type, which allows

embedding XQuery expressions in the form of

conventional MPQF query types. However,

the standard specifies that the XQuery expres-

sion is restricted to the use of constructs that

produce a Boolean true or false decision on a

single evaluation item in the target database.

Furthermore, within the XQuery expression

included in the QueryByXQuery type, no out-

put description is allowed. This restriction

poses a challenge to static validation of MPQF

instances, because determining if the result of

a given XQuery will be a singleton value (one

item) just by examining the XQuery expression

is not trivial. The following snippet is an

XQuery example:

<QueryCondition>

<Condition xsi:type="QueryByXQuery">

<XQuery>

<![CDATA[

let $a := node()//Creator/Role/Name

return

$a/text()="Artist"]]>

</XQuery>

</Condition>

</QueryCondition>

This XQuery expression only consists of a Let

sentence with an equality comparison be-

tween a local variable reference and a string.

However, because an XQuery expression could

result in more than one iteration, the result

could be a singleton sequence with just one

Boolean value inside, or a sequence consisting

of more than one Boolean value.

Validating embedded XQuery expressions

requires checking whether the embedded

expressions satisfy the rules of the W3C’s

XQuery 1.0 specification.10 The validator must

check whether the result of the expressions

will be a Boolean value. As shown previously,

it’s not always possible to determine whether

the expected result of an XQuery expression

will be a singleton Boolean. The standard pro-

vides the following recommendation for such

cases: the return of a Boolean value might be

guaranteed by the use of the fn:boolean func-

tion provided by XQuery.

The fn:Boolean, which is defined in the

XQuery 1.0 specification, outlines some rules

to determine the effective Boolean value of

any XQuery sequence, whether it’s a singleton

Boolean or not:

� If it’s an empty sequence: return false.

� If it’s a sequence whose first item is a node:

return true.

� If it’s a singleton value of type xs:boolean or

derived from xs:boolean: return the value of

its operand unchanged.

� If it’s a singleton value of type xs:string,

xs:anyURI, or xs:untypedAtomic (or a de-

rived type) and the value has zero length: re-

turn false.

� If it’s a singleton value of any numeric type

or derived from a numeric type: return

false if the value is NaN or is numerically

equal to zero; otherwise return true.

� In all other cases: raise an error.

When writing XQuery expressions for MPQF

queries, it’s important to know that Boolean

values within XQuery 1.0 expressions can ap-

pear under the following circumstances:

� the fn:boolean, fn:true, and fn:false

functions;

� logical expressions (and, or);

� the fn:not function;

� quantified expressions (some, every); and

� comparison expressions (¼, ! ¼, and so on).

O
cto

b
e
r�

D
e
ce

m
b

e
r

2
0
0
9

27

Regarding comparisons, XQuery defines

three kinds of comparisons:

� value comparisons (‘‘eq’’ W ‘‘ne’’ W ‘‘lt’’ W ‘‘le’’ W

‘‘gt’’ W ‘‘ge’’),

� general comparisons (‘‘¼’’ W ‘‘! ¼’’ W ‘‘<’’ W

‘‘< ¼’’ W ‘‘>’’ W ‘‘> ¼’’), and

� node comparisons (‘‘is’’ W ‘‘�’’ W ‘‘�’’).

The result of a comparison (of any kind) that

doesn’t raise an error is always a single true or

false. Value comparisons are used for compar-

ing single values. General comparisons are exis-

tentially quantified comparisons that might be

applied to operand sequences of any length.

The result of a general comparison that doesn’t

raise an error is always true or false. However,

we envisage that implementers will always

wrap the XQuery expression within a call to

the XQuery fn:boolean function, which imple-

ments the previously mentioned rules.

Service description capabilities semantic

The management part of MPQF enables

multimedia services to specify query capabil-

ities because queries might be valid for one re-

trieval engine but invalid for another. The

capability description format supports express-

ing what kind of query types, algebraic opera-

tions, and metadata formats are covered by

the respective engine. The following snippet is

a service description example:

<AvailableCapability

serviceID="http://Service-1">

<SupportedQFProfile href="urn:...:Full"/>

<SupportedMetadata>urn:mpeg:mpeg7:2004

</SupportedMetadata>

<SupportedExampleMediaTypes>audio/mp3

</SupportedExampleMediaTypes>

<SupportedQueryTypes href=

"urn:...:100.3.6.1"/>

<SupportedExpressions href=

"urn:...:100.3.1"/>

<AvailableCapability>

In this snippet, the supported metadata is

based on the MPEG-7 schema and the sup-

ported media types are restricted to audio

(MP3 format). Moreover, the multimedia en-

gine supports the following functions: query

types (100.3.6.1 stands for QueryByMedia) and

expressions (100.3.1 means that all Boolean

expression types are supported). For simplicity

and space concerns, we don’t present the full

classification scheme. For validation, all used

components of the database, such as Media-

Resources, query types, algebraic operations,

or metadata formats, must be processable by

the target system.

Preference value semantic

The MPQF standard supports the assignment

of preference values to individual conditions to

highlight user priorities. Those preferences are

represented in the range of 0 to 1. The follow-

ing snippet is a preference value example

<QueryCondition>

<Condition xsi:type="AND">

<Condition xsi:type="QueryByMedia"

preferenceValue="0.3">

...

</Condition>

<Condition xsi:type="QueryByMedia"

preferenceValue="0.7">

...

</Condition>

</Condition>

</QueryCondition>

This snippet demonstrates the use of prefer-

ence values to signal that one media type

should be considered more important during

searches. For validation, the sum of all pre-

ference values must be 1.

Framework and architecture

The MPQF validator provides an extensible,

module-based framework that allows indepen-

dent development and assembly of verification

components. Verification components can be

divided into two main groups: syntactic and se-

mantic. Syntactic verification deals with the

evaluation of XML documents according to

the following two characteristics: well formed

and valid. An XML document is well formed

if it obeys the syntax of XML, and is valid if it

obeys the syntax of the underlying XML

schema. Related to the MPQF validator, an

MPQF query is syntactically correct if it’s well

formed (with respect to the XML) and valid

according to the MPQF XML schema. Semantic

verification deals with the evaluation of rules

that aren’t expressed by syntactic means within

the XML schema.

Figure 2 presents the internal workflow of

the system. Whenever an instance of the vali-

dator is created, a corresponding validation

chain is instantiated. A validation chainIE
E
E

M
u

lt
iM

e
d

ia

28

consists of a set of validation modules that are

selected for the individual validation process.

The current implementation provides valida-

tion modules for evaluating XQuery, GroupBy,

RelativeFields, and service capabilities.

The validation process evaluates the incom-

ing MPQF query by traversing the validation

chain, step by step. During this process, each

validation module verifies the query according

to its specific rules (syntactic or semantic). In

case of an error, the validation stops and the re-

spective error message is returned.

Figure 3 (next page) illustrates the class hierar-

chy of the MPQF validator. In general, we can de-

fine three different parts: the public classes (red),

the validation modules (light blue), and the inter-

nal package (white). The validation modules rep-

resentthe individualsemanticvalidationroutines

that implement the ValidationPart interface.

Every module receives as input the MPQF query

as a document object model (DOM11) representa-

tion. The internal package provides some helper

classes for DOM-tree handling, error processing,

and syntactic validation. The public part supports

the creation of an MPQF validator instance.

MPQF query processing

The MPQF query-processing module has

been integrated in the MPEG-7 MultiMedia

DataBase System (MMDB), which relies on

Oracle’s object-relational database manage-

ment system. This system provides means for

storing and querying MPEG-7 documents and

has been chosen because of its extensibility

and integrated indexing framework. However,

the original proprietary query library has been

replaced by the newly developed MPQFLib,

which is capable of processing MPQF queries.

As noted, the query-execution plan is for-

warded to the processing engine, where all

query types and expressions are transformed

into database functions. The current system fea-

tures implementations for the following query

types: QueryByFreeText, QueryByXQuery, Query-

ByDescription, and QueryByMedia. It’s possible

to generate complex combinations of these

query types by using AND and OR operators

through assembly of the individual parts with

SQL intersect and union operations.

Most implemented query types operate on

one table containing all inserted MPEG-7 docu-

ments as XMLTypes. An enhanced approach

that considers the mapped database schema is

in progress.

Query type implementation

The QueryByFreeText query type allows

users to perform a free-text search with a

given phrase or regular expression in combina-

tion with SearchField and IgnoreField informa-

tion to narrow the query. Text retrieval in XML

documents is supported in Oracle through

the use of Oracle Text (see http://www.oracle.

com/technology/products/text/index.html).

Depending on the enabled functionality, these

indexes enable users to search by specific field

(with the InPath clause), by excluding specific

fields (with the StopList clause), and by arbi-

trary text (with the contains clause). However,

the regular expression feature of the query

type is not supported by those indexes.

Figure 4 shows how MPQFLib maps a Query-

ByFreeText request to a SQL command. The

phrase in question is combined with the Search-

Fields by the contains operation and the InPath

clause. The Extract part uses the XPath values of

the OutputDescription (not shown in the MPQF

example) to retrieve the desired information.

The individual result items are ordered by the

extracted score, which is calculated by the oc-

currence ratio of the search phrase within the

document.

The QueryByXQuery type enables the evalu-

ation of XQuery expressions. Oracle provides

MPEG Query
Format

(MPQF) Query
Validation

chain

Valid?

Valid?

Valid?
Validation
module N

Validation
module B

Validation
module A

Valid!

Not
valid!

No

No

No

Yes

Yes

Yes

Yes

... ...

Figure 2. Validator

workflow.

O
cto

b
e
r�

D
e
ce

m
b

e
r

2
0
0
9

29

the XQuery function in combination with op-

tional context information. To fit to the

MPQF evaluation model in which every opera-

tion is required to return a score value between

0 and 1 for every evaluation item, the result of

the execution must be narrowed to 0 or 1.

Therefore, the MPQFLib maps an incoming

QueryByXQuery operation to a SQL command,

as shown in Figure 5. In the figure, the XQuery

command is extended to guarantee that the re-

sult is narrowed to a value between 0 and 1.

The QueryByDescription query type allows

the retrieval for similar or exact descriptions

(for example, ScalableColor in MPEG-7) of the

target metadata format. Currently, our imple-

mentation is restricted to the evaluation of an

exact match. For this purpose, we use the exist-

Node function provided by the Oracle internal

XMLType for harvesting the XML content.

This member function receives an XPath expres-

sion and evaluates this expression on the stored

XML data. If target node (including content)

exists, 1 is returned; otherwise 0 is returned.

Complex descriptions can be evaluated by a

concatenation (by AND) of successive existNode

functions holding the individual subpaths.

The QueryByMedia implementation requires

preprocessing the provided data, from which fea-

tures for comparison are extracted. The system

currently supports the extraction of low-level

image features (ScalableColor, Homogenous-

Texture, and so forth) through operations

1 SELECT extract(Document,‘/*/*/*/*/MediaLocator[1]/MediaUri/text()’,
2 ‘xmlns=“urn:mpeg:mpeg7:schema:2001”’).getStringVal()
3 as imageLocation,
4 XMLQuery(’declare default element namespace “urn:mpeg:mpeg7:schema:2001”;
5 (::)
6 let $a := node()//Creator/Role/Name
7 return if ($a/text() = “Artist”) then 1 else 0 ’
8 PASSING Document
9 RETURNING CONTENT).getNumberVal() as evaluation
10 FROM Mpeg7_Document

Figure 5. QueryByXQuery implementation.

Figure 3. Class hierarchy.

SELECT extract(Document,‘/*/*/*/*/MediaLocator[1]/MediaUri/text()’,
 ‘xmlns=“urn:mpeg:mpeg7:schema:2001”’).getStringVal()as
 imageLocation,
 score(1) as score_nbr
FROM Mpeg7_Document
WHERE contains(Document, ‘Blob INPATH Mpeg7/Description/MultimediaContent//
 TextAnnotation’, 1) > 0
ORDER BY score_nbr;

Figure 4. QueryByFreeText implementation.

IE
E
E

M
u

lt
iM

e
d

ia

30

Related Work
A recent overview paper offered an analysis of several

multimedia architecture approaches.1 This paper proposed

an architecture classification that divided them into systems

developed from scratch,2 plug-in systems of existing data-

bases,3 systems tuned for improving query-processing tech-

niques,4 and systems focusing on semantic retrieval.5 In

addition, the authors introduced a generic multimedia archi-

tecture consisting of feature extractors, metadata schemas,

user profiles, search logics, and a component to deal with

ontologies.

To support interoperability among individual retrieval sys-

tems, the definition of a generic architecture must rely on

standardized components. In this line of thinking, several

research groups have considered standardized solutions

for single components. For the query language, recent

approaches include the MPEG Query Format (MPQF),6 an

XML-based multimedia query language for distributed

multimedia retrieval. Like other approaches (for example,

SQL/MM7), MPQF combines a data-centric model with

fuzzy retrieval.

There are other systems that rely on standardized meta-

data formats (for example, MPEG-78) for representing low-

and high-level information. The selected format often defines

the diversity and power of the retrieval system. We have cho-

sen MPEG-7 as our description format for representing the

content of our multimedia data because it is the richest

standardized format available. Other XML-based formats—

for example, P/Meta (see http://www.i3a.org/) and Dublin

Core (see http://dublincore.org/documents/dces/)—can be

used together with MPQF by supplying appropriate retrieval

components.

Other research projects have introduced multimedia re-

trieval systems that support MPEG-7.3,9�11 For instance, Per-

sistent Type Document Object Model (PTDOM) is a schema-

aware XML (and therefore MPEG-7) database system that

supports document validation, typed storage of elements

and attribute values, structural indexing facilities, and opti-

mizations of query plans.10 Nevertheless, this system focuses

on data retrieval and neglects multimedia-retrieval features

(such as query by example and spatiotemporal queries).

As another example, the IXMDB system represents an

approach for the integration of the MPEG-7 standard into

a relational database management system.9 Within this sys-

tem, the advantages of schema-conscious and schema-

oblivious mapping methods are combined to support effi-

cient retrieval. Like PTDOM, only XPath and XQuery evalua-

tion is supported in IXMDB, which limits its use for content-

based multimedia retrieval.

In addition to offering a mapping of the MPEG-7 stan-

dard to an object-relational database model, our MPEG-7

system3 provides an integrated indexing framework based

on the Berkeley GiST implementation.12 It also provides a

set of internal libraries featuring the insertion, retrieval, and

deletion process. Specialized application libraries can run

on top of this architecture to adapt the system to specific

needs (such as for image or audio retrieval).

References

1. O.A. Hamid et al., ‘‘Generic Multimedia Database Architec-

ture Based upon Semantic Libraries,’’ Informatica, vol. 18,

no. 4, 2007, pp. 483-510.

2. T. Ojala et al., ‘‘CMRS: Architecture for Content-Based

Multimedia Retrieval,’’ Proc Infotech Oulu Int’l Workshop

Information Retrieval, 2001, pp. 179-190.

3. M. Döller and H. Kosch, ‘‘The MPEG-7 Multimedia Data-

base System (MPEG-7 MMDB),’’ J. Systems and Software,

vol. 81, no. 9, 2008, pp. 1559-1580.

4. A.P. de Vries, ‘‘Mirror: Multimedia Query Processing in

Extensible Databases, Proc. 14th Twente Workshop Lan-

guage Technology: Language Technology in Multimedia

Information Retrieval, Twente Univ. Press, 1998, pp. 37-48.

5. Y. Yildirim, T. Yilmaz, and A. Yazici, ‘‘Ontology-Supported

Object and Event Extraction with a Genetic Algorithms

Approach for Object Classification,’’ Proc. 6th ACM Int’l

Conf. Image and Video Retrieval, ACM Press, 2007,

pp. 202-209.

6. Mario Döller et al., ‘‘The MPEG Query Format: On the

Way to Unify the Access to Multimedia Retrieval Systems,’’

IEEE MultiMedia, vol. 15, no. 4, 2008, pp. 82-95.

7. J. Melton and A. Eisenberg, ‘‘SQL Multimedia Application

Packages (SQL/MM),’’ ACM Sigmod Record, vol. 30, no. 4,

2001, pp. 97-102.

8. J.M. Martinez, R. Koenen, and F. Pereira, ‘‘MPEG-7, IEEE

MultiMedia, vol. 9, no. 2, 2002, pp. 78-87.

9. Y. Chu, L.-T. Chia, and S.S. Bhowmick, ‘‘Mapping, Index-

ing and Querying of MPEG-7 Descriptors in RDBMS with

IXMDB,’’ J. Data and Knowledge Engineering (DEK), vol. 63,

no. 2, 2007, pp. 224-257.

10. U. Westermann and W. Klas, ‘‘PTDOM: A Schema-Aware

XML Database System for MPEG-7 Media Descriptions,’’

Software: Practice and Experience, vol. 36, no. 8, 2006,

pp. 785-834.

11. O. Wust and O. Celma, An MPEG-7 Database System and

Application for Content-Based Management and Retrieval of

Music, Univ. Pompeu Fabra, 2004.

12. J.M. Hellerstein, J.F. Naughton, and A. Pfeffer, ‘‘Generalized

Search Trees for Database Systems,’’ Proc. 21st Int’l Conf.

Very Large Databases, Morgan Kaufmann Publishers, 1995,

pp. 562-573.

31

developed in other research.12 The extracted

information is transformed into a QueryBy-

Description command and executed. The Query-

ByMedia evaluation currently supports only

exact-match retrieval.

Query processing evaluation

We evaluated the performance of the query-

processing module on a small test set of images.

We performed the tests on a Windows PC with

4 Gbytes of RAM and a 3-GHz Pentium pro-

cessor running Oracle 11g. Figure 6 presents

the average results of five runs processing the

query types mentioned here on a data set con-

taining the MPEG-7 descriptions of 1,000,

2,000, and 3,000 images. The test measured

the overall query response time for the execu-

tion of an individual query type. In further

investigations, we will consider more detailed

evaluations, including time and memory com-

plexity, optimization capabilities, and query-

type combinations.

The results show that the XQuery operation

performs best, followed by the QueryByFree-

Text and the QueryByDescription. The Query-

ByDescription operation shows an acceptable

runtime, considering that we used no indexing

mechanism (in contrast to the QueryByFree-

Text operation). As mentioned, most query

types operate on one table containing all

MPEG-7 documents in XMLType instances.

However, the database model of MPEG-7

MMDB also features an object-relational

schema where the content of the individual

MPEG-7 instances can be segmented in nested

tables. Ongoing research in this area no doubt

will explore the implementation of these query

types in this alternate database schema.

Conclusion

The validator framework was approved at

the 86th MPEG meeting in October 2008.8 In

our future work in this area, we plan to work

on semantic rules for other standard commit-

tees. JPEG, for example, uses a subset of the

MPQF in its JPSearch project.13 We also plan

to continue to focus on the query-processing

engine for MPQF and its integration into the

MPEG-7 MMDB. Currently, the processing en-

gine supports the evaluation of QueryByFree-

Text, QueryByXQuery, QueryByDescription,

and QueryByMedia. But there is more work to

be done. MM

Acknowledgment

This research was supported in part by the

Theseus Program, which is funded by the Ger-

man Federal Ministry of Economics and

Technology.

References

1. M. Cord, P.-H. Gosselin, and S. Philipp-Foliguet,

‘‘Stochastic Exploration and Active Learning for

Image Retrieval,’’ Image and Vision Computing,

vol. 25, no. 1, 2007, pp. 14-23.

2. A.G. Hauptmann, R. Jin, and T.D. Ng, ‘‘Video

Retrieval Using Speech and Image Information,’’

Proc. SPIE, vol. 5021, 2003, pp. 148-159.

3. S. Pauws, ‘‘CubyHum: A Fully Operational Query

by Humming System,’’ Proc. 3rd Int’l Conf. Music

Information Retrieval (ISMIR), IRCAM-Centre Pom-

pidou, 2002, pp. 187-196.

4. Y. Chu, L.-T. Chia, and S.S. Bhowmick, ‘‘Mapping,

Indexing and Querying of MPEG-7 Descriptors

in RDBMS with IXMDB,’’ J. Data and Knowledge

Engineering (DEK), vol. 63, no. 2, 2007,

pp. 224-257.

5. M. Döller and H. Kosch, ‘‘The MPEG-7

Multimedia Database System (MPEG-7 MMDB),’’

J. Systems and Software, vol. 81, no. 9, 2008,

pp. 1559-1580.

6. U. Westermann and W. Klas, ‘‘PTDOM: A

Schema-Aware XML Database System for MPEG-7

Media Descriptions,’’ Software: Practice and Experi-

ence, vol. 36, no. 8, 2006, pp. 785-834.

QueryByXQuery
QueryByFreeText

Ru
nt

im
e

(s
ec

on
ds

)

0

5

10

15

20

25

30

35

40

45

50

55

60

QueryByDescription

3,000
2,000
1,000

Number of
documents

Figure 6. Runtime

results of the MPEG

Query Format

evaluation.

32

IE
E
E

M
u

lt
iM

e
d

ia

7. Mario Döller et al., ‘‘The MPEG Query Format:

On the Way to Unify the Access to Multimedia

Retrieval Systems,’’ IEEE MultiMedia, vol. 15,

no. 4, 2008, pp. 82-95.

8. M. Döller et al., WD1.0 of ISO/IEC 15938-

12/Amd.1 MPEG Query Format Ref. Soft & Conf.,

N10257, MPEG Requirements Group, 2008;

http://www.chiariglione.org/mpeg/.

9. J.M. Martinez, R. Koenen, and F. Pereira,

‘‘MPEG-7,’’ IEEE MultiMedia, vol. 9, no. 2, 2002,

pp. 78-87.

10. W3C, XQuery 1.0: An XML Query Language,

2007; http://www.w3.org/TR/2007/

REC-xquery-20070123/.

11. World Wide Web Consortium (W3C), RDF Primer,

1999; http://www.w3.org/TR/REC-rdf-syntax/.

12. M. Lux, W. Klieber, and M. Granitzer, ‘‘Caliph &

Emir: Semantics in Multimedia Retrieval and

Annotation,’’ Proc 19th Int’l Codata Conf., The

Information Society: New Horizons for Science,

2004, pp. 64-75.

13. M.K. Leong et al., JPSearch Part 1: System Frame-

work and Components. ISO/IEC JTC1/SC29 WG1

TR 24800-1:2007, JPEG, 2007.

Mario Döller is an assistant professor at the Univer-

sity of Passau, Germany. His research interests include

multimedia search engines, mobile multimedia appli-

cations, and multimedia content description. Döller

has a PhD in applied computer science from the Uni-

versity of Klagenfurt, Austria. He is an editor of MPEG

(MPEG Query Format, MPEG-7 audio) and JPEG

(JPSearch) standardization committees. Contact him

Mario.Doeller@uni-passau.de.

Armelle Natacha Ndjafa Yakou is a PhD student in

computer science jointly supervised by the INSA

Lyon in France and the University of Passau in Ger-

many. Her research interests include data spaces,

medical information systems, information retrieval,

and distributed multimedia systems. Yakou has

a MSc in computer science from the University of

Passau. Contact her at ndjafa@fim.uni-passau.de.

Ruben Tous is an assistant professor at the Department

of Computer Architecture, Polytechnic University of

Catalonia, Barcelona. His research interests include

metadata interoperability, semantic-driven multimedia

retrieval, and knowledge representation, and reasoning

for multimedia understanding. Tous has a PhD in com-

puter science from the technology department of the

Universitat Pompeu Fabra, Barcelona. Contact him at

rtous@ac.upc.edu.

Jaime Delgado is a full professor in the Computer Ar-

chitecture Department of the Polytechnic University of

Catalonia, Barcelona, and is head and founder of the

DMAG research group. His research interests include

electronic commerce, digital rights management,

metadata, multimedia content, security, and distrib-

uted applications. Delgado has a PhD in telecommuni-

cation engineering from the Polytechnic University of

Catalonia. Contact him at jaime.delgado@ac.upc.edu.

Matthias Gruhne is a senior research engineer at

Fraunhofer Institute for Digital Media Technology, a

research institute of applied technology in Ilmenau,

Germany. His research interests include the develop-

ment of audio identification techniques and music

information retrieval. He works on the MPEG stan-

dardization committee, where he is as editor of the

MPEG-7 metadata and the MPQF standards. Contact

him at ghe@idmt.fhg.de.

Miran Choi is a researcher at Electronics Telecommu-

nication Research Institute, Korea. Her research inter-

ests include natural language processing, information

retrieval, and the Semantic Web. Choi has a PhD

in computer science from Chungnam University,

Korea. Contact her at miranc@etri.re.kr.

Tae-Beom Lim is a project manager in the ABCS

Team, Digital Media Center, Korea Electronics Tech-

nology Institute, Korea. His research interests include

digital broadcasting solutions, personalized digital TV

solutions, embedded systems, and operating systems.

Lim has a master of engineering in computer science

from Sogang Graduate School, Korea. Contact him at

tblim@keti.re.kr.

O
cto

b
e
r�

D
e
ce

m
b

e
r

2
0
0
9

33

