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ABSTRACT 
We present a new strategy for semantic paramodula-

tion for Horn sets and prove its completeness The stra­
tegy requires for each paramoduiation that either both 
parents be false positive units or that one parent and the 
paramodulant both be false relative to an interpretation 
We also discuss some of the issues involved in choosing an 
interpretation that has a chance of giving better perfor­
mance that simple set-of-support paramoduiation. 

1. Introduction 

In [19] it is argued that paramoduiation has the fol­
lowing advantages over resolution with the equality 
axioms: 1. paramoduiation emphasizes the use of the 
functional representation as opposed to the relational 
representation; 2. in functional representation terms are 
not split up and so demodulation is more effective; and 3. 
paramoduiation works directly on deeply nested terms as 
opposed to resolution which uses function substitution to 
build up or tear down terms one level at a time. On the 
other hand, paramoduiation has proven difficult to con­
trol. Some restrictive strategies of a general nature have 
been developed [e.g., 13.18] but these are still not as 
effective as we would like. An often-times useful 
approach is to consider strategies for special classes of 
problems. In this paper we present a new semantic stra­
tegy for paramoduiation for Horn sets, extending the 
work of [4]. We prove the completeness of the strategy 
and discuss some issues relating to its use (in particular. 
some ideas about how interpretations should be chosen). 

2. Preliminary Theoretical Results 

Definition. A Horn semantic resolution with respect to an 
interpretation I is a resolution inference which satisfies 
one of the following two conditions: l) one of the parents 
is a positive unit which is false in I. or 2) one of the 
parents and the resolvent are both false in 1. 

Lemma 1 ([4, Theorem l]). Horn semantic resolution is 
complete for unsatisnable Horn sets. 

For the rest of this section we use slightly modified 
definitions of ground clause and ground resolution in 
order to simplify the analyses of ground deductions. 

Definition A ground clause is a multiset of literals. We 
use the notation C: -LI -12 ... LnD to represent n 
occurrences of literal -L in a clause C. D represents the 
remaining multiset of literals in C. 

Definition Let CI: -L I ... Ln D and C2: LI ... Lm E be 
two ground clauses where Cl contains at least n 
occurrences of literal L and clause C2 contains at least 
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m occurrences of literal L. D and E are multisets of 
literals. The clause C3: D E is a ground resolvent of 
parent clauses Cl and C2. We say that the set of n 
occurrences of -L in Cl matches the set of m 
occurrences of L in C2 Duplicate literals in a resolvent 
are not merged. 

Note that a Horn multiset clause still has only one 
occurrence of a positive literal and that resolution of 
Horn multiset clauses yields a Horn multiset clause. 

Lemma 2. Let Dl be a Horn semantic resolution deduc­
tion of a clause Cl from a ground set S using interpreta­
tion I. Then there exists a Horn semantic resolution 
deduction D2 of a clause C2 where 

1. C2 is logically equivalent to Cl, and 

2. for each resolution in D2 exactly one literal of the 
false clause is matched. 

Proof. The following algorithm constructs D2 from Dl 

1. Choose a highest node in the tree representing Dl in 
which more than one literal from the false clause is 
matched. If there is no such node then stop, other­
wise, let the parents of the resolution be P1. -LI ... 

Ln D and P2: L E. The resolvent is R: D E. 

2. Replace the above resolution by a sequence of n 
resolutions. The resolvents are Rl: -L I . . . -Ln-1 D E, 
R2: -LI ... -Ln-2 D El E2, ... , Rn: D El ... En. 

3 Resolutions in Dl on descendents of literals in E are 
replaced (recursively) by resolutions on the 
corresponding multiple copies in El ... En. Go to 1 

Neither PI nor P2 can be a positive unit false in I. There­
fore R must be false in I. Because -L is false in I, each of 
the clauses Rl,...,Rn is also false in I. Thus each resolu­
tion introduced in step 2 is Horn semantic. A highest 
node with the given property is selected at each iteration. 
The deduction is expanded, but only above the selected 
node; further, no new node above the selected node has 
the given property. Thus, the algorithm terminates. 
Clearly the resulting resolvent is logically equivalent to 
Cl. 
QED 

Lemma 3. Let Dl be a ground Horn semantic resolution 
deduction of clause C from ground set S using interpreta­
tion 1. Suppose clause -L EO is false in I and occurs in 
Dl. Suppose also that -L does not occur in C. Then 
there exists a Horn semantic resolution deduction from S 
of clause C in which 

1. the deduction of -L EO is the same as in Dl, 

2. -L is the literal upon which clause -L EO is resolved, 
and 
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Proof. Let D be a ground Horn semantic refutation of S 
which satisfies the conditions of Lemma 2. The following 
algorithm transforms D into a refutation satisfying the 
conditions of the corollary. 

1. Let C be a highest non-unit clause in D in which the 
positive literal of the resolution is false in 1. If there 
is no such node then stop. 

2. Let -L be a negative literal in C. By Lemma 3 there 
is a refutation with the same number of nodes in 
which the deduction of C is the same and -L is the 
literal resolved in clause C. Let D be such a refuta­
tion. Go to 1. 

3. D2 has exactly the same number of nodes as Dl. 
Proof. Let the deduction be as shown in Figure la where 
Ei+1 = (Ei - |Mi) u Fi. L and Mi are literals, and Ei, Fi and 
Gi are multisets of literals. Assume that literal -L in 
clause -L En descends from literal -L in clause -L E0. 
(Recall that duplicate literals are never merged in a 
resolvent.) Clause - L E I is false in I because neither of 
its parents is a false positive unit. Therefore F0 is false. 
Similarly, each clause -L Ei, and each multiset Fi, 
0<1<n, is false in I. Finally, En+1 is false in I. Now con­
sider deduction D2 (Figure lb) in which the clause L Fn 
has been moved up in the deduction and resolved with 
clause L E0. All other resolutions remain unchanged. 
Clearly Gi = Ei-1 + Fn, 1<1<n, is false in 1. Thus all resolu­
tions in D2 are Horn semantic, It is clear that D2 has the 
same number of nodes as Dl. 
QED 

Lemma 4. Similar results to those of Lemma 3 hold for 
the case in which L E0 is the start clause (false in I as 
before) and En is not empty. 

Proof. L Ei , l<i<n, must be false because its parent L 
Ei-1 is a false non-unit clause. En+1 is false because En 
Is not empty by hypothesis. The rest of the proof is the 
same as in Lemma 3. 
QED 
Remark. Lemmas 2 and 3 allow us to assume without loss 
of generality that given a false clause in a ground Horn 
semantic resolution deduction, an arbitrary single 
occurrence of a negative iteral can be chosen as the 
literal matched for the next resolution. 
Corollary 1. Let S be an unsatisflable set of clauses, and 
let 1 be an interpretation of the symbols of S. Then there 
exists a resolution refutation of S in which each resolu­
tion satisfies one of the following two conditions: 

1. one of the parents is a positive unit false in I, or 

2. the parent with the negative literal of resolution and 
the resolvent are both false in I. 

Lemma 5. Let C be a clause with the following properties. 
1. C occurs in a ground Horn semantic resolution 

deduction with respect to E- interpretation I. 

2. C contains a positive literal L that is true in I, L des­
cends from an equality axiom, and any remaining 
literals of C are false in 1. 

Then C also has one of the following properties. 

3. C is itself the equality axiom. 

4. C is a unit clause obtained by resolving two false 
positive units with either transitivity <ttt> or predi­
cate substitution <ttt>. 

5. C is an immediate resolvent of function substitution 
<tt> with a false positive unit. 

6. C is an immediate resolvent of predicate substitution 
<tft> with a false positive equality unit. 

Proof. Trivial by case analysis. 

Lemma 6. Let C be a clause with properties 1 and 2 
above but with L a negative equality literal, anot=b. 

Then C also has one of the following properties. 

3. C is itself the equality axiom. 

4. C is an immediate resolvent of predicate substitution 
<ttf> with a false positive non-equality unit. 

5. C is an immediate resolvent of transitivity <ttf> with 
a false positive equality unit. 

Proof. Trivial by case analysis. 
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Theorem 1. Let S be an E-unsatisriable set of ground 
Horn clauses, and let 1 be an E-interprc. ition for the 
symbols of S. Then there exists a resolution and paramo-
dulation refutation of S u fa=a| a is a ground termj in 
which each resolution is Horn semantic and each paramo-
dulation satisfies one of the following two conditions: 

1. both parents are positive units which are false in 1, 
or 

2. one parent and the paramodulant are both false in I. 

(Paramodulation is defined so that either the left or right 
argument of an equality literal can match the term to be 
replaced.) 

Remark. We assume symmetric matching for equality. 
That is, we allow the literals a=b and bnot =a to match for 
a resolution. This simplifies the proof of the theorem and 
does not weaken the theorem. 

Proof There exists a finite set E" of ground instances of 
equality axioms such that S u E' is unsatisfiable. We 
know from Lemma 1 that there exists a resolution refuta­
tion, say Dl, which satisfies the resolution restrictions of 
the theorem. We will construct from Dl an acceptable 
resolution and paramodulation refutation D2. 

Because we are assuming symmetric matching for equal­
ity and paramodulatic i is allowed from both sides of the 
equality, we may assume without loss of generality that 
Dl contains no instances of symmetry 

Let the initial deduction Dl be written as a tree with the 
false parent of each node on the left. We transform Dl by 
repeatedly replacing the leftmost occurrence of an equal­
ity axiom by paramodulation. Because the equality 
axiom is true, it must occur as the right parent where it 
enters Dl. Because equality axioms are eliminated left to 
right, no literal to the left of the axiom being eliminated 
can descend from another equality axiom Special cases 
(A l , A.2) are introduced to handle the replacement when 
an earlier replacement has caused paramodulation into 
or from a descendant of an equality axiom occurring 
further to the right. Each of the cases below is labeled 
with the type of equality axiom (P for predicate substitu­
tion. T for transitivity, etc) as well as with the truth value 
assignments for its literals. Due to space limitations, we 
describe in prose only a few of the cases. The remaining 
ones are similar and are described by the Figures 2-20. 

Case P.ttt (Figure 2). The two negative literals must 
resolve immediately with false positive units a=b and 
Pa. The order is not important. The resulting paramodu­
lation introduces no new cases because both parents of 
paramodulation were to the left of P.ttt. 

Case P.tff (Figure 3). The true Literal a not =b must resclve 
first. Lemma 3 allows us to assume that -Pa resolves 
next. The resolution is replaced by a paramodulation as 
shown in Figure 3. If Pa descends from another equality 
axiom, that axiom is eliminated by special case A.l. 

Case P.ftf (Figure 4). The true literal -Pa must resolve 
first. Lemma 3 allows us to assume that anot =b resolves 
next. If a=b descends from another equality axiom, that 
axiom is eliminated by special case A.2. 

Case A.l. Paramodulation into a true positive non-
equality literal that descends from an equality axiom. 
Let the clause be Pb C, where Pb is true and C is false. 
By Lemma 5 there are possible 4 subcases. 

Subcase A.l.1 (Figure 16). Pb C is predicate substitution 
with paramodulation into Pb. Lemma 3 allows us to 
assume that the two negative literals resolve next. The 
order is not important. This section of the deduction is 

replaced by two paramodulation inferences. Paramodula­
tion from a=b is covered in case A.2, and paramodula­
tion into Pa is covered in case A. 1. 

The remaining 17 cases are similar. 
QED 
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Theorem 2. Let S be an E-unsatisftabie set of (general) 
Horn clauses and let I be an E-interpretation for the sym­
bols of S. Then there is a resolution and paramoauiatioa 
refutation of S u (x=x} u (functional reflexive axioms) 
satisfying the semantic conditions of Theorem 1. 

Proof, Let D' be a proof as in Theorem 1 for an appropri­
ate set S' of ground instances of S. Resolutions in D' are 
lifted in the normal way. Now let T'[b'] be the ground 
paramodulant of T'[a'] and a*=b' C, and let T and a=b C 
be the corresponding clauses of S. If the position in T 
corresponding to the position of a' in T'[a] exists, then 
paramodulation lifts directly. If not, functional reflexive 
axioms are used. 

Case 1. T'[a'] is false. The appropriate set of functional 
reflexive axioms are paramodulated into T to instantiate 
it so that it gets a subterm corresponding to a". Each 
paramodulant is false because each has T'[a'] as an 
instance. The paramodulation now lifts directly. 

Case 2. T'[a'] is true and a'=b' C" is false. In this case, 
a=b C is paramodulated into the appropriate functional 
reflexive axioms to obtain a clause g(..(a)...)=g(...(b)...) C 
which can match the existing term structure in T'[a'J. 
g(...(a)...)=g(..(b)...) is false because T'[a"] is true and 
T'[b'] is false. Thus each paramodulant is false The 
paramodulation now lifts directly. 
QED 

In case F.tf (Figure 14) of Theorem 1, paramodula­
tion is into a subterm of an instance of x=x. All other 
uses of instances of x=x are for resolution. "We believe 
this type of paramodulation can be avoided by making 
the transformation as shown in Figure 21. Lemma 4 
allows us to assume that the equality is the next literal to 
resolve in clause C g(a)=g(b). Now the newly introduced 
paramodulation is into a level 2 subterm of a true nega­
tive equality which may descend from another equality 
axiom. This introduces a host of new cases; further, this 
case is recursive — we must handle the case in which an 
arbitrary subterm of a descendant of an equality axiom is 
paramodulated. All of these cases have not yet been 
analyzed. 

Of course, functional reflexive axioms cannot be 
eliminated entirely under the present semantic restric­
tions. Consider the clauses 1. -P(x,x), 2. P(f(a),f(b)). 
and 3. a=b. We may chose an interpretation in which the 
first clause is false and the other two are true. Then the 
only semantic refutations possible require paramodula­
tion from a functional reflexive axiom. It has been shown 
in practice [17] that inclusion of the functional reflx xive 
axioms severely degrades the performance of the pro­
gram. Some strategies for paramodulation are complete 
without them [1,5], and we conjecture that there is some 
modified version of semantic paramodulation for Horn 
sets that is complete without these axioms. 
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3. Related Results 
T. Brown and Li da Fa have reported independently 

on similar research. Brown [2] proves the completeness 
of a version of semantic resolution and paramoduiation 
for Horn sets. His conditions on resolution are the same 
as ours, but his conditions on paramoduiation are 
weaker. There is a restriction only on the into parent — it 
must either be a false positive unit or have the equality 
true and the remaining literals false. (Brown defines 
paramoduiation differently so that all occurrences of a 
term in the into clause are replaced.) His method o[ 
proof is induction using the excess literal parameter 
introduced by Bledsoe, Li da Fa [6] has reported a com­
pleteness proof with conditions similar to ours but he 
assumes a very limited class of Herbrand interpretations 
— namely those in which two terms are equal if and only if 
they are the same sequence of symbols. His proof is 
immediate. We are not aware of any reports of experi­
mental results with either of these methods. 

4. Experimentation 

We plan to conduct extensive experimentation with 
semantic paramoduiation using NUTS (Northwestern 
University Theorem-proving System) [10], an LMA-based 
theorem prover [7,8], Of course, we will use various tech­
niques for efficient evaluation of clauses [eg., 4] and 
methods for insuring that later substitutions in the 
deduction don't eliminate all false instances of an earlier 
false parent [11,12]. 

While it will be interesting enough to compare Horn 
semantic paramoduiation with other paramoduiation 
strategies, the main emphasis in our experiments will be 
to determine, if possible, what kinds of interpretations 
lead to good performance. Experience has shown [4,12] 
that for resolution, choosing the wrong interpretation 
leads to little or no improvement over simple set-of-
support resolution. This is also true for paramoduiation. 
For example, if we have all unit equalities (very often the 
case) and the interpretation assigns only the negative 
clause to be false, then the only allowable semantic 
paramodulations are those from any of the (true) positive 
equality units into the one false negative unit. Moreover, 
the resulting negative unit also will be false. Such an 
interpretation allows exactly the same paramodulations 
as if we had chosen the one negative clause to be the set 
of support. On the other hand, if we choose an interpre­
tation in which the negative clause is true, but some spe­
cial hypotheses are false, then the only initial paramodu­
lations allowed are paramodulations from or into the false 
equality units which result in false paramodulants or 
between pairs of these false special hypotheses. If we 
have chosen a good interpretation, there will be fewer of 
these than one would get by allowing those special 
hypotheses to be in a set of support 
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